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Abstract

An efficient numerical method for the direct simulation of homogeneous turbulent flow has been obtained by combining a spec-
tral forcing algorithm for homogeneous turbulence with a lattice-Boltzmann scheme for solution of the continuity and Navier–
Stokes equations. The spectral forcing scheme of Alvelius [Alvelius K. Random forcing of three-dimensional homogeneous turbu-
lence. Phys Fluids 1999;11(7):1880–89] is used which allows control of the power input by eliminating the force–velocity correlation
in the Fourier domain and enables anisotropic forcing. A priori chosen properties such as the Kolmogorov length scale, the integral
length scale and the integral time scale are recovered. This demonstrates that the scheme works accurately with the lattice-Boltz-
mann method and that all specific features of the forcing scheme are recovered in the lattice-Boltzmann implementation.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A well-known characteristic of turbulent flows is that
energy production occurs at large length scales (OðKÞ,
the integral length scale), which are typically associated
with the largest dimensions of the flow field, while the
dissipation of kinetic energy occurs at smaller length
scales, characterised by the Kolmogorov scale (OðgÞ).
A typical energy spectrum of a turbulent flow is given
in Fig. 1. The maximum in the energy spectrum is found
at the large scales, that is, at small wave numbers. En-
ergy is transferred from large to small length scales
and this transfer process is characterised by the well-
known universal power-law spectrum [2]

EðkÞ ¼ cK�
2=3k�5=3. ð1Þ
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At the smallest scales the kinetic energy is dissipated
rapidly and the energy spectrum decays steeply towards
zero. One classical concept used in the interpretation of
turbulence is the separation of scales. At large scales the
structure of the turbulent flow holds a relation to the
structure of the energy source (e.g. the shape of an
impeller or vessel or the wing of an airplane) and can
be highly anisotropic. Towards smaller length scales
the structure of the turbulent flow loses its relation to
the macroscopic structures and tends to isotropy and
homogeneity.

The main issue in numerical simulations of turbulent
flows is that the large and the small scales may differ by
orders of magnitude. Consequently, for accurate com-
putation of all length scales present in a turbulent flow,
typically very high resolution is required, resulting in
very large computational domains which is generally
not feasible.

Turbulence modeling uses the universality of turbu-
lence in modeling the dissipative behaviour of the turbu-
lent flow. For example, in large eddy simulations (LES)
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Fig. 1. Typical power spectrum of the kinetic energy in turbulent flow.
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the flow field is usually simulated at a coarse grid that
captures the large structures in the flow field. The influ-
ence of the turbulent fluid motion at sub-grid length
scales is then modeled as a local turbulent viscosity that
is determined from the local rate of deformation of the
resolved scales [3,4].

A different perspective in studying turbulent flow is to
model the behaviour of the fluid motion at the large
length scales and simulate the flow field up to the small-
est length scales. For this approach, an artificial fluctu-
ating body force is defined that sets the fluid in motion
at the largest length scales. This force mimics a homoge-
neous source of energy that enters the flow field at a
large length scale. By solving the Navier–Stokes equa-
tions while ensuring that all scales of the flow field up
to the smallest length scales are resolved, the micro-
scopic scales will evolve naturally.

For simulation of forced turbulent flows different
types of forcing schemes have been developed. Typical
examples are the schemes of Eswaran and Pope [5],
and more recently those of Overholt and Pope [6] or
Alvelius [1]. In these approaches, a body force is defined
at low wave numbers and imposed on the flow field. Di-
rect simulation of forced turbulent flows still requires a
separation of length scales between the production and
dissipation scales and large computational domains are
needed. For this purpose, there is clearly a need for effi-
cient numerical schemes for solution of the Navier–
Stokes equations.

Generally, spectral forcing is combined with a pseu-
do-spectral method for numerical solution of the
Navier–Stokes equations. Pseudo-spectral methods pro-
vide a natural choice for simulation of forced turbulence
since with this type of schemes the Navier–Stokes equa-
tions are solved (at least partially) in wave number
space. Introducing spectral forcing to the flow field is
then straightforward since both methods are defined in
the Fourier domain. However, the application of spec-
tral forcing in numerical simulations of turbulent flows
is not limited to pseudo-spectral methods.

The objective of this paper is to demonstrate that the
lattice-Boltzmann method provides a good alternative as
a numerical method for direct simulation of forced iso-
tropic turbulence. In the lattice-Boltzmann method the
fluid motion is described at a microscopic level in terms
of fluid masses that propagate on an equidistant grid at
discrete time steps. At the level of the continuum equa-
tions the lattice-Boltzmann method provides an efficient,
accurate and stable numerical scheme to solve the
Navier–Stokes equations [7–10]. The lattice-Boltzmann
method allows for local application of body forces and
hence the method can be combined with a spectral forc-
ing algorithm in the direct simulation of forced turbu-
lent flows. For the simulations presented in this paper
the lattice-Boltzmann scheme of Eggels and Somers
[11] was used.

One typical requirement of the lattice-Boltzmann
method is that fluid velocities are much smaller than
the speed of sound of the scheme. Therefore, we use
the forcing method of Alvelius [1] in this paper. This
method offers the possibility to reduce uncontrolled
velocity fluctuations that occur in forced turbulence
due to force–velocity correlation. Another advantageous
feature of this forcing scheme is that it offers the possi-
bility to generate axisymmetric anisotropic turbulence.

