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Abstract

This work presents a procedure for the determination of the volumetric mass

transfer coefficient in the context of lattice Boltzmann simulations for the

Bretherton/Taylor bubble train flow for capillary numbers 0.1 < Ca < 1.0.

We address the case where the hydrodynamic pattern changes from having a

vortex in the slug (Ca < 0.7) to not having it (Ca > 0.7) [1]. In the latter case

the bubble shape is asymmetric and cannot be approximated through flat

surfaces and circular circumferences as is often done in the literature [2, 3].

When the vortex is present in the slug, the scalar concentration is well mixed

and it is common to use periodic boundary conditions and the inlet/outlet-

averaged concentration as the characteristic concentration. The latter is not

valid for flows where the tracer is not well mixed, i.e. Ca > 0.7. We therefore

examine various boundary conditions (periodic, open, open with more than
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1 unit cell) and definitions of the characteristic concentration to estimate

mass transfer coefficients for the range of capillary numbers 0.1 < Ca < 1.0.

We show that the time-dependent volume averaged concentration taken as

the characteristic concentration produces the most robust results and that

all strategies presented in the literature are extreme limits of one unified

equation. Finally, we show good agreement of simulation results for different

Peclet numbers with analytical predictions of van Baten and Krishna [2].

Key words: Mass Transfer, Taylor/Bretherton bubble train flow,

Multiphase flow, Lattice Boltzmann method, Binary liquid model, Flow in

microchannels with parallel plates

1. Introduction1

Monolith reactors have recently been getting more attention as a promis-2

ing alternative to slurry reactors and trickle bed reactors [3, 4]. These re-3

actors usually operate in the Bretherton-Taylor regime [5, 6] which is a flow4

of equally sized, long air bubbles through a liquid medium, see Fig. 1. This5

flow regime is characterized by the dominance of surface tension over inertia6

and viscous effects, and by comparatively small gas flow velocities [7]. Due to7

the dominance of surface tension, the flow exhibits advantageous properties8

which cannot be achieved in its macroscopic counterparts: thin liquid films9

[5] between bubbles and walls strongly enhance mass transfer from gas and10

walls to liquid; the plug flow regime occurring in monolith reactors allows to11

perform chemical reactions in slugs only [3]. Moreover, the low slip velocity12

between gas and liquid is utilized in experiments to measure liquid velocity13

[6]: bubbles travelling with approximately the same velocity as liquid can be14
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captured with a camera. These properties explain why nowadays one can find15

a large number of applications of the Bretherton-Taylor bubble train flow:16

continuous flow analyzers to measure liquid velocity, chemical reactors for17

hydrogenation of nitroaromatics, 2-ethyl-hexenal, Fischer-Tropsch synthesis,18

etc. The extensive reviews of Kreutzer et al. [3], Gupta et al. [8], Yue et al.19

[7] cover a significant number of applications.20

This work is focused on gas to liquid mass transfer for the two-dimensional

Bretherton/Taylor flow. A good understanding of mass transfer and how it

depends on parameters such as the capillary number, the Reynolds number,

and slug and bubble lengths allows to properly manufacture a microchannel

with properties necessary to ensure that chemical reactions are performed in

the best possible manner. The mass transfer coefficient is defined as the flux

from the gas-liquid interface divided by the difference of the imposed concen-

tration and the characteristic concentration in the domain. The concentra-

tion distribution in the domain is prescribed by underlying hydrodynamics

fields. For example, experimental studies [7, 4] show a complex dependency

of the mass transfer coefficient on flow parameters: bubble and slug lengths,

and bubble velocity, which in turn relate to the capillary number Ca and the

Reynolds number Re. Yue et al. [7] established an experimental correlation

for the volumetric mass transfer coefficient for a bubble train as a function

of the diffusion coefficient, slug and bubble lengths, and bubble velocity:

kL a =
2

dh

( DUbubble

Lbubble + Lslug

)0.5( Lbubble

Lbubble + Lslug

)0.3

, (1)

where kL a is the volumetric mass transfer coefficient, dh is the hydraulic21

diameter, Lbubble is the bubble length, Lslug is the slug distance (between22

bubbles), Ububble is the bubble velocity, and D is the diffusion coefficient.23
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The understanding of mass transfer for the bubble train flow is not pos-

sible without knowledge of hydrodynamic patterns. There are several works

studying the hydrodynamic properties of the bubble train flow, both exper-

imental [9, 10, 11] and numerical [12, 13, 1, 14, 15]. For the flow of long

bubbles between parallel plates chosen here as the study case, it is indicated

that there exists a vortex in the liquid slug for Ca < 0.7, and that the bub-

ble shape is symmetric for low capillary numbers (Ca < 0.1 [11]) with the

capillary number defined as:

Ca =
µliqUbubble

γ
, (2)

where µliq is the liquid viscosity, Ububble is the bubble velocity, and γ is the24

interfacial tension. The fact that the bubble shape for Ca < 0.1 can be25

represented as two hemicircles and two planar interfaces with the vortex26

existing in the liquid slug has been utilized for analytical estimations of mass27

transfer properties.28

Since the mass transfer coefficient is defined in terms of a mass flux

through a certain area, see Sec 2, analytical estimates [3, 16] are based on a

decomposition of the bubble surface in parts. The mass transfer coefficient

is calculated through two separate contributions from two planar films and

two hemicircles. For both contributions the Higbie penetration theory [17]

is utilized, which states that the mass transfer coefficient for a simple flow

geometry depends on the average time a liquid packet interacts with a geo-

metrical feature. It can be calculated as
√

πD
tchar

, where tchar is the interaction

time. As an example of the application of the Higbie penetration theory,

the mass transfer coefficient for the flow of bubbles between parallel plates
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is calculated as (similar to the work of van Baten and Krishna [2]):

kL = 2

√

πD

tfilm
+ 2

√

πD

tcircle
, (3)

where tfilm = Lfilm

Ububble
stands for the interaction time of liquid traveling next to29

the planar part of the bubble, and tcircle = πRcircle

Ububble
is the time during which the30

liquid in the slug travels the distance of half the bubble cap circumference.31

Despite their simplicity, such analytical expressions work well for flows32

with low capillary numbers Ca < 0.1 [4] where the bubble shape is sym-33

metrical and can be approximated with good precision. Moreover, because34

of the hydrodynamic pattern in the slug (i.e. presence of a vortex in the35

slug), one can estimate the time for a fluid batch to travel the whole circum-36

ference. However, with the increase of the capillary number the situation37

changes significantly – the symmetrical bubble shape is lost and the bubble38

resembles a bullet [18]. For flows with Ca > 0.7 there is also no vortex in the39

liquid slug. In this case the Higbie theory fails to estimate the contribution40

from bubble caps, which explains the need to turn to numerical simulations41

where all hydrodynamic fields as well as complex bubble shapes are taken42

into account.43

Typical numerical studies of mass transfer [3, 2] do not consider the sim-44

ulation of bubble shapes for Ca > 0.1. The interesting work by Onea et al.45

[19] only takes into account short length bubbles in microchannels with a46

square cross section. As well, in this work a Schmidt number of around 0.847

is used: thus, the thickness of the concentration and momentum boundary48

layer is similar leading to qualitative results since it’s not possible to separate49

mixing due to hydrodynamics patterns from mixing due to diffusion.50

The usual simulation of mass transfer is performed as follows:51
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I The bubble shape is calculated either through analytical correlations [5] or52

experimental correlations [11] without directly resolving bubble shapes53

through multiphase simulations. The expressions for bubble shapes are54

available only for flows with capillary number Ca < 0.1.55

II Hydrodynamic fields are then obtained by performing simulations of one-56

component flow around the bubble by imposing the bubble velocity on57

the channel walls. Thus, the simulations are performed in the reference58

frame moving with the bubble. A stress-free condition is imposed at59

the bubble surface.60

III The mass transfer simulations are performed in the reference frame mov-

ing with the bubble. The saturation concentration is imposed at the

bubble surface. Only one unit cell containing a single bubble is used for

simulations. Periodic concentration boundary conditions are utilized to

determine the volumetric mass transfer coefficient, which is calculated

through the following equation [2]:

kL a =
Flux

Cbubble − 〈Cin/outlet〉
bubble surface area

unit cell volume
, (4)

where 〈Cin/outlet(t)〉 =
∫

CUin/outletdA/
∫

Uin/outletdA is the space-averaged61

inlet/outlet (periodic boundary conditions) concentration as a function62

of time. Therefore, in terms of the mass transfer definition, 〈Cin/outlet(t)〉63

plays the role of the characteristic concentration. The time-averaged64

concentration flux (Flux) is calculated as the difference between the65

overall average concentration in the whole domain (〈Coverall〉 =
∫

V
CdV/V )66

at time t1 and at time t2 divided by the time difference t2 − t1. The67
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agreement between numerical simulations [2] and experimental corre-68

lations of Bercic and Pintar [4] was good.69

The presented numerical approaches [2, 3] can be criticized on a number of70

points. They mainly relate to the bubble shape approximation, which is taken71

to be symmetrical, i.e. consisting of two hemispheres and film for the case72

of flow in circular capillaries. This is valid for small capillary numbers only73

