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The aim of the present research was to investigate the feasibility of a probability density
function (PDF) methodology combined with a large eddy simulation (LES) for turbulent
reactive mixing in industrial geometries. In order to incorporate the PDF transport
equation into a LES context, a filtered version was employed, denoted as filtered density
function (FDF) equation. Using FDF/LES, the yield of mixing-sensitive, parallel compet-
itive reactants was numerically studied in a tubular reactor with perpendicular inlet
operated at Re = 4,000 for varying Damkdohler numbers and feed-stream concentrations.
The “interaction by exchange with the mean” (IEM) model was used to close the filtered
conditional scalar energy dissipation rate (SED) appearing in the FDF equation. The
modeling assumptions were assessed by means of laser induced fluorescence (LIF)
experimental data, providing the mean conserved concentration field in a horizontal and
vertical center plane downstream the injector, and concentration PDF’s at several
downstream positions. In the vicinity of the injector, the FDF/LES model slightly over-
predicts both the spreading of jet and the dissipation of small scale fluctuations, which
was attributed to the overprediction of the turbulent diffusivity in the transition region of
the laminar jet to the the turbulent wake of the injector. Further downstream, however, the
global macro transport of the reactants was qualitatively well predicted, and the sensi-
tivity of the yield to the Damkdohler number and feedstream concentration showed
consistent behavior. © 2005 American Institute of Chemical Engineers AIChE J, 51: 725-739,
2005
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Introduction

Mixing reacting scalars in turbulent flows is a crucial step in
a wide range of industrial processes. Commonly, multiple,
parallel reactions compete for a limited supply of reactants. In
order to optimize the process conditions such that the formation
of unwanted side products is minimized, an adequate descrip-
tion of the mixing process is needed.

A complete description of the reacting scalars without any
modeling can be obtained by means of a direct numerical

Correspondence for this article should be addressed to E. Van Vliet at
eelco @klft.tn.tudelft.nl.

© 2005 American Institute of Chemical Engineers

AIChE Journal March 2005

simulation (DNS); the transport equations of the fluid momen-
tum and scalar components are solved on a numerical grid that
captures the whole range of turbulent scales from the size of the
reactor down to the smallest turbulent fluid and scalar scales,
the Kolmogorov and Batchelor length scales [for example,!].
Since the flow in most industrial applications is highly turbu-
lent, the range of length and time scales usually is very wide.
Consequently, under these circumstances, this DNS approach
is not quite feasible, and some way of modeling is required.
A rough categorization of modeling approaches can be made
on the basis of the proportion of the fluid and scalar spectrum
that is solved explicitly, and the proportion which is modeled.
The classical treatment of turbulent flows is based on decom-
posing the dependent variables into mean and fluctuating com-
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ponents (Reynolds decomposition). Models are required to
close the cross-correlation terms that appear upon averaging
the decomposed transport equations. Consequently, such
RANS-models should cover the whole spectrum of turbulent
scales. Since no distinction is made between the large and
small scales, the models have to capture two distinctly different
physical processes; turbulent convection at the large scales, and
molecular diffusion at the small scales.

Mechanistic micromixing models rely on the idea that mo-
lecular diffusion and the resulting chemical reactions take place
at the smallest turbulent scales; therefore, the advection-diffu-
sion-reaction equation for a scalar within an assumed laminar
flow field representing lamina in a single Kolmogorov eddy is
solved explicitly [for example,>#]. As a consequence, a sepa-
ration of scales is incorporated into the mechanistic micro-
mixing model; the high end of the scalar spectrum is solved
explicitly, and the cascade from the large down to the small
scales is modeled. Usually, computational nodes that represent
the locations of the reaction zones are tracked within the flow
field calculated separately according to, for example, a RANS-
approach. Dedicated models are adopted to capture the turbu-
lent cascade of the reaction zone in order to predict its current
length scale. The micromixing advection-diffusion starts at the
moment the Kolmogorov length scale (or some other scale
related) is reached. Since the result of the approach depends on
the way the complicated and nonuniversal cascade process is
modeled, one could wonder whether it is useful to put all
computational power into the numerical solution of the scalar
advection-diffusion at scales that are predicted so crudely.
Moreover, at the moment of release of the computational
nodes, it is not known a priori what the Kolmogorov eddy size
will be, since it depends on the turbulent region where it will
arrive in the reactor. Since the initial properties of a computa-
tional node depend on their unknown future state, micro-
mixing models are non-causal, and, consequently, it is in
principle not possible to set the initial conditions (such as the
amount of reactant dye fed to the reactor).

With a large eddy simulation (LES) approach, a low-pass
filter is applied to the transport equations of the fluid and the
large-scale motions of the fluid are solved explicitly. Modeling
applies to the nonresolved high-frequency part of the turbulent
spectrum only. With the assumption that the small-scale fluc-
tuations are in local equilibrium, some amount of universal
behavior may be expected. In this work, a conventional’ sub-
grid scale (SGS) model with a low mesh Reynolds number
correction® has been employed in order to prevent overpredic-
tion of the eddy viscosity in the regions where the smallest
turbulent scales are practically resolved. The LES approach has
proven to be an important engineering tool to solve the turbu-
lent flow in numerous industrial applications, such as stirred
tanks (for example,”®) or full scale crystallizers®).

In order to couple reactive scalar transport to the fluid flow
LES, the transport equation of the scalar joint probability
density function (PDF) is solved (for example,'?). The primary
advantage is that the reaction rate terms within these equations
remain closed, and, thus, do not need any modeling. In order to
incorporate PDF methods in LES, several methods have been
proposed. In the field of combustion, for example, the condi-
tional source-term estimation method (for example,'"), and the
presumed beta-function PDF method (for example,'?) are used.
In this work, the “filtered density function” (FDF) is em-
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ployed!? which in fact is the PDF of the SGS scalar compo-
nents: Pope'? demonstrated on formal mathematical grounds
that the reaction rate appears in closed form in the FDF trans-
port. Gao and O’Brien'# developed a transport equation for the
FDF, and offer suggestions for the remaining unclosed terms in
this equation. Colucci et al.’> and Zhou and Pereria'® applied
the FDF methodology to a temporally developing mixing layer
and a spatially developing planar jet under both nonreacting
and reacting (single reaction) conditions, and showed close
agreement with DNS results. Variable density was included by
Jaberi et al.'” Van Vlict et al.!® extended the FDF method to
parallel, competitive reactions of the type sd + B — P and 4

k k-
+ 6 — 9 (with a reaction rate - —2>), and demonstrated that

the dependency of the yield on the Damkdhler number (Da)
was correctly predicted. Nowadays, FDF/LES is used for more
complex reactions schemes (for example,'?), or velocity fluc-
tuations (for example,20-21).

The N, dimensional FDF transport equation (N, being the
number of scalar components) is most naturally solved
within a Lagrangian Monte Carlo (MC) framework. Com-
putational particles representing the scalar composition
evolve in both the compositional and spatial domain accord-
ing to stochastic differential equations, such that the statis-
tics of the particle ensemble corresponds to the modeled
FDF equation. In this way, the computational effort depends
only linearly rather than exponentially on the number of
scalar species involved; this results in a major reduction in
computational time. Unfortunately, the statistical accuracy
increases with the square root of the number of MC particles
only. For this reason, until so far the FDF method was only
tested and applied to simple flows on relatively small com-
putational grids in order to keep the computational time and
memory requirements acceptable.