The outline of this paper is the following. In Section
2, the theoretical background and the description of the
forcing method is briefly reproduced. In Section 3, the
lattice-Boltzmann scheme is introduced and details on
implementation of the forcing scheme are discussed. In
Section 4, simulation settings are presented that test spe-
cific features of the forcing method; quality of the statis-
tical quantities of the turbulent flow field, controlling the
force–velocity correlation, numerical stability at exces-
sively large Reynolds numbers, the isotropy of the flow
field and, anisotropic forcing. In Section 5, the results
are discussed and finally, in Section 6, conclusions are
presented.
2. Spectral forcing

In this section, the forcing method developed by
Alvelius [1] is presented. The body force that drives
the flow field is defined in wave number space. The ran-
dom force is active in a spherical shell at small wave
numbers where the forcing intensity is given by a pre-
scribed distribution over the wave numbers. Alvelius
[1] recognised that for such a force, the power input in
the Navier–Stokes equations contains two contribu-
tions. Consider the force to be constant for the duration
of one time step. The discretised power input for the
duration of one time step Dt (i.e. n! n + 1) becomes

Knþ1 � Kn

Dt
¼ 1

2
f n
a f n

a Dt þ un
af n

a ¼ P 1 þ P 2; ð2Þ

where the overbar indicates the spatial average and the
summation convention is implied on repeated Greek



Fig. 2. 2D representation of the placement of the forcing distribution
in the Fourier domain. The dotted curves indicate the placement of the
Gaussian distribution of the force signal along the x and y axis, the
grey scale contour indicates the position of the Gaussian distribution
in the 2D plane.
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subscripts. Thus, P1 gives the constant power input due
to the force–force correlation, while P2 represents an
uncontrolled fluctuating quantity due to force–velocity
correlation. As will be demonstrated, the force can be
chosen in such a way that (by construction) the term
P2 is set to zero at each time step.

The random force is chosen to be divergence free
to prevent that it directly influences the pressure. In
Fourier1 space this implies:

kaf̂ a ¼ 0; ð3Þ
which is obeyed by choosing

f̂ aðk; tÞ ¼ Aranðk; tÞe1aðkÞ þ Branðk; tÞe2aðkÞ; ð4Þ
where e1 and e2 are two orthogonal unit vectors, normal
to k. Aran and Bran are terms that distribute the power
input randomly in the directions e1 and e2. Alvelius� [1]
choice for the unit vectors e1 and e2 was

e1x ¼
ky

ðk2
x þ k2

yÞ
1=2

; e1y ¼ �
kx

ðk2
x þ k2

yÞ
1=2

; e1z ¼ 0; ð5Þ

and

e2x ¼
kxkz

kðk2
x þ k2

yÞ
1=2

; e2y ¼
kykz

kðk2
x þ k2

yÞ
1=2

;

e2z ¼ �
ðk2

x þ k2
yÞ

1=2

k
; ð6Þ

where k = jkj.
The power input of the force–force correlation in

wave number space is given by

P 1

Dt
¼ 1

2
f n
a f n

a ¼ 2p
Z 1

0

k2hf̂ a f̂
�
aidk �

Z 1

0

F ðkÞdk; ð7Þ

where F(k) is the function that defines the distribution of
the forcing spectrum in wave number space (* indicates
the complex conjugate). The form for Aran and Bran was
chosen as

Aran ¼
F ðkÞ
2pk2

� �1=2

expðih1ÞgAð/Þ; ð8Þ

Bran ¼
F ðkÞ
2pk2

� �1=2

expðih2ÞgBð/Þ; ð9Þ

where gA and gB are random factors that determine the
direction of the forcing vector at each wave number and
that obey g2

A þ g2
B ¼ 1. An appropriate choice for the

functions gA and gB, that vary with the angle /, is given
below. Both / 2 [0, p], and h1,h2 2 [0, 2p] are chosen as
uniformly distributed random numbers and selected
each time step for each discrete wave number.

The distribution of the power input over the wave
numbers is determined by the definition of F(k). In order
to determine the power input a priori, a Gaussian distri-
1 Superscript �̂ indicates the Fourier transform of a variable.
bution of the spectrum function F(k) is chosen, which is
schematically represented in Fig. 2. The force distribu-
tion is active in the wave number range k 2 [ka,kb], with
a forcing maximum at kf,

F ðkÞ ¼ A exp �ðk � kfÞ2

c

 !
; ð10Þ

and where c is a parameter that determines the width of
the distribution. The power input is determined by the
amplitude A according to

A ¼ P 1

Dt
1R kb

ka
exp � ðk�kf Þ2

c

� �
dk

. ð11Þ

To control the power input, a condition needs to be
determined for P2 to remain zero each time step. The
force–velocity correlation is given by

P 2 ¼ ûn
af̂

n

a ¼
Z Z Z

kV

ûaðk; tÞf̂
�
aðk; tÞdkx dky dkz; ð12Þ

which is generally non-zero on the interval [ka, kb] and is
zero by definition outside this range. P2 is set to zero by
making ûaðk; tÞf̂

�
aðk; tÞ ¼ 0 at each of the active wave

numbers. This gives the condition:

Real½A�rann1 þ B�rann2� ¼ 0; ð13Þ

with n1 ¼ ûae1a and n2 ¼ ûae2a. Using this constraint,
Eqs. (8) and (9) lose one degree of freedom and h1 can
be determined from

tanh1

¼ gAð/ÞReal½n1�þgBð/ÞðsinwImag½n2�þ coswReal½n2�Þ
�gAð/ÞImag½n1�þgBð/ÞðsinwReal½n2�� coswImag½n2�Þ

;

ð14Þ

after choosing randomly for each wave number at each
time step the angle w, which is defined as w = h2 � h1, on
the interval [0,2p].
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A choice for the functions gA and gB needs to be
made to determine the mean orientation of the power in-
put. This is determined by the product of gAe1a and the
product of gBe2a. With the choice for the e-vectors of
Eqs. (5) and (6), the power input specified for the differ-
ent directions becomes,

hP xi ¼ hP yi ¼ P 1

1

6
þ 1

3
hg2

Ai
� �

; ð15Þ

hP zi ¼ P 1

2

3
ð1� hg2

AiÞ; ð16Þ

and the ratio of the power input, rf, in the different x–z

or y–z direction becomes

rf ¼
hP xi
hP zi
¼ 1þ 2hg2

Ai
4ð1� hg2

AiÞ
; ð17Þ

which is determined by the choice of gA(/). By choosing
gA = sin(2/), gB = cos(2/), rf = 1, i.e. the forcing is
isotropic. Choosing gA in the form

gAð/Þ ¼ �
tanhðbð/� p=2ÞÞ

tanhðbp=2Þ ; ð18Þ

results in

hg2
Að/Þi ¼

1

tanhðbp=2Þ
1

tanhðbp=2Þ �
2

bp

� �
; ð19Þ

where b determines the degree of anisotropy. With our
choice of e-vectors (Eqs. (5) and (6)), axisymmetric
anisotropic turbulence is obtained.
3. Implementation of spectral forcing

