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Simulations of solid-liquid flow in an agitated tank have been performed. The simulations fully resolve the mildly turbulent
liguid flow (Re =~ 2000) in the tank, and the spherical solid particles suspended in the liquid. Full resolution of the particles
sets the grid spacing and thereby limits the tank size and the number of particles (up to 3600 in this article) that are
computationally affordable. The solids volume fraction is some 8%. The lattice-Boltzmann method has been used to solve
the flow dynamics; the particles move under the influence of resolved hydrodynamic forces, unresolved lubrication forces,
net gravity, and collisions (with other particles, the tank wall, and the impeller). We show the start-up of the suspension
process, demonstrate its dependency on a Shields number (that we interpret in terms of the Zwietering correlation) and
show the impact of polydispersity on the suspension process. © 2012 American Institute of Chemical Engineers AICRhE J,

58: 3266-3278, 2012
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Introduction

Solid particles suspended in liquid flows are very com-
mon: rivers carrying sediment, slurries being transported
through pipelines, powders being dissolved in water, and
crystalline material being formed and growing in agitated
crystallization reactors are just a few examples. The dynami-
cal behavior of solid-liquid suspensions is the result of an
intricate interplay between the dynamics of the liquid phase
and the solids phase, and the research on this topic has a
long and rich tradition."™ For a large part, this research
effort is driven by practical relevance: the design of pipe-
lines for transporting slurries or the assessment of reactor
performance that depends on solid—liquid mass transfer (dis-
solution, crystal growth, and solids carrying catalytic mate-
rial for liquid-phase reactions) requires knowledge of how
the solids distribute themselves in the liquid phase as a result
of hydrodynamic forces, net gravity (or buoyancy), and colli-
sions between the solids, or between solids and bounding
walls.

The more interesting situations are those with moderate to
high solids volume fractions, solid over fluid density ratios
of order one, and solid particle sizes that overlap with fluid
dynamics length scales, for example, a turbulent flow with
particles larger than the Kolmogorov scale. In such situa-
tions, the solid particles feel a complex hydrodynamic envi-
ronment. Where fluid—solid interactions in gas—solid systems
(high density ratios) are dominated by the drag force, liquid—
solid systems are governed by a broader gamut of forces’
that make the latter systems more difficult to model. Further-
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more, in dense (i.e., high solids-volume-fraction) suspen-
sions, particles interact strongly with one another, through
the liquid and as a result of direct interaction (collisions).
This complexity makes it challenging to predict the behavior
of dense, agitated solid—liquid suspensions.

There is no universal approach for modeling and simula-
tion of suspension flows. The appropriate methods depend
on the flow regime (as estimated based on Stokes numbers,
Reynolds numbers, solids volume fractions, density ratios,
and possibly particle shapes) and on the levels of detail and
accuracy required. An overview of methods (Eulerian—Euler-
ian, Eulerian-Lagrangian, various ways of dealing with tur-
bulence, point particles vs. resolved particles) is beyond the
scope of this article. It is important to note, however, that
none of the methods is fully predictive. At various levels,
assumptions, submodels, or empirical correlations are needed
to account for unresolved parts of the suspension physics
(one can think of hydrodynamic force correlations, assump-
tions regarding the dynamic, two-way coupling of fluid and
solid, parameterizations related to continuum descriptions of
the solids phase as in kinetic theory of granular matter).
Usually the finer (length) scales are parameterized, and the
larger scales are resolved. There is, however, also a need for
simulations that resolve down to finer scales and require lit-
tle parameterization. I can think of three main reasons: (1)
the relevance of what happens at short length scales for pro-
cess performance (mass transfer, mechanical load on solids,
and liquid deformations); (2) the assessment of existing sub-
models and assumptions for parameterizing small scales; and
(3) the development of new parameterizations.6’7

There is obviously a computational penalty for resolving
down to finer scales: the physical size of the domains that
can be simulated gets limited. In very impressive simula-
tions® on resolved solid particles in homogeneous, isotropic

Vol. 58, No. 10 AIChE Journal



turbulence, the domain size was typically 32 times the parti-
cle size. With sand-grain size particles (order 0.3 mm), this
implies a domain with linear size of 1 c¢cm, which is much
smaller than typical process equipment operated under turbu-
lent conditions. Limitations on domain size are a reason for
using fully periodic boundary conditions in such highly
resolved simulations. The simulated domain then is a small
sample (a mesoscale sample) of what is happening in a
large, essentially unbounded domain, away from walls. The
latter is an Achilles heel of such fully periodic mesoscopic
simulations: they are not able to directly account for geomet-
ric effects (walls, impellers, and internal hardware), and
(related to this) it is hard to mimic fully periodic conditions
and the macroscale homogeneity they imply in an experi-
ment. At the same time, physical experiments are in great
need; highly resolved (“direct’”) simulations of solid—liquid
suspension flow still need validation, because complete reso-
lution of all relevant dynamic scales is not possible. Resolv-
ing the flow around individual particles is very well possible;
however, resolving, for example, their surface roughness (a
typically 100 times finer length scale compared to the parti-
cle size) is not. Surface roughness is usually parameterized
by a friction coefficient that allows for tangential momentum
exchange when two particles collide. Similar resolution
issues play a role, when particles are in very close proximity.
On fixed computational grids, the hydrodynamic interactions
then get under-resolved; adaptive grids are not truly an option
for simulating the interactions between a significant number
(>10) of particles. On fixed grids, models for lubrication
forces are then applied to mitigate these resolution issues.

