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Abstract

Large-eddy simulations (LES) of the turbulent flow in a swirl tube with a tangential inlet have been per-
formed. The geometry, and flow conditions were chosen according to an experimental study by [Escudier

MP, Bornstein J, Zehnder N. Observations and LDA measurements of confined turbulent vortex flow.

J Fluid Mech 1980;98:49–63]. Lattice-Boltzmann discretization was used to numerically solve the

Navier–Stokes equations in the incompressible limit. Effects of spatial resolution and choices in subgrid-

scale modeling were explicitly investigated with the experimental data set as the testing ground. Experimen-

tally observed flow features, such as vortex breakdown and laminarization of the vortex core were well

represented by the LES. The simulations confirmed the experimental observations that the average velocity

profiles in the entire vortex tube are extremely sensitivity to the exit pipe diameter. For the narrowest exit
pipe considered in the simulations, very high average velocity gradients are encountered. In this situation,

the LES shows the most pronounced effects of spatial resolution and subgrid-scale modeling.
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1. Introduction

Swirling flows have many technical applications. Combustion (with swirl for flame stabiliza-
tion), turbo-machinery, and cyclone separators are a few examples. Experiments demonstrate that
the swirl component has large-scale, and often counterintuitive effects on the flow field [1–3]. To
mention a few phenomena: quasi-periodic oscillations (vortex core precession), subcritical flow
(i.e. an influence of the downstream conditions on the entire flow), and vortex breakdown. Theo-
retical work on swirling flow [4,5] is often based on the Euler equations, leaving out turbulence.
Industrial flows are, however, in many cases turbulent due to the large scale of the equipment,
and high throughput. Predictive methods on swirling flow that incorporate turbulence are of great
practical value, because in general turbulence strongly influences the performance of a process. In
this paper, we explore to what extent large-eddy simulations (LES) based on the Smagorinsky sub-
grid-scale model, and two variants of it can be applied to describe turbulent, strongly swirling flow.

The research presented in this article originates from earlier work comprising LES of the flow in
a reverse-flow cyclone for separating solid particles from a gas stream [6,7]. The motivation to use
LES for cyclonic flows is twofold. In the first place, compared to RANS based simulations, par-
ticle transport (the foremost goal for cyclone modeling) can be incorporated much more realisti-
cally in a LES. Especially in the case of heavy particles in a gas stream, the resolved time-scales of
the flow field can be made comparable to the relaxation time of the particles. This way, the fluc-
tuations that are influential to particle motion are fully resolved, and particle trajectory calcula-
tions do not need further modeling [7]. In the second place, swirling flows often exhibit coherent,
quasi-periodic fluctuations (e.g. the precessing vortex core, PVC [1,6–9]) that cannot be clearly
separated from turbulent fluctuations in the frequency domain. The absence of a spectral gap be-
tween coherent and turbulent fluctuations makes LES a favorable approach compared to tran-
sient RANS. The outstanding challenges for RANS simulations of swirling flows were recently
addressed by Jakirlic et al. [10].

In order to study the performance of our simulation procedure applied to strongly swirling flow
in more detail, and to make use of an extensive body of experimental evidence on swirling flow sys-
tems it was decided to select a geometry with great similarity to a reverse-flow cyclone: the vortex
tube geometry defined in the experimental study by Escudier et al. [11], see Fig. 1. Just as the reverse-
flow cyclone, it has a tangential inlet which can be directly incorporated in the simulation proce-
dure, thereby avoiding the need to separately generate swirl-inflow conditions, such as done by
Pierce and Moin [12] in the context of their LES. In contrast to the reverse flow generated in the
cyclone, the vortex tube facility generates a unidirectional flow. By means of flow visualization
and extensive LDA experiments, Escudier and co-workers showed the strong impact of an exit pipe
contraction on the entire flow field. Furthermore, vortex breakdownwas observed inside, or slightly
upstream of the exit pipe. A third important observation when visualizing the flow was the clear
distinction between the vortex core region where radial mixing is strongly suppressed, and the outer
region that shows turbulent vortical structures (Taylor–Görtler vortices [2,13]). The large-eddy
simulation of the vortex tube flow with a full representation of the geometry and operating condi-
tions as used in the experiments is the subject of the study described in the present article.

