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a  b  s  t  r  a  c  t

The  classical  Bretherton  problem  describes  the  propagation  of  gas  fingers  through  liquid media  in  a
narrow  channel  with  thin  liquid  films  between  bubbles  and  channel  walls.  The  bubble  shape  and  flow
patterns  are  complicated  functions  of the  capillary  number  Ca and  Reynolds  number  Re.  Recently,  we
investigated  the  applicability  and  parameter  selection  for the  two-dimensional  Bretherton  problem  (flow
between  parallel  plates)  using  the free-energy  binary  liquid  lattice  Boltzmann  method  (LBM)  [1].  This
paper  is  the  continuation  of  our  previous  work  with  simulations  of  three-dimensional  channels  with
rectangular  (mostly  square)  cross  sections  in  the  range  of  the  capillary  number  0.05  ≤  Ca  ≤  6.0.  The  flow
icrochannel simulation
ultiphase flow

attice Boltzmann method
inary liquid model
low in microchannels with square cross
ections

is driven  by  a body  force,  and  periodic  boundary  conditions  are  applied  in  the  streamwise  direction.  The
results  show  that  the  binary  liquid  model  is able  to correctly  capture  a number  of  phenomena  occurring
in  three-dimensional  capillaries,  such  as  the  existence  of  a  vortex  in  front  of  the  bubble  and  the  way
bubble  radii  depend  on the  capillary  number.  We  conclude  that  lattice  Boltzmann  free  energy  binary
liquid  model  can  be  used  to  simulate  the  Bretherton  problem  with  good  accuracy.

© 2011 Elsevier B.V. All rights reserved.

ravity driven

. Introduction

The Taylor/Bretherton [2] flow deals with long gas bubbles mov-
ng through liquid in narrow channels. Depending on the channel
eometry it was found [3] that the thickness of the liquid film
etween a bubble and channel walls is a complicated function of
he capillary number Ca:

a = Ububble�liq

�
, (1)

here Ububble is the bubble velocity, �liq is the dynamic liquid vis-
osity and � is the interfacial tension between gas and liquid.

For example, the film thickness is proportional to Ca2/3 for small
apillary numbers for circular channels [2,4]. Predicting flow pat-
erns and associated mass transfer for Bretherton-type flows is of

ignificant interest for chemical industry as it is widely used in
hemical monolith microreactors [5].  Intensive mass transfer can
e achieved because of the large interfacial area and small dif-
usion lengths [6].  Heat transfer is also enhanced in comparison
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with single phase flow [7].  While it is possible to calculate the flow
analytically for small capillary numbers and nearly zero Reynolds
number [2],  such results cannot be extrapolated to the wide range
of capillary and Reynolds numbers used in the chemical industry.
Thus, the need of consistent numerical simulations arises.

Flows in two-dimensional geometries (circular tubes, parallel
plates) have been studied extensively in the experimental works of
Aussillous and Quere [8],  and Thulasidas et al. [6],  and the numeri-
cal works of Giavedoni and Saita [9],  Heil [4].  All abovementioned
investigations found that the Bretherton analysis is valid only for
small capillary numbers Ca ≤ 0.003 and deviates from actual mea-
surements for larger Ca.  This is caused by a complex interplay of
gravitational, interfacial, inertial and viscous forces [3].  Histori-
cally, Bretherton [2] neglected inertia effects. Giavedoni and Saita
[9] suggested that inertia effects are negligible for Ca ≤ 0.05 and
have moderate impact for Ca > 0.05 in the range of Reynolds number
from 0 to 70 for two-dimensional flows. Later on, Heil [4] studied
the flow between plates up to Re = 300. This author noted that while
the influence of inertia on the established film thickness is insignif-
icant (7% deviation from the film thickness measured at Re = 0), the
change in Reynolds number significantly influences the pressure

distribution and the flow field near the front bubble cap. Thulasi-
das et al.[6] showed that the mass transfer is strongly affected by
flow direction for small capillary numbers in case of upward and
downward flows. Thus, to fully describe the propagation of the

dx.doi.org/10.1016/j.cej.2011.10.010
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Fig. 1. Hazel and Heil [11] results for the variation of the bubble radii for a range
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f  capillary numbers for a square channel. One can see the asymmetry between

iagonal and axial diameters for the capillary numbers Ca ≤ Ĉa = 0.04. Courtesy of
azel and Heil [11]. rh and rd are scaled on the half side length Heff/2.

emi-infinite finger in liquid media one needs to take into account
he viscous, gravitational, surface, and inertia forces [3].

In comparison with the two-dimensional Bretherton flows
circular tubes, flow between plates), there is a vast number
f experimental results available for three-dimensional flows in
icrochannels with square, triangular and rectangular cross sec-

ions. For instance, Thulasidas et al. [6] performed a number of
xperiments for a bubble-train flow in capillaries of square cross
ections for horizontal, upward and downward flows. Han and
hikazono [10] obtained experimental results for the film thickness
ependence on the capillary number for ethanol/air and water/air
ixtures and for square, circular and triangular shaped microchan-

els. They also presented an experimental correlation for bubble
adii based on the capillary number Ca and the Weber number

e = Re Ca,  where the Reynolds number is defined as:

e = UbubbleHeff

�liq
, (2)

here Heff is the channel height and �liq is the kinematic liquid
iscosity.