With the above in mind, highly resolved simulations of
dense solid—liquid suspensions in mildly turbulent flow were
performed. The geometry (a miniature mixing tank with a
linear size of a few centimeters and mm size spherical par-
ticles) was designed such that it on one side allows for simu-
lations with resolved particles and on the other side for
reproducing it in a laboratory. One goal of this work is to
invite experimentalists to mimic the flow systems presented
here and to (as detailed as possible) visualize the suspension
(liquid and solid) dynamics. Such an interaction between
experiment and simulation would help in making thoughtful
choices regarding parameterizations and numerics (grid reso-
lution, time step, and numerical method), and (hopefully) in
building confidence in highly resolved simulations.

Another goal of this work is to generate insights in the
ways solid particles get suspended in (mildly) turbulent agi-
tated tanks; how they are lifted off the bottom (by the mean
flow, through turbulence, and through collisions), and how
they travel through the tank and interact with the liquid, the
impeller, and the other particles. The (given the small tank)
modest Reynolds number and high particle size over impel-
ler size aspect ratio makes the results not directly applicable
to full-fledged industrial operations involving solids suspen-
sion. The mechanisms, however, are to some extent univer-
sal and therefore also relevant for larger scale processes.

The work presented here is based on our earlier work on
resolved simulations of solid—liquid suspensions (mainly in
periodic domains)”?'* and on detailed simulations of mix-
ing.'"'> Many numerical and verification issues have been
discussed in these earlier articles. For turbulent mixing
flows, these include validation by means laser Doppler ane-
mometry data'' and assessment of grid effects.'” Relatively
simple solid-liquid systems were used for verification and
validation purposes: experimental validation through particle
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image velocimetry (PIV) experiments of a single settling
sphere'® and verification through comparing simulation
results with analytical solutions under creeping flow condi-
tions.'*!> These verifications include assessment of the
effect of grid resolution.”'*! The insights regarding these
earlier works have been used in this article. As a result we
will only briefly explain the numerical method and will not
perform a grid sensitivity study for the specific flow systems
at hand. The focus of the article will be on describing the
flow field results, and on understanding how they depend on
operating conditions in an experimentally verifiable manner.
The organization of this article is as follows: in the next
section, the flow system is defined in terms of its geometry
and dimensionless numbers. Subsequently, the numerical pro-
cedure is outlined. It is based on a lattice-Boltzmann (LB)
method for resolving the liquid flow, an immersed boundary
method for representing no-slip conditions at solid surfaces
(particle surfaces and the impeller), and hard-sphere collisions
between particles. In the “Results” section, first qualitative
impressions of the suspension flow are given, and its develop-
ment toward a dynamically steady state is described. In ana-
lyzing the results, we focus on the distribution of solids
through the tank and on how the liquid and solids velocity
fields interact. The final section summarizes the main findings.

Flow System

The layout of the flow geometry along with a definition of
the coordinate system is given in Figure 1. Gravity points in
the negative z-direction: g =—ge,. The tank has a square
cross section with side length L. The height of the tank is H
= 5L/6. An impeller is placed in the center of the tank’s
cross section and with the middle of the impeller halfway
the height of the tank (i.e., at z = H/2). It is a pitched-blade
turbine: four flat blades are mounted under 45° on a cylindri-
cal hub that is attached to the shaft. The impeller diameter is
D = 2L/5. The shaft enters the tank from the top. The impel-
ler rotates with an angular velocity of Q = 2zN (rad/s) with
rotational direction such that it pumps downward. The tank
is filled up to a level z = H and closed off with a lid, so
that no-slip conditions apply all around.

The tank contains a Newtonian liquid with density p and
kinematic viscosity v, and we define the impeller Reynolds
number as Re = N‘—[,’Z. The tank also contains spherical solid
particles. In most of the cases, they are uniformly sized with
radius @p. In one case, a bidisperse mixture of particles is
simulated with half of the solids mass contained in spheres
with radius ag, and half in spheres with radius a; =1.17a,
(this may seem to be a minor difference; by volume the dif-
ference is significant though:a} = 1.59a}). The solid over

liquid density ratio has been fixed to % = 2.5 (typical for,

e.g., glass beads in liquid), except for one bidisperse case
with half the solids having % = 2.0, the other half having

% = 3.0. The solids volume fraction has been set for all
#ivl = 0.083 with V, to total solids volume

(e.g., Vo =M 4na8/3 for M uniformly sized spheres), and V;
= 0.0018L* the volume of the impeller plus shaft.
Gravitational acceleration has been nondimensionalized

. . 202
through the introduction of 6 = %.
8(ps—p)2ao

The group 0 we
. . . _ - .
view as a variant of the Shields number 6 = PP that is

widely used to characterize erosion of granular beds by fluid
flow.'® Traditionally, the stress ¢ is a viscous shear stress

cases to ¢ =
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Figure 1. Flow geometry and Cartesian coordinate sys-
tem.
Top: top view; bottom: side view. The tank is closed off
with a lid that acts as a no-slip wall. In addition to the
dimensions given in the figure, the thickness of the
impeller blades is 0.021D. The impeller rotates such that
it pumps liquid downward (clockwise in the top view).