The impact of modeling assumptions on the quality of the flow field predictions has been inves-
tigated by applying three spatial resolutions with a ratio of the linear size of the grid-spacing of
1:1.39:2.24, and by applying three different subgrid-scale (SGS) models, viz. the standard Smag-



Fig. 1. Flow geometry as defined in [11], along with a coordinate system, and the dimensions in the experiment and in

the simulations. Three exit pipe diameters have been considered (De = 0.73D, 0.46D, and 0.33D), and three numerical

grids (grid spacing D = D/82, D/132, and D/184).
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orinsky model [14] with cs = 0.1; the adaptation of the Smagorinsky model for low mesh-Reyn-
olds-numbers due to Voke [15]; and a mixed-scale model due to Sagaut et al. [16]. All three models
have been supplemented with Van Driest wall-damping functions [17] for bringing the eddy-vis-
cosity to zero at solid walls.

The basis of our numerical procedure is a lattice-Boltzmann dicretization of the Navier–Stokes
equations. Lattice-Boltzmann discretization [18] allows for second-order accurate flow simula-
tions (in space and time) in arbitrarily shaped flow domains. Due to its computational efficiency
(in terms of the number of operations per time step, and lattice-site), and locality ;of operations,
highly resolved flow simulations are possible. The locality facilitates fully scalable simulations on
parallel computer platforms. Incorporation of eddy-viscosity SGS models within lattice-Boltz-
mann discretization is straightforward, as will be demonstrated below.

This article is organized in the following manner: first the flow system is defined, including the
boundary conditions that have been imposed in the simulations. Consecutively the simulation
procedure, and modeling assumptions (i.e. the three SGS models that have been considered) will
be described. Also a few remarks on the computational effort will be made. In presenting the re-
sults, the emphasis will be on confronting the simulations with experimental data, especially with
respect to the influence of the spatial resolution and SGS models on the quality of the flow field
predictions.
2. Flow system

The flow system, as introduced in [11] is given in Fig. 1. In this figure, a coordinate system, and
the nomenclature with respect to the geometrical dimensions (D, De, L, Le, and t) have been
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defined. In [11], the definition of the Reynolds number was based on the conditions at the inlet:
Re = Uint/m, with Uin the (superficial) inlet velocity (Uin = Q/Lt, with Q the volumetric flow rate),
and m the fluid�s kinematic viscosity. It should be noted that this Reynolds number definition is
somewhat a-typical for the flow system under consideration, since the inlet conditions are not rep-
resentative for the flow in the swirl tube and exit pipe. For instance, the Reynolds number based
on the exit pipe diameter, and bulk velocity in the exit pipe is 5–25 times (dependent on De) higher
than the inlet Reynolds number. However, in order to conform with the definitions in [11], we will
use the inlet Reynolds number in the remainder of this article to characterize the flow. In [11], also
a geometrical swirl parameter was defined: X = pDDe/Lt. It serves as a measure for the ratio of
angular to axial momentum.

In the experimental study, the emphasis was on the influence of the diameter of the exit pipe on
the flow in the swirl tube. Many ratios De/D were considered in the experiment. From these three
exit pipe diameters were selected: De/D = 0.73, 0.46, and 0.33 (as indicated in the table in Fig. 1).
The corresponding swirl parameters are X = 4.2, 2.6, and 1.9 respectively. The experimental data
consist of radial profiles of the time-averaged axial and tangential velocity measured with LDA at
six axial positions. For brevity, only three of the six will be used in this paper (viz. x/D = 0.15,
2.15, and 3.61). For De/D = 0.727 the Reynolds number was Re = 4800. For De/D = 0.455, and
De/D = 0.327 the LDA experiments were done at Re = 1900. In measuring the radial velocity pro-
files, Escudier and co-workers took care to traverse their LDA measuring volume through the
vortex core center (defined as the position with zero transverse velocity), which in general does
not coincide with the geometrical center of the flow facility [11]. Furthermore, in [11] (and also
in [13]) flow visualization photographs were presented at various Reynolds numbers, and various
De/D ratios.

In our numerical study, the Reynolds numbers corresponded to the values used in the experi-
ments. Furthermore, the case with the largest exit pipe diameter was also simulated at Re = 1900.
The simulations employed a uniform, cubic lattice (which is inherent for most lattice-Boltzmann
schemes). In order to have an integer number of lattice spacings D in the vortex chamber diameter
D, and in the exit pipe diameter De, the values for the De/D ratios slightly deviate from the exper-
imental values (see the table in Fig. 1). The simulations were carried out at three spatial resolu-
tions: D = D/82, D = D/132, and D = D/184.