The aim of this article, is (1) to demonstrate that, given
the current state of computational resources, the FDF
method can be applied to an LES of reactive mixing in an
industrially applied tubular reactor (TR), and (2) to validate
the FDF model by means of experimental data. For the
former purpose, a parallel cluster of eleven Linux PCs was
employed, each equipped with a dual Athlon (TR) 1800+
processor, and one Gb of memory. As mentioned earlier, the
reaction terms remain closed within the FDF context, and
modeling applies to the conditional scalar energy dissipation
rate (SED), and the subgrid scalar flux; hence, for the second
purpose, it is relevant to assess the mixing of a conserved
scalar while discarding chemical reactions. We use the ex-
perimental data of LIF measurements of the 2-D concentra-
tion field downstream the injector?? in a horizontal and
vertical center plane.

In the next section, the geometry of the TR is introduced, and
the most relevant turbulent and kinetic length and time scales
are estimated. Then, the numerical aspects are treated; the
transport equations are given, and the SGS model employed to
capture micromixing in the FDF context is introduced and
discussed. Furthermore, the practical aspects of the simulations
are presented. Next, the main results are presented in two parts:
in the first part, only conserved scalar mixing is considered and
compared to the LIF experimental data, whereas the second
part focuses on the reactive scalar mixing for varying
Damkohler numbers and inlet concentrations.
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Figure 1. Perspective (a) and representation (b) of the
tubular reactor at the position of the injector.

The definition of the coordinate system is given below Figure
1b. The square box is installed for experimental purposes only
(see??).

Turbulent Reacting Flow Definition

A view of the TR is given in Figure 1. The reactor consists
of a round tube (diameter D,) in which a turbulent fluid flow is
established containing some of the dissolved reactants. Other
reaction components are added to the flow system via a feed
pipe (dia. D, = 0.2D,) that protrudes into the main stream. It
produces a jet pointing in the same direction as the main flow
through a nozzle (dia. D; = 0.1D)) located at the downstream
side of the feed pipe, at the centerline of the main tube.

The turbulent flow in the TR is characterized by several
Reynolds numbers that are related to distinct sources of turbu-
lence production. First, the mean flow through the reactor
establishes a wall bounded shear flow. A Reynolds number
based on the mean bulk velocity U,, is defined as Re,, =
U,D/Jv (where, v is the kinematic viscosity of the fluid).
Second, a turbulent wake is formed downstream of the injector
that is characterized by the Reynolds number, based on the feed
pipe dia. Re, = U,DJv, and the Strouhal number St =
D/(U,J ). Here, the time scale 7, is the period between
shedded vortices. Finally, the jet induces a free shear flow that
is characterized by the jet Reynolds number Re; = U/D,/v
(where, U, the initial jet velocity), and the velocity ratio U/
U

me
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The flow geometry and conditions were chosen to carefully
represent the experimental flow facility of.?> Since, in the
experiment, the mean bulk velocity was limited for reasons of
temporal resolution, measurements were performed at a mod-
erate Reynolds number of Re,, = 4,000. The Reynolds num-
bers Re,and Re; both were 800. In this regime, vortex shedding
occurs in the “irregular” regime, with a Strouhal number of
about 0.2.23 Since D,/D, = 5, the shedding time scale happens
to be approximately equal to the macro time scale = D,/U,,,.

The main flow entering the inlet cross-section of the TR
consisted of a homogeneous solution of reactants & and € with
equal concentrations d)%U = d)(@U = 1 (concentrations are de-
noted in arbitrary units). Reactant s{ was dissolved in the
stream injected by the feed pipe with either a high or a low inlet
concentration of ¢, = 4,000 or ¢4 = 1, respectively. With
the high inlet concentration case (denoted as H in table 1), an
equal initial mass flux through the reactor for all reactants was
established such that reactant & can either completely react
with reactant 9% or . The low inlet concentration case (de-
noted as L in table 1) represents equal inlet concentrations,
resulting in a surplus of reactants % and €.

A, B and € react according to

&y
Fast reaction: o + B —> P

ks
Slow reaction: o +€ —9 (1)

(similar to the reaction scheme employed by2318) at second-
order reaction rates w, = k,¢  bg and w, = kyb 4 Pe. The
reaction rate constants k, and k, were taken in the ratio 1,000
: 1. Since the reactions are taken to be isothermic, and the fluid
velocities are much smaller than the speed of sound every-
where, the use of constant density transport equations (as
formulated in the next section) is justified.

For well mixed systems, the ratio between the amount of
products formed is completely determined by chemical kinet-
ics, whereas in poorly (diffusion limited) mixed systems local
shortages of % can favor the formation of the slow reaction
product 9. The yield of 2 is defined as

X, = My/M, (2)

where M; is the mass flux of component j through the cross-
section, given by

M, = J (A 3)

with u, being the streamwise velocity component, A denoting
the cross-sectional area of the TR, and the brackets represent-
ing the ensemble average. The yield may vary from 0.001 in
the well mixed regime to 1 for the poorly mixed regime.

The mixing intensity is quantified by the Damkohler num-
ber, here defined as the ratio between turbulent macro time
scale and the characteristic reaction time scale
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Table 1. Damkohler Number '°log(Da) Corresponding to Five (I-V) Reaction Rates for Two
Inlet Concentrations ¢, of Reactant s

Case 1 11 11T v v

H h.4,=4,000 —43 -23 -03 1.7 3.7

L 0= 1 —4.1 2.1 —0.1 1.9 3.9
g eddy viscosity v, relating the SGS stress to the resolved strain
Da = T eaion “) rate according to 7, = 2v,(S);. The Smagorinsky eddy vis-
cosity (denoted as v, ), is related to the strain rate modulus
. . S = V/(2S?), and grid spacing A as v, ¢ = C>A2S, where the

For the reaction time scale we take J (259 g pacing Ve.s N

reaction

(k, Vo &104)(@0)_1- By choosing different values for k, and &,
(always in the ratio k,/k, = 1,000:1), the Damkohler number
was varied over eight orders of magnitude such that a very
broad spectrum of mixing regimes is covered. The five
Damkohler numbers (indicated as case [-V) are listed in Table 1.

Numerical Simulation Procedure
Transport equations

The state at location x = x; (i = 1, 2, 3), and time ¢ of any
turbulent reactive flow is defined by the local pressure p(x, t),
velocity u(x, ) = u;, and scalar composition vector ¢p(x, 1) =
b (x, 1), where « = 1, 2, ..., N, refers to the N, scalar
components involved in the set of reactions.!® For an incom-
pressible, Newtonian fluid, the reacting scalar field is governed
by the continuity equation, and the momentum and scalar
advection-diffusion equations

V-u=0 5)
Ju
§+u-Vu=—Vp+f+vV2u (6)
and
b
$+u-V¢=—V'J+w(¢) (7

where p is the pressure normalized with the mass density, f is
a body force per unit mass acting on the fluid, v is the kinematic
viscosity, J is the mass flux of the species given by Fick’s law
of diffusion J = J = —T'd¢,/dx; (where I' is the scalar
diffusivity), and w = w,, is the reaction rate that usually is a
nonlinear function of the local scalar composition array ¢(x).
The second equation is generally referred to as the Navier-
Stokes (NS) equation.