(then ¢ = pvy with 7 the shear rate). The Shields number
reflects the competition between gravity pulling solids to the
bottom of the tank and hydrodynamic stress suspending the
particles. As the flow in the tank is dominated by inertia, we
have introduced a measure for the inertial stress ,oNzD2
rather than a viscous stress in the Shields number.

It is instructive to interpret the above definition of the
Shields number in terms of the classical results due to Zwie-
tering'” on solids suspension in mixing tanks. Zwietering per-
formed an extensive set of solids suspension experiments with
particles having a narrow size distribution and summarized
the results in a correlation that carries his name. With the
symbols as defined earlier the Zwietering correlation reads

(2a0)"*v"! (1006 p, /)" (8(ps = p)\**
Nis = s DO8s < 0 ) )
with Njq the just-suspended impeller speed, that is, the minimum
rate of agitation to keep all solids suspended (more precisely
defined in Ref. '7); and s a geometry dependent parameter (in
the range 2-20). The term 100¢ p,/p = @y, represents the
solids mass fraction as a percentage. If a critical (or just-
= _PND” the
8(ps—p)2ap°
Zwietering correlation (Eq. 1) can be written as

suspended) Shields number is defined as 0j
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o) -0.3
0 = SO0 Ar 0 (%) )

It implies that the critical Shields number depends on the
solids mass fraction, a particle size over impeller diameter
aspect ratio, and (only weakly; power —0.1) the Archimedes
number Ar = g(”s—;’)) (2a0)’.

The specific situations that were simulated were chosen
based on possibilities for experimental verification (this, e.g.,
led to the density ratios around 2.5), our desire to have a
fairly dense suspension under (mildly) turbulent conditions,
and computational feasibility. Computational feasibility lim-
its the number of particles to a few thousand, and it limits
the impeller Reynolds number, because all turbulent scales
need to be resolved.

We define our base-case in terms of dimensionless num-
bers in Table 1. As an example of a physical system that has
these characteristics, the particles can be assumed to be
spherical glass beads with a diameter of 1.0 mm. The impel-
ler then has a diameter of D = 1.2 cm, and the sides of the
tank are L = 3.0 cm. As (on earth) g =~ 9.8 m/s* and 0 =
24.0, the impeller speed is N = 49.5 rev/s (roughly 3000
rpm which—in view of experimental feasibility—is a typical
drilling speed). To achieve Re = 1920, the kinematic viscos-
ity of the liquid needs to be v = 3.71 x 10~° Pa s (which
can be achieved by, e.g., making a glycerol-water mixture).

If we take s ~ 6 as an order-of-magnitude estimate for the
geometrical parameter in Eq. 1 (see, e.g., the propeller data
in Ref. ') then Nj, =~ 92 rev/s (and 0j, ~ 83) for the physi-
cal system defined earlier. This is almost twice as high as
the base-case impeller speed. As a consequence, we do not
expect fully suspended solids for the base-case.

The main variations from the base-case (to be discussed
later) are with respect to the Shields number that has been
varied in the range 6 < 0 < 96. In the simulations, 0 has
been varied by varying gravitational acceleration (g); the ge-
ometry, impeller speed, and liquid viscosity (and therefore
Re) were kept constant. As already mentioned earlier, also
bidisperse particle sets were simulated with the spherical
particles having different densities or different sizes.

The flow systems are started by creating a random pack-
ing of particles on the bottom of the tank. This granular bed
has a thickness of approximately 8ay, that is, equivalent to
four layers of spheres. The impeller is situated well above
this bed. Then, the impeller is set to rotate, which agitates
the liquid and subsequently causes erosion of the granular
bed and solids getting suspended in the liquid. This proce-
dure allows us to study the start-up of the suspension pro-
cess. It is a scenario that can be mimicked experimentally,
albeit with some care related to the speed of image acquisi-
tion. As we will see, the start-up phase of the solids

Table 1. Definition of the Base-Case in Dimensionless

Numbers
Impeller-based Reynolds number Re = ND*/v 1920
Number of spheres M 3600
Solids volume fraction ¢ 0.083
Density ratio pslp 2.5
Impeller diameter over sphere radius DJay 24.0
Shields number O — _peND? 24.0
8(ps—p)2ao
Tank’s height over width H/L 5/6
Impeller diameter over tank width D/L 0.4
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suspension process takes a few tens of impeller revolutions
which (in the physical system) is of the order of a second.
On the positive side, the flat side walls of the tank will facil-
itate visualization of the particles.

Modeling Approach

We used the LB method'®'® to solve for the liquid flow.
The specific scheme used is due to Somerszo; also see
Eggels and Somers.”' The method has a uniform, cubic grid
(grid spacing A). The resolution was such that the side
length L was represented by 360 grid spacings (L = 360A).
In fully developed turbulence, the smallest dynamical length
scale (the Kolmogorov scale, symbol ) is related to macro-
scopic length scales (¢) via the Reynolds number®*: 5/¢ =
Re . If we consider the impeller diameter D as a measure
for ¢, a crude estimate of the smallest turbulent length scale
n (crude, because turbulence is not fully developed in our
tank operating at Re = 1920) is n = D Re™”* ~ 0.5A. Our
resolution, therefore, satisfies the typical criterion for suffi-
ciently resolved direct numerical simulations of turbulence:
A < B2