At the solid walls, no-slip boundary conditions were imposed. At the inlet area, the velocity in
the y-direction was fixed to a parabolic function of the z-coordinate, and a uniform function of
the x-coordinate. This laminar profile will not match physical reality, especially for the
Re = 4800 case. However, in the virulent region where the inlet flow merges with the swirling
fluid already present in the body of the swirl tube, the fluid quickly forgets the conditions in
the inflow channel (see also [7]). This was confirmed by tests with a uniform inlet velocity profile:
no differences in terms of the average velocity field in the swirl tube with simulations using par-
abolic inlet profiles could be observed. The x- and z-component of the velocity were set to zero
at the inlet. At the outlet, a zero-gradient boundary condition was imposed. Only in one case
(with the largest De/D ratio, and at Re = 4600) unrealistic behavior of the flow starting at the
exit boundary, and propagating upstream was observed which was probably due to subcriticality
[13] at the exit plane. Application of a convective exit boundary strongly reduced (but not fully
solved) the problem.
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3. Simulation procedure

Lattice-Boltzmann discretization of the Navier–Stokes equations has been applied. The spe-
cific scheme we used has been described by Somers and Eggels [19,20]. It explicitly takes into
account third and fourth-order terms in the derivation of the Navier–Stokes equation from
the lattice-Boltzmann equation, and shows stable behavior for low viscosity. It is at least
second-order accurate in space and time. This makes the scheme well suited for simulation
of turbulent flows [21]. Since the viscosity, and the deformation rate are directly contained
in the lattice-Boltzmann scheme, the incorporation of eddy-viscosity SGS models is
straightforward.

To represent curved, no-slip walls in the uniform, cubic lattice, a forcing technique has been
developed [22], based on a similar technique developed by Goldstein et al. in the framework of
spectral methods [23], and by Balaras [24], and Verzicco et al. [25] for finite volume schemes
(the latter authors call it the immersed boundary technique). In our forcing technique, the wall
surface is represented by a large set of control points rj with a nearest neighbor distance slightly
less than the lattice spacing. There is no restriction on the position of these points in the flow do-
main; they do not need to coincide with lattice sites. Every time step (with index n), the residual
velocity at the control points vj

(n) is determined by second-order interpolation from the velocity
values at the nearest lattice-points u

ðnÞ
k :
v
ðnÞ
j ¼

X
k

GkðrjÞuðnÞk ð1Þ
where Gk is the interpolation function. To impose zero velocity at the points rj, the fluid is locally
forced with
f
ðnÞ
j ¼ afðn�1Þ

j þ cvðnÞj ð2Þ
where a and c are two parameters that have been empirically chosen to be 0.98, and 1.9
respectively. The empiricism lies in the fact that the higher the values, the more accurate
the zero velocity is achieved. However, when the parameters exceed specific values (that
among other things depend on the spacing of the control points) the method rapidly becomes
unstable. So far, no clear theory exists to derive the optimal a and c. The final step is to dis-
tribute the forces at the control points (from Eq. (2)) over the lattice-Boltzmann nodes. For
this goal, the same coefficients have been used as were used for the interpolation (i.e. the
Gk function):
f
ðnÞ
k ¼

X
j

GkðrjÞfðnÞj ð3Þ
The above method has been used extensively within the lattice-Boltzmann framework for
imposing no-slip conditions at static and moving interfaces (see e.g. [6,7,22,26,27]). Derksen
and Van den Akker [22] and Ten Cate et al. [27] performed a detailed assessment of the method
by comparing its results to experimental data (LDA, PIV). They achieved good results for no-
slip boundary conditions at the surface of an impeller rotating in a mixing tank (operated under
turbulent conditions), and at the surface of a solid sphere sedimenting in a closed box
respectively.
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4. Subgrid-scale modeling

In modeling the flow fields in the reverse-flow cyclones [6,7], the standard Smagorinsky SGS
model [14] with cs = 0.1 was used exclusively. One of the goals of the present study is to assess
the performance of this and two other SGS models for strongly swirling flow: Voke�s low
mesh-Re-number model [15], and Sagaut et al.�s mixed-scale model [16].

The three models are all based on the eddy-viscosity concept: the SGS-stresses are related to the
resolved deformation rate via an eddy viscosity. The standard Smagorinsky model reads
me;Sm ¼ c2sD
2

ffiffiffiffiffiffiffiffiffiffiffi
2�sij�sij

p
ð4Þ
with me,Sm the eddy-viscosity, and �sij the resolved rate of strain tensor. The constant cs was set to
0.1 throughout the paper.