(Ca < 0.1). As previously discussed, for such capillary numbers the tracer74

is well mixed in the slug and the choice of the characteristic concentration75

needed for the mass transfer coefficient, Eq. 5, is obvious. With minimal76

differences in the results, it can either be the averaged concentration in the77

liquid slug or the inlet/outlet space-averaged concentration. The latter is78

used in the formulation of van Baten and Krishna [2] presented above.79

While it is clear that periodic boundary conditions can be employed for80

the calculation of hydrodynamic fields, the same does not apply to the mass81

transfer coefficient simulations. Experimental correlations [4] show that the82

concentration in a bubble train along the streamwise direction changes ex-83

ponentially with distance. Mass transfer simulations however, are made only84

for one unit cell using periodic boundary conditions with the same concen-85

tration at the inlet and at the outlet. The question how a single unit cell86

simulation corresponds to experimental measurements arises where the con-87

centration difference is measured at distances of at least a few unit cells [4].88

In other words, one needs to understand how the discrete one unit cell simu-89

lation corresponds to the continuous picture in experiments where one does90

not distinguish discrete bubbles but takes measurements of concentration at91

different locations.92
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Addressing situations for a rich number of hydrodynamic patterns, shapes,93

and effects of bubble lengths, etc for bubble train flows, we feel that there is94

a need to examine carefully the strategies and assumptions behind the nu-95

merical calculations of the mass transfer coefficient. We aim at establishing96

clear procedures as to how properly obtain the mass transfer coefficient via a97

study of different boundary conditions and different definitions of the char-98

acteristic concentration. The case we want to examine is a two-dimensional99

bubble train flow between parallel plates. We address the following:100

I Applicability of periodic boundary conditions to determine the mass trans-101

fer coefficient when the vortex in the slug disappears, i.e. when Ca >102

0.7.103

II Validity of the inlet/outlet-averaged or domain-averaged concentrations104

as characteristic concentrations in the definition of the mass transfer105

coefficient.106

III Translation of the continuous experimental picture to numerical simu-107

lations of a few unit cells, the issue of correspondence between space108

averages (simulations [2]) and time averages (experiment).109

In addition, at the end of the manuscript we present results of the depen-110

dence of the volumetric mass transfer coefficient on the Peclet number that we111

compare with analytical [16] and experimental correlations [7]. The thorough112

determination of the mass transfer coefficient and associated Sherwood num-113

ber as a function of other non-dimensional parameters such as gas holdup,114

bubble/slug lenghts, and the capillary number is left for future studies.115
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δ
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Figure 1: Simplified sketch of the bubble motion. Using periodic conditions for the velocity

field is natural, but needs evaluation for mass transfer.

To establish numerical procedures we performed multiphase simulations116

to extract bubble shapes [18, 13] for the range of capillary numbers Ca =117

0.1 − 1.0. For this range of capillary numbers we were able to capture the118

bubble shape change and the change of hydrodynamic patterns. The mass119

transfer simulations presented here were performed with various boundary120

conditions (open, periodic) and with a few unit cells (1 to 10 unit cells). As121

our numerical approach we take the lattice Boltzmann method, a relatively122

new CFD competitor developed during the last 20 years [20, 21, 22, 23]. This123

method was successfully applied to simulate not only single phase hydrody-124

namic problems [24], but also multiphase flows [25, 26, 27], heat transfer125

[28, 29], and ferrofluids [30, 31].126

Mass transfer problems in the lattice Boltzmann framework were mainly127

addressed in a series of works of Ginzburg and co-authors [32, 33, 34]. In con-128

trast to these works whose focus was on simulating the advection-diffusion129

equation via the lattice Boltzmann framework, we concentrate on the ap-130

plication side. One should also mention the work of Yoshino and Inamuro131

[35] about heat and mass transfers in porous media and the work of Derksen132

[36] simulating lateral mixing in cross-channel flow. The last two works are133

focused on problems of homogeneous nature and do not provide guidance as134
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to how to obtain the mass transfer coefficient for heterogeneous cases.135

The paper is organized as follows. We start with definitions of the volu-136

metric mass transfer coefficient and apply them to bubble train flow in order137

to derive expressions to connect space- and time-averages. Then, the lattice138

Boltzmann model used to simulate mass transfer is presented, followed by139

benchmarks. Finally, numerical simulations of various boundary conditions140

and simulations spanning a few unit cells for different hydrodynamic pat-141

terns are presented to establish the procedure to determine the volumetric142

mass transfer coefficient. The comparison with analytical correlations is also143

discussed.144

2. Mass transfer definitions145

By definition, the mass transfer coefficient from a surface with an imposed

constant concentration Cbubble is:

kL =
ṁ

P∆C
, ∆C = Cbubble − Cmedium, (5)

where ṁ is the mass flux
[

kg
s

]

, P is the area of the surface
[

m2
]

, and ∆C is146

the concentration difference between the surface and the surrounding medium147

[

kg
m3

]

. Therefore, kL has units of
[

m
s

]

. Usually, the surrounding medium148

concentration is taken at an infinite distance from the bubble. However, in149

the case of complicated geometries and non-homogeneous concentrations, the150

medium concentration can be the average concentration in the domain or the151

flux-averaged concentration at the inlet or outlet, etc. Thus, one needs to152

establish a clear definition of ∆C to determine the volumetric mass transfer153

coefficient in the case of complex geometries and non-trivial hydrodynamic154

velocity patterns.155
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We first examine the definitions of mass transfer in the case of point156

sources.157

2.1. Point mass sources158

In what follows we will present three approaches to calculate point mass159

transfer coefficients (by point source we assume the source to have an in-160

finitesimally small surface area P ):161

1. Let us look at the infinitesimally small domain of volume A∆x, not

moving and containing a point source. The concentration difference

is ∆C = C∗ − C(t), where C∗ is the imposed point source concen-

tration, and C(t) is the time-dependent concentration, which does not

depend on the location due to the assumption of homogeneity. One

can therefore write a time-dependent ordinary differential equation for

the concentration in the domain:

ṁ = A∆x
dC

dt
= kLP (C∗ − C(t)), (6)

with the initial condition C(0) = 0. The solution can be found as:

C(t) = C∗(1 − exp(−kL at)), (7)

where kL a is the volumetric mass transfer coefficient defined as:

kL a = kL
P

A∆x
= kL

P

V
, (8)

where P is the source surface, V is the unit cell volume.162

2. Let us predict mass transfer in a liquid moving with the velocity U , see163

Fig. 2.164
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∆x

U

C(x)

U

C(x + ∆x)

x

y

Figure 2: The mass transfer in a moving liquid.

If one can assume that the point mass sources are homogeneously dis-

tributed in the whole medium, the mass accumulated in the volume

V = A∆x can be calculated as the difference of mass fluxes entering

and leaving the domain U
(

C(x+∆x)−C(x)
)

. The accumulated mass

should be proportional to the mass transfer coefficient:

U
(

C(x + ∆x) − C(x)
)

= kLP
(

C∗ − C(x)
)

, (9)

giving the same solution, now in the spatial domain:

C(x) = C∗
(

1 − exp
(

−kLa
x

U

)

)

. (10)