The no-slip boundary conditions at the outer walls of the
tank were implemented according to the half-way bounce-
back rule."” The no-slip conditions at the particles’ surfaces
and at the impeller surface were dealt with by means of an
immersed boundary (or forcing) method.""'** In this
method, the surfaces are defined as sets of closely spaced
points (the typical spacing between points is 0.7A), not coin-
ciding with lattice points. At these points, the (interpolated)
fluid velocity is forced to the local velocity of the solid sur-
face according to a control algorithm. The impeller under-
goes a predefined rotational motion, so that we know the
location and velocity of each of its surface points at any
moment in time. The local particle surface velocity has con-
tributions from translational and rotational motion of the
sphere under consideration. Adding up (discrete integration)
per spherical particle of the forces needed to maintain no-
slip provides us with the (opposite; action equals minus reac-
tion) force the fluid exerts on the spherical particle. Simi-
larly, the hydrodynamic torque exerted on the particles can
be determined. Forces and torques are subsequently used to
update the linear and rotational equations of motion of each
spherical particle. This update determines the new locations
and velocity of the sphere surface points that are then used
to update the liquid flow, and so forth.

It should be noted that having a spherical particle on a
cubic grid requires a calibration step, as earlier realized by
Ladd.?® He introduced the concept of a hydrodynamic radius.
The calibration involves placing a sphere with a given radius
a, in a fully periodic cubic domain in creeping flow and
(computationally) measuring its drag force. The hydrody-
namic radius a of that sphere is the radius for which the
measured drag force corresponds to the expression for the
drag force on a simple cubic array of spheres due to Sangani
and Acrivos.”’ Usually a is slightly larger than a,. The dif-
ference a — a, depends on the kinematic viscosity26 and is
typically equal to half a lattice spacing or less. All simula-
tions presented in this article had the same kinematic viscos-
ity (v = 0.003 in lattice units; length unit A and time unit
Atr) and were carried out with a resolution such that a = a
= 6A (for v =0.003 we then find a,, = 5.52). In one of the
bidisperse simulations, we have spheres with hydrodynamic
radii @y and a; = 7A (and a,; = 6.54).
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Experimental validation and grid refinement studies show
that a resolution of six lattice spacings over a sphere radius
is sufficient for resolving the flow around a solid sphere for
particle Reynolds numbers based on slip velocity up to order
50."% The particle Reynolds number based on its settling ve-
locity U for the base-case is Repp = U"‘—Z“O =~ 25, that is,
less than 50. To obtain this estimate, the Schiller and Nau-
mann”® drag correlation was used:
Cp =2 (1+0.15Re"%*7). An upper bound of the particle
Reynolds number in our simulations would be based on a
particle slip velocity equal to the impeller tip speed:
Repip = 2020 = 400 which is markedly higher than 50.
The impeller tip speed, however, is a measure for the maxi-
mum liquid velocity in the tank, and slip velocities (the local
difference of liquid and solid velocity) will generally be
much smaller than the tip speed. Still, spatial resolution of
the flow around the spheres is a concern and will be assessed
by determining the way Re, :"’“%% is distributed in the
tank for the base-case simulation.

The temporal resolution was such that one revolution of
the impeller took 3600 time steps: N = m. The convec-

L . P o
tive time scales of the particles - and = were 960Ar and

48At, respectively, so that a particle only moves a (very)
small fraction of its radius over one time step.

The spheres directly interact through hard-sphere colli-
sions according to the two-parameter model (restitution coef-
ficient e and friction coefficient u) due to.”” The same e and
1 were also used when a sphere hits one of the bounding
walls. Different from gas—solid systems, in liquid—solid sys-
tems the choice of the restitution coefficient is not critical
for the overall suspension behavior.” This is because energy
dissipation largely takes place in the liquid phase, not so
much during dry collisions between particles. The restitution
coefficient was set to e = 1 throughout this work. Recent
results on erosion of granular beds by laminar flow suggest a
more critical role for the friction coefficient.>® Friction
allows particles to exchange angular momentum (or to trans-
fer linear momentum to angular momentum and vice versa)
and therefore allows rolling of particles (over one another or
over walls). This is relevant for mobilization by fluid flow of
solids in granular beds or solids resting on the tank bottom.
Our results on erosion’® show that a zero or a nonzero u
makes a significant difference, with the precise value of a
nonzero u being less relevant (results with g = 0.1 and u =
0.25 showed minor differences). As with u = 0.1 we were
able to well reproduce experimental data on critical Shields
numbers,16 that value for u was used in this work as well.

Collisions between solid spheres and the impeller are
modeled according to a scenario akin to soft-sphere colli-
sions: each time step it is checked if sphere volume and
impeller volume overlap. If so, we determine the component
of the relative velocity of the impeller and the particle in the
direction normal to the impeller surface: u, = [u, — (Q X
r)] - n with Q = —Qe, the angular velocity vector of the
impeller, r the location of the particle-impeller contact, and
n the unit outward normal on the impeller surface. At the
first detection of overlap the relative velocity is reverted:
up = up — 2u,n with u, the postcollision particle velocity.
This procedure limits overlap of any sphere with the impel-
ler to 0.5% of the sphere volume at maximum, and the inter-
action time between sphere and impeller to typically five
time steps (0.50 of impeller rotation).
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The fixed-grid simulations involving moderately dense
suspensions as discussed here require explicit inclusion of
subgrid lubrication forces.” Assuming creeping flow in
between closely spaced spheres, the expression for the radial
lubrication force on two solid spheres i and j with center
locations x,; and X, radii ¢; and g;, and having relative ve-
locity Aujj = upj — up; reads>?