3.1. The lattice-Boltzmann method

In recent years the lattice-Boltzmann method has re-
ceived much attention for simulation of fluid flow. A
main advantage of the method is that it is a second order
accurate numerical scheme of which the numerical oper-
ations are practically local and only involve minimal
near-neighbour interactions. Application of this method
on distributed parallel computer platforms is therefore
highly efficient. For the direct simulation of turbulent
flows, this feature is very desirable because large do-
mains, i.e. large computer memory and long computa-
tional time, are required.

The principle of the lattice-Boltzmann method is
essentially based on mimicking the collision process of
the molecules of a kinetic gas on a discrete grid. The
fluid is represented by masses that propagate on a dis-
crete grid at discrete time steps. The grid is a regular
cubic lattice with grid node locations x and equidistant
grid spacing Dx. The fluid masses, ni(x, t), are located
on the grid nodes and are distributed over i = 0, 1, . . .,
M directions of the discrete grid. At each discrete time
step, the masses propagate to their neighbour nodes in
the discrete i directions with fixed velocities cia. The
incoming masses collide, i.e. exchange momentum. The
lattice-Boltzmann equation (LBE) is the discretised
evolution equation of this process, given by

niðxþ ciaDt; t þ DtÞ ¼ niðx; tÞ þ Xiðx; tÞ. ð20Þ

The fluid density and momentum are defined as

qðx; tÞ ¼
X

M

niðx; tÞ quaðx; tÞ ¼
X

M

niðx; tÞcia; ð21Þ

while the collision operator is defined such that mass
and momentum are conserved,X

M

Xiðx; tÞ ¼ 0
X

M

Xiðx; tÞcia ¼ qfaðx; tÞ; ð22Þ

where the force fa is the homogeneous body force that
acts locally on the fluid. In the case of forced isotropic
turbulence this force is the term that is computed via
the spectral forcing method.

The essence of the lattice-Boltzmann scheme is
captured in the formulation and computation of the
collision operator. Generally, the collision process is
modeled via the BGK [12] collision operator. The
collision process is driven by a relaxation of the distribu-
tion of mass ni to an equilibrium state

Xiðx; tÞ ¼ �
1

s
niðx; tÞ � neq

i ðx; tÞð Þ þ DtF iðx; tÞ; ð23Þ

where neq
i is the equilibrium distribution, given as

neq
i ðx; tÞ ¼ xi 1þ ciaua

c2
s

þ uaubfciacib � dabg
2c4

s

� �
; ð24Þ

which is again fully local, since the equilibrium distribu-
tion is computed based on the local velocity and density.
In the equilibrium distribution the parameter cs is the
speed of sound of the lattice-Boltzmann scheme and xi

is a weight factor. Specific choices of these parameters
are made based on the number of dimensions and num-
ber of discrete directions M, and are usually indicated as
[13] D2Q9, for the 2D 9 speed model, while in 3D vari-
ations such as the D3Q15, D3Q18 and D3Q19 speed
model exist.

Viscosity is introduced via the relaxation process. It
can be shown that the above set of equations approxi-
mates the continuity

oq
ot
þ oqua

oxa
¼ 0; ð25Þ

and Navier–Stokes equations for incompressible fluid
flow

oqua

ot
þ oquaub

oxb
¼ � op

oxa
þ o

oxb
mq

oub

oxa
þ oqua

oxb

� �� �
þ qfa;

ð26Þ
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in the limit of low Mach numbers, i.e. for juaj � cs. Here
p indicates the fluid pressure. The kinematic viscosity m
and relaxation parameter s are related as

m ¼ c2
s s� 1

2

� �
Dt. ð27Þ

For the application of an inhomogeneous body force in
the lattice-Boltzmann scheme, the force term Fi(x, t)
needs to be defined. A straightforward choice is to define
the force as

F iðx; tÞ ¼ xi
ciafaðx; tÞqðx; tÞ

c2
s

. ð28Þ

The paper of Guo et al. [14] gives a discussion on the
accuracy of this force term. Generally, to prevent the
formation of artifacts in the velocity field, it is advised
to use an adjusted formulation of the force term to re-
move possible artifacts. However, in the case of turbu-
lent forcing, the occurrence of artefacts is negligible
since these are proportional to $afia. Since the unsteady
body force is defined on large length scales, the spatial
derivatives of the body force term become negligibly
small.

3.2. Numerical implementation

For the simulations presented in this paper, a specific
form of the D3Q18 lattice-Boltzmann scheme was used,
as given by Eggels and Somers [11,15]. In this scheme

the speed of sound is cs ¼
ffiffi
1
2

q
Dx=Dt. The grid spacing

Dx and time step Dt were chosen as unity and all quan-
tities are further expressed in lattice units, 1 lu � 1 Dx

and time steps 1 ts � 1Dt. This scheme contains addi-
tional damping of higher-order terms that are present
in the lattice-Boltzmann scheme. The main advantage
of this scheme as compared to the regular BGK scheme
is that it possesses improved numerical stability for sim-
ulations at very low viscosities. This is, however, not a
restriction for the use of turbulent forcing in the lat-
tice-Boltzmann scheme, since we also tested the forcing
scheme successfully in a BGK D3Q19 scheme (not fur-
ther reported here).

