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a b s t r a c t

The present work deals with the development of a direct simulation strategy for solving the motion of
spherical particles in a Bingham liquid. The simulating strategy is based on a lattice-Boltzmann flow
solver and the dual-viscosity Bingham model. Validation of the strategy is first performed for single
phase (lid-driven cavity flow) and then for two phase flows. Lid-driven cavity flow results illustrate
the flow’s response to an increase of the yield stress. We show how the settling velocity of a single
sphere sedimenting in a Bingham liquid is influenced by the yield stress of the liquid. The hydrodynamic
interactions between two spheres are studied at low and moderate Reynolds number. At low Reynolds
number, two spheres settle with equal velocity. At moderate Reynolds number, the yield effects are
softened and the trailing sphere approaches the leading sphere until collision occurs.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Bingham liquids, a special subclass of viscoplastic liquids, pos-
sess a yield stress which must be exceeded before the liquid shows
any significant deformation. By virtue of its yield stress, a Bingham
liquid is capable of trapping an embedded particle for a long time.
For example, drilling liquids used in petroleum industry posses a
yield stress and prevent the settling of rock debris when their circu-
lation is stopped (Peysson, 2004). The presence of a yield stress in
various industrial liquids is critical to solid–liquid suspensions. In
oil sand operations (Masliyah, Zhou, Xu, Czarnecki, & Hamza, 2004),
clay particles get surface activated in the presence of water and
make a complex clay–water suspension. This complex suspension
possesses a yield stress which is relevant for the design, operation
and efficiency of oil sands processing, especially in those parts of
the process related to separation and to tailings. If the net gravity
force acting on inert particles (sand, bitumen drops) is not enough
to overcome the yield stress, they are trapped in the clay network
hindering gravity based separation.

Research studies focused on spheres sedimenting in Bing-
ham liquids date back several decades. Ansley and Smith (1967)
postulated the shape and extent of yielded/unyielded regions sur-
rounding the sphere using slip line theory. In a classical work, Beris,
Tsamopoulos, Armstrong, and Brown (1985) numerically deter-
mined the velocity field, pressure field, shape of the yield surfaces
and drag coefficient for the creeping flow around a sphere in an
unbounded Bingham liquid. Blackery and Mitsoulis (1997) reported
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drag coefficients for bounded flows with various tube/sphere diam-
eter ratios. More recently Liu, Muller, and Denn (2002) and Yu and
Wachs (2007) obtained the shape and extent of yielded/unyielded
regions for such flow systems. Turning the attention towards sed-
imentation of more than one sphere, one finds few results for
Bingham liquids, probably due to the complexity associated with
two sphere motion in addition to the discontinuous nature of
Bingham liquid model. Liu, Muller, and Denn (2003) numerically
investigated the creeping flow of two identical spheres falling
collinearly along the axis of a circular cylinder in a Bingham liq-
uid. They calculated the yield surfaces as a function of the ratio of
the center to center distance over the radius of the spheres and
further predicted a plug like (unyielded) region between the two
spheres along the symmetry axis. In an experimental work, Merkak,
Jossic, and Magnin (2006) reported an appreciable hydrodynamic
interaction between two spheres falling one above the other. They
proposed drag coefficient correlations and showed that the yield
effect of viscoplastic liquids reduces the degree of interaction com-
pared to sedimentation in Newtonian liquid. Yu and Wachs (2007)
examined the motion of two spheres translating along the axis of a
tube at low Reynolds number and predicted a higher velocity of two
spheres than a single sphere due to the hydrodynamic interaction.

One of the difficulties encountered in implementing the Bing-
ham model in a computer code is its non-differentiable form. There
are mainly three approaches which have been used in the litera-
ture to counter these problems: the dual-viscosity model (Beverly
& Tanner, 1992; O’Donovan & Tanner, 1984), regularization meth-
ods (Mitsoulis & Zisis, 2001; Papanastasiou, 1987), and variational
inequality based methods (Vola, Boscardin, & Latche, 2003; Yu &
Wachs, 2007). The first two methods approximate the Bingham
model by considering the solid region as a highly viscous mate-
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rial. The variational inequality method is rigorously equivalent to
the original Bingham model, and is implemented by introducing
Lagrange multipliers.

The present work concentrates on the sedimentation of parti-
cles in Bingham liquid using the lattice-Boltzmann method (LBM)
as flow solver. First we discuss and analyse the results of single
sphere sedimentation at low Reynolds number. We then investi-
gate the hydrodynamic interaction between the two spheres falling
along the axis of symmetry at low and moderate Reynolds num-
ber. Hydrodynamic interaction is interpreted in terms of settling
velocity, flow field and attraction between the spheres. The (bench-
mark) results presented in this paper are meant to assess the
accuracy and potential of the computational method so that (in
future work) the method can be used for flow systems relevant to
industrial and environmental processes, such as the simulation of
dense solid–liquid suspensions involving Bingham liquids.

This paper is organized as follows: in Section 2 a brief intro-
duction to LBM, the Bingham model and dimensionless numbers is
provided. Validation of the numerical procedure is accomplished
by comparing results for lid-driven cavity flow with results from
the literature (Section 3). In Section 4 we study the single sphere
sedimentation in Bingham liquid in a confined domain and report
the effects of yield stress on the settling velocity. In Section 5, we
examine the sedimentation of two spheres (one above the other)
in Bingham liquid at low and moderate Reynolds number. The con-
cluding remarks are provided in Section 6.