Large eddy simulation

Within the LES approach, a spatially and temporally invari-
ant low-pass filter operator is applied to the Eqs. 5 and 6 in
order to remove the high-frequency fluctuations and, thus, to be
able to obtain a numerically feasible solution on a computa-
tional grid, coarser than the smallest fluid length scales. The
filter operator (denoted as (- --);) introduces an additional
stress term (approximately 7, = (uu), — (u),{(u),;2*), which
represents the influence of the nonresolved subgrid scale (SGS)
velocity fluctuations to the resolved velocity field.5 assumes an
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Smagorinsky constant is a semi-empirical constant.

Although the Smagorinsky model is widely used, its short-
comings are well recognized (for example,®23). In the low
mesh Reynolds number limit (that is, when the dissipative
scales are close to the grid size), the eddy viscosity in the
conventional Smagorinsky model does not approach zero since
the resolved strain rate remains finite. Therefore, we use a
modified eddy viscosity proposed by® according to

Ue,s
Upy = Ups — Bv[l - exp<f By)]

where 3 = 2/9 is recommended. The eddy viscosity given by
Eq. 8 correctly approaches zero in the low mesh Reynolds
number limit. On top of the Voke modification, also the van
Driest’s wall damping function?® is used, which suppresses the
eddy viscosity in the wall boundary regions in order to take into
account the local reduction in length scales imposed by the
wall.

®)

Lattice-Boltzmann LES solver

An efficient solution algorithm for the NS differential equa-
tions is provided by the Lattice Boltzmann (LB) solver.?7-2¢ The
LB scheme is based on a very simple microscopic system of
fictitious particles that can hop between the sites of a regular
lattice and may have collisions only on the lattice sites. Colli-
sion rules are chosen such that on a macroscopic level the
continuity and Navier-Stokes Eqs. 5 and 6 are recovered. Since
the scheme is fully local in nature, it performs very efficiently
on parallel platforms; only communication between the adja-
cent boundaries of neighboring domains is required.

An adaptive forcing technique’ is used to impose the flow
boundary conditions. The technique describes the geometry by
a set of M control points on the boundary lying inside the
uniform, cubic LB grid. At the control points, a force is
dynamically adjusted such that prescribed velocities are main-
tained. At the tube and injector walls a zero slip velocity is
imposed, while at the injection point a fixed velocity is set at a
single grid point located in the injector exit. In this way, a
momentum point source rather than a well defined jet flow is
imposed. We, hence, expect some resolution problems in the
jet exit regions, although further downstream the resolution
requirements are relaxed due to entrainment of ambient fluid
from the main flow. Periodic boundary conditions are applied
in streamwise direction to sustain a developed turbulent flow at
the inlet. The length of the reactor tube was taken ten reactor
diameters in order to ensure that the influence of the feed pipe
at the inlet was minimal. This assumption will be checked in
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the result section. The main flow is driven by a uniform body
force that is applied to the whole flow domain. The body force
is dynamically adjusted such that the momentum flow through
the reactor is kept constant (which otherwise would increase
due to the jet).

Filtered density function

Just treating the scalar advection-diffusion Eq. 7 in the LES
context (that is, on the analog of the SGS stresses) is not
appropriate due to the lack of information about the joint
distribution of the reacting species on subgrid scale level,
which is required to determine the filtered reaction rate w in
case of second and higher order reactions.!? Rather, a transport
equation for the joint probability density function of the LES
filtered scalar quantities (the filtered density function (FDF)) is
formulated!3-14

P,
—— +(u),-VP, = -V- [(<“|4’>L = (u),) P,]

Jat
L9 e
al)[/a a-xi

where (X|Y), denotes the filtered value of X conditioned on Y,
Y is the value in composition space of the scalar quantity ¢,
and the summation convention applies to both species suffix «
and the coordinate suffix i. The FDF P, can formally be
defined as

l!l> —fﬁa(dl)]PL} ©)

P (P x, 1) =J p(h, (x', NG(x' —x)dx"  (10)

—

oL, d(x, ] = o[ — dix. 0] = [] [t — balx. 0] (11)

a=1

where 6 is the Dirac delta function, p[{s, (X, 7)] is known as
the fine-grained density?® and G(x) is the low-pass filter cor-
responding to the LES filter operator (- - -);.

An LES must be used to supply the resolved scale velocity
(u);. Equation 9 describes the change of the FDF P, due to
several processes. The convection term (second term on the
I.h.s.) and chemical reaction term (last term on r.h.s.) are closed
(and, thus, do not need any modeling). The terms that need
closure are the unresolved SGS convection and diffusion term,
given by the first and second term on the r.h.s., respectively.

An eddy viscosity model is adopted for the FDF SGS con-
vective flux

[<“|'1U>L = (w)y, P, = —-I,VP,, (12)

where I', is the eddy scalar diffusivity related to the eddy
viscosity through the turbulent Schmidt number: I', = v,/Sc,.

The SGS diffusion term can be decomposed into a part
which represents transport in physical space and a part which
represents transport in composition space

AIChE Journal March 2005

a [/aJe
Y, 0 X;

where x, = I'V¢,, - Vo, represents the scalar energy dissipa-
tion rate of component . The conditional scalar energy dissi-
pation rate (x|i), takes care of the diffusion in composition
space, and needs to be modeled. Note that the latter diffusion
term is negative, and therefore exhibits behavior opposite to the
diffusion of a scalar quantity in physical domain; instead of
being smoothed, gradients in compositional domain are steep-
ened toward a final equilibrium state of an impulse at the scalar
average.

The “interaction by exchange with the mean” (IEM) model?®
is a simple closure that assumes (originally referred to by?® as
“least mean square estimation” (LMSE) model)

5
ll’>LPL] =V-Ive, - m [<Xa|d’>LPL] (13)

9 d
- Gillfi [<Xa|‘!’>LPL] = 67% [Q, [, — (D) 1P.] (14)

Here, (), represents the frequency of mixing within the sub-
grid, which is related to the subgrid diffusion coefficient and
the filter length

Q,, = Co(I' + T,)/AL (15)
where C, = 3 (due to'9).