2.2
_liﬂ_il@.Auw7
(@i +a)"S

Fiyp, =6mpy Fupj = —Fuon,  Fupi = Fiepn

3

with s the smallest distance between the sphere surfaces
s = |xpj — xpi‘ — (a,— + aj) , and n the unit vector pointing from
the center of sphere i to the center of sphere j. The lubrication
force on one sphere (say sphere i) in the vicinity of a plane
wall follows from Eq. 3 by taking the limit a; — oo and setting
up; = 0. As noted earlier, Eq. 3 is based on a creeping flow
assumption in the narrow gap between closely spaced spheres
undergoing relative motion and thus is valid if Re; = M < 1.
Tangential lubrication forces and torques have not been
considered, because they generally are much weaker than the
radial lubrication force; the former scale with In (%), the latter
(see Eq. 3) with . Lubrication forces were not applied for
sphere-impeller encounters.

The expression in Eq. 3 has been tailored for use in lat-
tice-Boltzmann simulations according to’': (1) The lubrica-
tion force needs to be switched off when surfaces are suffi-
ciently far apart in which case the grid associated with the
LB method can accurately account for the hydrodynamic
interaction between the spheres (typically if s > A). (2) The
lubrication force needs to saturate when solid surfaces are
very close to account for surface roughness and to avoid
very high levels of the lubrication force that could lead to
unphysical instabilities in the simulations. To achieve Objec-
tive (1) instead of Eq. 3 one writes

ata? 1 1
ﬁ (_ — —> (n - Al,lu) if s < 5o,

Fip = 67py
ai+a;)” \5 o

and Fup, =0 ifs> s (4)
with the modeling parameter s, the distance between solid
surfaces below which the lubrication force becomes active.
For Objective (2), a second modeling parameter s; is
introduced as the distance below which the lubrication force
aPad? .
(a,’+al,)2 (i - é) (n . Auij) if s < sy.
The settings for sy and s; were so = 0.2ap and s; = 2 X
10_4a0. With this procedure and these settings, accurate results
for close-range hydrodynamic sphere—sphere interactions have
been reported.7’30’3]

The spheres’ equations of linear and rotational motion
including resolved and unresolved (i.e., lubrication) forces
are integrated according to an explicit split-derivative
method. " These time-step driven updates are linked with
an event-driven algorithm that detects and carries out hard-
sphere collisions and sphere-outer-wall collisions during the
Euler time steps. Once an event is being detected, all par-
ticles are frozen, and the event is carried out, which implies
an update of the linear and angular velocities of the sphere(s)
involved in the event. Subsequently, all spheres continue
moving until the end of the time step, or until the next event,

gets saturated: Fpp, = 6mpv
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whatever comes first. The hard-sphere algorithm has been
verified by carrying out granular simulations (no interstitial
fluid). Zero-overlap of sphere volumes and exact energy con-
servation (if e = 1 and ¢ = 0) have been confirmed."’

Results
Impressions of the base-case simulation

The way the solids get suspended upon starting the impel-
ler at + = O is depicted in Figure 2. The figure also shows
contours of the liquid velocity magnitude in a vertical mid
plane. The downward impeller stream is clearly visible (at
least in the tN = 2 snapshot). It extends to the granular bed
where it is responsible for mobilizing the solid particles in
the upper layer of the bed. The erratic structure of the impel-
ler stream shows the transitional/turbulent (or at least the
nonlaminar) nature of the liquid flow. After 10 impeller rev-
olutions, many particles have been mobilized. The particles
in the four bottom corners, however, have hardly moved at
this stage. The base-case simulation was stopped after 50
impeller revolutions when a dynamic steady state was
reached as can be witnessed from Figure 3. It shows the
average vertical location of the particles and the standard
deviation of the vertical particle locations. At the start of the
suspension process, the average as well as the standard
deviation increase quickly. The average vertical particle
location reaches an absolute maximum of approximately
<zp> ~ 0.36H after 10 impeller revolutions. It then decreases
to a (dynamically) steady-state value of around 0.3H. The
overshoot is a clear manifestation of two-way coupling
between liquid flow and solid particle motion: the liquid
flow weakens as a result of the presence of suspended par-
ticles, because next to liquid, the impeller has to pump
around (relatively heavy and inert) particles. The weakening
of the liquid flow is not instantaneous due to finite inertia of
liquid and solids; it takes time for the suspension flow to
adapt itself to changing conditions. Some of the trends in the
average vertical particle location can be linked to specific
events. For instance, the relatively quick decline around N
= 20 is due to the collapse of stacks of particles in the bot-
tom corners of the tank. The time scales of the slow fluctua-
tions in the standard deviation of vertical particle positions
(Figure 3) are comparable to those of the average position.
The standard deviation does not show an overshoot.

Above we expressed concerns regarding the resolution of
the flow around the spheres. To check this further, the distri-
bution of particle Reynolds numbers based on the slip veloc-
ity is given in Figure 4. There we show four distributions
that are very similar. They relate to two independent instan-
taneous realizations of the flow and two ways for estimating
the liquid velocity in the spheres’ vicinity. To determine the
slip velocity, the liquid velocity in the vicinity of each
sphere was spatially averaged in a cubical volume with its
center coinciding with the center of the sphere and with side
lengths 3a and 4a (as indicated in Figure 4). We only aver-
aged the velocity in the part of the cube volumes not occu-
pied by solid. It can be concluded that at any moment some
20% of the spheres has Re, > 50, which could indicate
some lack of spatial resolution.