Note that the concentration C(x) does not depend on time.165

3. If one transfers to the frame moving with the liquid velocity U , the166

situation will be the same as in the first case. One can connect time167

and space with the velocity U (t = x
U

).168

2.2. Bubble train169

In the application to bubble train flow it is useful to think of one bubble170

as a point source to be able to use the calculations presented above. For171

example, the expression (10) was used in experiments by Bercic and Pintar172

[4]. However, one should be accurate with the definition of velocities because173
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two different phases co-exist in the bubble train flow. Usually, one can take174

the velocity U to be a bulk velocity or U = Ugas + Uliq, where Ugas and175

Uliq are liquid and gas superficial velocities, respectively. The gas and liquid176

superficial and actual velocities are connected with each other through a177

complex dependency on Ca, ǫ [13].178

With experimental measurements of concentration at different locations,179

the calculation of the mass transfer coefficient using the logarithmic func-180

tion is straightforward. However, if one wants to analytically or numerically181

calculate the mass transfer coefficients, the situation is much more compli-182

cated because of the presence of two phases and complex bubble geometry.183

As was mentioned before, depending on the capillary number the velocity184

pattern and thus scalar mixing is different. Analytical approaches [16, 2]185

assume that the contributions from film and bubble caps can be calculated186

separately. Therefore, tracer from the film does not influence bubble caps187

diffusion. However, this assumption overpredicts mass transfer for a number188

of experiments [16]. This happens since some tracer concentration from the189

film is mixed with the slug and increases the overall concentration in the190

slug, thereby decreasing the mass transfer from the bubble caps. Therefore,191

the analytical estimates for the mass transfer coefficient calculation do not192

account for mutual mass transfer from neighbouring bubbles.193

Overall, mixing patterns of the film and liquid slugs are of great im-194

portance for the estimation of mass transfer [7]. However, the assumptions195

usually taken for mass transfer calculations are small capillary numbers and196

certain mixing patterns such as to help to estimate the mass transfer using197

the penetration theory of Higbie [17].198
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In comparison with analytical calculations and simplifications, the nu-199

merical approach can take into account the complex mixing patterns and200

geometries. However, there are challenges as to how to mimic the continuous201

picture where the medium is moving with bulk velocity U = Ugas + Uliq as202

it is done in experiments. Thus, the questions indicated in Section 1 arise.203

The next section gives more details about numerical simulations.204

2.3. Numerical simulations205

Ideally one wants to mimic the continuous picture as it is seen in ex-206

periments. Thus, mass transfer simulations for a number of unit cells each207

containing a bubble are needed. As was indicated above, there are two ap-208

proaches towards it – either to simulate the bubble train and then to measure209

concentration along the pipe, Eq. 10, or to transfer to the reference frame210

moving with the bulk velocity U and conduct the same measurements. How-211

ever, both methods require tracking of moving bubbles which is complicated212

from the numerical point of view. Therefore, one needs to come up with a213

simple and smaller domain for calculations of the mass transfer coefficient,214

which closely mimics the continuous picture of a large number of separated215

bubbles.216

To avoid complications with moving grids, our approach is to simulate217

mass transfer in a reference frame moving with the bubble. Therefore, one218

needs to examine Eq. 10 more closely.219

We perform simulations in the frame co-moving with the bubble in which

the bubble position stays constant. The bubble velocity Ububble is different

from the bulk velocity U = Ugas + Uliq, and one thus needs to perform a x
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coordinate variable change:

x(t) = Ububblet

C(x) = C∗
(

1 − exp
(

−kL a
x

Ugas + Uliq

)

)

〈C(t)〉 = C∗
(

1 − exp
(

−kL a t
Ububble

Ugas + Uliq

)

)

,

(11)

where 〈C(t)〉 is the space-averaged characteristic concentration, and C(x)

is the time-averaged concentration at location x. One can make different

choices for 〈C(t)〉 such as the concentration averaged over the whole domain

or inlet/outlet space-averaged concentrations as used in [2, 3]. The volu-

metric mass transfer coefficient can be obtained through the space-averaged

concentration:

kL a t
Ububble

Ugas + Uliq
= ln

C∗

C∗ − 〈C(t)〉

kL a
Lunit

Uliq + Ugas
=

Lunit

Ububblet
ln

C∗

C∗ − 〈C(t)〉 ,
(12)

where the parameter kL a Lunit

Ugas+Uliq
is non-dimensional. One can also measure

the volumetric mass transfer coefficient from concentrations given at times

t1 and t2:

kL a
Lunit

Uliq + Ugas

=
Lunit

Ububble(t2 − t1)
ln

C∗ − 〈C(t1)〉
C∗ − 〈C(t2)〉

. (13)

Expressions (11 - 13) are the cornerstones of the present work . Four possible220

scenarios of numerical simulations have been examined:221

1. One unit cell is simulated with periodic boundary conditions, see Fig.222

3. In this case no tracer leaves the domain similarly to plug flow.223

Though easier to implement, it gives rise to the criticism that the inlet224
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concentration is equal to the outlet one. As was discussed, in exper-225

iments there is a concentration difference between the inlet and the226

outlet, even for one unit cell.227

In this case, the volumetric mass transfer coefficient is calculated by Eq.

12. The characteristic concentration 〈C(t)〉 required for the volumetric

mass transfer coefficient is taken as the average concentration in the

domain:

C(t) =

∫

liquid
CdV

∫

dV
. (14)

Periodic

∂yC = 0

∂yC = 0

Ububble

Ububble

Periodic

x

y
C∗

Figure 3: The two-dimensional benchmark for the the mass transfer coefficient for the

bubble located at the middle of the domain.

228

2. Periodic boundary conditions are applied as in the first case but the

characteristic concentration is taken as the inlet/outlet flux-averaged

concentration [2]:

〈Cinlet(t)〉 =

∫

U(y)C(0, y, t)dy
∫

U(0, y)dy

〈Coutlet(t)〉 =

∫

U(y)C(Lunit, y, t)dy
∫

U(Lunit, y)dy

Cinlet(x, t) = Coutlet(x, t), due to periodicity.

(15)
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The assumptions of this approach are that the concentration difference229

between the inlet/outlet- and the space-averaged over the whole unit230

cell is not significant. Thus, the tracer is assumed to be well mixed in231

the slug.232

3. The approach of van Baten and Krishna [2], where periodic boundary

conditions are used and the mass transfer coefficient is calculated as the

gain of the mass in the system divided by the concentration difference

multiplied by the surface area:

kL a =
ṁ

P∆C

P

V
=

ṁ

V (C∗ − 〈C(t)〉) , (16)

where the mass flux in the domain can be calculated as:

ṁ =
m2 − m1

t2 − t1
=

∫

liq
C(x, t2)dx −

∫

liq
C(x, t1)dx

t2 − t1
. (17)

In the approach of van Baten and Krishna the inlet/outlet flux-averaged233

concentrations were taken as the characteristic concentration 〈C(t)〉.234

4. Simulation of several unit cells, see Fig. 4. This situation corresponds235

to the head of the bubble train, after injection in the pipe and travel-236

ling along the channel. One can see that this situation best resembles237

the experimental picture, but also requires larger computational re-238

sources. By simulating a certain number of bubbles in the train head,239

the influence of the boundaries can be reduced. For example, left and240

right boundary conditions in this case are taken as open boundaries,241

i.e. ∂C/∂x = 0. There is no ambiguity in the choice of the characteris-242

tic concentration. The average concentration of any unit cell far away243

from boundaries will be governed by Eq. 13.244
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x
y

Ububble

Ububble

∂C
∂x

= 0 ∂C
∂x

= 0C∗ C∗

Figure 4: Benchmark for multiple unit cells.

One can notice that all examined cases are the extreme limits of one

equation:

kL a =
ṁ −

∫

Coutlet(t)u(Lunit, y)dy +
∫

Cinlet(t)u(0, y)dy

V ∆C
, (18)

where ∆C = C∗−〈C(t)〉 with 〈C(t)〉 taken to be the average concentration in245

the whole liquid domain, ṁ is the mass gain in the domain,
∫

Cinletu(0, y)dy246

and
∫

Coutletu(Lunit, y)dy are inlet/outlet mass fluxes. Eq. 18 describes the247

mass balance: whatever was generated by the bubble surface equals the248

domain mass change minus whatever left the domain plus whatever entered249

it.250

With periodic boundary conditions:

∫

Coutlet(t)u(Lunit, y)dy =

∫

Cinlet(t)u(0, y)dy.

In this case, Eq. 18 reduces to Eq. 16.251

Another limiting case (will be shown later) is when the mass accumulation252

rate equals zero, i.e. ṁ = 0. This situation corresponds to a simulation of a253

few unit cells with open boundary for flows with Ca > 0.7.254

Before we examine all the test cases above, some lattice Boltzmann mass255

transfer benchmarks will be presented.256
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3. Validation257

As was discussed earlier, analytical correlations for the mass transfer co-258

efficient have been derived for a Taylor bubble train flow as two separate259

contributions: the mass transfer from two half circles and the mass transfer260

from the film. We will examine these mass transfer cases closely with the261

help of the lattice Boltzmann method and compare them against analyti-262

cal solutions. The next sections will give a short introduction to the lattice263

Boltzmann method and present benchmark results.264

3.1. TRT D2Q9 model265

The lattice Boltzmann equation (LBE) operates on a square/cubic grid

representing the physical domain in non-dimensional terms (hereafter we use

subscript LB to denote non-dimensional quantities). It utilizes probability

distribution functions (also known as particle populations) containing infor-

mation about macroscopic variables, such as fluid density and momentum.