Algorithm 0.1
equation (16)

Monte Carlo solution of FDF

Read initial flow field u(x, 7y)
Read initial Monte Carlo particles (MCP) (X™, t,)
for n = 1, 2 - - - number of timesteps do
Update LES flow field (u(x), t,),
Interpolate flow properties to MCP
Calculate drift and diffusion at MCP (Eq. 20)
Step MCP in physical space (eq. 17)
Update (d(x, t,)), from MCP
Calculate scalar drift coefficient (eq. 21)
Update MCP ¢ (X™, t,) (eq. 18)
Deal with the boundary conditions
end

With the closures given by Eqgs. 12 and 14 the modeled FDF
transport equation is

P,
W‘F <U>L'VPL = V'[(F + FQ)VPL]

ad ad
+ 87% [Qm(lpa - <¢‘o¢>L)PL] - 87% [wa(dl) PL] (16)

The closures used in this formulation are essentially the same
as'> used for the 2-D mixing layer.

FDF solver

The modeled FDF transport Eq. 16 gives a full statistical
description of the filtered scalar composition field. The first
moment is equivalent to the equation that can be obtained by
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low pass filtering the scalar advection-diffusion Eq. 7. In the
FDF formulation, modeling of the reaction term is not required
since it remains closed.

A finite difference solution of FDF transport equation is not
feasible, since the computational demands grow exponentially
with the dimension (that is, the number of species N,) of the
system. For high-dimensional systems, a Lagrangian Monte
Carlo (MC) solver turns out to be more efficient.’® The idea of
the MC method is to release computational particles randomly
into the computational domain. Each particle represents the
scalar composition ¢ at its current position X(#). The MC
particle position and composition are evolved according to the
stochastic differential equations (SDE)

dX = D(X(1), t)dt + E(X(z), )dW(1) (17)

and

do* =B(d"(1)dt (18)
where D and E are the drift and diffusion coefficients of the
particles in the physical domain, dW = dW, = (dt)"'?¢; is a
Wiener process [with & a random variable with standard
Gaussian PDF];'9, and B = B, denotes the drift in scalar
domain due to micromixing and chemical reactions. The FDF
transport equation corresponding to the SDE Eq. 17 and Eq. 18
is

GPL_ V- D 1Vz ) J
FTE (PL)+§ [EPL]_T%(BaPL)

19)
A comparison of this Fokker-Planck equation with the modeled
FDF transport Eq. 16 shows that the two systems are equivalent
for a particular specification of the drift and diffusion coeffi-
cients, viz

E=\2I'+T,) and D=, +V{I +T,) (20)
respectively, and for the scalar drift coefficient
B=-0Q,(¢"—($d")) + &b () 2n

The solution procedure is given in algorithm 0.1. Linear
interpolation is used to obtain the flow properties at the MCP.
The boundary conditions are set at the inflow of the main tube
and the jet. In order to attain a uniform particle density over the
cross-section of the inlet to the reactor tube, every time step the
boundary grid cells are filled with MC particles up to a pre-
scribed particle density N,,.

Practical aspects

The flow in the tubular reactor was calculated on a 800 X
83% cubical computational grid with unity grid spacing A. At
the wall of this domain, free slip boundary conditions were
imposed, except for the inlet and outlet, where periodic bound-
ary conditions were taken. The outer tube wall had a diameter
of 80A, and was defined by 220,635 control points, whereas the
feed pipe diameter of 16A was defined by 5,787 control points.
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A circular hole in the feed pipe of 4A in diameter was defined.
In the center of the hole, the jet flow was driven by a momen-
tum source imposed on a single grid point.

The speed of sound in the LB framework is about one,
implying that [u|*> << 1 in order to keep the flow within the
incompressible limit. The jet velocity was fixed at u; = 0.16
(from here on, all quantities are specified in LB units) com-
pared to 0.64 m/s in the physical equipment. The bulk flow was
driven by a body force f, that was dynamically adjusted via the
mass outflow in order to keep a fixed mean velocity (without
this adjustment, the bulk velocity would increase due to the
momentum imparted by the jet). In this way, a mean velocity
of 0.01 in the tube was established (compared to 0.04 m/s in the
physical equipment). A Reynolds number of 4,000 (which was
chosen in agreement to the flow condition of the 3D-LIF
experiment of 22) was obtained by choosing a kinematic vis-
cosity of v = 2.0 X 10~*. The LB solver requires to store 22
(18 directions, 3 force components and one eddy viscosity)
single-precision values on every grid node, resulting in a total
memory requirement of approximately 0.45 GB.

The estimate of v combined with a molecular Schmidt num-
ber of Sc = 2,000 leads to a molecular diffusivity of I' =
u/Sc = 1.0 X 107", The choice for the semi-empirical Sma-
gorinsky constant was C, = 0.12 (due to’). The turbulent
Schmidt number relating the eddy diffusivity I', to the eddy
viscosity v, was set to Sc, = 0.7. This choice establishes a
dissipation of the nonresolved scalar fluctuations larger than
the nonresolved velocity fluctuations. It was argued by,'8 how-
ever, that one single time scale relating the dissipation of both
spectra is probably not sufficient due to the distinct behavior of
the high frequency part of the scalar power spectrum compared
to the kinetic energy power spectrum. This aspect will be
discussed in the results section.

The FDF solver is computationally more expensive than the
LB-LES solver, and requires a larger amount of memory. In
order to limit the computational effort of the reactive scalar,
only the first half of the flow domain was employed; resulting
in a 400 X 83 X 83 grid containing 20 Lagrangian MC
particles per grid cell on average. Each particle represented the
full composition array of the five scalar components of five
independent reaction schemes of varying Damkohler numbers
(see table 1), so that in a single run several cases were calcu-
lated. Every MC particle required 36 single-precision real
values to be stored (25 for the reacting scalar components, one
for the nonreacting scalar, three for the position, three for the
velocity, one for the eddy viscosity, and three for the gradient
vector of the eddy viscosity), resulting in a total memory
requirement for the FDF solver of 400 X 832 X 20 X 36 X 4 ~
7.4 GB plus about 0.3 GB to store the Eulerian scalar field.

The code was implemented on a Linux cluster of ten dual
AMD Athlon(TM) MP 1800+ processors and one dual Pen-
tium III 500 MHz processor with a total amount of 11 GB of
distributed memory. The ten AMD processors took care of
FDF scalar solver, whereas the part of flow domain without
scalars was solved on the slower Pentium III node. It took
about 1.5 day to calculate one macro time scale D,/U,, (8000
LB time steps). For an initial distribution, it took about a week
to obtain a steady flow, and the statistics were obtained from
about 20 macro time scales (taking about a month for each
run). For the simulations discussed in this article, the parallel
computer cluster was kept busy for almost three months.
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Figure 2. Instantaneous velocity field in a vertical (a), and horizontal (b) center line plane, and six flow-normal vertical
planes (c—j) corresponding to the positions p020-p400.

Results

Below, the results of the FDF simulation in the TR will be
presented. It has already been mentioned that within the FDF
approach the reaction term remains closed, and modeling ap-
plies to the SGS mixing of the scalars only. Therefore, first of
all, the mixing of a nonreacting conserved scalar (denoted as
&) replacing reactant o is studied and compared to the mea-
surements described in the previous section. The mixing of the
reactive scalars of the parallel competitive reaction system
described earlier, will be presented next.