The forcing scheme presented in the previous section
is used to compute the force field f̂ aðk; tÞ in Fourier
space. Since the lattice-Boltzmann method is defined in
physical space, the force must be transformed to the
physical domain before being applied. This is achieved
via an inverse Fourier transform, after which the force
is straightforwardly imposed. Implementation of the
controlled version of the forcing scheme requires the
Fourier transform of the velocity field, ûaðk; tÞ. As a re-
sult, application of the forcing scheme in three-dimen-
sions requires three inverse Fourier transforms for the
generation of the force field, while the controlled version
of the forcing scheme requires an additional three for-
ward Fourier transforms of the velocity field.
For efficient numerical simulation the lattice-Boltz-
mann scheme was implemented in a parallelized code
using MPI. For the 3D Fourier transform the MPI-en-
abled version 2.1.5 of the FFTW fast Fourier transform
library [16] was used. To reduce memory usage and im-
prove computational performance, the FFT�s were
transformed in-place and in transposed order. The
MPI parallel version of the fast Fourier transform can
only be computed in a slab-wise domain decomposition
of the field that is to be transformed. Therefore, the
lattice-Boltzmann code was parallelized via slab-wise
domain decomposition in the x-direction.
4. Simulations

The conditions of the simulations are defined by three
parameters; the length l*, which defines the large turbu-
lence scales, the characteristic velocity u*, through
which the time scale of the simulation is fixed, and the
Kolmogorov scale g, which determines the smallest
scales in the simulation and consequently determines
the turbulent Reynolds number.

The forcing length scale is defined as l* = 2p/kf, with
kf the wave number of maximum forcing amplitude (see
also Fig. 2). The forcing wave number is determined via
the domain size nx · ny · nz grid points. In all simula-
tions presented in this paper, the domain is cubic and
nx, ny and nz are equal. The forcing is defined on the
wave number interval [ka,kb] by the number of discrete
Fourier modes in this interval, indicated by fnr. The
smallest wave number that can be represented on the
grid corresponds to the domain size as k0 = ka = 2p/
nx. The discrete wave numbers in the Fourier domain
are integer multiplications of k0. The largest wave
number to which forcing is applied is determined as
kb = fnr · ka, while the forcing maximum is chosen as
the central value in the range [ka,kb].

The velocity u* represents a characteristic velocity of
the turbulent flow. This characteristic velocity is chosen
typically one order of magnitude smaller than the speed
of sound cs to assure that the simulations obey the
incompressibility restriction. The velocity u* is used as
a way to determine the power input via the scaling law
for energy dissipation � ’ U3=L and the assumption
that statistical equilibrium is achieved between dissipa-
tion and production, � = P. Thus, by defining the length
scale l* and the velocity u* the power input is set as
P = u*

3/l* (used as input in Eq. (11)).
The third parameter is the Kolmogorov length scale

g. This length scale is a measure for the smallest distance
over which gradients in the flow field can exist. In terms
of lattice-Boltzmann units, a Kolmogorov length of 1
[lu] corresponds to one grid spacing. In spectral simula-
tions, the resolution is often defined in terms of kmax · g
where kmax is the largest resolved wave number, which is
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given by kmax = nx/2 · k0 = p. A criterion for proper
resolution of a DNS of turbulent flow is given by
kmax · g > 1 [17]. Accordingly, the Kolmogorov length
scale should obey g > 0.318 [lu]. Choosing g fixes the
kinematic viscosity of the fluid via the definition of the
Kolmogorov length and the equilibrium assumption
between production and dissipation; m = (Pg4)1/3.

With the definition of l*, u* and the viscosity, a forc-
ing Reynolds number is obtained that fully characterises
the simulation conditions,

Reforce ¼
u � l�

m
¼ l�

g

� �4=3

. ð29Þ

The parameter settings of the simulations discussed in
this paper are given in Table 1. A number of parameters
were identical for simulations F1–F7. The domain size
was nx · ny · nz � 1283 and u* = 0.05 [lu/ts]. The
simulations were executed for 15,000 [ts], corresponding
to 11.7 forcing time scales l*/u* for simulation F5

and 23.4 l*/u* for the other simulations. All simulations
have controlled power input unless stated differently.
In all simulations presented in this paper the concen-
tration parameter c that appears in Eq. (10) was chosen
as 1.0. This value was chosen such that the Gaussian
distribution of the force spectrum becomes rather wide
and the power input becomes distributed over all the
discrete wave numbers on the interval [ka, kb]. In the
work of Alvelius [1], this parameter is chosen much
smaller, as 0.01. Such a small parameter practically
focuses the power input on a single wave number, rather
than distributing the power input over the interval
[ka,kb].

In simulations F1 and F2, the implementation of the
forcing scheme into the lattice-Boltzmann scheme is
demonstrated and the difference between controlled
and uncontrolled forcing is tested. In cases F3, F1 and
F4, the forcing Reynolds number is varied in increasing
order to investigate the influence of a decreasing Kol-
mogorov length scale, such that it violates the limit for
a well resolved direct simulation. The resolution-con-
straint kmaxg > 1 is violated to observe its impact on
the numerical stability and physical validity of the sim-
ulations. In simulation F5, the impact of the number
of forcing Fourier modes on the flow field is investi-
Table 1
Parameter settings of forced turbulence simulations F1 to F7

Run g [lu] kmaxg
[–]

fnr

[–]
l*
[lu]

Reforce

[–]
Remark

F1 0.5 1.571 7 32 256
F2 0.5 1.571 7 32 256 Uncontrolled
F3 1 3.142 7 32 102
F4 0.1 0.314 7 32 2189
F5 1 3.142 3 64 256
F6 0.5 1.571 7 32 256 Force from file
F7 1 3.142 7 32 102 Anisotropic, b = 10
gated. In simulation F6 forcing conditions were imposed
using a set of 120 force fields fa(x, t). These fields were
prepared and stored prior to execution of the simula-
tion, to increase the computational speed. As a result,
the white noise forcing signal is mimicked by a limited
set of force field realisations. The resulting flow field
and time series are compared with simulations F1

and F2. Finally, run F7 was carried out to test the fea-
ture of anisotropic forcing in the lattice-Boltzmann
simulations.
5. Results and discussion

5.1. Statistical quantities

Dimensionless statistical quantities that characterise
the turbulent flow are given in Table 2.