The LBE consists of two parts: a local collision step, and a propagation

step which transports information from one node to another along directions

specified by a discrete velocity set. The LBE is typically implemented as

follows:

f ∗
i (x, t) = fi(x, t) − ω

(

fi(x, t) − eqi(x, t)
)

, collision step

fi(x + ci, t + 1) = f ∗
i (x, t), propagation step,

(19)

where fi is the probability distribution function in the direction ci, eqi is266

the equilibrium probability distribution function, and ω is the relaxation267

parameter. The term −ω
(

fi − eqi

)

is the so-called BGK collision operator268

[37]. However, the approach used here is the TRT (two-relaxation-times)269
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collision operator [32, 34]. In comparison with the widely used BGK collision270

operator, the TRT collision operator has better accuracy for diffusion and271

convection fluxes, as well as a larger range of parameters where the scheme272

is stable.273

The TRT collision operator [38] decomposes the populations and the equi-

librium distribution into a symmetric and an antisymmetric part:

f±
i =

fi ± fī

2
, eqi

± =
eqi ± eqī

2
, (20)

where ī is the direction opposite to the i-th direction. The collision is per-

formed with two independent relaxation rates for symmetric and antisym-

metric modes:

f ∗
i (x, t) = fi(x, t) − ω+(f+

i − eq+
i ) − ω−(f−

i − eq−i )

fi(x + ci, t + 1) = f ∗
i (x, t).

(21)

Note that the TRT collision operator reduces to the BGK operator if ω+ =274

ω−. In comparison with the BGK collision operator, the TRT collision oper-275

ator has one additional degree of freedom. The TRT operator introduces the276

following free parameter Λ =
(

1
ω+

− 1
2

)(

1
ω
−

− 1
2

)

. This free parameter controls277

the effective location of bounce-back walls [39], second-order accuracy of the278

boundary [38] and interface schemes [40], spatial accuracy [41, 42], consis-279

tency [43] and, to some extent, stability [44, 45, 42]. In particular, Λ = 1
4

280

achieves the optimal stability for the isotropic advection-diffusion equation281

[44].282

The parameters ω+, ω− and eqi fully define the lattice Boltzmann proce-

dure. The two-dimensional, nine-velocity LBM D2Q9 we used in this work
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is defined on the set of lattice velocities with components:

cix = {0, 1, 0,−1, 0, 1,−1,−1, 1}, for i = 0 . . . 8

ciy = {0, 0, 1, 0,−1, 1, 1,−1,−1}, for i = 0 . . . 8 .
(22)

The equilibrium functions for the D2Q9 TRT model are represented as

[44]:

eq+
i = eq

(m)
i + g(u)eq

(u)
i

eq
(m)
i = t

(m)
i ce + eq

(a)
i

eq
(u)
i = t

(u)
i

u2
LB,x + u2

LB,y

2
+

u2
LB,x − u2

LB,y

4
p

(xx)
i + g(u)

xy

uLB,xuLB,y

4
pxy

i

eq
(a)
i =

KLB,xx − KLB,yy

4
pxx

i +
KLB,xy

4
p

(xy)
i

eq−i = t
(a)
i uLB,αciα,

(23)

where KLB,xx,yy,xy are proportional to components of the diffusion tensor,

ce =
KLB,xx+KLB,yy

2
, parameters g(u) and gu

xy are either zero or one (see below),

and the tensor p
(xx)
i = c2

ix − c2
iy, the tensor p

(xy)
i = cixciy, the weights t

(u,m,a)
i

can be chosen based on stability criteria. The most commonly used set of

weights, the so-called “hydrodynamic“ weights, were chosen:

t
(u)
i = t

(m)
i = t

(a)
i =

{

0,
1

3
,
1

3
,
1

3
,
1

3
,

1

12
,

1

12
,

1

12
,

1

12

}

(24)

It can be shown through the Chapman-Enskog procedure [46], that the

simple update rule with the equilibrium function presented above restores

the anisotropic advection-diffusion equation:

∂tCLB + ∂αCLBuLB,α = ∂αβDLB,αβCLB, (25)

where the concentration CLB =
∑

i fi, and DLB,αβ =
(

1
ω
−

− 1
2

)

KLB,αβ is the
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following diffusion tensor:

DLB,αβ =





DLB,xx +
(

1
ω
−

− 1
2

)

(g(u) − 1)u2
LB,x DLB,xy +

(

1
ω
−

− 1
2

)

(g
(u)
xy − 1)uLB,xuLB,y

DLB,xy +
(

1
ω
−

− 1
2

)

(g
(u)
xy − 1)uLB,xuLB,y DLB,yy +

(

1
ω
−

− 1
2

)

(g(u) − 1)u2
LB,y



 .

(26)

We want to resolve the isotropic advection-diffusion equation, DLB = DLB,xx =283

DLB,yy or KLB = KLB,xx = KLB,yy, with the non-diagonal diffusion tensor284

components set to zero (DLB,xy = 0). In contrast to the D2Q5 model, with285

D2Q9 it is possible to cancel the numerical diffusion by the proper choice286

of the equilibrium functions, i.e. g
(u)
xy = g(u) = 1. The particular choice of287

parameters used in simulations is ce = 1
3
, Λ = 1

4
. Thus, the diffusion co-288

efficient in the lattice Boltzmann system DLB is matched through ω−, i.e.289

DLB = ce

(

1
ω
−

− 1
2

)

= 1
3
( 1

ω
−

− 1
2

)

. For the particular choice Λ = 1
4
, ω+ can290

be found easily as ω+ = 2 − ω−.291

We validated two types of boundary conditions: Inamuro boundary condi-

tions [35] and pressure anti bounce-back boundary conditions [39]. However,

the simulation results are presented only for pressure anti bounce-back due

to their ability to handle complex boundaries in a simple way:

f ∗
B,i = −f ∗

F,̄i + 2eq+(C∗, uLB), (27)

where C∗ is the concentration to be imposed at the surface, uLB is the292

surface velocity, i is the direction number pointing to the domain located293

at the boundary surface B, ī is the direction number opposite to i and is294

located at the fluid node F specifically so that node B is located at the295

location F + ci.296

Note that the parameters of the lattice Boltzmann scheme are connected297

with physical parameters only through non-dimensional numbers govern-298
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ing the physics of the problem. In our case, this is the Peclet number,299

Pe = UbubbleL
D

. Therefore, one can choose any quantity, for example Ububble300

in the lattice Boltzmann units (uLB,bubble) as long as the Peclet number is301

matched in physical space and numerical simulations. The fact that uLB,bubble302

can be varied in certain ranges is extremely useful in the context of numerical303

simulations. This allows to increase the time step and decrease the compu-304

tational demand (by an order of magnitude). This point will be used in the305

simulations and covered later.306

The next section will cover LBM benchmarks that resemble the mass307

transfer from a bubble (mass transfer to the liquid with the parabolic velocity308

profile and mass transfer from a cylinder). As soon as we move to numerical309

simulations, all quantities are non-dimensional. Thus, we drop the subscript310

LB for brevity.311

3.2. The radial case312

The case to be examined is the mass transfer from a circle with radius

a, with the circle approximated as a stair-case. It can be described by the

following system of equations:

∂tC(r, t) =
1

r
∂rr∂rC(r, t)

C(a, t) = C0, C(r, 0) = Cinit

(28)

The analytical solution is [47]:

C(r, t) − C0

Cinit − C0
=

∞
∑

n=1

2

µnJ1(µn)
exp
(

−µ2
n

Dt

a2

)

J0

(

µn
r

a

)

, (29)

where µn is the n-th zero root of the 0th order Bessel polynomial J0(µn) = 0.

Some of the corresponding roots are as follows: µ1 = 2.4048, µ2 = 5.5201,

23



µ3 = 8.6537, µ4 = 11.7915, µ5 = 14.9309. By taking the initial concentration

as 0, one obtains:

C(r, t) = C0

(

1 −
∞
∑

n=1

2

µnJ1(µn)
exp
(

−µ2
n

Dt

a2

)

J0(µn
r

a
)

)

. (30)

Time dependency goes via the non-dimensional time: τ = Dt
a2 . The do-313

main size was 129 × 129 with the circle radius a = 40 lattice units. Some314

results for different diffusion coefficients are presented in Fig.5. The nu-315

merical simulations with the bounce-back boundary conditions are able to316

accurately reproduce the analytical results.317

3.3. Poiseuille velocity profile318

The problem we want to address can be formulated through the following

PDE:
∂C

∂x
U(y) = D

∂2C

∂y2

C(0, y) = 0, C(x,±δ) = C∗,
∂C

∂y
(x, 0) = 0

U(y) = U0

(

1 −
(y

δ

)2
)

(31)

The procedure to solve this problem is presented in Appendix A which yields

the final solution as:

C = C∗ − C∗
∑

m=0

Cme−m4 x
δ

1
Pe e−m2y2/(2δ2)

1F1

(

−m2

4
+

1

4
,
1

2
, m2y2

δ2

)

, (32)

where coefficients Cm are taken from Eq. 48. The comparison between con-319

tours of analytical and simulation results is presented in Fig. 6. Parameters320

were taken as: D = 0.0185, the grid dimension is 80×1600. The centerline ve-321

locity is U0 = 0.05 which yields the Peclet number Pe = U0δ/(2D) = 108.108.322
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Figure 5: Profiles for different diffusion parameters varied with ω− (lines: Eq. 30, symbols:

LB results). One can see that the diffusion from curved boundaries is captured accurately

. r is the distance from the center.