2. Numerical model

2.1. Flow solver

The lattice-Boltzmann method is a well established and fre-
quently used method for simulating liquid flows. In principle it
has a second order accuracy in space and time and is particu-
larly regarded an efficient flow solver for flows involving interfacial
dynamics and complex geometries (Chen & Doolen, 1998). LBM
originated from lattice gas automata in which liquid particles are
distributed on a lattice of nodes. Each liquid particle has certain
directions of velocities at each node. At each time step a liquid
particle is involved in two sequential processes: streaming and
collision. In the streaming process, the liquid particle moves from
one node to the nearest node in the direction of its velocity and in
collision it interacts with other liquid particles reaching the same
node and changes its velocity as per collision rules. In this work, we
make use of the formulation by Eggels and Somers (1995) which
is a D3Q18 model (three-dimensional, 18 velocities). In LBM the
units of distance and time are the lattice spacing and the time step,
respectively. All the liquid properties and flow variables are scaled
to dimensionless quantities within certain ranges (e.g. for density
and kinematic viscosity: �∼ 8, 0.25 >� > 10−5) (Eggels & Somers,
1995). The bounce-back scheme is a popular way to mimic no-slip
boundary conditions at plane walls. In this scheme, the liquid par-
ticle is reflected back to the node it comes from. Explicitly applying
zero velocity on boundaries is an alternative to retrieve the no-
slip condition. No-slip boundary condition at a curved boundary is
achieved by a forcing method (Derksen & Van den Akker, 1999),
also known as immersed boundary method.

2.2. Bingham model

Viscoplastic liquids possess a yield stress (�0) which must be
exceeded before the fluid shows any significant deformation. The
Bingham model, one of the simplest rheological models, is used
to describe the flow properties of liquid with a yield stress �0. The
deformation rate remains zero and the material behaves like a solid
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Fig. 1. One-dimensional representation of dual-viscosity Bingham model.

until the stress exceeds the yield limit of the liquid. In a general-
ized manner, the constitutive equations for a Bingham liquid can
be written as

�ij = 2
(
�0

�̇
+�p

)
dij |�|> �0 (1)

dij = 0 |�|< �0 (2)

In the above expressions, �ij is deviatoric part of whole stress

tensor �ij, �̇ is the deformation rate (�̇ =
√
dijdij), dij is the rate

of deformation tensor [1/2(( ∂ ui/∂ xj) +(∂ uj/∂ xi))], �p is the plastic
viscosity, and |�| is the magnitude of the shear stress (|�| = √

�ij�ij).
In the present work, a dual-viscosity model is used to mimic

Bingham liquids (Beverly & Tanner, 1992) because of its less
complex structure and easy implementation within the lattice-
Boltzmann scheme, which essentially is a viscous flow solver. In
this model the region around zero shear rate is characterized by
a highly viscous material with viscosity �0. At higher shear the
actual Bingham rheology is represented by a much lower plastic
viscosity �p. The one-dimensional dual-viscosity Bingham rheol-
ogy is shown in Fig. 1. The transition (from high to low viscosity)
gives rise to a critical shear rate �̇c = �0/(�0 −�p). When the shear
rate (�̇) becomes greater than critical shear rate, material is consid-
ered yielded. Thus the criterion of yielded and unyielded regions is
defined as

�̇ > �̇c → yielded (3)

�̇ ≤ �̇c → unyielded (4)

In the dual-viscosity model, the apparent viscosity (�a) and
shear stress (�ij) of the material are written as

�a = �0 �̇ ≤ �̇c (5)

�a = �p + �0

�̇
�̇ > �̇c (6)

�ij = 2�adij (7)

2.3. Dimensionless numbers

As the two dimensionless numbers that govern the Bingham
liquid flow system we chose a Reynolds number and a Bingham
number:

Reynolds numberRe = �f UcLc
�p

(8)
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Fig. 2. Definition of the LDC geometry and coordinate system, its origin being in the
south-west corner.

Bingham number Bn = �0Lc
�pUc

(9)

In the above expressions �f is the density of Bingham liquid
while Uc and Lc are the characteristic velocity and length, respec-
tively. Since spherical particles are considered, we take the sphere
diameter d as characteristic length. The definition of the character-
istic velocity depends upon the inertial effects. We define one more
(numerical) dimensionless number: the viscosity ratio �r. This is
the ratio of zero shear viscosity to plastic viscosity, i.e. �r =�0/�p.

In case of low inertial effects, the Stokes terminal velocity (Us)
for a single sphere settling in an unbounded medium with uniform
viscosity �p is taken as characteristic velocity. Us is defined by the
notion:

Uc = Us = d2(�s − �f )g
18�p

(10)

where �s is the density of solid sphere and g is the acceleration due
to gravity.

In case of moderate inertial effects, the terminal velocity (U∞)
of a single sphere settling in an unbounded medium with uni-
form viscosity�p is taken as characteristic velocity. To calculate U∞
we consider the drag coefficient expression proposed by Abraham
(1970) and later used by ten Cate, Nieuwstad, Derksen, and Van den
Akker (2002):

Cd = 24
Re

(
1 +

√
Re

9.06

)2

(11)

Based on the drag coefficient defined by Eq. (11), U∞ is given by

U∞ = d2(�s − �f )g
18�p(1 + √

Re/9.06)
2

(12)