Conserved scalar mixing

First, some instantaneous results are presented to get quali-
tative pictures of the flow, and the conserved scalar transport in
the TR. Next, a spectral analysis has been performed to gain
insight in the turbulent characteristics of the flow. Then, the
averaged conserved scalar concentration is compared to exper-
imental 2D-LIF results. Finally, the performance of the FDF/
LES model is assessed by comparing the concentration PDF’s
with experimental LIF data.

Instantaneous Realizations. Impressions of the instanta-
neous turbulent velocity field and the conserved (nonreacting),
passive scalar concentration field are given in Figures 2 and 3,
respectively. The velocity vector plot of Figure 2 shows that a
turbulent wake is formed downstream of the injector. In this
wake, the jet at the exit of the injector is visible. In the vertical
side view (Figure 2a), it is shown that the jet is inclined
upwardly promoted by the main stream flowing around the
blockage formed by the feed pipe. Turbulent structures are
formed and recirculation occurs. The yz-planes (coordinate
definition in Figure 1b normal to the stream direction (Figure
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2c—h) show the downstream development of the transverse
velocity field.

The conserved scalar field shown in Figure 3 exhibits the
same features as a flow field: an upwardly inclined jet in a
turbulent wake. The flow-normal yz-planes (Figure 3c—h) il-
lustrate that the dye close to the feed pipe resides in the wake.
The recirculation and low velocities in the wake of the injector
cause the dye to be distributed over the whole length of the feed
pipe. This is most clearly visible in the flow-normal yz-plane
(Figure 3c). The dye outside the wake is advected immediately
away due to the larger velocity of the main stream. Further
downstream, the dye is taken to the top of the reactor (from
position p100 at x/D, = 0.10), where it is directed along the
outer wall of the tube. After position p300 (at x/D, = 3.5), the
dye reenters the central horizontal plane at both sides of the
reactor.

For the flow around an infinitely long circular cylinder at
Re; = 800, vortex shedding occurs in the “irregular” regime,
with vortices that become turbulent in themselves.?* In the
tubular reactor the flow is more complex; the feed pipe cannot
be considered infinitely long, and a jet is injected into its wake.
Even so, the horizontal cross-section view of the concentration
field (Figure 3b) suggests that vortices at regular distances are
formed in the tubular reactor. Earlier in this article, it was
estimated that in this particular flow geometry, the time 7,
between the shedded vortices happens to be equal to the macro
time scale J. This implies that the distance between the suc-
cessive vortices should be of the order of a reactor dia. D,. This
is roughly confirmed by the location of the vortices in Figure
3b: the distance between two consecutive vortices (indicated by
A and C) is about D,.
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Figure 3. Instantaneous conserved scalar field (same planes as Fig. 2).
Labels A—C indicate shedded vortices. A log scale is used to pronounce the low scalar values with respect to the inlet concentration.
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Time Series and Spectral Analysis. Time series of the wake close to the injector (Figure 4b), and the last position is
spanwise velocity component u,, at three downstream positions at x/D, = 7.6 far downstream (Figure 4c). The power spectral
are shown in Figure 4. While the first position is at the injector density functions corresponding to the time series are shown in

opening (Figure 4a), the second position is at x/D, = 1.0 in the Figure 5. The angular frequency is denoted as Q = 27/T,
where T is the time. In the LB framework, the time resolution
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Figure 4. Time series captured at three downstream
center line positions x/D, = 0.0 (a), x/D, = 1.0  Figure 5. Normalized power spectral density functions
(b) and x/D, = 7.6 (c). corresponding to the time series shown in Fig-

The PDF’s are obtained from 25 macro time scales. ure 4.
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is much higher than the space resolution.?” The highest fre-
quency contribution in a time series is due to the advection of
the smallest resolved spatial scale Ax/U,,. The angular fre-
quency )¢ corresponding to this time scale is used to nor-
malize the frequency domain.

The transverse velocity fluctuations at the jet exit are sup-
pressed. The power spectral density function falls off very
rapidly, and does not show any turbulent characteristics. In the
wake (b) at x/D, = 1, the turbulent fluctuations are most
intense (note the different vertical-scales of Figure 4a—c). At
this position, the widest range of turbulent scales is found and
a small inertial —5/3-range is recognized. At the far down-
stream position x/D, = 7.6, the fluctuation intensity is weaker
again, and the power spectral density hardly shows any inertial
range, which reflects the weak turbulence in a tube flow with
Re = 4,000.

Although vortex shedding is found in the instantaneous
concentration field shown in Figure 3b, this is not visible in the
power spectral density function. It has already been mentioned
that vortex shedding was in the irregular regime, and, conse-
quently, no truly fixed shedding periodicity is expected. On top
of that, the Strouhal frequency of the feed pipe coincides with
the energy-rich turbulent macro time scales, which makes it
hard to distinguish the energy contribution of the Strouhal
oscillations to the power spectrum.

The time and spectral analysis shows that in spite of the
relatively low Reynolds number Re,, = 4,000, the flow is
moderately turbulent. Especially in the wake close to the feed
pipe, an inertial range is formed and turbulence is generated. At
the far downstream position, the low-mesh Reynolds number
modification (Eq. 8) of the eddy viscosity model is required.

Average Concentration: Comparison to 2D-LIF Experi-
ments. In Figure 6, the average concentration in a vertical and
horizontal central plane (obtained from 20 macro time scales)
is depicted and compared to experimental results of 2D-LIF
measurements (obtained from the work reported by).2> The
numerical result shows the mean concentration extending over
arange of about six orders of magnitude. To depict such a large
signal range, the concentration was put on a log scale. The
signal range of the experimental concentration measurement
was only two orders of magnitude, due to the limited signal to
noise ratio of the 255-bit CCD camera. In order to compare the
experimental to the numerical result, the same log scale was
used. It should be stressed, however, that no concentration
values lower than "°log(Z/Z,) = —2.5 could be measured due to
the limited signal to noise ratio of the CCD camera. Further-
more, it should be kept in mind that in the complex flow
investigated in this article, it is hard to obtain statistical con-
vergence, and 20 macro time scales may not be sufficient to
draw strong quantitative conclusions.

The experimental and numerical result show qualitative
agreement. The vertical cross-section of both the numerical
(Figure 6a) and the experimental result (Figure 6¢) show an
upwardly inclined jet that reaches the top of the reactor tube at
about x/D, = 1.5. From there on the dye moves mainly along
the upper part of the reactor tube. In the numerical result, the
dye profile broadens over the tube height further downstream.
The concentration in the lower part of the reactor remains
orders of magnitude lower than the upper part. Since the signal
range of the experiment was low, the concentrations in the
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Figure 6. Experimental (top) and numerical (bottom) re-
sults of the mean, conserved scalar concen-
tration in a vertical (left) and horizontal (right)
center plane.

The experimental results are described in detail in Van Vliet
et al.??

lower part of the reactor were too low to be measured, and,
consequently, this broadening could not be observed.

The horizontal cross-sections in Figure 6b and 6d show that
in both results the jet leaves the horizontal plane between
x/D, = 1 ~ 2, and that the dye abruptly reenters the plane at
the sides of the tube at about x/D, = 2.5.22 suggested that the
dye is advected with the flow along the tube wall. The instan-
taneous concentration fields of the flow-normal yz-planes 3c—h
seem to confirm this explanation.