The experimental works [10,6] supported by numerical simula-
ions [11,12] showed interesting phenomena in three-dimensional
eometries. It was found [11,13] that for rectangular capillar-
es there is a transition from an asymmetric to an axisymmetric
hape for a certain capillary number. The non-axisymmetric shape
escribes the wall normal radius (in Fig. 3 the wall normal radius is
easured along x or y axes) being different from the diagonal radius

nd the bubble having a non-circular shape in the channel cross
ection. In this case, the bubble shape mimics the shape of a rect-
ngle and looks like a rectangle with rounded corners. Further we
dapt the convention “axial” for the radius measured along the x or

 axes, see Fig. 3 [11]. The dependence of the diagonal and axial radii
r a square channel on the capillary number is shown in Fig. 1. The
apillary number for square channels at which transition between
on-axisymmetric case to axisymmetric happens is reported in a

umber of works (Ĉa = 0.04 [6], Ĉa = 0.1 [14,12], Ĉa = 0.033 [11]).

f the capillary number is larger than the critical capillary number,
.e. Ca > Ĉa, then the bubble becomes axisymmetric with the radius
f the bubble dependent on the capillary number. An example for
g Journal 178 (2011) 306– 316 307

the bubble radii dependence on the capillary number is presented
in Fig. 1.

There are also a number of numerical works on three-
dimensional flows. For instance, Wong et al. [13,15] studied
three-dimensional bubbles in polygonal capillaries and calcu-
lated bubble shapes for different slug and channel cross sections.
Hazel and Heil [11] performed three-dimensional simulations for
circular-, square- and rectangular-shaped capillaries. They indi-
cated a transition of flow regime in a liquid slug. Vortexes observed
at lower capillary numbers disappear as the capillary number goes
beyond a certain threshold, Fig. 6. For a square channel the critical
capillary number is Ca = 0.691. Hazel and Heil [11] also found an
empirical correlation which makes it possible to collapse results
of radii dependency on the capillary number for rectangular chan-
nels with different aspect ratios on a single curve. It was also found
that for microchannels with a certain aspect ratio  ̨ = a/b ≥ 2.04, the
interface does not become circular for any capillary number. Liu and
Wang [12] performed numerical simulations using the Volume of
Fluid (VOF) technique for capillaries with non-circular (square, tri-
angular) cross sections. They also investigated the relative slug to
bubble velocity for a range of capillary numbers.

As was mentioned by Gupta et al. [3],  the most common tech-
niques to simulate the Bretherton phenomena are the VOF method
[12], the level-set method [7] and the finite element methods
[16,11]. It was also indicated [3] that the new techniques, which
are still in the development stage, are the lattice Boltzmann method
and phase field methods [17,18]. The finite element method solves
the Bretherton flow as a free-surface problem with a sharp inter-
face but without gas. The lattice Boltzmann method is a continuous
interface method, and therefore provides more flexibility in simula-
tions involving coalescence and/or droplet breakup, and thus arises
as a promising alternative for simulation of gas finger propagation.

In our previous work [1],  we  already analyzed the Bretherton
flow between parallel plates. It was shown that the free-energy
binary liquid model, which is a phase field method, simulates the
Bretherton/Taylor phenomenon with reasonable accuracy. The goal
of this work is to examine if similar conclusions can be drawn
for three-dimensional flows in microchannels with square cross
sections, simulated using the free-energy binary liquid lattice Boltz-
mann method.

The lattice Boltzmann method has emerged as a successful
method to simulate a wide variety of phenomena including hydro-
dynamics [19], thermal flows [20], microflows [21], ferrofluids [22],
and multiphase flows [23,24].  It is a particle method which allows
one to simulate physical phenomena on the microscopic level. For
instance, the introduction of a force or a potential on the micro-
scopic level makes it possible to restore multiphase macroscopic
equations [23,24].  Nowadays the method is finding its way to more
practical applications, for example magnetically driven droplet
break-up and vaporization [25], mixing in cross-channel flow [26],
etc.

The binary liquid free-energy LB model due to Swift et al. [23]
that we  used simulates two  liquids with the assumption of uniform
overall density. The classical Bretherton problem is stated for gas
and liquid, which are of significantly different density and viscosity.
In general, a system is correctly simulated if all its non-dimensional
parameters match those of the corresponding real physical system.
However, one needs to consider the leading non-dimensional num-
bers which are responsible for physical phenomena. Even though
the binary-liquid model cannot match the gas–liquid density ratio,
we  consider it as a non-leading parameter. This is justified by the
numerical results of Giavedoni and Saita [9] and Heil [4] which

show negligible Reynolds number effects on the film thickness for a
relatively wide range of Reynolds numbers, Re < 70. The parameters
in our simulations were carefully chosen to avoid inertia effects,
see Section 2. The maximum attained Reynolds number is Re < 10.
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Fig. 2. The classical benchmark layout describes a semi-infinite gas bubble propa-
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Fig. 3. The lattice Boltzmann benchmark layout as used in present calculations.
The  dimensions of the domain are chosen as Heff × Heff × 15Heff. The length of the
bubble was chosen as 5Heff for the film thickness to stabilize. Periodic boundary
ation through the liquid media. The inlet pressure is specified Pin , the outlet is the
ree outflow. The bubble propagates with constant velocity Ububble.