To characterise the large scales of the turbulent flow,
an integral length scale K is given. This scale is deter-
mined both via the scaling law K = u 03/� (u 0 is the rms
fluid velocity) and via the energy spectrum,

Ks ¼
p

2u02

Z kmax

0

EðkÞ
k

dk. ð30Þ

These two integral scales have a different physical mean-
ing. The integral scale K represents the large scale of the
flow field based on the energy dissipation whereas Ks is a
measure for the distance over which the velocity correla-
tion drops to zero [18]. Ks depends on the spatial struc-
ture of the flow field, which is determined by the size of
the computational grid and the spectral forcing.

A Reynolds number based on the Taylor micro-scale
is often used to characterise simulations of forced iso-
tropic turbulence. The Taylor micro-scale is given by

k ¼ 15mu02

�

 !1=2

. ð31Þ

The table shows that the Taylor Reynolds number is
about one order of magnitude smaller than the forcing
Reynolds number. It is also noticed that Rek is practi-
cally constant for simulations with the same forcing
Reynolds number.
Table 2
Simulation results

Run kmaxg Rek u0* K* Ks* T0* (�/P)lB (�/P)s Sg

F1 1.56 39.8 0.80 0.51 0.34 0.42 1.02 0.95 �0.40
F2 1.56 39.9 0.81 0.51 0.34 0.43 1.02 0.94 �0.40
F3 3.14 19.9 0.72 0.36 0.40 0.55 1.01 1.00 �0.43
F4 0.36 171.6 0.86 1.05 0.28 0.32 0.60 0.41 �0.18
F5 3.02 41.7 0.85 0.53 0.33 0.38 1.17 1.21 �0.38
F6 1.58 39.4 0.79 0.51 0.34 0.43 0.98 0.93 �0.41
F7 3.12 25.2 0.81 0.51 0.34 0.42 1.02 0.96 �0.40

Properties indicated with a* were non-dimensionalised with u* and l*.



(a)

(b)

(c)

Fig. 3. Time series of kinetic energy and rate of energy dissipation of
simulations F1 (a), F2 (b) and F6 (c).
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The integral time scale given in the table is associated
with the motion of the large scales in the fluid flow, and
is defined by

T 0 ¼ Ks=u0. ð32Þ
Two properties given in the table that are directly linked
to the resolution of the small scales in the flow field are
the rate of energy dissipation,

� � m
oui

oxj
þ ouj

oxi

� �
ouj

oxi
�
Z kmax

0

DðkÞdk

� 2m
Z kmax

0

k2EðkÞdk; ð33Þ

and the velocity derivative skewness,

Sg ¼
ou
ox

	 
3
D E

ou
ox

	 
2
D E3=2

. ð34Þ

With an increasing turbulent Reynolds number the
small structures in the flow field become smaller. In a
DNS, the smallest length scales still have to be captured
accurately on the computational grid. Both the rate of
energy dissipation and the velocity derivative skewness
give an indication of the accurate representation of the
velocity gradients and give an indication of the quality
of the simulations.

The rate of energy dissipation can be determined
along two routes for a turbulent flow. It can be deter-
mined via the rate of deformation of the flow field, or
it can be determined from the energy spectrum (Eq.
(33)). In Table 2, the values of the rate of energy dissipa-
tion as obtained along both routes are presented (�lB

from the lattice-Boltzmann scheme and �s via the energy
spectrum), as a consistency check of the lattice-Boltz-
mann scheme. The lattice-Boltzmann scheme inherently
contains the deformation rate of the flow field [11], from
which the rate of energy dissipation can be computed di-
rectly, i.e. without the need to determine spatial deriva-
tives from the velocity field via a difference scheme.

In steady turbulent flows, the rate of energy dissipa-
tion and the power input should be in statistical equilib-
rium, and the ratio of power input over energy
dissipation should be 1. Table 2 shows that �s as well
as �lB generally are in good agreement, which demon-
strates that the velocity field and the gradients are calcu-
lated in a consistent manner. Apart from simulation F4,
where the resolution is violated, the ratios �/P are close
to 1.0. The somewhat lower rate of energy dissipation
obtained via the energy spectrum may be a result of
the discretisation of the 1D energy spectrum as obtained
from the 3D velocity field.

In simulation F4, the Kolmogorov length scale was
set to 0.1 grid spacing. This violates the rule of thumb
for accurate DNS. The rate of energy dissipation ob-
tained from the simulations indicates that only 60% of
the power input is recovered, and the small scales of
the flow field are not captured accurately by the simula-
tions. This will be further discussed in a later section.

The velocity derivative skewness Sg is the normalized
third order moment of the distribution of the velocity
gradients, and can be associated with the time evolution
of the longitudinal velocity correlation functions [19,18].
It is a measure for the shape of the pdf of the velocity
gradients. This parameter obtains a negative value
which varies with the Reynolds number, and for DNS
simulations is reported in the range �0.4 to �0.5 for
both decaying and sustained isotropic turbulence (e.g.
[1,20]). The values in the table indicate that for well re-
solved turbulent conditions a value is observed in the
same range, whereas for simulation F4, the reported
value is found to be significantly larger.

5.2. Transient behaviour

A comparison of the evolution of the kinetic energy
and the rate of energy dissipation of simulations F1, F2

and F6 is given in Fig. 3. This figure shows the difference
between controlled and uncontrolled forcing and the
influence of forcing while using a true white noise forc-
ing signal compared to a signal generated by using a lim-
ited number of forcing fields. At the start of the
simulations the fluid was at rest. The initial slope of
the simulations should therefore be equal to the power
input P, since in the absence of dissipation, dK/dt = P

holds. This is indicated by the tangent line through the
origin of the time series.