The Voke model is specifically designed for flows with regions that have low mesh Reynolds

numbers r ¼ D2ð2�sij�sijÞ1=2
m , where it reduces the eddy viscosity compared to the standard Smagorinsky

model according to
me;Vo ¼ me;Sm � bm 1� exp � me;Sm
bm

� �� �
ð5Þ
This function, including the constant b = 2/9 was based on fitting to eddy-viscosity estimates that
are in accordance with the Pao dissipation spectrum [15]. It is anticipated that Voke�s model im-
proves predictions for strongly swirling flow: laminarization has been observed in the vortex core,
with very large flow structures (compared to the structures in the outer region), see e.g. [11]. Since
these large structures are well within the range that can be resolved by the grid, the eddy-viscosity
should be brought to zero there, which in principle is taken care of by Eq. (5).

The mixed-scale model (MSM) as described by Sagaut et al. [16], is based on a double filtering
approach: next to the low-pass filter directly supplied by the computational grid, a second low-
pass filter is used to extract the turbulent kinetic energy of the test field: qc ¼ 1

2
½~�ui � �ui�2, with �ui

the resolved velocity field (i.e. filtered with a cut-off wavenumber of p/D), and ~�ui the resolved field
filtered by the second filter that usually has a length-scale of 2D associated to it [16]. The eddy-
viscosity in the MSM is a mixture of the Smagorinsky eddy-viscosity, and the eddy-viscosity
due to the turbulent kinetic energy (TKE) model:
me;MSM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me;Smme;TKE

p ð6Þ
with
me;TKE ¼ cD
ffiffiffiffiffi
qc

p ð7Þ

The constant c amounts to 0.01 [16].

In all cases, the eddy-viscosity was explicitly brought to zero in the vicinity of no-slip walls by
Van Driest [17] damping functions:
me;dmp ¼ me;udmp 1� exp � yþ

Aþ

� �� �2

ð8Þ
with me,udmp the (undamped) eddy-viscosity from one of the three models discussed above, and
me,dmp the eddy-viscosity after applying wall-damping. The constant A+ amounted to 26 [17]. A
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uniform wall shear velocity u* = 0.04Uin was used for determining yþ ¼ yu	

m (y is the distance to the
wall). Our cyclone simulations [6] also applied a uniform u*. The assumed value of u* was a pos-
torioiri compared to the values calculated from the resulting average flow field. Assumed and cal-
culated values were in fair agreement (a sensitivity study with respect to the imposed u* showed
insignificant changes in the flow field in a u*-range that was larger than the observed deviations
between the imposed and the a postoriori calculated u*).
5. Overview of the simulated cases

The large number of physical (Re, De/D) and numerical variables (grid-spacing, SGS model)
prohibited a comprehensive set of simulations. The cases that we did study are summarized in
Table 1. As can be seen, the focus is on the case with De/D = 0.33. The experiments show that
a small De/D ratio leads to high tangential velocities throughout the geometry, and very sharply
peaked axial velocity profiles. As a consequence, it is anticipated that the effects of spatial
resolution, and (overly) dissipative SGS models are most pronounced for cases with a narrow exit
pipe.

Tests showed that an averaging time of five or more integral time-scales D/Uin was sufficient for
statistically converged average velocity profiles. Higher order moments may require longer runs.
To limit the computational effort, and since the validation is based on average velocities only,
most simulations were run for five till ten integral time-scales. The simulations on the most course
grid were run longer (for testing purposes); the one on the finest grid (Case # 10) was run for only
2.8D/Uin. For the latter simulation some care in interpreting the velocity profiles should be taken.

The simulations were run in parallel on an in-house PC-cluster (Beowulf cluster). Because of the
low communication load of the lattice-Boltzmann methodology, such low-cost PC clusters are
well able to run the code efficiently (i.e. without much overhead). The cases with the intermediate
grid (D/D = 182) were mostly run on 6 cpu�s in parallel. Total memory requirements for such cases
are approximately 1.5 Gb; runtimes for completion of one integral time-scale are of the order of
30 h (Pentium III, 700 MHz PCs).
Table 1

Overview of numerical cases

Case # De/D Re D/D SGS model TUin/D Remarks

1 0.73 2100 82 Standard Smagorinsky 26.0

2 0.73 2100 132 Standard Smagorinsky 5.4

3 0.73 4600 132 Standard Smagorinsky 7.3 Convective exit b.c.