The results are in good agreement. The simulations capture accurately the323

singular derivative for x = 0.324

Now that the LBM is validated against the benchmarks relevant for the325

flow around bubbles, one can examine the cases mentioned in Section 2.3 to326

calculate the volumetric mass transfer coefficient for the Taylor bubble train327

flow.328
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Figure 6: Comparison between the analytical concentration contours and simulations with

pressure anti bounce-back conditions, Eq. 27. The simulation was done for DLB = 0.0185

with a 80 × 1600 grid. The centerline velocity is U0 = 0.05, and the Peclet number is

108.108.

4. Numerical approach329

A multiphase code was utilized to obtain the flow patterns and bubble330

shapes for different capillary numbers [18]. Five particular cases were cho-331

sen to be examined, their results are summarized in Table 1. Note that332

the velocities (LB system) in Table 1 are small. This means that to match333

large Peclet numbers, Pe = UbubbleL
D

, usually used in experiments, one needs334

to decrease the diffusion coefficient D = 1
3

(

1
ω
−

− 1
2

)

. Thus, the parame-335

ter ω− ≈ 0.5. However, for such values of ω− the stability of the lattice336

Boltzmann method drastically decreases [45]. On the other hand, one iter-337

ation in the lattice Boltzmann system corresponds to a physical time step338

∆tphys = Ububble,LB
∆x

Ububble,phys
, where Ububble,phys is the physical velocity

[

m/s
]

,339

and tphys is the physical time step
[

s
]

. The iteration time is proportional340

to the velocity ULB and the typical number of simulation steps to obtain341

the steady-state mass transfer coefficient for Ca < 0.2 is of the order of a342

few million. Therefore, it is desirable to increase ULB while maintaining the343
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Ca Re Ububble δ εgas Uliq Ugas Lbubble Lslug

0.097 1.656 0.0055 0.092 0.30 0.0046 0.0016 5.79 9.21

0.254 4.318 0.0143 0.132 0.28 0.0108 0.0041 6.12 8.88

0.526 8.938 0.0297 0.157 0.27 0.0209 0.0080 6.19 8.81

0.750 12.744 0.0424 0.167 0.25 0.0293 0.0107 5.96 9.04

1.040 17.665 0.0588 0.177 0.22 0.0397 0.0135 5.59 9.41

Table 1: Sample results with the binary liquid lattice Boltzmann model [18]. The following

notations are used: the capillary number Ca = UbubbleL
ρνliq

, Uliq is the superficial liquid

velocity, Ugas is the superficial gas velocity, εgas is the gas holdup. δ is the non-dimensional

film thickness, Lbubble and Lslug are the non-dimensional bubble and slug lengths (defined

as multiplies of the channel height). The simulation sketch is presented in Fig. 1.

Peclet number. If one increases the velocity, then ω− increases as well, which344

impacts positively on the stability of the LBM.345

Given all the considerations above, mass transfer simulations are per-346

formed as follows:347

Flow field Given a capillary number Ca, one needs to obtain hydrodynamic348

fields around the bubble using the multiphase binary liquid lattice349

Boltzmann model according to our previous work [18]. Periodic bound-350

ary conditions were used in that work. The grid used was 202 × 3000351

which corresponds to the fluid domain of size 200 × 3000. That grid352

resolution was taken to ensure grid independency of the results [18].353

Note that we do not approximate bubble shapes by correlations, but354

directly resolve them using the multiphase solver.355

Bubble reference frame Once the hydrodynamics is solved, the mass trans-356
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fer simulations are conducted in the reference frame moving with the357

bubble, where the bubble stands still and the liquid flows around the358

bubble. We impose a uniform and steady concentration on the surface359

of the bubble with the anti bounce-back condition, Eq. 27.360

Velocity improvement One can scale the velocity to perform faster sim-361

ulations. However, before doing it one needs to improve the velocity362

field. This issue arises because of the multiphase model used in the363

flow simulations. The binary liquid lattice Boltzmann model is a dif-364

fuse interface model where no clear boundary between gas and liquid365

exists. We obtain the bubble shape by imposing a condition on the366

order parameter field φ with φ ≤ 0 in the bubble [18]. The velocity of367

the bubble is defined as the bubble tip velocity. Because of the square368

grid, the shape of the bubble is determined within an accuracy of one369

grid spacing. Thus, there is an error in the determination of the bubble370

velocity. Though these errors are small, there is still a small non-zero371

velocity component pointing into the bubble in some places, see Fig. 8372

in [18] where some streamlines are penetrating the bubble surface. This373

small velocity is amplified upon the velocity scaling and is inconsistent374

with the advection-diffusion equation leading to instability after many375

iterations.376

Thus, before performing the mass transfer simulations an additional377

single phase hydrodynamic simulation is performed. A free-surface378

solver was developed in order to obtain a velocity field consistent with379

the advection-diffusion equation. We take results from the multiphase380

simulations, extract a bubble shape using the phase indicator φ ≤ 0,381
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and approximate the bubble shape by the stair-case line with imposed382

free-slip boundary condition on it. The bubble velocity is then imposed383

on the walls. This corresponds to conducting simulations in the ref-384

erence frame moving with the bubble. Appendix B covers the simple385

free-slip boundary condition implementation drastically improving ve-386

locity patterns. The system is iterated until a steady state is reached387

and as a result, all non-zero velocity components perpendicular to the388

bubble surface are completely eliminated. Note, that these types of sim-389

ulations are much faster than the original multiphase simulations. We390

compared original multiphase simulations with one-component free-slip391

simulations. All quantities such as superficial slug and liquid velocities392

are within 3% for all capillary numbers in the range 0.05 ≤ Ca ≤ 1.0.393

One can see in Fig. 7 two streamline profiles for Ca = 0.097 and394

Ca = 1.040.395

Mass transfer After the improved velocity profiles are obtained one can396

perform any mass transfer simulation with the various boundary con-397

ditions as covered in Section 2.3. For this purpose one needs to match398

the Peclet number Pe taken from experiments.399

5. Results400

This section covers simulation results. We first examine the possibility401

to increase the fluid velocity while keeping the Peclet number the same.402

After that the results for periodic boundary conditions for 5 capillary number403

cases will be presented. Finally, we will examine many cell simulations for404
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Figure 7: The streamline patterns produced by the free-surface flow solver with simplified

approximation of the free-slip bubble surface, see Appendix B. Two completely different

velocity patterns are obtained, Ca = 0.097 (top) and Ca = 1.040 (bottom).

two representative velocity patterns related to Ca = 0.0907 and Ca = 1.04405

respectively (see Fig. 7).406

The simulations were performed using an in-house code with different407

modifications for different boundary conditions. A typical mass transfer sim-408

ulation (domain size is 3000 × 202 cells) for 106 iterations takes around 24409

hours on an Intel dual core CPU with the internal clock frequency of 2 GHz.410

All simulations (serial for one unit cell and parallel for a few unit cells) are411

done using computers of the WestGRID high-performance clusters in West-412
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ern Canada.413

5.1. Velocity scaling at constant Peclet number414

This section addresses the process of significantly increasing the velocity

magnitude while keeping dimensionless parameters the same to speed up

simulations. This is especially important to be able to simulate a few unit

cells in a reasonable time. For example, ten unit cell simulations require a

grid of 30000×202 nodes. Since the Peclet number is the only dimensionless

quantity governing the advection-diffusion equation:

Pe =
UbubbleNy

D
. (33)

one needs to increase the diffusion coefficient when the velocity is increased.415

Simulation runs were made with velocities 2, 4, 6, 8, 10, 15, 20, 40 times larger416

than the original velocities. The velocities, their corresponding capillary and417