Although a qualitative agreement of the average dye trans-
port between the experiment and the numerical simulation is
obtained, major differences occur in the region close to the feed
pipe. In the experiment, the higher concentration values pene-
trate deeper into the reactor, whereas in the numerical simula-
tions the scalar concentration only attains its initial value
immediately after the exit. This could well be attributed to the
resolution problems nearby the exit of the jet mentioned before.
This aspect is discussed in more detail later.

Assessment of the FDF/LES Model. The experimentally
and numerically obtained concentration PDF’s determined at
six downstream positions (indicated by p020, p050, p100,
p200, p300, and p400 in Figures 2 and 3) are shown in Figures
7a and 7b respectively. At the first measuring position (x/D, =
0.5), the concentration distribution of the experimental result
(Figure 7a) covers the whole domain, including the initial
concentration of the unmixed dye, whereas the highest values
in the distribution at the same position of the numerical result
have already decayed to ¢ = 0.9. From x/D, = 1.0, the
numerical concentration PDF’s relax to an equilibrium,
whereas in the experiment this equilibrium is established only
after x/D, = 3.5 (the experimental PDF’s in the range x/D, =
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(b) Numerical result

Numerical and experimental downstream evo-
lution of the concentration pdf of the nonre-
acting scalar at positions x/D,: 0.5 (bold); 1.0
(solid); 1.5 (dashed); 2.5 (dotted); 3 (long dash-
dot); 4.5 (short dash-dot).

Figure 7.

5.5 ~ 6.5 are not shown, but are more or less the same as the
PDF at x/D, = 4.5).

The mean and the variance obtained from the concentration
PDF’s are depicted in Figures 8a and 8b. The variance is
normalized with (¢)[1 — ()], that is, the upper bound variance
associated to a completely segregated binary mixture (see for
example®°). In Figure 8a, it is shown that the mean is under-
predicted, consistent with the excessive spreading of the scalar
mean as illustrated in the previous paragraph by Figure 6.
Figure 8b shows that in the vicinity of the feed pipe (at x/D, =
0.0), the normalized variance is close to the upper bound of
one (that is, the mixture is almost completely segregated).
Further downstream, the decreasing normalized variance
shows that micro mixing is becoming more and more active. A
comparison to the experimental results shown in the same
graph indicates that the FDF/LES model underpredicts the
variance in the first part of the reactor (up to x/D, =~ 4),
meaning that micro mixing in this region is overpredicted.
Further downstream, after about x/D, = 4, both the mean and
the variance predicted by the FDF/LES model are consistent
with the experiments.

The overprediction of the mean spreading of the scalar field
may be caused by an overprediction of either (1) the LES
velocity fluctuations or (2) the FDF SGS flux (due to the
second term on the Lh.s., and the first term on r.h.s. of Eq. 9,
respectively). In the vicinity of the jet exit, a transition region
exists of the laminar jet entraining into the turbulent wake of
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the feed pipe. Such transition regions are not properly captured
by the Smagorinsky eddy viscosity model, since this model
assumes a local balance between production and small scale
dissipation. In this particular region, the eddy viscosity is,
therefore, likely to be overestimated, since the local reduction
in length scales is not taken into account. Since an overesti-
mated eddy viscosity contributes to the suppression of the LES
velocity fluctuations, we do not expect that mechanism (1) is
responsible for the excessive spreading of the jet. This assump-
tion is consistent with the suppressed velocity fluctuations and
the non-developed turbulent power spectral density function
found in the jet exit region, as was shown in figure 4. Mech-
anism (2) (the FDF SGS flux), however, is proportional to the
turbulent diffusivity (through the drift and diffusion in Eq. 20),
promoting the turbulent diffusion length /, with respect to
molecular diffusion length [ as I/l ~ VT T = V(v,lv) -
V (Sc/Sc,). In our case, v,/v =~ 10 in the exit of the jet. On top
of that, the assumed constant turbulent Schmidt number Sc, =
0.7 is adequate for a fully developed scalar spectrum only, and
may lead to overprediction of turbulent diffusivity in the vi-
cinity of the scalar source (that is, in regions where the scalar
spectrum has not developed yet) proportional to V Sc/Sc, ~
V3,000. The inappropriate turbulence modeling in a laminar
environment, hence, may lead to an overprediction of I", up to
two orders of magnitude, and likely is the cause of the exces-
sive spreading of the jet via the overpredicted SGS flux.

08 T T T T T T
g Simulation —&— -

0.6

Experiment ---6--- -

(a) Mean

1.0 T T T T T T
I Simulation —8— ]

Experiment ---@---

@)/ @)1 — ()]

0 2 4 6

(b) Normalized variance

The mean concentration, (a) and its variance
normalized with the upper bound variance
(dp)(1 = (¢P)); (b) obtained from the concentra-
tion pdf’s shown in Figure 7 against the dis-
tance downstream the injector.

Figure 8.
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The overprediction of the mixing rate (observed as an ex-
cessive decay of scalar variance in Figure 8b) may also be the
result of the overprediction of the turbulent diffusivity, leading
to an over prediction of the mixing frequency given by Eq. 15,
and consequently, to an overprediction of scalar energy dissi-
pation rate by the IEM micro mixing model (Eq. 14). Note that
this overprediction is not a feature of the IEM model, but rather
a result of an inaccurate estimate of the mixing frequency.

Some Concluding Remarks. So far, we have shown that the
macro transport of a passive scalar is qualitatively reasonably
well predicted by the FDF/LES model: macro flow character-
istics are recovered satisfactorily, and the distribution of the
dye over the height of the reactor was consistent with experi-
mental results. An overprediction of the decay of the scalar
mean and variance in the vicinity of the injector was attributed
to the over prediction of the turbulent diffusivity in the laminar
to turbulent transition region of the jet, leading to an overpre-
diction of the SGS flux. It was shown, however, that these
effects were mainly confined to the first part of the reactor up
to x/D, = 3.5, and that from there on both experimental and
numerical results established a more or less similar equilibrium
state. We, therefore, expect that for simple reactions, the FDF/
LES model used in the present research is adequate for cor-
rectly predicting the selectivity.

Reactive scalar mixing

Now, the reactive system for several Damkohler numbers
and two inlet concentrations (see table 1) is studied.

Instantaneous Consumption and Production. An image of
the instantaneous concentration field of the fast reactant % and
slow product Q for a poorly (a and c¢) and well (b and d) mixed
system is given in Figure 9 for the high inlet concentration
case. Reactant 9% enters the reactor at its initial concentration
(¢ = 1), gets into contact with the feed stream & in the jet
region, and is converted into P. Simultaneously, the slow
reactant € is converted into the slow product 9. In the poorly
mixed system, the turbulent time scales are much larger than
reaction time scales, and reactant % is consumed almost in-
stantaneously (shown in Figure 9a). As a result, sharply defined
regions are formed of either ¢g5 = 0 (black), or ¢y = 1
(white). Due to the local shortage of the fast reactant 9 in the
black regions, also the slow reactant € can be completely
converted, resulting in a high yield of product 2 with also an
almost complete binary distribution (Figure 9c).