4 0.45 2000 82 Standard Smagorinsky 10.0

5 0.45 2000 132 Standard Smagorinsky 9.3

6 0.33 2000 82 Standard Smagorinsky 12.8

7 0.33 1900 132 Standard Smagorinsky 11.2

8 0.33 1900 132 Voke�s model 6.4

9 0.33 1900 132 MSM 6.4

10 0.33 1900 184 Standard Smagorinsky 2.8 Short averaging time

In the last but one column, the averaging time T has been indicated.
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6. Results

The first case that was simulated (Case #1, see Table 1) was started from a zero velocity field. It
took a long time before the swirl that was generated by the inlet boundary condition manifested
itself in the entire geometry, and the flow became quasi-steady. For this reason, all subsequent
simulations were started by taking a developed field. In case of a Reynolds number change, the
viscosity was adapted; in case the SGS model was changed, the old model was simply switched
off, and the new model was switched on. When the grid was refined, the coarser field was linearly
interpolated to the new grid. When the exit pipe diameter was changed, a new geometry file (con-
sisting of the forcing points, as explained in the Simulation Procedure section) was imported into
the code. Subsequently, the forcing routine automatically imposed the new boundary conditions,
and the flow field adapted itself accordingly.

As an example of the way the flow adapts itself to a new grid, the transition from Case #7 to
#10 (from D = D/132 to D = D/184 and further the same conditions) in terms of the y-velocity at
the centerline is given in Fig. 2. It is difficult to distinguish a clear trend in the time-series, albeit
that during the first integral time-scale D/Uin after the refinement the velocity seems to develop
towards a new quasi-steady state. In Fig. 2, the part of the time series that has been used to extract
time averaged velocity data has been indicated as well.

6.1. Flow visualization

A laser sheet visualization image, reprinted from [11], shows the very sharp distinction between
the clearly turbulent outer flow with large ring vortices (of the Taylor–Görtler type), and the much
less turbulent vortex core (Fig. 3). The core is slightly bended, apparently due to the asymmetry
Fig. 2. Time series of the velocity in y-direction at the center of the vortex tube of the start-up of Case #10 from an

interpolated field retrieved from Case #7. The axial position are x/D = 0.67 (solid black), x/D = 1.83 (dashed), and x/

D = 3.61 (dotted).



Fig. 3. Flow visualization of the entire vortex tube. Top: experiment (reprinted from [11]) at Re = 410, De/D = 0.58.

Center: LES snapshot at Re = 2100, De/D = 0.73 (Case #2) in terms of the vorticity. In both images, clearly the

distinction between the laminar-like core, and the turbulent outer region can be observed. Bottom: the (instantaneous)

velocity vectors in the part of the LES indicated with the white rectangle in the center figure.
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induced by the tangential inlet. For qualitative comparison (the difference in Reynolds number
between experiments and LES inhibits a more quantitative analysis), Fig. 3 shows the result of
the LES (Case #2) in terms of the vorticity, in the same plane as was illuminated in the experi-
ment. As in the experiments, the vortex core can be clearly distinguished from the outer part
of the flow: large-scale, coherent structures characterize the core; much smaller, erratic structures
the outer flow. The much higher Reynolds number in the simulation is responsible for the smaller
flow structures in the outer flow compared to the outer flow in the experiment. In the outer flow
region, the lower part of the LES vorticity field shows slightly larger structures than the upper
part. This is due to the closer proximity of the inlet channel to the lower part; the flow is still devel-
oping in the circumferential direction. The pairs of Taylor–Görtler vortices at the perimeter of the
swirl tube with their strong radial inflow in between two vortices forming a pair have been high-
lighted in the vector plot, contained in Fig. 3.

Under certain conditions, the flow exhibits vortex breakdown (see Fig. 4). The occurrence and
type of breakdown depends on the flow geometry (in this study the ratio De/D), and the flow rate
[28]. The experimental visualizations in Fig. 4 indicate a bubble type breakdown (Type 0 in the
classification by Faler and Leibovich [28]) in the two geometrical cases shown. For De/
D = 0.33, the LES (Case #7) has approximately the same Reynolds number as the experiment.
It clearly shows the Type 0 breakdown, with a single, thin tail. The bubble is filled and emptied
simultaneously at the rear part (see the vector plot in Fig. 4). Also note the laminar–turbulent



Fig. 4. Vortex breakdown for De/D = 0.45 (top), and De/D = 0.33 (bottom). Left: visualization as reported in [11] at