In Figure 5, the start-up of the solids suspension process
is provided in terms of evolutions of vertical, solids-related
profiles in the tank. At all times, high solids concentration
near the bottom indicates that the solids do not get fully sus-
pended which—in the light of the above discussion related
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Figure 2. Evolution of the solids suspension process: instantaneous realizations of particle locations and liquid
flow (velocity magnitude in the mid-plane) at four moments as indicated.

Base-case conditions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

0.5

z/H
0.4r

0.3r

0.2r

0.1p

0 1 L 1 1
0 20 40 N

Figure 3. Time series of the average vertical location
M
of the particles (z,) = %>z, (red line) and
i—1
the rms value of the vertical particle location
1 M 2 .
<z;> = W.Z; [Zoi — (2p)]” (blue line).
i=
Base-case conditions. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.
com.]
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Figure 4. Distribution of particle Reynolds numbers

based on the particle-liquid slip velocity

—u|2a . .
Repsip = oo v"' at two instantaneous realiza-

tions of the flow (21 and 50 impeller revolu-
tions after start-up).

The liquid velocity u was the average velocity in the sur-
roundings of the solid particle. As the surroundings,
cubes with sides 3a and 4a around the particles were
considered. Base-case conditions. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 5. Vertical profiles of (from left to right) average solids volume fraction, average absolute particle linear ve-
locity, and average absolute particle angular velocity at five stages in the suspension process (plus the

initial solids distribution).

Averages were taken over time (two revolutions per stage as indicated) and over horizontal slices through the tank. Base-case con-
ditions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

to the Zwietering'” correlation—was to be expected for the
base-case Shields number of 0 = 24. It is interesting to see
that the solids volume fraction profile establishes itself much
quicker than the particle linear and rotational velocities; spe-
cifically in the region above the impeller. Another striking
feature is the steep increase in particle rotation rates from
above to below the impeller. The down-pumping impeller
induces strong shearing motion in the liquid that makes par-
ticles rotate. The surface velocity of the particles is, how-
ever, dominated by their translational velocity. At the level
of the impeller, the average surface velocity due to rotation
is some eight times smaller than due to translation:
wpap ~ 0.3Qag = 0.025Q = 0.025vy, vs. a translational
velocity of approximately 0.2vip,.

Time-averaged results to be presented here are based on the
time window between tN = 20 and tN = 50, which is deemed
sufficiently long for statistically meaningful results. During this
time, the suspension is fairly but not completely steady; the
average vertical particle location (Figure 3) shows an overall
downward trend, albeit a weak one. The time-averaged distri-
bution of solids is given in Figure 6. The vertical cross section
shows preferential solids locations underneath the impeller and
closely above the bottom of the tank. The latter confirms the
not-fully-suspended state of the solids. The horizontal cross
section closely above the bottom (at z = a) reveals the action
of the impeller stream sweeping particles over and away from
the bottom. Particles are (on average) removed from the bot-
tom in the middle of the edges where the impeller stream is
felt strongest; they collect in the corners and in the center on
the tank bottom. Average liquid and solids velocity magnitudes
are shown in Figure 7. The overall structure of the two veloc-
ity fields is very similar. The high-velocity region of the liquid
is slightly bigger than that of the solids that we attribute to sol-
ids inertia (the particles need time to speed up when entering
the impeller swept volume) and the fact that solids collide
very frequently (thereby dispersing momentum) in the impeller
stream underneath the impeller.

Shields number effects

The value of the Shields number dominates the suspension
process as shown in Figure 8. For 0 = 6, solids only get mar-
ginally suspended whereas for 0 = 96 a seemingly near-uni-
form solids distribution is achieved (note, however, the collec-
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tion of particles in the bottom corners for the latter case). The
observations in Figure 8 are reflected in the time series of
Figure 9 with a clear positive trend of the average vertical
particle position with 0. The width of the vertical solids distri-
bution (as expressed by the rms value Z) is much less sensi-
tive to 0. The time series for 0 = 6 is shorter than the others,
because this case is computationally much more intensive
than the others. The granular bed on the bottom of the tank
gets only marginally mobilized and the locally high solids
volume fractions induce many collisions that significantly
slow down the simulations. In showing time-averaged profiles
we will further discard the 0 = 6 case.

In the time-average vertical profiles (Figure 10), the dif-
ferent Shields numbers show markedly different solid vol-
ume fraction curves (left panel) with the peak level close to
the bottom (at z = a) reducing by more than a factor of 2
when going from 0 = 24 to 0 = 96. Remarkably, however,
the particle velocities (center panel) and rotation rates (right
panel) are not very sensitive to 0.

As Zwietering'” formulated just-suspended conditions in
terms of what happens with the particles at and closely above
the bottom, we now focus on the particle behavior there. We
define particles at the bottom of the tank as particles having z,
< 1.01ay, that is, the surface of the particle is within 1% of its
radius away from the bottom surface. The distribution function
of the velocity magnitude of the near-bottom particles at vari-
ous 0 is given in Figure 11 (left panel). Also the distribution
of times t during which particles are lying “still” (i.e., have a
very small velocity lu,l < 5 x 1073vtip) is presented (right
panel). We see significant, however, gradual differences
between 0 = 24, 48, and 96 (more particles are lying still lon-
ger at the bottom for 0 =24 compared to higher ). We do
not observe a clear transition, for example, between nonsus-
pended and just-suspended.