3. Lid-driven cavity flow

In computational fluid dynamics, lid-driven cavity flow is a
widely used test case for benchmarking incompressible iso-thermal
liquid flows. The flow definition and coordinate system for lid-
driven cavity flow are given in Fig. 2. A Bingham liquid, contained
inside a square cavity is set into motion by the upper wall which
slides at constant speed. The velocity of the upper wall and the
cavity depth are taken as characteristic velocity and length, respec-
tively. Originally a three-dimensional grid is used for simulating
the flow, applying no-slip boundary conditions (using the halfway

10
0

10
1

10
2

10
3

0.8

0.9

1

Bn

z
/H

μ
0
/μ

p
=250

μ
0
/μ

p
=1250

μ
0
/μ

p
=5000

μ
0
/μ

p
=10000

μ
0
/μ

p
=15000

Fig. 3. Sensitivity of z-coordinate of the primary vortex center with viscosity ratio
(�0/�p); grid size: 81 × 1 × 81.

bounce-back scheme) at the east, west, north and south wall,
where the north wall is moving. Periodic boundary conditions are
imposed at front and back boundaries effectively making it a two-
dimensional problem.

3.1. Verification of the numerical method

To establish the qualitative credibility of results obtained by a
numerical method, it is desirable to verify the method with dif-
ferent numerical parameters. In this study, two parameters are
investigated for the purpose of verification. One is the grid size and
the other is the viscosity ratio (�r). Previous researches (Mitsoulis
& Zisis, 2001; Vola et al., 2003; Yu & Wachs, 2007) have shown that
the location of the primary vortex formed in lid-driven cavity flow
is appreciably influenced by the yield stress of the Bingham liq-
uid at low Reynolds number (the primary vortex moves closer to
the moving lid as Bn increases). This change in location is an easily
observable quantity. Therefore we monitor the vertical position of
the primary vortex center to observe the qualitative credibility of
our results. The center of the primary vortex is the point having
the minimum value of the stream function ( ) which is calculated
through integration of the velocity field (ux = ∂ /∂ z, uz = − ∂ /∂ x).
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Fig. 4. Sensitivity of z-coordinate of the primary vortex center with grid size
(x × y × z); �0/�p = 10,000.
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Fig. 5. Yielded (white)/unyielded (shaded) regions together with streamlines for lid-driven cavity flow of a Bingham liquid with different Bingham numbers; Re = 0.5.

In a number of previous finite element studies with the dual-
viscosity Bingham model, researchers (Gartling & Phan-Thien,
1984; O’Donovan & Tanner, 1984) have found their results insen-
sitive to the viscosity ratio if �r > 1000. Beverly and Tanner (1992)
reported the highest accuracy for an axi-symmetric problem when
�r = 1000. For the present work, different values of the viscosity
ratio (�r = 250, 1250, 5000, 10,000, 15,000) are chosen to mea-
sure the sensitivity in terms of the vertical position of the primary
vortex center. For each value of �r, simulations (at Re = 0.5) are
performed over a range of liquid’s yield stress (Bn = 2, 5, 10, 20, 50,
100, 200, 500). The primary vortex position as a function of the
Bingham number (Bn) for each viscosity ratio is shown in Fig. 3. For
the range of investigation (2 ≤ Bn ≤ 500), the primary vortex center
moves closer to the moving lid on increasing Bn only if �r > 1250.
Simulations with lower �r ( ≤ 1250) fail to deliver the expected
results. This discrepancy can be attributed to the misleading veloc-

ity fields which can be generated with the dual-viscosity model, if
shear stresses or shear rates developed are very low compared to
yield stress (�0) or critical shear rate (�̇c), respectively. By decreas-
ing the viscosity ratio, we increase the magnitude of the critical
shear rate �̇c . If the yield stress of the liquid is high (Bn > 50), devel-
oped shear rates are very low and may fall below the critical shear
rate for the lower viscosity ratios which in turn leads to unrealis-
tic predictions of the dual-viscosity model. Fig. 3 shows that after
reaching a certain value, increase of the viscosity ratio does not alter
the position of primary vortex anymore. We obtain similar results
with�r = 10,000 and 15,000. Therefore we choose the value 10,000
as the default viscosity ratio.

Choosing an appropriate grid to mimic the lid-driven cavity
problem is important in terms of accuracy and computational
effort. Keeping all other numerical parameters unchanged, sim-
ulations are performed with five different grids and the results
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results (Mitsoulis & Zisis, 2001; Yu & Wachs, 2007).

are shown in Fig. 4. Approximately identical results are observed
for all grids with low Bingham numbers (Bn ≤ 50) except for the
21 × 1 × 21 grid. Results start to differ with higher Bingham num-
bers. For the whole range of investigation (2 ≤ Bn ≤ 500), the results
obtained from grid size 81 × 1 × 81 differ little from those obtained
from grid size 101 × 1 × 101. Since a finer grid (101 × 1 × 101) does
not offer any significant contribution, we adhere to the grid size of
81 × 1 × 81.