Fig. 3(c) shows that the initial slope of the kinetic en-
ergy is below the expected value while for the two other
cases the initial energy increase has the expected behav-
iour. Using a limited number of force fields (F6) results
in a reduced power input. This is clear from the time ser-
ies and from the somewhat lower rms velocity u 0*, given
in Table 2. Fig. 3 further shows that the fluctuations in



(a)

(b)

Fig. 5. Normalised energy spectrum (a) and dissipation spectrum (b)
for simulations F3, F1 and F4 at increasing order of Reynolds number.
(E*(k) = E(k)/(u*

2l*), D*(k) = D(k) · l*
2/u*

3).
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the kinetic energy and the rate of energy dissipation in-
crease for simulations F2 and F6. The standard deviation
in K (determined from the steady-state part of the time
series) for these three simulations was 0.6%, 3.2% and
4.8% respectively.

One phenomenon that can be observed in Fig. 3 is
that the evolution of the rate of energy dissipation
follows that of the kinetic energy with a time lag. Most
kinetic energy is contained at the large scales. The turbu-
lent flow field needs to develop before fluid motion
reaches the length scales where dissipation takes place.
The increase of the rate of energy dissipation therefore
lags the development of the kinetic energy. An approx-
imate time scale for the transfer of kinetic energy [18]
is 1

10
T e (Te = K/�, the eddy turnover time-scale). For

the cases in Fig. 3, this time is t* = 0.1, which to order
of magnitude corresponds with the time lag of the
energy dissipation.

5.3. Flow field and energy spectra

The energy spectra of Fig. 5(a) show that with a de-
crease in Kolmogorov length scale (simulations F3, F1

and F4), fluid motion is generated up to higher wave
numbers. This is also visible in the flow fields in
Fig. 4. The spectra indicate that as the Reynolds number
increases, the energy spectrum at higher wave numbers
increases and approaches the �5/3 slope that is associ-
ated with the energy spectrum of the inertial subrange
(see Eq. (1)).

In simulation F4, the Kolmogorov length was much
smaller than the rule of thumb minimal value of 0.318
[lu]. The energy spectrum of simulation F4 demonstrates
that the energy content at the smallest scales has risen
approximately six orders of magnitude. As a result,
the gradients at the small length scales become too steep
and although on the large scales the fluid motion still
exhibits a consistent energy spectrum, the fluid motion
at the smallest scales is not accurately resolved, as
can be observed from the spurious behaviour of the
velocity vectors in the flow field. Although the simula-
Fig. 4. Cross-section of the flow fields of simulations F3 (a), F1 (b) and F4 (c).
plotted plane.
tion remains stable, the flow field of Fig. 4(c) demon-
strates that the flow field at the smallest scales
becomes physically unrealistic (indicated also by �/P
and Sg in Table 2).

The dissipation spectra (Fig. 5(b)) show a shift of en-
ergy dissipation towards higher wave numbers when the
The contours indicate the vorticity component xz, perpendicular to the



(a)

(b)

Fig. 6. Normalised energy spectrum (a) and dissipation spectrum (b)
for simulations F3, F1 and F5 at order of increasing Reynolds number.
(E*(k) = E(k)/(u*

2l*), D*(k) = D(k) · l*
2/u*

3).
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Reynolds number is increased. For simulations F3, F1

and F4, the power input and hence the total energy dis-
sipation is identical. As a consequence, the integrated
value of the dissipation spectrum should be equal for
these three simulations. For simulation F3, the dissipa-
tion mainly occurs around k/kf = 1.0, whereas for simu-
lation F4 dissipation extends to k/kf = 10.0. Eq. (33)
contains the relation between �, the dissipation spectrum
and the energy spectrum, which indicates that the energy
is weighted with k2, which stresses the contribution of
the energy spectrum at larger wave numbers in the
resulting dissipation spectrum. In the inertial subrange,
the dissipation spectrum should obtain a positive slope
of 2 � 5/3 = 1/3, which is indicated in the figure.

The influence of the forcing is clearly visible in the en-
ergy and the dissipation spectra. On the one hand, the
use of seven Fourier modes for forcing gives an accurate
representation of the Gaussian distribution of the forc-
ing intensity (see Eq. (10)) which allows for the use of
a large concentration parameter (fnr = 7, c = 1.0). On
the other hand, the effect is that the forcing dominates
the energy spectrum and therefore the fluid motion over
a larger range of wave numbers. To overcome this
behaviour, [1] uses a much smaller concentration param-
eter (Oð0.01Þ), to concentrate the forcing spectrum
around a single wave number kf. In his results, the en-
ergy spectrum therefore exhibits a much narrower peak
at its maximum.

By using a larger number of discrete forcing wave
numbers and a larger concentration parameter, the
power input is distributed more evenly over a wider
range of wave numbers. The advantage is that the over-
all contribution of P2 will decrease. The value of the
fluctuating force fa(k) will have a lower value at each dis-
crete wave number, and hence the product of ua(k)fa(k)
will be smaller. If one intends to use the forcing scheme
for uncontrolled simulations of turbulence, then in this
way the contribution P2 can be suppressed. However,
a disadvantages of this approach is that the energy spec-
trum is influenced by the forcing scheme over a wide
range of wave numbers, rather than being concentrated
closely around the forcing wave number kf. As a result,
the reduced range of wave numbers in which the flow
field can develop freely will limit the turbulent Reynolds
numbers that can be obtained.

Fig. 6 demonstrates the impact of a variation of the
number of forced Fourier modes and of a change in kf

on the energy and dissipation spectra. This was tested
in simulation F5. The figure allows a comparison be-
tween F5 and F1, for which the same forcing Reynolds
number was chosen, and between simulations F5 and
F3, for which the same Kolmogorov length scale was
set while F3 was set at a much lower Reynolds number
than the other two cases.