Re = 650 (top), and Re = 1600 (bottom). Center: LES snapshot in terms of the contours of the absolute value of the

velocity near the contraction at Re = 1900, with D = D/132 (Cases #5 and #7). Right: the velocity vector field at the

position as indicated with the rectangles in the center pictures.
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transition over the breakdown bubble: upstream of the bubble the vortex core is laminar-like,
whereas downstream of the bubble the flow is strongly turbulent over the entire cross-section
of the exit tube. This experimentally observed feature is well represented in the LES. The dynamic
behavior of the vortex breakdown has been visualized in Fig. 5, showing a time-sequence of veloc-
ity magnitude contours. The axial position of the breakdown bubble slightly fluctuates, and some-
times almost detaches from low-velocity region in the center of the exit pipe. In all instances
shown in Fig. 5, the structure of the breakdown bubble in terms of velocity vectors is very similar
to the vector plot shown in the bottom-right part of Fig. 4. For De/D = 0.45, there is less corre-
spondence between experiment and LES. This may very well be due to the difference in Reynolds
number in experiment and LES. Escudier et al. [11] experimentally observed an upstream migra-
tion of the breakdown when increasing the Reynolds number. In the LES at De/D = 0.45 (Case
#5), the breakdown appears to be of Type 1 (compared to Type 0, Type 1 has a less regular shape
and thicker tail, but still a stagnation point at the front side). Faler and Leibovich [28] indeed re-
port Type 0 to Type 1 transitions when increasing the Reynolds number.

When looking at cross-sectional planes in the flow (Fig. 6), in general the vortex core in the
swirl tube is a single, stable, coherent spike of vorticity. It is surrounded by a turbulent outer flow,
as we already observed in Fig. 3. In the outer flow the wall boundary layers can be identified by
their elevated vorticity levels. Also the way the boundary layer at the bottom wall of the inlet
channel is swept into swirling flow can be clearly observed.

The laminar–turbulent transition of the flow at the vortex breakdown as witnessed in Figs. 4
and 5, is also reflected in Fig. 6: downstream of the vortex breakdown the vorticity is less concen-
trated, and far less coherent. The position of the vortex core upstream of the breakdown is not
completely fixed in time: slight departures from the averaged position have been identified in
the LES. Since the velocity gradients in the vortex core are high, these small departures have sig-
nificant impact on the velocity fluctuation levels near the vortex core (as will be discussed in a sub-
sequent section).



Fig. 5. LES time-sequence of vortex breakdown for De/D = 0.33 at Re = 1900 (Case #7). The gray-scale indicates the

absolute value of the velocity. The time interval between the successive images is Dt = 0.12D/Uin. The time runs from

top to bottom, and then from left to right. The field of view has been indicated in the schematic.
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6.2. Average velocity profiles

A quantitative assessment of the simulations is based on the average velocity profiles measured
by Escudier et al. [11]. From their flow visualizations (see e.g. Fig. 3), it was clear that in general
the vortex core did not coincide with the geometrical center of the swirl tube. For this reason,
they took care of traversing the measurement volume through the vortex core (defined as the
position with zero, time-average transverse velocity) in their LDA experiments. The latter proce-
dure has been mimicked in the simulations by determining the point in a cross-section of the vor-
tex tube with zero, time-average y- and z-velocity. The LES profiles that are presented in this
article are profiles along the y-axis, and go through the zero-velocity point. In the experiment,
the line along which the profile was taken varied with the vortex core position (in fact the angle
of the experimental profile was set in such a way as to traverse the vortex core), and was not re-
ported in [11]. This introduces a slight uncertainty in the comparison of experiment and
simulation.

First, the Cases #1, 2, and 4–7 will be discussed. These are the cases with the standard Smag-
orinsky subgrid-scale model, at a Reynolds number of approximately 2000, on two grids (viz. with



Fig. 6. Cross-sections of the flow in terms of single realizations of the absolute value of the axial vorticity. Top row: De/

D = 0.73 (Case #2); middle row: De/D = 0.45 (Case #5); bottom row: De/D = 0.33 (Case #7). From left to right: x/

D = 0.15, 2.25, and 3.61. The cross-sections in the exit tube were at x/D = 4.33 for Case #2 and 5; for Case #7 one cross-

section is upstream the vortex breakdown (at x/D = 3.91) and one is downstream (at x/D = 4.70).
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D = D/82 and D = D/132). The results have been summarized in Figs. 7 (time-average tangential
velocity) and 8 (time-average axial velocity). The radial profiles of the swirl component have a
shape similar to Burgers� solution [29]. The latter was based on the assumption of a uniform axial
velocity distribution. The actual axial velocity profiles are, however, far from uniform (see Fig. 8).