3.2. Validation of the numerical method

Based on the verification of the numerical method (Section 3.1),
viscosity ratio and grid size are chosen as 10,000 and 81 × 1 × 81,
respectively for mimicking the lid-driven cavity flow with Bing-
ham liquid. Simulations have been performed with various values
of the Bingham number (2 ≤ Bn ≤ 500) keeping the Reynolds num-
ber constant at Re = 0.5. Streamlines coupled with yielded (white)
and unyielded (shaded) regions inside the cavity with Bn = 2, 5, 20,
50, 200 and 500 are displayed in Fig. 5. In unyielded regions the
deformation rate is below the critical shear rate �̇c . The unyielded
regions in the cavity can be divided in two categories: (a) a lower
unyielded region (close to the bottom wall) (b) an upper unyielded
region (close to the moving lid). Since the lid (top wall) is the
only source to generate shear stress, the effect imparted to the
lower region is not sufficient to yield the liquid. The formation
of the upper unyielded region takes place due to the existence
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Fig. 7. z-location (top) and x-location (center) of the vortex center as a function
of Bn; bottom: vortex intensity at vortex center as a function of Bn; Re = 1000;
comparison with the literature result (Vola et al., 2003).

of the primary vortex in which the deformation rate is very
small. Both unyielded regions grow with the increase of the Bing-
ham number. It is interesting to observe the streamlines inside
a cavity (refer Fig. 5). Ideally, unyielded regions are solid regions
and they should be quiescent. In the present study the stream-
lines pass through unyielded regions because these regions are
not truly solid (they are highly viscous with viscosity �0). This
also could explain the deviations in terms of the shape of the
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Fig. 8. Yielded (white)/unyielded (shaded) regions together with streamlines for lid-driven cavity flow of a Bingham liquid with different Bingham numbers; Re = 1000.

unyielded regions as compared to shapes reported by Yu and Wachs
(2007).

Other quantities of interest are the position of the primary vor-
tex and the vortex intensity at its center. Vortex intensity is defined
as − *min at the center of the vortex where * denotes the dimen-
sionless stream function. In the present work the dimensionless
stream function is evaluated from the notion  * = /u0H. A com-
parison of quantities obtained from this study with the literature
is shown in Fig. 6. The position of the primary vortex is a distinct
function of the Bingham number. As the yield stress (�0) of the liq-
uid increases, it restricts the flow zone to close to the moving lid,
making regions away from the lid less active. The physical concept
of stream function ( ) is associated with the volumetric flow rate
of liquid. With the increase of the Bingham number, the liquid’s

resistance to lid motion becomes higher which decreases the volu-
metric flow rate at the primary vortex center. Therefore the vortex
intensity decreases with the increase of the yield stress of the liquid.

3.3. Effect of the Reynolds number

We now move to higher Reynolds numbers. First we validate
our numerical method with the results available in the literature
at Re = 1000 (Vola et al., 2003). The grid size is the same as in the
low Reynolds number study, i.e. 81 × 1 × 81. Given the results to
come, this proves to be a good resolution. The simulations cover
a range of Bingham numbers (2 ≤ Bn ≤ 500) at Re = 1000. The com-
parison of results with the literature is presented in Fig. 7. Then
in Fig. 8 the plots of the streamlines and the rigid zones with
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various Bingham numbers are shown. It is observed that vortex
intensities obtained from our simulations agree well with those
reported by Vola et al. (2003). While comparing the results for
the vertical position of the primary vortex center, we see a devi-
ation of around 3% and 1% with Vola et al. (2003) at Bn = 20 and
Bn = 500, respectively. Comparison of the horizontal position data
is also in close agreement within the range of (2 ≤ Bn ≤ 100). At
small Bingham numbers (Bn ≤ 20) the primary vortex shifts hor-
izontally towards the east wall of the cavity. As the yield stress
is increased further, the viscous effects dominate and the primary
vortex moves back to the middle of the cavity. The primary vor-
tex center attains the maximum horizontal position (x/H = 0.837) if
Bn = 20.

Fig. 9 shows the positions (horizontal and vertical) of the pri-
mary vortex center with different Bingham numbers, at Re = 0.5, 10,
50, 200, 600 and 1000. The vertical position of the primary vortex
does not change significantly till Re = 50 (0.1% change from Re = 0.5
with Bn = 2). An appreciable change in vertical position is observed
with low Bingham numbers at Re = 600 and 1000. When inertial
effects are highly dominating, a Bingham liquid behaves like a New-
tonian liquid. At Re = 1000, the value of the vertical position of the
primary vortex center at Bn = 2 (z/H = 0.577) obtained by this study

is close to the value (z/H = 0.565) of the same quantity observed
by Botella and Peyret (1998) with Newtonian liquid. As the yield
stress of the liquid increases, the inertial effects are softened and
regions away from the moving lid get less active, drawing the vor-
tex closer to the lid and we obtain results similar to those at low
Reynolds number. The horizontal position of the primary vortex
center is significantly affected with low yield stress liquids beyond
Re = 10. A definite trend is observed in the variation of horizontal
position with Bingham number until Re is 50. With Re = 600 and
1000, a huge deviation is observed from the trend. Within a certain
range of Bingham number (Bn ≤ 20 for Re = 1000 and Bn ≤ 10 for
Re = 600) the vortex center travels towards the east wall irrespec-
tive of the increase of yield stress. As yield stress further increases,
inertial effects are softened and the horizontal position follows the
trend observed at low Re. It is interesting to note here that the
horizontal position of the primary vortex center is more sensitive
(as compared to vertical position) to the Reynolds number. More-
over, there seems to be a critical Bingham number at a particular
Reynolds number where the flow abruptly changes its behavior. In
the present study, this critical Bingham number lies in the range
of 20 ≤ Bn ≤ 50 if Re = 1000. If Re = 600 the critical Bingham number
lies in the range of 10 ≤ Bn ≤ 20.
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L L
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V V
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Fig. 10. Flow definition of a single sphere motion in a cylinder of square cross-section (L × L) filled with Bingham liquid; (left) The liquid and cylinder walls move with velocity
V while sphere is fixed; (right) The sphere falls under the influence of gravity, the liquid and cylinder walls are stationary.
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4. Single sphere sedimentation