As an example of the wealth of detailed information
regarding solids behavior available through the simulations,
we show in Figure 12 average solids data conditioned upon
the impeller angle (angle-resolved averages). The figure shows
regions in the wake of the impeller blades void of particles,
and the strong downward particle velocity induced by the
impeller, most notably near the impeller tip. This downward
velocity in the center region is compensated for by an overall
upward particle velocity near the edges of the tank.

October 2012 Vol. 58, No. 10 AIChE Journal



Figure 6. Time-average solids volume fraction in the

vertical mid-plane (top) and in the horizontal
plane with z = a (bottom).
The time window for averaging is /N = 20-50. Base-case
conditions. The two panels have different color scales:
the upper scale for the upper panel; the bottom scale for
the bottom panel. In the view of the bottom panel, the
impeller rotates in the clockwise direction. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Bidisperse systems

So far, simulations were discussed with all particles in the
tank being identical. We now move to two bidisperse cases.
In the first case, all particles still have the same size (all are
spheres with radius ap), but different density: half the par-
ticles has py/p = 2.0, the other half has py/p = 3.0 (on aver-
age the solid over liquid density ratio thus still is the default
2.5, the solids volume fraction still is the default ¢ =
0.083). In the second bidisperse case, half the solids volume
is contained in particles with radius ay = 6A, the other half
of the solids volume consists of spheres with radius a; =
7A. This case has pg/p = 2.5, and ¢ = 0.083 again. In the
density-disperse case, a Shields number (based on the aver-
age solids density) of 0 = 24 has been considered. Also in
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the size-disperse case 0 = 24 if we base 0 on ay (and 0 =~
22 if it is based on the volume-average particle radius).

As before, we start the discussion with a global impres-
sion of the suspension, see Figure 13, and we will focus the
discussion on the level of segregation of the different types
of particles. The difference in density is clearly shown in
Figure 13 (left panel) with red (light) particles preferentially
being in the upper parts and blue (heavy) particles in the
lower parts. Segregation is far less obvious in the size-dis-
perse case (right panel, Figure 13).

Time series of average vertical particle positions are
shown in Figure 14. In the bottom panel, three simulations
at 0 = 24 have been compared: the base-case with mono-
sized particles and the two bidisperse cases. The solids vol-
ume fraction and the mass loading are the same for the three
cases, which translates in very similar solids mass-averaged
vertical particle locations. If we look at average particle
positions in the bidensity case (middle panel of Figure 14),
we see that the heavier particles on average end up lower in
the tank. The time for this segregation to become steady is
at least 65 impeller revolutions (at this stage at the end of
the simulation the system is not completely steady), starting
from the initial conditions that next to zero-velocity has a
random mixture of light and heavy particles in the granular
bed. The average vertical position of the heavy particles is
about half of that of the light particles. Note that the net
gravity force (proportional to Ap = ps—p) felt by the heavy
particles is twice the net gravity of the light particles.

The picture is less intuitive for the bisize simulation (the
simulation involving two particle sizes). Here, the bigger
(and thus heavier) particles end up on average slightly
“higher” in the tank. This can be understood if we look at
the way solids volume is distributed over the tank height
(Figure 15). If we first zoom in on the bisize results (right
panel), it can be seen that the smaller particles have higher
probability of being near the bottom, and near the top, com-
pared to the bigger particles. Near the bottom the smaller
particles are less easily entrained (picked up) by the fluid
flow. Once entrained, they end up higher in the tank,
because they are lighter. The distributions of particles in the
bidensity simulation follow expected trends with the heavy
particles very much more likely to be closely above the
bottom and much less likely to be near the top.

Summary and Conclusions

Particle-resolved simulations of solids suspension in a
mixing tank have been performed. In the simulations, the
(albeit mild) liquid-phase turbulence as well as the flow
around each spherical particle is resolved. Next to relevance
for practical applications, the choice of flow system (an agi-
tated tank) is also instigated by the possibility of experi-
ments that can closely match the simulation conditions.
Comparison of the simulation results with experimental data
is deemed important for assessing the quality of the numeri-
cal method, the levels of resolution, and the modeling
choices that still need to be made. Modeling in our simula-
tions revolves around particles near contact and in contact
with one another. When particles are near contact, the liquid
flow between spheres gets under-resolved. This has been
compensated for by explicitly adding lubrication forces that
are based on creeping flow in the gap between the nearby
spheres. Surface roughness of spheres in contact has been
parameterized by a friction coefficient.
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Figure 7. Time-average absolute velocities in the vertical mid-plane.