Schmidt numbers are presented in Table 2. One can see that the Schmidt418

number, Sc = Pe/Re ≈ 790, has a value corresponding to a dye with a low419

molecular diffusivity. This is done to minimize the dye diffusion influence on420

results but rather study the mass transfer in hydrodynamics patterns pro-421

vided by the Taylor bubble flow. Periodic boundary conditions were used and422

the mass transfer coefficient was calculated according to Eq. 4. One can see423

in Table 2 that for small capillary numbers (Ca < 0.2) it is possible to scale424

up velocity significantly (20−40 times) to obtain a velocity around 0.2 where425

simulations are still stable. However, for larger capillary numbers the scale426

up is smaller (2− 4 times), and the velocity for stable simulations is around427

0.1. Table 2 shows that the velocity limit for periodic boundary conditions428

is 0.1 across all capillary numbers. To be on the safe side, velocities should429
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not be scaled up beyond that value. It gives us a preliminary idea to what430

extent one can scale periodic mass transfer simulations. The concentration431

contour profiles corresponding to Table 2 for different velocity scalings are432

presented in Fig. 8. One can see an acceptable agreement between the cases433

with the same Peclet number but different velocity scalings. Note, that the434

speedup can be up to 10 to 40 times.435

5.2. Average concentration results436

In this section we will examine the case where the volume averaged con-437

centration over time is used as the characteristic concentration. To calculate438

the volumetric mass transfer coefficient we used Eq. 12. Results for the coef-439

ficient kL a Ububble

Ugas+Uliq
are shown in Fig. 9 for different capillary, Peclet numbers440

and velocity scalings indicated in Table 2. When the average concentration441

gets close to C∗ = 1, Eq. 12 gives inadequate results due to the accuracy of442

the logarithmic function evaluation. This is the reason that curves in Fig.443

9 tend to shoot up for long times. Due to velocity scaling each simulation444

has a different physical time step. Thus, we normalized time such that it445

represents a number of unit cell lengths which the bubble has travelled, i.e.446

Ncell units = scale·Ububble·Niter

Lunit
. Fig. 9 shows the volumetric mass transfer depen-447

dency against the distance in unit cell length. One can see in Table 3 that448

for different Peclet numbers different time (number of unit cells) is required449

to achieve steady state. For example, for larger Peclet numbers fewer length450

is required to achieve the steady state condition.451

Overall one obtains steady state volumetric mass transfer coefficients for452

periodic boundaries simulations if the following conditions are fulfilled:453

I Scaling is performed so that Umax = scale · Ububble ≤ 0.1.454
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II The larger the Peclet number, the fewer iterations are required. One can455

extrapolate data from Table 3, say Lsteady, and estimate the number of456

iterations to reach the steady-state as scale · Ububble · Niter ≤ Lsteady.457

5.3. Periodic boundaries with the inlet/outlet characteristic concentration458

The volumetric mass transfer coefficient was calculated using Eq. 12 with459

the characteristic concentration being the inlet/outlet flux averaged concen-460

tration as used by van Baten and Krishna [2]. One can see in Fig. 10 that the461

calculated volumetric mass transfer coefficient behaves differently from the462

domain averaged volumetric mass transfer coefficient. For example, for small463

capillary numbers, i.e. Ca = 0.097, 0.254, 0.526 the values are overpredicted464

(kL a Lunit

Uliq+Ugas
= 0.3, 0.25, 0.1). When the velocity pattern changes from hav-465

ing a vortex in front of the bubble to not having it, i.e. Ca = 0.75, 1.04466

the calculated values are underpredicted compared to estimates based on467

volume-averaged concentration, i.e. kL a Lunit

Uliq+Ugas
= 0.06, 0.04. As we will468

see later, the domain-averaged characteristic concentration produces proper469

mass transfer coefficients.470

5.4. Van Baten and Krishna formulation471

The van Baten and Krishna [2] formulation, Eq. 16, is calculated as the472

change of mass in the domain divided by the time difference. We examined473

two approaches: the characteristic concentration taken to be as the domain474

average and as the flux-averaged input/output concentration. The latter case475

corresponds to [2]. The results are presented in Fig. 11 for Ca = 0.097 and476

Ca = 1.04. One can see that the inlet/outlet flux averaged concentration is477

inconsistent. The reason that van Baten and Krishna [2] obtained the mass478
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transfer coefficient close to the analytical estimation is that the liquid slug479

is well mixed (Ca < 0.1 which is below the range studied here) so that the480

averaged concentration is close to the inlet/outlet concentration.481

However, results for the domain-averaged concentration using the ap-482

proach of van Baten and Krishna are close to simulation results in Section483

5.2. Note that for Ca = 0.097 the obtained mass transfer coefficient value484

is 10% lower than the value in Section 5.2. However, as will be shown later485

the obtained volumetric mass transfer coefficient for Ca = 0.097 has the486

same value as for the simulations of a few unit cells. Therefore the approach487

of van Baten and Krishna [2] produces accurate results if the characteris-488

tic concentration is the volume-averaged concentration (not the inlet/outlet489

flux-averaged concentration used in the original work). From the computa-490

tional point of view, it also requires the concentration fields in time and space491

to calculate the mass change in time and the averaged domain characteristic492

concentration.493

5.5. Simulations for several unit cells494

In order to achieve independence from the boundary conditions and a495

closer match with the physical system being modelled, one can simulate496

several unit cells, corresponding to the head of a bubble train. If end effects497

are eliminated then the average domain characteristic should change in time498

according to Eq. 13. This eliminates the ambiguity inherent in choosing a499

definition of the characteristic concentration, it becomes the same domain-500

averaged concentration as the one measured in experiments.501

This section studies the number of unit cells required for the volumetric502

mass transfer coefficient to be independent of the influence of boundaries.503
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We chose two different velocity patterns (see Fig. 7 for Ca = 0.097 and504

Ca = 1.04) to perform the simulations. For Ca = 0.097 we performed505

simulations with 4, 6, 8, 10 cells, and for Ca = 1.040 only with 4, 6, 8 cells.506

We observed however that simulations with a domain length of 10 unit cells507

produce the same results as those with 8 unit cells.508

We keep velocity in the range 0.05− 0.1 to avoid excessively long simula-509

tion times. The number of steps for mass to pass through the whole domain510

can be approximated as 1.5 Lunit

Ububble
, which takes into account the bulk veloc-511

ity. If Ububble is taken as 0.05 then for the domain size Lunit = 3000 one can512

obtain the following number of iterations for the mass to cross the unit cell513

1.53000
0.05

= 90000. Therefore, 106 iterations are enough for a system consisting514

of 10 unit cells. For more accurate estimations of the number of time steps515

depending on the Peclet number we refer to Section 5.1.516

5.6. Ca = 0.097 results517

There are two characteristics we want to track in the simulations: the

average concentration in the unit cell with time (see Eq. 13), and the accu-

mulated mass rate in the domain which takes into account inlet/outlet fluxes

(see Eq. 18). The former resembles experiments: if one has a large enough

number of unit cells, then the averaged domain concentration should change

in time according to Eq. 13:

kL a
Lunit

Ugas + Uliq
=

Lunit

Ububble(t2 − t1)
ln

(

C∗ − 〈C(t1)〉
C∗ − 〈C(t2)〉

)

(34)

The non-dimensional volumetric mass transfer coefficient calculated based on518

Eq. 34 (domain-averaged concentration change in time) is represented in Fig.519

12 for different unit cells. One can see that mass transfer coefficient values are520
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the same as the mass flux concentration based on the van Baten and Krishna521

formulation with the characteristic concentration being the domain-averaged522

concentration (see Section 5.4). This demonstrates two things: the domain-523

averaged concentration is the only choice for the characteristic concentration,524

and periodic boundary conditions for one unit cell produce good results.525

In comparison with periodic boundary conditions Eq. 18 allows to calcu-

late the mass transfer coefficient differently. Eq. 18 can be rewritten as:

kL a
Lunit

Uliq + Ugas

=
Lunit

Ugas + Ububble

V 〈C(t2)〉−〈C(t1)〉
t2−t1

−
∫

Coutlet(Lunit, y, t∗)u(Lunit, y)dy +
∫

Cinlet(0, y, t∗)u(0, y)dy

V (C∗ − 〈C(t∗)〉) ,

(35)

where t∗ is the mean between t1 and t2.526

Fig. 13 shows average concentrations in different units and kL a Lunit

Uliq+Ugas
527

based on Eq. 35 calculated for each unit for velocity scale 10 and 6 unit cells528

(all velocity scales produce the same results). It shows that the volumetric529

mass transfer coefficient is consistent for internal segments, i.e. unit cells530

numbers 2−4. The results for the volumetric mass transfer coefficient calcu-531

lated by Eq. 18 for multiple unit cells are close (less than 10% deviation) to532

results for periodic boundary conditions in Section 5.2 . The same dependen-533

cies can be found for 8 and 10 unit cells simulations but we do not present534

them here. We also do not present 4 unit cells simulation results which are535

highly influenced by entrance and exit effects.536

The calculation of the volumetric mass transfer coefficient is more difficult537

using Eq. 35. However, it will be shown below that this equation can be538

significantly simplified in case of larger capillary numbers (Ca > 0.7).539
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5.7. Ca = 1.040 results540

The same correlations were examined for a different velocity pattern at

Ca = 1.040. The original Peclet number we started with is Pe = 14041

(Table 2). To avoid stability problems of the lattice Boltzmann method we

changed the original Peclet number by increasing diffusion to Pe = 2644

(corresponding Schmidt number Sc = 709.84/5 = 158.96). Our goal is to

understand the influence of velocity pattern, not to perform simulations with

a certain Peclet number. Thus, we have a certain degree of freedom to

vary the simulations’ Peclet number. This is achieved by adjusting velocity

and diffusion coefficients. For example, if the velocity scaling is 2, then by

increasing the initial diffusion coefficient 10 times one will eventually obtain

a Peclet number 5 times smaller than the initial Peclet number. The results

with respect to the number of unit cells are the same as for Ca = 0.097: at

least 6 unit cells are required to avoid the influence of inlet/outlet effects.