The interaction of a single sphere with Bingham liquid inside a
cylinder has been dealt with in two ways. In the first way the sphere
is assumed stationary while the liquid and the cylinder walls move
with a constant velocity (flow past fixed sphere). This scheme is
easier to implement since it eliminates the time dependence associ-
ated with a sphere moving relative to the computational grid. In the
other scheme, the liquid and cylinder walls are stationary while the
sphere falls in the cylinder under the influence of an external body
force. We study both cases here. Their flow definitions are shown
in Fig. 10. In the case of the fixed sphere problem, the imposed
velocity V is taken as the characteristic velocity and dimensionless
numbers are suffixed with the letter T (e.g. ReT, BnT). While han-
dling the problem of a moving sphere, the characteristic velocity is
Stokes settling velocity Us (considering �=�p) and dimensionless
numbers are suffixed with the letter S (e.g. ReS, BnS).

In our simulations the spheres fall in cylinders with square
cross-sections whereas most literature results deal with round
cross-sections. For Newtonian fluids at low Reynolds number
conditions differences between the two situations have been quan-
tified by Miyamura, Iwasaki, and Ishii (1981). They report typically
5% differences in terms of settling velocities. For Bingham liquids
at low Reynolds numbers we expect smaller differences given the
presence of unyielded regions away from the sphere and close to
the cylinder walls.

4.1. Fixed sphere case

Before demonstrating the results, we revisit the flow definition
depicted by Fig. 10. A sphere remains fixed inside a three-
dimensional square cylinder which moves along with Bingham
liquid with a uniform velocity V. This velocity V is taken as the
terminal velocity of the sphere in Bingham liquid. The boundary
conditions are, uniform velocity V along the cylinder walls and at
inlet–outlet while no-slip at the surface of sphere. Once V and other
liquid parameters (�f, �p and �0) are fixed, one can set the dimen-
sionless numbers ReT and BnT. In a number of previous studies
(Beris et al., 1985; Blackery & Mitsoulis, 1997; Yu & Wachs, 2007)
researchers have measured the ratio of Stokes velocity over ter-
minal velocity (termed as Stokes drag coefficient by Beris et al.
(1985)) as a function of the yield stress of a Bingham liquid at
very low Reynolds number. In this case too, for the sake of com-
parison, we solve for the drag force (D) exerted on the sphere by
the liquid and further calculate the Stokes velocity (U∞) using the
relation D = 3	d�U∞ (with viscosity�=�p). To avoid conflict with
the classical drag coefficient definition, we refrain from using the
term Stokes drag coefficient and call it the velocity ratio which is
defined as vr = U∞/V. To have creeping flow, the Reynolds number
chosen is very small (Re = 0.001) and we use a square cylinder with
size 4 × 4 × 6 (L/d × L/d × H/d). The spatial resolution of the simula-
tions is such that the sphere diameter d spans 12 lattice spacings.
Grid effect studies in earlier work (Derksen & Sundaresan, 2007;
Derksen, 2008) showed that (at least at lower Reynolds numbers)
this is sufficient resolution. The simulations are performed over
a range of yield stresses such that BnT = 0.1, 1, 5, 10, 20, 50, 100,
200. The velocity ratio is calculated for each case. A depiction of
the effect of the yield stress is presented in Fig. 11. The unyielded
regions grow with the increase of yield stress and the interaction of
the yielded Bingham liquid with the cylinder walls decreases. These
results qualitatively agree with the results reported by Blackery
and Mitsoulis (1997). The occurrence of polar caps (two unyielded
regions at stagnation points), observed by both Beris et al. (1985)
and Blackery and Mitsoulis (1997), and solid regions on either side
of sphere with BnT = 5, 50 found by Ansley and Smith (1967) sup-
ports the validity of our results.
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Fig. 11. The yielded (white) and unyielded (black) regions for flow of a Bingham
liquid around a fixed sphere contained in a square cylinder with 4:1 ratio of L/d.

A quantitative comparison of our results with the literature is
shown in Fig. 12. If we increase the yield stress of the liquid, it
assists the resistance offered by the fixed sphere to the motion of
the liquid. Since the liquid travels with a constant velocity V in
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Fig. 12. Velocity ratio (vr) as a function of Bingham number (BnT) when sphere
remains fixed; ReT = 0.001; comparison with the literature results (Blackery &
Mitsoulis, 1997).
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Table 1
Velocity ratio (vr) as a function of Bingham number (BnT).

BnT 0.1 1 10 20 50 200
vr (Blackery and Mitsoulis) 2.24 3.92 18.04 33.13 74.11 250.25 R1
vr (Present work) 2.10 4.06 18.84 33.47 74.77 252.96 R2
% difference [(R2 − R1)/R2] × 100 −6.66 3.45 4.25 1.02 0.88 1.07

all the simulations, the drag force exerted on the sphere increases
with increase of the yield stress. This increased drag force leads
to the increased Stokes velocity and thus increased velocity ratio.
There is a slight difference between the flow definitions used by us.
Blackery and Mitsoulis (1997) used a cylinder with circular cross-
section whose diameter is four times the diameter of sphere while
we have used a cylinder with square cross-section whose sides
are four times the diameter of the sphere. In a square cylinder we
expect the retardation effect of the walls to be less than the cir-
cular cylinder and we expect smaller velocity ratios (U∞/V) than
those obtained by Blackery and Mitsoulis (1997). One should be
critical about the apparent excellent agreement of results obtained
by both the studies (refer Fig. 12). It is important to note that both
the axes are logarithmic which hides the minor deviation in the
results. The actual deviations between the results shown in Fig. 12
are displayed in Table 1.