Left: liquid velocity; right: solids velocity. The time window for averaging is tN = 20-50. Base-case conditions. White indicates
that no liquid (left, hub and shaft) or no solid (right) was detected there during the time-averaging window. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Inspired by the Shields number as used in studies of ero-
sion of granular beds,'® a modified Shields number 0 was
introduced with a measure for the inertial stress rather than
the viscous stress as the driving mechanism for entrainment
of solid particles by the flow. The Zwietering correlation'’
was rewritten in terms of a just-suspended Shields number

Ojs. This form of the Zwietering correlation shows a weak
(power —0.1) dependency of 0;5 on the Archimedes number.
As a monitor of the suspension process, the average vertical
solids location (z,) was considered. If the suspension process
is started from rest, with the solids forming a granular bed on
the tank bottom, (z,) goes through a maximum that is reached

Figure 8. Instantaneous realizations for different Shields numbers 6 as indicated after steady state has been

reached.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 9. Time series of the average vertical location of the particles (z,) (right panel) and the rms value of the ver-
tical particle location z'p (left panel) for four values of 0 as indicated.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

z/H

0.75r

0.5}

0.25}

0 1 1 1 ! L 1 1

0 0.2 0.4 b 06 0 0.1 0.2, N 0 0.2 o/ 04

Figure 10. Vertical profiles of (from left to right) average solids volume fraction, average absolute particle linear
velocity, and average absolute particle angular velocity for three values of ¢ as indicated.

Averages were taken over time (from 20 to 50 revolutions after start-up) and over horizontal slices throughout the tank. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 11. Left: probability density function (pdf) of the velocity magnitude of particles close to the bottom of the
tank (z, < 1.01a).

Right: number of particles lying “still” (ju,| < 5 x 10’3vﬁp) close to the bottom (z, < 1.01a,) for a time 7. Averages over 20 < N
< 50. In that period on average 16, 6.7, and 3.3% of the particles satisfied the z, < 1.01a, criterion for 6 = 24, 48, and 96,
respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal October 2012 Vol. 58, No. 10 Published on behalf of the AIChE DOI 10.1002/aic 3275



0 0.1 0.2

L/21
y
0.
-L/2J, B
-L/2 0 x L2
-Upz/Vﬁp e — -
-0.5 0.0 0.5

Figure 12. Horizontal cross sections at the lower edge of the impeller; averages conditioned on a 45° impeller

position.

Left: solids volume fraction; right: vertical particle velocity. 6 = 48. In these views, the impeller rotates clockwise. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

after approximately 10 impeller revolutions. After that, (z,)
slowly decays—in about 30 impeller revolutions—to a steady-
state value. This overshoot in (z,) we view as a two-way cou-
pling effect: the liquid-only flow initially generated by the
impeller is stronger than the suspension flow at later stages.
The suspension process is a pronounced function of 0,
with for 0 = 6 hardly any particles getting entrained. For 0
of order 100 the solids volume distribution over the vertical
direction starts to approach uniformity. We do not see, how-
ever, a clear transition between not-suspended and just-sus-
pended conditions. Analyses of velocities of particles very
close to the bottom only show gradual changes toward
increased velocity and less time-at-rest when increasing 0.
The simulation procedure directly accommodates particle
size distributions. This was demonstrated by two bidisperse
simulations. In the first one, the particles have different den-
sity and clearly segregate vertically due to this. In the sec-

ond bidisperse simulation, the particles have slightly differ-
ent sizes. The effect of this on their vertical distribution is
more subtle compared to the bidensity simulation. Compared
to the larger particles, the smaller ones have higher concen-
tration near the bottom and near the top of the tank. The for-
mer effect we see as a result of the smaller particles being
picked up less effectively by the flow and the latter as a
result of their smaller weight.

There are many things that can (and need to) be done to
further this research. In the first place we envision experi-
ments that closely match the simulation condition and visu-
alize the suspension process (start-up, steady state). The ex-
perimental data would be a great help in making better
choices regarding the numerical and modeling aspects of the
simulations. In the second place, it would be interesting to
add solid-liquid mass transfer to the solution procedure,
because this is relevant for the performance of solid-liquid

Figure 13. Snapshots of two bidisperse simulations at tN = 60.

Left: all spheres have the same radius ay, the red particles have a density ratio p/p = 2.0, the blue particles have pJ/p = 3.0, and
6 = 24 (based on the average solids density). Right: red particles have radius a,, blue particles have radius a; = 1.167a,; all par-
ticles have the same density ratio (py/p = 2.5); the total volume of red and blue particles is the same. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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reactors. This would require solving a passive scalar trans-
port equation (convection-diffusion equation) with the appro-
priate concentration boundary condition (e.g., equilibrium
concentrations) at the particle surfaces. The convection-diffu-
sion equation comes with its own resolution requirements
that in the liquid systems are stricter than those for the flow
dynamics (the Batchelor scale is a factor v/Sc smaller than
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Figure 14. Time series of mass-average vertical parti-
cle positions (z,) for 6 = 24.

Bottom: comparison between the monodisperse and the
two bidisperse simulations with (z,) the mass-weighted
average over all particles; middle: average per particle
type for the bidensity system; top: average per particle
type for the biparticle-size system. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 15. Solids volume fraction per particle type as a
function of vertical location z for bidisperse
simulations.
Left: particles with different densities; right: particles
with different sizes. Averages over 40 < tN < 63; 0 =

24. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

the Kolmogorov scale with Sc the Schmidt number that is of
order 10* for liquid systems). In the third place, there are
clearly options to port our simulation procedure involving
resolved particles to (massively) parallel compute systems.
The work presented here was done with a sequential algo-
rithm. Parallelizing this on (say) 1000 cpu’s would allow for
expanding the linear tank size by a factor of 10 which would
bring us in the realm of lab-scale tanks with typically a 30-
cm diameter.
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