The geometrical ratio De/D has strong impact on the tangential velocity levels: the maximum
tangential velocity increases significantly, and the diameter of the vortex core (as a measure for
the latter we take the distance between the two extremes in the profile) reduces if De/D is reduced.
As a consequence, velocity gradients at De/D = 0.33 are much higher than at De/D = 0.73. The
experimental tangential velocity profiles only show a weak dependence on the axial position; to-
wards the exit pipe the maximum velocity slightly increases. This trend is strongest for De/
D = 0.33. The quality of the LES results appears to be directly related to the gradients in the aver-
age flow field. The agreement between simulation and experiment is good for De/D = 0.73, and for
De/D = 0.45. For these cases, the levels of maximum tangential velocity, and the vortex core diam-
eter correspond with the experimental data. Furthermore it is reassuring to see that the agreement
gets better for higher spatial resolution. For the cases with De/D = 0.33, spatial resolution effects
are very pronounced. In this case, the LES profiles are less sharp than the experimental ones, lead-
ing to an underestimation of the maximum velocity levels. It is anticipated that the Smagorinsky
model is too dissipative here. This will be further discussed when results of simulations with dif-
ferent SGS models are compared.

Also the shape of the radial profiles of the axial velocity component (Fig. 8) strongly depends
on the ratio De/D. Furthermore, there now is a strong dependency on the axial position in the
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vortex tube as well. The width of the axial velocity profiles appears to be related to the diameter of
the vortex core and since the latter was predicted well, the width of the axial profiles is well rep-
resented by the LES. We consider the pressure field responsible for this tight coupling between the
axial and tangential velocity. The radial pressure distribution induced by the swirl component,
and its (minor) axial variation strongly influences the axial velocity. The profiles at De/
D = 0.73, and De/D = 0.45 show an axial velocity deficit near the axis, whereas at De/D = 0.33
the profiles show a single, and sharp peak. In the first two profiles at De/D = 0.73, the reverse flow
near the center is not captured by the LES. Strong sensitivity of the LES with respect to the spatial
resolution is apparent already at De/D = 0.45. The lower resolution simulation underestimates, or
even misses the velocity deficit in the very core of the flow, whereas the higher resolution is capa-
ble of representing it to a fair extent. The peak levels at De/D = 0.33 are captured poorly by the
LES. For x/D = 0.15, 2.15 the axial velocity peak-level is underestimated, whereas for x/D = 3.61
it is overestimated (it should be noted, however, that for the sharp profiles encountered at x/
D = 3.61 also the spatial resolution of the LDA comes into play).

By comparing Case #2 and #3, we assessed the effect of the Reynolds number on the average
flow (Case #2 has Re = 2100, #3 has 4600). It was concluded from the profiles (not shown) that
the effect is very limited, which is in accordance with experimental observations reported in [11].
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From now on, we focus on the cases with De/D = 0.33 (Cases #6–10), since here the most pro-
nounced grid effects were observed (see Figs. 7 and 8). In the first place, the grid was refined fur-
ther (in Case #10). In the second place, various SGS models have been applied. Further refining
the grid has the obvious effects: higher gradients can be captured, and the simulated profiles tend
more to the experimental ones (Fig. 9). It has to be noted here that the computational expense is
quite big. The total number of grid nodes in the simulation with the finest grid amounts to
approximately 50 million. It therefore is worthwhile to look into other methods to improve the
quality of the flow field predictions. This is the motivation to test the performance of other
SGS models applied to the flow system at hand.

The profiles in Fig. 10 show the results with the three SGS models applied to the grid with
D = D/132. The results obtained with the model due to Voke [15] are very similar to the ones
of the standard Smagorinsky model. Only minor differences (that hardly exceed the uncertain-
ties introduced by the finite averaging time) can be observed. The MSM [16] proves to be a
significant improvement compared to both the Smagorinsky model, and Voke�s adaptation to
it: The peak levels of the tangential velocity are now in good agreement with the experimental
ones; the MSM simulation performs even better than the (Smagorinsky) simulation on the fin-
est grid.
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The differences and similarities between the results obtained with the various SGS models are
reflected in the eddy-viscosity profiles in Fig. 10. The viscosities of the Voke model are close to the
Smagorinsky values. Only outside the vortex core the adaptation due to Voke reduces the viscos-
ity. The MSM provides low eddy-viscosities throughout the flow. The values are typically smaller
by a factor of two compared to the two other models.