Miyamura et al. (1981) performed experiments to calculate the
wall factors of a single solid sphere settling in a square cylinder
filled with a Newtonian liquid and then compared them with the
wall factors obtained with circular cylinder (Iwaoka & Ishii, 1979)
keeping other parameters unchanged. They reported that the retar-
dation effect on the terminal velocity due to wall proximity is less
severe with square cylinder and the sphere settles with a greater
terminal velocity which is around 5% higher than that measured
with circular cylinder. Close to the Newtonian limit (BnT = 0.1), we
too observe a 6.6% lesser velocity ratio (i.e. 6.6% higher terminal
velocity) which is in close agreement with the results reported by

Miyamura et al. (1981). Once the yield stress of the liquid is appre-
ciably high (BnT > 0.1), the unyielded region around the sphere
grows progressively (refer Fig. 11) which restricts the interaction
of the flow field with the walls. Therefore in this scenario, it is
expected that the effects of the difference in cylinder geometry get
smaller at higher yield stress. This is well supported by the minor
deviations (shown in Table 1) observed with higher yield stress flow
simulations.

4.2. Moving sphere case

We now turn our attention to the problem with a different flow
definition where the sphere falls in a stationary square cylinder
filled with Bingham liquid under the influence of gravitational force
(refer Fig. 10). A zero velocity boundary condition is imposed along
all boundaries and the no-slip boundary condition is considered for
the surface of the sphere. The numerical parameters and grid size
used in this case remain the same as with the fixed sphere and mov-
ing walls (Section 4.1). It is important to mention here that in this
case our objective is to obtain the terminal velocity V of the sphere
settling in a Bingham liquid. The gravitational force is set in such
a way that Reynolds number ReS = 1. The primary reason of choos-
ing this relatively high Reynolds number is the availability of work
in the literature with which we want to compare our simulations.
Also, by choosing ReS = 1, the effective Reynolds numbers (based on
the actual terminal velocity of the sphere and �p) are of the order
of 10−1 to 10−2 which are still fairly low Reynolds numbers.

0 2 4 6
0

0.1

0.2

0.3

tU
s
/d

V
/U

s

0 5 10
0

0.01

0.03

0.05

tU
s
/d

V
/U

s

0 2 4 6
2.5

3.5

4.5

tU
s
/d

H
/d

0 5 10
2.5

3.5

4.5

tU
s
/d

H
/d

Fig. 13. Time series of settling velocity (V) and distance traveled in Bingham liquid with BnS = 0.21 (left panel) and 0.53 (right panel); ReS = 1.
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Fig. 14. Yielded (white)/unyielded (black) region together with velocity vectors for a sphere settling in a square cylinder filled with Bingham liquid; ReS = 1.

The simulations are performed with various values of the yield
stress of the liquid (BnS = 0.05, 0.21, 0.36, 0.53, 0.60, 0.66, 0.72). The
settling velocity and distance travelled by a sphere falling in a Bing-
ham liquid with BnS = 0.21, 0.53 are plotted in Fig. 13 as a function
of time. Clearly, the terminal velocity decreases with increase in
the yield stress of the Bingham liquid. The unyielded and yielded
regions and steady state velocity vectors are shown in Fig. 14. As
already observed with the fixed sphere, the confinement of the
sphere by the unyielded region increases progressively with the
increase of the yield stress. The shape and extent of these regions
are in qualitative agreement with the literature (Beris et al., 1985;
Blackery & Mitsoulis, 1997; Liu et al., 2002; Yu & Wachs, 2007). The
recirculating regions observed on both sides of the sphere are con-
sequences of the finite size of the square cylinder. It is clear that
the centers of recirculating regions shift closer to the sphere with
an increase of the Bingham number which is qualitatively similar
to the results reported in the literature (Beris et al., 1985; Blackery
& Mitsoulis, 1997).

A quantitative comparison of our results with those reported
in the literature is shown through the variation of the velocity
ratio (U∞/V) with Bingham number (BnS) in Fig. 15. The results
show some variability; with our results slightly (but systemati-
cally) higher than those from the available literature (that are not
conclusive as well) especially at moderate to high Bingham num-
bers (BnS > 0.36). The possibility of considerable influence due to
the cylinder walls is quite unlikely at such high Bingham num-
bers (BnS = BnT/vr, and thus BnS = 0.36 corresponds to BnT = 2.4) as
discussed for the fixed sphere cases.

5. Double sphere sedimentation

In this section, we investigate the hydrodynamic interaction
between the two spheres falling along the axis of symmetry of a
square cylinder at low and moderate Reynolds number. Hydrody-
namic interaction is interpreted in terms of settling velocity, flow
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Fig. 15. Velocity ratio (vr) as a function of Bingham number (BnS) when sphere
settles under the effect of gravity; ReS = 1; comparison with the literature results
(Blackery & Mitsoulis, 1997; Yu & Wachs, 2007).

field and relative velocity of the spheres. The flow definition for sed-
imentation of two spheres in Bingham liquid is shown in Fig. 16.
Zero velocity conditions are applied on all boundaries while the
sphere surface follows the no-slip condition.