In the well mixed system, the reaction time scales are much
larger compared to the turbulent time scales. During the reac-
tion, molecular and turbulent scalar diffusion occurs also,
which is reflected by the smoothly varying concentration field
of the fast reactant B shown in Figure 9b. Moreover, no local
shortage of reactant % is formed, and the slow reaction of 6
into 9 is hardly taking place. As a result, hardly any product 2
is formed (notice that in Figure 9c pure black corresponds to
o =1 X 10). Small spots with relatively high concentration
of 9 are formed in the downstream direction.

For the low initial concentration ¢4, = 1.0 (case L in table
1), the instantaneous realizations have the same features as the
high concentration close to the feed pipe (not shown in a
figure). From about x/D, = 1.0, however, all reactant & has
reacted away. As a result, no products are formed anymore, and
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Figure 9. Comparison of vertical cross-section view of a
poorly (a and c) and a well (b and d) mixed
system in terms of fast reactant % and slow
product 2 for the high inlet concentration
¢.0 = 4,000.

The reactant % is depicted on a linear gray scale ranging
between ¢, = 0 (black) and ¢, = 1 (white). The product 2
is represented by a linear gray scale ranging between white
(¢ = 0.0) and black, where pure black corresponds to Do =
1 for the poorly mixed system (c) and to ¢, = 1 X 10~ for
the well mixed system (d).

the concentration fields of all species are smoothed by turbulent
and molecular diffusion.

Composition Distribution. A more quantitative idea of the
product distribution is obtained by the PDF’s shown in Figure
10, where each picture shows the distributions of all scalar
components over the entire cross-section. A comparison for
different inlet concentrations, downstream positions, and
Damkohler numbers is made.

In Figure 10a—d, the high inlet concentration of reactant o
is considered (case H in Table 1). Since there is a surplus of o,
its total consumption relatively to the initial mass input is
negligible for every Damkohler number, and as a consequence,
the distribution of both the high and low Damkohler number
cases approaches the passive scalar distribution presented ear-
lier in Figure 7. For the large Damkohler number (Figure 10a
and 10b), the consumed reactants 9% and € and the formed
product P and 2 show the same bimodality as observed in the
instantaneous realizations shown in Figure 9a; due to the short
reaction time scales compared to the turbulent time scales,
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Figure 10. Concentration PDF of reactants and products
over the cross-section at a close (a, c, e, g)
and far (b, d, f, h) downstream position for a
large (a, b, e, f) and small (¢, d, g, h)
Damkohler number and a high (a-d) and low
(e-h) inlet concentration, with values ¢, —
x/D, — '°log Da: (a) 4,000 — 0.0 — 3.7; (b)
4,000 — 4.75 — 3.7; (c) 4,000 — 0.0 — —4.3; (d)
4,000 — 4.75 — —4.3; (e) 1.0 — 0.0 — 3.9; (f)
1.0 - 4.75 - 3.9;(9) 1.0 — 0.0 — —4.1; (h) 1.0 —
4.75 — —4.1.

The species are represented by: s, bold solid line; %,
normal solid line; ‘6, dashed line; P, dotted line; 9., dash-dot
line.

and 6 are completely converted into % and 9 as soon both streams
are brought into contact. For the small Damkd&hler number (Figure
10c and 10d), only the distribution of the species of the fast
reaction (B and P) remain bimodal. The distributions of the
species of the slow reactions (¢ and 2) diffuse into composition
space and lose their bimodality due to reaction time scales being
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long compared to the turbulent timescales. This reflects the
smoothly varying instantaneous concentration field shown in Fig-
ure 9. The small high 9 concentration spot mentioned earlier are
now reflected in the broadening of the product distribution in
Figure 10d compared to 10c.

The case with the low inlet concentration of reactant s (case
L in Table 1) is considered in Figure 10e—h. The distribution of
A now shows a clear difference with the former case. Again, at
the close downstream position (Figure 10e and 10g) a bimodal
distribution is found with large peaks on ¢, = 0.0 and ¢, =
1.0. In contrast to case H, however, at the far position reactant
A has now almost completely reacted away; only in the low
Damkohler case (Figure 10g), a small remainder of low con-
centration values of sl is left. Since scalar s{ now is the
limiting reactant, the formed products % and 2 never show the
bimodality as found in case H, but have a peak at zero that
broadens to higher values further downstream.

Product Formation and Yield. The downstream evolution
of mass flux (calculated using Eq. 3) of the reactants s, the
product ? and 2, and the yield X, is shown in Figure 11.
Figure 1la confirms that reactant s{ can be considered as a
conserved scalar for each Damkohler case; only a small frac-
tion of the total mass flux injected is reacted away. In Figure
11b and l1lc, it is shown that products % and 9 are formed
constantly. The ratio between the products, however, varies
strongly with the Damkohler number, as illustrated by Figure
11d. For the low Damkohler case, the fraction of product 9
formed is close to the kinematic limit of 0.001, whereas for the
large Damkohler case the ratio is almost unity. Furthermore, it
can be seen that the yield is almost uniform over the entire
length of the reactor. Only close to the feed pipe, a small
variation in the yield is found. This can be understood by
considering the instantaneous velocity field shown in Figure 2;
close to the feed pipe the jet and the wake enhance the turbulent
fluctuations, whereas further downstream a more or less steady
turbulent flow is formed.

For the low inlet concentration of &4, a significant relative
decrease of the injected mass flux is found. Except for the
lowest Damkdohler number, in all cases the reactant has com-
pletely reacted away at the end of the reactor. Only in the
lowest Damkohler case, about 70% is left. Note that it had
already been found by the PDF shown in Figure 10g that this
considerable mass-flux is formed by low concentrations of &{
only. For the low Damkdhler number case, s is almost com-
pletely converted into % and hardly any 9 is formed, resulting
in a yield close to 0.001.

In Figure 12, the final yield is plotted against Damkohler
number for both the low and the high concentration case. In
both cases, it is again confirmed that limits of the mixing
regions (kinematic and diffusion limited mixing) are correctly
predicted. For Damkohler number around unity (where the
turbulent and reaction time scales are about equal), also inter-
mediate yields of 9 are found. Most striking is the different
behavior for the low and high inlet concentration case of
reactant 4. For case H (¢4, = 4,000), the transition from low
to high X, is most gradual, extending over a range of almost
seven orders of magnitude of Da, whereas in case L the yield
increases from 10~ to almost 1 over a range of about four
order of magnitude of Da. Furthermore, in the low concentra-
tion case, product 9 is formed at higher values for Da. In the
previous paragraph, we observed that in case L, 5§ becomes the
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Figure 11. Downstream evolution of the total mass flux
of reactant «, the products % and 2, and the
yield X,, for the high initial concentration of s
(case H; fig. a-d) and the low initial concen-
tration of 4« (case L; fig. e-h), shown for vary-
ing logarithm of the Damkdéhler number cor-
responding to cases defined in table 1: | =
—4.3 (triangles); Il = —2.3 (circles); Ill = —0.3
(squares); IV = 1.7 (asterisks); V = 3.7
(crosses).

limiting reactant. Although local shortages of % are formed, it
was found that this also leads to a shortage of 54, and that, as
a result, no product 9 can be created.