6.3. Velocity fluctuation levels

Escudier et al. [11] did not report experimental data with respect to velocity fluctuations. There-
fore, the LES profiles of the RMS values of the three velocity components displayed in Fig. 11
could not be assessed with measured data. The very pronounced peak in the vortex core is due
to small fluctuations of the position of the vortex core. We have kept track of the vortex core posi-
tion during the simulations. The fluctuations of the vortex core position about its mean have RMS
values of the y and z coordinate of approximately 4 · 10�3D (this value applies to y as well as z,
the fluctuations were almost fully isotropic). Although the positional fluctuations are small, the
high velocity gradients induce high velocity fluctuation levels in the vortex core. Gradients of
the tangential velocity in the vortex core for the cases with De/D = 0.33 are of the order of
220Uin/D (see e.g. Fig. 7). Velocity fluctuations levels due to positional fluctuations of the vortex
core can then be estimated to have RMS values of the order of 0.9Uin, which is slightly lower (but
at least of the same order of magnitude) as the peak levels observed in Fig. 11.

In the outer flow, the tangential fluctuations are less strong than axial and radial fluctuations.
This is probably due to the dynamics of the Taylor–Görtler vortices in the outer flow. Their struc-
ture mainly contributes to radial and axial RMS values. Finally, the shear layer along the outer
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wall induces relatively high levels of tangential velocity fluctuations. Qualitatively, the Reynolds
normal stress profiles are in accordance with an experimental study by Kitoh [30]: elevated stress
levels in the center region, and close to the wall.
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7. Conclusions

The flow in a swirl tube that was experimentally studied more than 20 years ago [11] has been
revisited in the present LES study. The numerical simulations employed the lattice-Boltzmann
methodology to solve the filtered Navier–Stokes equations. In a qualitative sense, the LES repre-
sented the experimentally observed flow features well: The LES showed evidence for laminariza-
tion of the vortex core, just as observed in laser sheet visualizations; Taylor–Görtler vortices were
seen in the experiment as well as in the LES; and bubble-type vortex breakdown was observed at
similar locations as in the experiments. Besides e.g. the work by Spall and co-workers [31,32], this
is one of the first reports of three-dimensional simulation of turbulent vortex breakdown in con-
junction with experimental validation.

LDA data allowed for a quantitative assessment of the numerical results. The entire flow
field is strongly influenced by geometrical changes in the outlet geometry. The swirl velocity
more than linearly increases with the ratio of swirl tube diameter over exit pipe diameter D/
De. Since the axial velocity is tightly coupled to the swirl velocity (as a result of the radial
and axial pressure profiles induced by the swirl), its profiles are also a pronounced function
of the exit pipe diameter. The LDA data measured with various exit pipe diameters gave us
the opportunity to explore the limitations of our simulation procedure. The simulations with
the narrower exit pipes have very high velocity gradients, which demand highly resolved simu-
lations, and appropriate (i.e. not too dissipative) subgrid-scale models. The performance of
three SGS models (viz. the standard Smagorinsky model [14], an adaptation of the Smagorin-
sky model due to Voke [15], and a mixed-scale-model due to Sagaut et al. [16]) was compared
in terms of the time-averaged velocity profiles. The MSM performed best due to its low damp-
ing. Hardly any reduction of the eddy-viscosity was observed due to Voke�s model, and as a
result the model does not perform better than the Smagorinsky model for the present flow
system.

The velocity fluctuation levels of the turbulent flow are highest in the core region. These fluc-
tuations are apparently induced by the high velocity gradients in the core, and the very weak mo-
tion of the core, albeit that this combined effect cannot fully account for the peak values. In the
outer region, the radial and axial velocity fluctuations are significantly higher than the tangential
fluctuations.

A critical issue of the simulations is the treatment of solid walls. In the first place since the
lattice-Boltzmann method employs a uniform cubic grid, in the second place since the SGS
models used need to be supplemented with wall damping functions to explicitly bring the
eddy-viscosity to zero at the solid surfaces. The use of stair-step surfaces has been successfully
avoided by making use of an immersed boundary method. Van Driest damping functions were
applied at all solid surfaces. This relatively simple approach led to good predictions of a com-
plicated flow.
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