5.1. Hydrodynamic interaction with low Re

In the first instance inertial effects are considered low, i.e. Re = 1.
The Bingham number has a fixed value (Bn = 0.36) and the grid
size chosen for the simulations is 4 × 4 × 16 (L/d × L/d × H/d) with
(again) d = 12 as the spatial resolution. Initially the spheres are
placed along the axis of symmetry with trailing sphere’s location
2 × 2 × 10 (L/d × L/d × H/d). To examine the hydrodynamic interac-
tion, the numerical experiments are performed with a range of
center to center distances (W/d = 1.0, 1.25, 1.5, 2.0, 2.5, 3.0, 3.5)
between the two spheres. How we evolve to a steady settling veloc-

Fig. 16. Flow definition of sedimentation of two spheres in a cylinder of square
cross-section (L × L) filled with Bingham liquid.

ity is shown in Fig. 17 for some W/d ratios. It is obvious from the
figure that both the spheres initially accelerate with equal rate
and ultimately move with equal terminal velocity. Therefore it
is concluded that both the spheres maintain the initial distance
throughout their motion and the trailing sphere does not approach
the leading sphere. Fig. 17 also reveals that the terminal velocity of
the spheres becomes higher as their separation distance decreases.
The terminal velocity of two spheres is always equal or higher than
the terminal velocity of a single sphere settling under the same
conditions. The leading sphere behaves as a shield to the trailing
sphere which experiences a smaller drag force as compared to the
leading sphere. Treating the two spheres like a single body, the
mass and thus the weight of the whole body is doubled however
the drag force on the whole body is much less than twice the drag
force experienced by a single sphere. Therefore one obtains a higher
terminal velocity of the sphere doublet in comparison to that of a
single sphere settling under similar conditions.

A quantitative depiction of the hydrodynamic interaction (in
terms of terminal velocity of two spheres) with W/d ratio is shown
in Fig. 18 where U1 and U2 are the terminal velocities of a single
sphere and two spheres, respectively settling in a finite size con-
tainer filled with Bingham liquid under similar conditions. When
the two spheres are at a large distance (W/d > 3.5), they hardly
interact and the terminal velocity of either sphere is equal to the
terminal velocity of single sphere settling under the same condi-
tions. Our results show the same pattern as observed by Yu and
Wachs (2007). The deviations appearing in the figure are most likely
due to the difference in geometry. Yu and Wachs (2007) used a
cylinder with circular cross-section whose diameter is four times
the diameter of sphere while we have used a cylinder with square
cross-section whose sides are four times the diameter of the sphere.
Due to this geometry difference, we observe less pronounced wall
effects. The new force balance equation for a single sphere sedi-
mentation in a finite size container is written as

FG = FD + FB + FW (13)

where FG, FD, FB and FW are gravitational force, drag force, buoyancy
force and force due to wall effects on a single sphere, respectively. In
case of two identical spheres (one above the other) sedimentation,
the force balance equation is

2FG = F ′
D + 2FB + F ′

W (14)

with F ′
D and F ′

W being the drag force and force due to walls, respec-
tively on the sphere doublet. Combining Eqs. (13) and (14) we
obtain:

F ′
W = 2FW + 2FD − F ′

D (15)

If the two spheres are not very far from each other, the drag
force on the sphere doublet F ′

D is less than the twice the drag force
on a single sphere, i.e. 2FD − F ′

D > 0. Using this condition one can
deduce that F ′

W > 2FW . Therefore it is concluded that each sphere
of a sphere doublet, settling in a finite size container, experiences
a higher retardation effect due to wall in comparison to a single
sphere sedimenting alone in same conditions. This implies that the
value of U1/U2 increases with stronger wall effects. This is sup-
ported by the fact that values of U1/U2 obtained by our simulations
are approximately 7% (on average) lower than those obtained by
Yu and Wachs (2007).

In Fig. 19 we display the steady state velocity vectors coupled
with yielded and unyielded regions for various W/d ratios. When
the two spheres are at distances of 2.5d and 3d, the flow field and
yielded envelope around a sphere is similar to those observed with
a single sphere. Apart from the islands of unyielded regions appear-
ing on either side of a sphere, there are other unyielded regions in
the yielded envelop. They include the regions along the mid plane;
along the axis of symmetry between the spheres and on the poles of
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Fig. 17. Time series of settling velocities of two spheres in Bingham liquid with different W/d ratios; Re = 1 and Bn = 0.36.

the spheres. The unyielded regions along the mid plane and symme-
try axis are caused by the re-circulation which is essential for mass
conservation within the yielded envelope. We do not observe the
polar caps on both sides of the spheres which are expected because
of the stagnation points. Liu et al. (2003) and Yu and Wachs (2007)
also reported the disappearance of polar caps in their numerical
results. The reason, as pointed out by Liu et al. (2003), is that the
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Fig. 18. U1/U2 as a function of W/d ratio; U1 is settling velocity of single sphere; U2

is settling velocity of sphere doublet; comparison with the literature result (Yu &
Wachs, 2007).

polar cap regions are too small to be detected in the simulations
with the present grid size. Use of a finer grid may shed some insight
into the issue. The size of the unyielded regions along the planes
decreases with the decrease of separation distance. The unyielded
regions situated between the spheres along the axis of symmetry
also decrease in size with decreasing separation distance. However,
it becomes larger after bringing the spheres still closer (see the
W/d = 1.5 panel of Fig. 19). The small islands of unyielded regions
at either side of spheres vanish with decreasing separation dis-
tance. The flow field and yielded/unyielded regions reported in the
present work are in good agreement with the literature (Liu et al.,
2003; Yu & Wachs, 2007).