Fig. 6(a) shows that for the scaled energy spectra of
F1 and F5 practically collapse. Table 2 also indicates that
the Taylor Reynolds number of these simulations are of
the same order, with F5 being slightly larger. The energy
spectra also show that F5 lies slightly above F1. The hor-
izontal axis is scaled with kf which shifts the energy spec-
tra such that their forcing wave numbers collapse. As a
result, for simulations at the same Reynolds number but
different values of kf, their spectra should coincide upon
scaling. The figure shows that this is indeed the case.

The flow field of F5, as well as that of F3, possessed a
higher resolution at the small scales than that of F1. This
is confirmed by the energy and dissipation spectra. The
spectrum of F5 continues up to higher scaled wave num-
bers than F1. At the same time, Fig. 6 shows that the en-
ergy spectra of F5 and F3 continue smoothly up to much
lower values of E* and D* than F1.

Table 2 shows that for F5, �/P > 1.0. This is due to the
poor representation of the Gaussian distribution of F(k)
over a limited range of three wave numbers. Due to dis-
cretisation, the resulting power input P1 was consider-
ably larger than the desired power input (P1 =
1.154 · Pinput). This discretisation error was negligible
for simulations with fnr = 7. An increase of 15% in
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power input results only in a 4% decrease in Kolmogo-
rov length since g � ��1/4 and the turbulent conditions
were hardly influenced, as was confirmed by the energy
spectra.

5.4. Grid anisotropy and the correlation functions

For simulations F1 and F7, the longitudinal and
transverse correlation functions, f(r) and g(r) respec-
tively, are given in Fig. 7. The correlation functions give
a measure for the velocity correlation over a separation
r, parallel or perpendicular to each velocity component;

f ðrÞ ¼ u1ðxÞu1ðxþ rn1Þ
u02

gðrÞ ¼ u1ðxÞu1ðxþ rn2Þ
u02

; ð35Þ

where na indicates the primary axes in direction a.
In Fig. 7(a), these functions are plotted for simulation

F1. Both the longitudinal correlation f(r) and the trans-
(a)

(b)

Fig. 7. Normalised autocorrelation functions f(r) and g(r) of (a)
simulation F1, where the correlation functions were determined via the
Fourier transform of the velocity field (grid) and via random sample
points (random); (b) simulation F7, where the flow field is anisotropic.
The correlation functions were determined from the ensemble average
of 15 flow field realisations.
verse correlation function g(r) exhibit the well-known
behaviour of the spatial correlation functions for turbu-
lent flows. The function f(r) is typically larger and re-
mains positive, while g(r) decays faster to zero and
becomes negative. At larger separations both turn to
0, indicating that no self-correlations at the length of
the periodic domain occurs.

To test if the structure of the computational grid has
any consequences for the isotropic properties of the flow
field, the correlation functions were determined (i),
through the Fourier transform of the velocity field and
(ii) through sampling of the flow field via a large number
of randomly placed sample points.

When determining the correlation functions via the
Fourier transform, the orientation of the velocity field
is determined based on the orientation of the computa-
tional grid and anisotropic properties that may be pres-
ent due to the grid are contained in the resulting
correlation functions. For the second method, the veloc-
ity field was sampled with a large number (100,000 per
field) of randomly placed points. The fluid velocity
was computed at these points via first order interpola-
tion. The correlation functions were then determined
by calculating the correlation between all pairs of sam-
ple points. The orientation was based on an internal
coordinate system, determined by the axis connecting
each pair and two axes that are perpendicular to the
connecting axis and to each other. By using random
pairs of particles the orientation of the coordinate sys-
tem is randomised for each pair. For a truly isotropic
field and ideal interpolation, both methods should give
the same f(r) and g(r). The slightly higher values of the
randomly determined correlation functions may be a re-
sult of the accuracy of the interpolation procedure. Gen-
erally, the good correspondence between the correlation
functions obtained via both methods shows that no
gross anisotropy is present in the simulations.

The correlation functions presented in Fig. 7(b) give
the longitudinal and transverse correlation of the aniso-
tropically forced simulation F7. In this simulation the
anisotropic forcing parameter b was set to a value of
10, indicating that the power input in the x- and y-direc-
tions was 11.3 times that of the z-direction. The longitu-
dinal correlation function fxx describes the correlation of
the x velocity component over a separation in the x

direction while the transverse correlation function gxy

presents the correlation of the x velocity component
over a separation in the y direction. The figure demon-
strates that the fzz correlation decays faster than fxx.
The correlation length scale K�f gives a measure for
the integral length scale over which the correlation drops
to zero, comparable to the integral length scale Ks*. It is
anticipated that K�f will be smaller in the z-direction
than in the x- or y-direction since the integral length
scales with u 03 and u0x or u0y are larger than u0z. This
was confirmed by the values determined for K�fxx as



(a)

(b)

Fig. 9. Invariants A2 and A3 calculated from the time series of the
Reynolds stresses of simulations F2 and F7 (a). The lines indicate the
position of the Lumley triangle. F2 fluctuates close to zero, as indicated
in the enlargement (b).
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0.459 and for K�fzz as 0.274. It is also observed that fxx

does not return to zero. This indicates that due to the en-
hanced large scales in the x–y plane, self correlation with
the periodic mirror image occurs, which is an artifact of
the simulations. The figure further shows that the trans-
verse correlation gxy generally has a larger positive va-
lue, crosses the function gxz around zero and reaches a
lower minimum value than gxz, before returning to zero.

5.5. Axisymmetric anisotropic turbulence

The time-series of the Reynolds stresses Rijð¼ uiujÞ of
simulation F7 (Fig. 8) show the evolution of the aniso-
tropic forced turbulence. At startup, the magnitude of
the x and y velocity-components increase much faster
than the z-component, as is anticipated since the forcing
is 11.3 times larger in the x–y plane. It is clearly demon-
strated that momentum transfer from the x–y plane into
the z direction occurs once the flow field is sufficiently
developed. Although the forcing input is 11.3 times lar-
ger in the x–y plane, the ratio of Rxx or Ryy over Rzz be-
comes roughly 2 in steady-state. At the same time, the
off-diagonal components of Rij fluctuate around zero.