Discussion and Conclusions

In this article, we have presented one of the first attempts to
apply the FDF/LES methodology to a turbulent reactive flow in
an industrial geometry. More in particular, the mixing of re-
acting scalars of a parallel competitive reaction scheme in a
tubular reactor was investigated. Although FDF/LES is com-
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putationally very demanding (a parallel cluster of eleven dual
processors has been kept busy for almost three months), this
modeling approach is attractive because of the minimum of
modeling assumptions required due to the ability to keep the
reaction term closed. Closures have to be adopted for the
nonresolved SGS scalar transport terms in the FDF equation
(the SGS convective flux and the SGS dissipation), which were
modeled by a gradient diffusion model (Eq. 12), and by the
IEM model (Eq. 14), respectively.

The FDF closure models were assessed by means of exper-
imental 2D-LIF data?? of the mixing of a fluorescent dye in the
flow of the TR operated at the same process conditions. The
experimental 2D-LIF measurements of the scalar distribution
over a horizontal and vertical cross-section showed that the
global macro transport of the conserved scalar was qualita-
tively well predicted by the FDF numerical simulations; a
nonuniform distribution of the scalar dye over the height of the
reactor was found due to the upwardly inclined jet promoted by
the blockage formed by the injector. Compared to the experi-
mental results, however, the jet in the numerical simulation
penetrates somewhat less deep into the reactor. Both the decay
of the scalar mean and scalar variance along the center line of
the reactor were overpredicted in the in the vicinity of the
injector.

The findings above indicate that the FDF/LES simulation
overpredict the mean spreading of the jet, and the dissipation of
the small scale fluctuations in the vicinity of the injector. These
effects were attributed to the overprediction of the turbulent
diffusivity in the transition region (where the laminar jet meets
the turbulent wake of the feedpipe). Since the eddy viscosity
model employed in this research implicitly assumes fully de-
veloped turbulence, it does not capture the local suppression of
small length scales in the laminar jet region. The resulting
overprediction of the turbulent diffusivity leads to an overpre-
diction of the FDF SGS scalar flux (causing the excessive
spread of the mean). Also, it leads to an overprediction of the
FDF dissipation due to an overestimation of the mixing fre-
quency (causing the excessive decay of scalar variance). The
problems are noticeable in the direct vicinity of the jet exit
only, where the laminar jet emerges into the turbulent wake of
the injector.

In spite of difficulties in jet region, it was shown that further
downstream, the predicted scalar mean and variance closely
agree with the experiments. Since the reactions mainly take

1.0

0.0

1010g(Da)

Figure 12. Final yield vs. Damkoéhler number for low and
high inlet concentration of .
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place in these regions, it is expected that the yield predictions
are not too much affected. The qualitative behavior of the yield
of the parallel competitive reactions indeed was well predicted,
showing consistent physical behavior. The mixing limited and
kinetic limited reaction were correctly predicted. The transition
between the regimes occurred around Da = 1.0 for the low
inlet concentration case, whereas in the high inlet concentration
case the slow product 9 is formed two orders of magnitudes
earlier due to the excess of reactant si. These observations may
be important in process design in finding an optimal mixing
intensity for given inlet concentration and flow conditions.

For more complicated fast reactions (such as fuel combus-
tion or polymer reactions) it may be more important to cor-
rectly capture the scalar mixing in the vicinity of the jet. In
order to take into account the local reduction of length scales,
the use of dynamic subgrid scale models would be a better
choice.?!-32 Furthermore, as long as the scalar spectrum has not
fully developed (such as in the vicinity of the injector), it is not
likely that a single turbulent Schmidt number is capable of
correctly relating the turbulent diffusivity to the eddy viscosity
as in Eq. 12. Particularly, for inhomogeneous turbulent flows in
industrial process equipment, improved models have to be
applied. A good candidate is the spectral relaxation (SR)
model,? since it takes into account multiple time scales to
explicitly incorporate the shape and development of the scalar
spectrum by construction. An alternative model including mul-
tiple time scales is due to.>*

In order to deal with the lack of intermittency and inability
of the IEM model to modify the shape of the concentration
PDF, several improved micro-mixing models are available.
The “particle interaction model,” the Langevin equation model
and the Fokker-Planck closure can be used to establish sto-
chastic mixing in the composition domain.!'%3> Drawbacks of
the models, absence of relaxation to Gaussianity and unbound-
edness of the scalar fields, respectively, are prevented by a
binomial sampling model3*® which combines the IEM and the
particle interaction model.

In conclusion, the FDF/LES approach yields very detailed
information on turbulent reactive flows with the usage of a
minimum of modeling assumptions. In spite of the diverse and
complex mechanisms of turbulence generation making the TR
flow representative of industrial flows, a fair agreement for the
conserved scalar mixing is obtained, with consistent physical
behavior for the interaction of the chemical kinetics and the
complex hydrodynamics. Although the high computational de-
mands make FDF simulations currently accessible to academic
research only, the exponential growth of computer resources
will make them a versatile tool for process and geometry
optimization of turbulent reactive flows in process industries.
The primary focus should be on the development and incorpo-
ration of more sophisticated closure models into the FDF
equation.

Notation

A = cross-section surface of the tubular reactor
B = scalar composition drift vector coefficient
D = drift vector coefficient
D,/DJD; = diameter tubular reactor/feed pipe/injector hole
Da = Damkohler number
E = diffusion coefficient
J = J{¥ = mass flux vector of specie «
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or

M; = streamwise mass flux of component j
N, = number of species involved per reaction
N, = number of Monte Carlo particles per grid cell
P, = filtered density function
Re; = Reynolds number based on jet
Re,; = Reynolds number based on feed pipe
Re,, = Reynolds number based on mean flow
S = resolved scale strain rate
Sc(,) = (Turbulent) Schmidt number
St = Strouhal number
= mean velocity of main flow/jet
W = Wiener process vector
X, = yield of the slow product 2
f = body force vector per unit of mass
k,/k, = fast/slow reaction rate constant
p = pressure per unit of mass
u = velocity vector
X = position vector
J = turbulent macro time scale
reaction = Characteristic reaction time
o = index scalar component vector
I'/T", = molecular/eddy diffusivity
& = delta Dirac function
p = fine-grained density function
vlv, = kinematic/eddy viscosity
o, = variance of scalar fluctuations of «
T, = turbulent shear stress
¢ = composition vector
x = scalar energy dissipation rate
iy = value of composition vector
w, = reaction rate of component o
(),, = mixing frequency
DNS = direct numerical simulation
FDF = filtered density function
IEM = interaction by exchange with the mean
LES = large eddy simulation
LIF = laser induced fluorescence
MC = Monte Carlo
NS = Navier-Stokes
PDF = probability density function
SED = scalar energy dissipation
SGS = subgrid scale
SR = spectral relaxation
TR = tubular reactor
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