5.2. Hydrodynamic interaction with moderate Re

We do some simulations to see what happens when two spheres
fall one above the other in Bingham liquid at moderate Reynolds
number. For this case the Reynolds number (Re) is 6.2, Bing-
ham number (Bn) is 0.36 and the grid size used is 4 × 4 × 80
(L/d × L/d × H/d) with d = 12. The two spheres, placed initially at a
center to center distance of 2d along the axis of symmetry fall in
Bingham liquid under the influence of gravity. The starting posi-
tion of the trailing sphere is kept as 2 × 2 × 58 (L/d × L/d × H/d). The
time series of settling velocity of the spheres and the distance cov-
ered by them are displayed in Fig. 20. It is obvious from the figure
that the trailing sphere moves faster than the leading sphere. The
velocity vectors and yielded/unyielded regions are drawn at three
different times (tU∞/d = 0.43, 22, 48) and shown in Fig. 21. During
the initial stages (e.g. tU∞/d = 0.43) when the flow is partially devel-
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Fig. 19. Steady state velocity vectors coupled with yielded (white)/unyielded (black) regions for settling of the two spheres in a Bingham liquid with different W/d ratios;
Bn = 0.36 and Re = 1.
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Fig. 20. Time series of (left) settling velocity and (right) traveled distance of the two spheres in a Bingham liquid with initially W/d = 2; Re = 6.2; Bn = 0.36.
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Fig. 21. Velocity vectors coupled with yielded (white)/unyielded (black) regions for settling of the two spheres in a Bingham liquid at time periods (left) tU∞/d = 0.43 (middle)
tU∞/d = 25 (right) tU∞/d = 48; Re = 6.2; Bn = 0.36.

oped and the spheres are far from each other, the unyielded regions
appear along the mid plane, along the axis of symmetry between
the spheres and at either side of each sphere. As the flow devel-
ops, the yield effects are softened due to the inertial forces and the
unyielded regions along the axis of symmetry and on either side
of the sphere vanish. At this moment this system behaves like two
spheres sedimenting in a Newtonian liquid where the low pressure
region in the vicinity of leading sphere’s wake draws the trail-
ing sphere towards itself. In case of low Reynolds number there
is an unyielded region along the axis of symmetry between the
spheres which prevents the trailing sphere to approach the leading
sphere.

6. Concluding remarks

A direct simulation strategy for solving the motion of spheri-
cal particles in Bingham liquid has been presented in this paper.
First, the implementation of Bingham rheology is validated with
lid-driven cavity flow as a benchmark. At low Reynolds number,
the vertical position of the primary vortex and the vortex intensity
are functions of the Bingham number. In this respect, our results
showed good quantitative agreement with those reported in the
literature (Mitsoulis & Zisis, 2001; Yu & Wachs, 2007) that were
obtained with different numerical methods. The horizontal posi-
tion of the primary vortex remains insensitive at low Reynolds
number. At higher Reynolds number, the yield effects are softened
and vertical as well as horizontal positions of primary vortex are
appreciably affected (again in agreement with the literature, Vola
et al., 2003). While studying the lid-driven cavity flow at different
Reynolds numbers, the horizontal position of the primary vortex is
found to be more sensitive (as compared to vertical position) with
respect to Reynolds number.

Applying the simulation strategy to two phase systems, the
interaction of a sphere with Bingham liquid at low Reynolds num-
ber is strongly affected by the yield stress of the liquid. The
drag force calculated in case of Bingham flow past a fixed sphere
increases with increase of yield stress, largely in quantitative agree-

ment with results due to Blackery and Mitsoulis (1997). Deviations
could be attributed to differences in the flow geometry (round ver-
sus square containers).

Similarly the settling velocity of a single sphere sedimenting
in Bingham liquid is a distinct function of liquid’s yield stress. It
decreases with the increase of yield stress. In case of a single sphere
falling in Bingham liquid under the effect of gravity, we observe
some quantitative deviations from the literature (viz. Blackery &
Mitsoulis, 1997; Yu & Wachs, 2007) at moderate to high Bingham
numbers. These deviations could be partly due to the differences in
numerical methods and partly due to the differences in the shape
of the flow domain (rectangular versus circular cross-section).

A low Reynolds number study of sedimentation of two spheres
in Bingham liquid suggests the increased hydrodynamic interac-
tion with decrease in separation distance between the spheres.
There exists an unyielded region between the two spheres due to
which the spheres do not approach each other. The spheres move
with equal settling velocity which is always equal or greater than
the settling velocity of single sphere sedimenting under the same
conditions. We observe some quantitative deviations with the liter-
ature (Yu & Wachs, 2007). However these deviations are due to the
different geometries and are explained by considering wall effects.
With increase of inertial forces (moderate Re), the unyielded region
between the two spheres vanishes. Due to the interaction with
wake of the leading sphere, the trailing sphere approaches the lead-
ing sphere, just as it does in the Newtonian case (Fortes, Joseph, &
Lundgren, 1987).

In future it would be interesting to implement a collision model
which allows for a proper resolution of particle–particle interaction
– in line with the recent paper by Wachs (2009) – and then exam-
ine the tumbling behavior of the two spheres and check whether
they aggregate or not. The hydrodynamic interaction between more
than two particles is a desirable condition to asses the role of multi-
particle interactions on the settling velocity. Therefore it is required
to carry out the simulations with more than two particles with
different orientations. Further as a generalization of the numeri-
cal tool, various particle shapes can be considered and the impact
of their hydrodynamic interactions on the setting velocity can be
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determined so that (eventually) we will be able to directly simulate
the dynamics of dense suspensions involving Bingham liquids.
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