Thus, only 6 unit cells results are presented in Fig. 14 which shows the

average concentration for each unit cell. One can see that the average volume

concentration for each unit cell converges to a constant value. Thus, all

the mass generated by the bubble is transferred through the boundaries.

This indicates that the liquid slug is unmixed since no concentration travels

back to inlet with the vortex and increases the average concentration in each

unit cell. Note that the periodic boundary conditions cannot show whether

the liquid slug is mixed or not due to the fact that the averaged domain

concentration always increases in time. Thus, the volumetric mass transfer

coefficient kL a Lunit

Uliq+Ugas
can be calculated according to the definition, Eq. 18:

kL a =
ṁ −

∫

Coutlet(y)u(Lunit, y)dy +
∫

Cinlet(y)u(Lunit, y)dy

V (C∗ − 〈C(t)〉 , (36)
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where V is the unit cell volume. There is no accumulated mass in the domain,541

so ṁ = 0. Like periodic boundary conditions, this case is another extreme542

limit of Eq. 18. Note that to calculate the volumetric mass transfer coefficient543

one needs only the spatial information and does not require the knowledge of544

how the averaged concentration changes in time, which significantly lowers545

storage requirements for the simulations with Ca > 0.7 where there is no546

vortex in the liquid slug.547

Fig. 15 (bottom) shows the volumetric mass transfer coefficient based548

on spatial calculations of inlet/outlet concentrations. One can see that the549

volumetric mass transfer coefficient is close to the calculated volumetric mass550

transfer coefficient using the time averaged approach and periodic boundaries551

one unit cell simulations (presented in the same figure for comparison). Note552

that results for approaches which incorporate the volume-averaged character-553

istic concentration either for one cell or a few unit cells coincide. Therefore,554

for certain hydrodynamic patterns (Ca > 0.7), one can easily convert time555

domain to spatial domain calculations using simulations of several unit cells.556

557

5.8. Comparison of experimental and analytical correlations558

While the goal of this paper is not to compare simulation results with the

experimental measurements, we felt that a short note about such compari-

son will be beneficial. Unfortunately, to the authors’ knowledge, there are no

reported experimental results measuring the mass flux for bubbles flowing be-

tween parallel plates. However, an interesting correlation for the volumetric

mass transfer coefficient was presented by Yue et al. [7] for three-dimensional
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microchannel geometries:

kL a =
2

dh

( DUbubble

Lbubble + Lslug

)0.5( Lbubble

Lbubble + Lslug

)0.3

kL a
Lunit

Ugas + Uliq

= 2
Lunit

dh

( D

Lunit(Ububble + Ugas)

Ububble

Ugas + Uliq

)0.5( Lbubble

Lbubble + Lslug

)0.3

∝ Pe−
1
2

(37)

One can see that the volumetric mass transfer correlation should be approx-

imately proportional to Pe−0.5. One can also use analytical estimates of the

volumetric mass transfer coefficient calculated using the Higbie penetration

theory [17]. One can derive the analytical expression for the mass transfer

for bubble train flow between parallel plates by following the works [16, 2]:

kL a
Lunit

Uliq + Ugas

=
Lunit

Ugas + Uliq

(

4
√

DUbubbleπ

√

Lbubble − H(1 − 2δ)

LunitH

+ 2
√

2
√

DUbubble

√

H(1 − 2δ)

LunitH

)

,

(38)

where H is the channel height, and δ is the non-dimensional film thickness559

(in channel heights).560

Fig. 16 shows a comparison between the correlation by Yue et al. [7], the561

analytical expression, Eq. 38, and the current simulation results presented562

in Table 3. The coefficients are close to each other, especially given that563

the correlation by Yue et al. [7] is for three-dimensional cases. The fitting564

procedure based on the results of this work showed that the power of the565

Peclet number dependence is −0.50038 which is close to the theoretical value566

−0.5. The fitting curve is 7.745Pe−0.50038.567

6. Summary568

This work examines a way to calculate the volumetric mass transfer coef-569

ficient of Taylor/Batchelor bubble train flow in the framework of the lattice570
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Boltzmann method. The volumetric mass transfer for the Taylor/Batchelor571

bubble train flow can be relatively easily estimated by measuring concen-572

trations of a scalar along the streamwise direction. In comparison with the573

continuous nature of experiments, i.e. where one doesn’t distinguish bubbles,574

the numerical simulations are performed with a small number of discrete unit575

cells, each containing a bubble. This work bridges the continuous nature of576

experiments and a few unit cells simulations performed in the reference frame577

moving with the bubble. We thoroughly performed and examined simulations578

with different definitions of the volumetric mass transfer coefficient and char-579

acteristic concentration, i.e. domain-averaged or flux-averaged inlet/outlet580

concentrations, for different hydrodynamic patterns seen in the bubble train581

flow. We also performed open inlet/outlet mass transfer simulations for a582

few unit cells to resemble the continuous picture seen in experiments. By583

thorough comparison it was shown that the easiest recipe is to perform sim-584

ulations with periodic boundary conditions and calculate the volumetric mass585

transfer coefficient based on the domain-averaged concentration through any586

formulation (van Baten and Krishna, periodic boundary conditions, simu-587

lations of several unit cells) as they produce consistent results. The best588

accuracy in terms of closeness to the results of simulations of several unit589

cells (continuous picture seen in experiments) is achieved with formulations590

based on the mass difference or on the domain-averaged concentrations taken591

in different times, Eq. 13. Eq. 11 gives a slightly overestimated volumet-592

ric mass transfer coefficients (less than 10%). The original formulation of593

van Baten and Krishna [2] is inconsistent if one takes the inlet/outlet flux-594

averaged concentration to be the characteristic concentration as in their orig-595
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inal work. Simulations of several unit cells are harder to perform, but they596

provide a good reference point since they more closely resemble the continu-597

ous nature of the bubble train flow. In addition, simulations of several unit598

cells indicate how well the liquid slug is mixed. This can be used for velocity599

patterns related to Ca ≥ 0.7 (weak liquid slug mixing) which allows to cal-600

culate the volumetric mass transfer coefficient based on the spatial location601

only, without requiring the time snapshots of domain concentration values602

used in all other approaches. Finally, a sample of results was compared with603

the experimental correlation of Yue et al. [7] and shown to be consistent.604
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A. Mass transfer for planar Poiseuille flow609

Close to the previous example but with a different velocity profile, the

problem can be formulated through the following PDE:

∂C

∂x
U(y) = D

∂2C

∂y2

C(0, y) = 0, C(x,±δ) = C∗,
∂C

∂y
(x, 0) = 0

U(y) = U0

(

1 −
(y

δ

)2
)

(39)

The following substitution simplifies the form of equations:

ζ =
x

δ

D

U0δ
=

1

Pe

x

δ

ξ =
y

δ
.

(40)
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Then the following equation can be obtained:

∂Θ

∂ζ
(1 − ξ2) =

∂2C

∂ξ2

Θ(ζ, ξ) = C − C∗ Θ(0, ξ) = −C∗ Θ(0,±1) = 0

(41)

After separation of variables, Θ(ζ, ξ) = X(ζ)Y (ξ) one can come up with two

equations:
dX(ζ)

dζ
+ m4X(ζ) = 0

d2Y (ξ)

dξ2
+ m4(1 − ξ2)Y (ξ) = 0

(42)

The first equation has a solution:

X(ζ) = exp(−m4ζ) (43)

The second equation can be simplified after substitution ξ̄ = m
√

2ξ to the

standard equation:

Y ′′ −
(1

4
ξ̄2 + a

)

Y = 0, (44)

where Y ′ = dY/dξ̄, and a = −m2/2. The equation above has two solu-

tions via parabolic cylinder functions or through the confluent hypergeomet-

ric function [48]:

Y1 = e−ξ̄2/4
1F1

(a

2
+

1

4
,
1

2
,
ξ̄2

2

)

Y2 = e−ξ̄2/4
1F1

(a

2
+

3

4
,
3

2
,
ξ̄2

2

)

(45)

Taking symmetry conditions into consideration by leaving only the even so-

lution, Eq. 42 has the following solution:

Ym = Cme−m2ξ2/2
1F1

(

−m2

4
+

1

4
,
1

2
, m2ξ2

)

(46)

To satisfy the boundary condition we need to find zeros of the hypergeometric

function, i.e. 1F1

(

−m2

4
+ 1

4
, 1

2
, m2

)

= 0. First ten eigenvalues can be found
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using numerical methods: 1.2967, 2.3811,3.1093,3.6969,4.2032,4.6548,5.0662,

5.4467, 5.8023,6.1373. One needs to satisfy one more condition to obtain

coefficients Cm:

−C∗ =
∑

m

Cme−m2ξ2/2
1F1

(

−m2

4
+

1

4
,
1

2
, m2ξ2

)

(47)

One can multiply both parts on (1− ξ2)1F1

(

−m2

4
+ 1

4
, 1

2
, m2ξ2

)

and through

orthogonality (Stourm-Liouiville theorem) obtain coefficients:

Cm = −C∗

∫ 1

ξ=0
(1 − x2)e−m2ξ2/2

1F1

(

−m2

4
+ 1

4
, 1

2
, m2ξ2

)

dξ

∫ 1

ξ=0
(1 − ξ2)e−m2ξ2/2

1F1

(

−m2

4
+ 1

4
, 1

2
, m2ξ2

)2

dξ
(48)

Therefore the complete solution can be written as:

C = C∗ − C∗
∑

m=0

Cme−m4 x
δ

1
Pe e−m2y2/(2δ2)

1F1

(

−m2

4
+

1

4
,
1

2
, m2y2

δ2

)

, (49)

where coefficients Cm are taken from Eq. 48. For the case C∗, the first ten610

coefficients are: 1.2008, −0.2991, 0.1608, −0.1074, 0.0796, −0.0627, 0.0515,611

−0.0435, 0.0375, −0.0329.612

B. Free surface boundary conditions613

There are a few implementations of free boundary conditions [49, 50].614

However, we developed the easy solver to impose the free surface boundary615

conditions at the complicated surface of the bubble. The reason is to impose616

the symmetric boundary conditions. Because the boundary is a staircase ap-617

proximation, one can find the normal to the boundary which is always located618

by the angle of multiple of 45 degrees, see Fig. 17. The finding identification619
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of normals can be done automatically by a simple code. Imposing the sym-620

metric boundary conditions requires Un,F=−Un,B and Uτ,F = Uτ,B. We can621

copy populations in a certain order to do it, for example fB,i = fF,̄i, where622

ci and cī are complementary directions, where ci,n = −cī,n and ci,τ = cī,τ ,623

where ci,n = (ci ·n)n and ci,τ = ci − (ci ·n)n. One can check by taking the624

definition of velocity ρu =
∑

i fici and substituting it in the relationships625

above, that the normal velocities are canceled, i.e. Un,F = −Un,B, but the626

tangential velocity component is conserved, Uτ,F = Uτ,B.627
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Scale Ububble ω− Time Itera-

tions

Caver

Ca = 0.097,Pe = 1313,Sc = 792.87

2 0.011 1.98 400000 0.318

4 0.023 1.96 200000 0.319

8 0.044 1.92 100000 0.320

10 0.055 1.90 80000 0.321

20 0.11 1.81 40000 0.324

40 0.22 1.66 20000 0.328

Ca = 0.254,Pe = 3414,Sc = 790.64

2 0.0286 1.98 800000 0.6533

4 0.0572 1.96 400000 0.6591

8 0.1144 1.92 200000 0.6692

10 0.1430 1.90 160000 0.6734

20 0.2860 1.81 80000 0.6894

Ca = 0.526,Pe = 7092,Sc = 793.46

2 0.0594 1.98 200000 0.3271

4 0.1188 1.96 100000 0.3315

Ca = 0.750,Pe = 10125,Sc = 794.49

2 0.0848 1.98 200000 0.3489

Ca = 1.040,Pe = 14041,Sc = 794.84

2 0.1176 1.98 200000 0.3675

Table 2: Indications of the achievable stable velocity Ububble when one scales velocity.

Since the physical time step represented by a single iteration of the simulation is directly

proportional Ububble,LB, scaling the velocity directly translates to an effective speed-up of

the simulation. Note that time iterations indicated in the table correspond to the same
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Figure 8: Concentration contour profiles for velocity scalings as identified in Table 2 (top

to bottom: Ca = 0.097, 0.254, 0.526, 0.750, 1.040). Lines correspond to all different scales

indicated in Table 2 (top to bottom: 6 scalings, 5 scalings, 2 scalings, 1 scaling, 1 scaling).

Lines for different scaling parameters coincide with or are close to each other showing that

simulations with velocity scalings are consistent.
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Figure 9: Volumetric mass transfer coefficient for different capillary numbers and velocity

scales against the bubble travel distance in the laboratory frame. The ”Cell Units“ axis

refers to the physical distance in unit cells lengths the bubble travels. A legend is provided

for velocity scalings. All of them show a good agreement. One can see an abnormal rise

of the mass transfer coefficient when the average concentration is close to C∗ due to the

logarithmic function evaluation. Table 3 summarizes the results presented here.
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Ca Pe Lsteady/Lunit kL a Lunit

Uliq+Ugas

0.097 1313 7 0.21

0.254 3414 6 0.14

0.526 7092 3 0.095

0.750 10125 3 0.074

1.040 14041 2 0.0601

Table 3: The distance which a bubble propagates when the steady-state condition is

achieved.
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Figure 10: The volumetric mass transfer coefficient with the characteristic concentration

based on the inlet/outlet flux averaged concentration as in [2]. One can see that depending

on the velocity pattern, the values are either overpredicted or underpredicted in comparison

to values specified in Table 3.
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Figure 11: The van Baten and Krishna [2] formulations for Ca = 0.097 (top) and

Ca = 1.04 (bottom) with the characteristic concentration being domain-averaged (left)

and inlet/outlet flux-averaged (right). One can see that the van Baten and Krishna [2]

formulation produces good results with the characteristic concentration being the aver-

age concentration. Moreover, the values are closer to values obtained with many cell

simulations, see Fig. 12, than with periodic boundary simulations in Section 5.2. The

characteristic concentration being inlet/outlet flux-averaged does not produce consistent

results.
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Figure 12: The non-dimensional volumetric mass transfer coefficient defined in Eq. 34 for

4 (top left), 6 (top right), 8 unit cells (bottom). Only scale 10 is presented since all other

simulations produce the same results. One can see that 4 unit cells is not enough to avoid

the influence of boundaries. However, the results for 6 and 8 unit cells are consistent and

show that beginning from the third unit cell and ending with the penultimate cell, the

results are consistent with periodic boundary simulations and van Baten and Krishna [2]

formulations.
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Figure 13: Average concentrations (left) and volumetric coefficients (right) for 6 unit cells.

The volumetric mass transfer coefficient is calculated based on Eq. 35 and accounts for

inlet and outlet fluxes.

Figure 14: Results for 6 unit cells. The Peclet number is Pe = 2644. One can see that

the average concentrations reach a certain value and stay constant. Thus, the volumetric

mass transfer coefficient, kL a Lunit

Uliq+Ugas
, can be calculated using the spatial approach, see

Fig. 15. To decrease the initial Peclet number from 14041 to 2644, the corresponding

scaling parameters for velocity and diffusion equal to 2 and 10.
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Figure 15: The periodic (top left, 1 unit cell, Eq. 13), unit cells domain-averaged concen-

trations as a function of time (top right, 6 unit cells, Eq. 13), and spatial location (bottom,

6 unit cells, Eq. 36) calculated volumetric mass transfer coefficients. For the upper right

figure, where the time-averaged calculation is presented, one needs to consider only results

where there is no concentration saturation. Thus, one needs to consider only results with

less than 20, 000 iterations as the saturation happens fast due to the high Peclet number.

It is not convenient to use them in practical cases for unmixed slugs, i.e. Ca > 0.7. All

results coincide and give value of around 0.15 − 0.16. However, the calculations based on

periodic boundary conditions produce a slightly overestimated volumetric mass transfer

coefficient.
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Figure 16: Comparison between the correlation by Yue et al. [7], the analytical correlation

derived by following the work [16] and the mass transfer coefficient based on periodic

boundary conditions. The fitting curve (7.745Pe−0.50038) is proportional to Pe−0.5 which

corresponds to all correlations. One can as well see that the deviation from the analytical

expression becomes larger with the increasing Peclet number, which happens because

the analytical expression does not account for the velocity pattern and the bubble shape

change.
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n̄

Figure 17: Free-surface boundary condition represented in the lattice Boltzmann method.

Boundary nodes are depicted by crosses, and fluid nodes are represented by dots. The

populations at the corner boundary nodes are essentially the populations of the fluid node,

but in a different order.
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