The anisotropy of the flow field can be characterised
by the anisotropy tensor aij, defined as

aij ¼
Rij

K
� 2

3
dij; ð36Þ

and is characterised by its invariants. The first invariant
of this tensor is zero by definition while the second and
third invariant are A2 = aijaji and A3 = aijajkaki. For 3D
isotropic flow, both invariants are zero. In Fig. 9, the
second invariant of the anisotropy tensor is plotted
against the third invariant for the whole time series of
both simulations F2 and F7. Fig. 9(b) gives a detail of fig-
ure (a) to demonstrate that in the case of isotropic forc-
ing the invariants are practically zero and bounded by
the Lumley triangle [21].
Fig. 8. Time series of the normalised Reynolds stresses of simulation
F7.
With the choice of the anisotropic forcing presented
here, Px and Py are equal and much larger than Pz,
which results in axisymmetric anisotropic turbulence.
For this type of flow, the anisotropy tensor can be writ-
ten as

aij ¼
a=2 0 0

0 a=2 0

0 0 �a

0
B@

1
CA; ð37Þ

and the corresponding invariants can be expressed in
terms of the parameter a. For the case where the power
input in the symmetry plane exceeds that of the out-
of-plane direction it is found that a > 0. The relation be-
tween the two invariants then becomes A3 = �6(A2/6)3/2,
while A3 = 6(A2/6)3/2 is valid when the opposite holds,
i.e. for a < 0.



Fig. 10. Speed-up of simulations F1 and F2 when increasing from 2 to
16 CPU�s.
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These two curves are plotted in the A2–A3 plane of
Fig. 9 and pose a limiting case for anisotropic turbu-
lence. The point where the two lines cross represents
the bottom corner of the so-called Lumley triangle (see
[21] or [22]). Fig. 9(b) demonstrates that the invariants
of the isotropic simulation F2 are indeed bounded by
the two branches of the Lumley triangle and are close
to zero, indicating isotropic turbulence.

With Rzz being smaller than Rxx or Ryy for simulation
F7, a > 0 and the points in the A2–A3 plane are accord-
ingly found near or at the left branch of the Lumley tri-
angle. This demonstrates that axisymmetric turbulence
is obtained throughout the time series of the simulation.
The time average steady-state value of a was 0.237. The
dots near the left line show the evolution of the anisot-
ropy in the A2–A3 plane. As already noticed, from start-
up of the simulation Rzz lags the steep increase of Rxx

and Ryy. Consequently, the invariant A3 starts at an ini-
tial value of �0.15 and proceeds in time to a steady-state
value of approximately �0.01.

5.6. Numerical performance

The numerical performance of the simulations was
tested on a parallel platform that consisted of dual Intel
Xeon CPU�s operating at 3.4 GHz that was equipped
with a TopSpin InfiniBand network for fast parallel
computing. The Intel Fortran and C compilers were
used for compilation of the FFTW and lattice-Boltz-
mann codes.

The simulation time for 1000 time steps was taken as
a measure for the overall performance of the simulations
and included start-up and data io for writing datafiles.
Only multi-processor simulations were tested. The total
simulation time of simulation F1, running on two CPU�s
of one node, was 6520 s. The simulation time for F2, the
case of uncontrolled forcing, was 3910 s. This difference
in simulation time demonstrates the considerable contri-
bution of the Fourier transform to the computational
effort.

The speed-up of simulations F1 and F2 are compared
in Fig. 10. The simulation time of case F1 on two CPU�s,
T F 1;0

, was chosen as the basis for comparison. As perfor-
mance index, the ratio of computational times 2T F 1;0

=T
was chosen. This ratio is multiplied by a factor two to
indicate that case F1,0 was computed on two CPU�s
and therefore nominally runs two times faster than a
simulation on one CPU. T is the computational time
of simulations F1 and F2 at increasing number of CPU�s.

The filled dots in Fig. 10 indicate the performance of
simulation F1 when the number of CPU�s is increased
from 2 to 16. The drawn line indicates ideal speed-up,
indicating a two times faster simulation for a double
number of CPU�s. The speed-up of case F1 stays below
this line. At 16 CPU�s the speed-up reaches 90% of the
ideal speed-up. With a 100% speed-up at 8 CPU�s and
a small decrease to 97% at 16 CPU�s, the performance
of case F2, open symbols, is much closer to ideal.

The decreasing performance at increasing number of
CPU�s is caused by the increasing need for communica-
tion. The fast Fourier transform requires an all-to-all
communication between all CPU�s and therefore the
slope of the speed-up of case F1 is clearly lower than
1. At increasing number of CPU�s the slab-wise domain
decomposition also starts to have an impact on the effi-
ciency of the lattice-Boltzmann scheme. While this
scheme requires a minimal amount of communication
relative to the number of operations per CPU, with lar-
ger number of CPU�s, the ratio of communication to
computation increases. Nevertheless, a speed-up of
90% or more at 16 CPU�s can be considered very
efficient.
6. Conclusion

In this paper, it has been demonstrated that the forc-
ing scheme for the generation of sustained homogeneous
turbulent conditions, as proposed by Alvelius [1], could
be successfully combined with a lattice-Boltzmann
scheme. With this forcing scheme, a turbulent flow field
can be obtained with a priori defined turbulent proper-
ties. It has been demonstrated that by straightforward
implementation of this spectral forcing scheme in the
lattice-Boltzmann framework the specific features of
suppression of force–velocity correlation and aniso-
tropic forcing are recovered. A possible minus compared
to other numerical schemes could be the relatively large
memory requirements for the lattice-Boltzmann scheme,
which requires up to 19 floats per grid point. An advan-
tage of the combination of spectral forcing with the lat-
tice-Boltzmann scheme is the good scalability on parallel
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computer platforms that is retained with the spectral
forcing scheme. The lattice-Boltzmann scheme proves
to be an accurate and stable method for direct numerical
simulation of turbulence.
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