 second reason is the fact that density ratio is involved in the
escription of the bubble shape change. There is a corresponding
umber defining the shape change called the Bond number and
efined as Bo = CaRe/Fr2. For real microchannel systems the Bond
umber is less than 0.1 and we can neglect the bubble shape change
ue to the density difference. Therefore, the major governing fac-
or for microchannel flows is not the density ratio, but the viscosity
atio, which explains why the uniform density binary liquid model
s suitable for this kind of simulations.

Note that other multiphase lattice Boltzmann models can
e used which can account for different densities, such as the
seudopotential-based approach [27] or the color model [23].

n the case of the pseudopotential-based approach, one needs
o use the binary-liquid formulation to avoid possible conden-
ation/evaporation [28] and to perform Laplace law simulations
o calibrate the surface tension as it is not given explicitly. For
he case of the color model, one needs to use more complicated
chemes to reconstruct the surface. However, one can use the
ame procedure of setting up simulations for all above-mentioned
odels.
One should acknowledge the works of Ledesma-Aguilar et al.

29] on menisci in thin films for fingering phenomena. Yang et al.
30] performed lattice Boltzmann simulations of two-dimensional
hannel flows for relatively large capillary numbers, and found dis-
repancies with the classical Bretherton theory, which is limited
o the low capillary number regime [9].  They used the Shan-Chen

odel, which is sometimes said to contain a thermodynamically
nconsistent interface [31].

The paper is organized as follows. First, we explain the simula-
ion benchmark construction mainly based on our previous work
1]. Then, the binary liquid lattice Boltzmann model is outlined. The
imulation results for the three-dimensional case are presented in
he results section. That covers the film thickness dependency on
he capillary number, the bubble to slug relative velocity and vor-
ex profiles for square microchannels. We  also briefly cover flow
imulations for rectangular channels. The paper is concluded with

 summary of the main findings.

. Numerical benchmark approach

The main discussion here is based on the two-dimensional
enchmark approach [1].  It was indicated that the benchmark lay-
ut should have certain dimensions to conduct simulations. The
lassical Bretherton benchmark layout is represented in Fig. 2. It
escribes the gas finger propagation through the liquid medium.
he film thickness in this case is measured at the inlet. In the
attice Boltzmann framework, such a formulation has certain chal-

enges [1].  Some of them are attributed to the dynamic coupling
f the inlet and outlet conditions [9].  Instead, we proposed the
umerical benchmark indicated in Fig. 3. The dimensions of the
hannel are chosen as Heff × Heff × 15Heff. The initial bubble length
conditions are applied in the streamwise direction. The flow is driven by a body
force.

is taken as 5Heff. Giavedoni and Saita [9] showed that the film in the
two-dimensional geometry stabilizes at distances of 2.6–4.0 diam-
eters from the front tip depending on the Reynolds number. Hazel
and Heil [11] measured the bubble radii at the distance of 5.5Heff
and indicated it to be sufficient for Ca ≤ 10. In this work, the fol-
lowing relation holds for all conducted simulations: 0.05 ≤ Ca ≤ 6.
Thus, the film thickness is chosen to be measured in the middle of
the bubble, which is located at least at a distance of 2.5–3 channel
heights from the bubble tip.

For simplicity, periodic boundary conditions are applied. There-
fore a bubble train is simulated instead of a single bubble. The
mutual influence of neighbouring bubbles is minimized by using a
long channel (15Heff). Periodic boundary conditions imply as well
that the fluid is driven by a body force in the framework of the LBM
and not with a pressure difference. Therefore, we cannot address
simulations with upward and downward flows [6] which would
require a simultaneous imposition of pressure boundary conditions
and the body force.

It was indicated [1] that the film thickness for two-dimensional
simulations should be at least twice as large as the inter-
face thickness. The interface thickness occupies 3–5 nodes
due to the continuous interface formulation of the binary liq-
uid model. Therefore, the film should be resolved as at least
6–10 nodes.

Hazel and Heil [11] and Fig. 1 specify that the diagonal bubble
radius is different from the axial bubble radius for Ca ≤ Ĉa ≈ 0.03.
The radii are approximately the same for larger values of Ca with a
value Rdiag = Raxis = 0.49Heff. Therefore, taking the minimal require-
ment for the film thickness to be resolved, i.e. 6 lattice nodes, one
would obtain a grid size of 600 × 600 × 9000 to properly resolve the
binary liquid flow. This size implies that relatively large computa-
tional resources are required to perform the simulations. However,
as it will be shown later the film thickness in the simulations is

larger than the example number (0.49Heff for Ca ≈ 0.03). Therefore,
actual grids are smaller (indicated in Section 4) than the computa-
tionally too demanding grid of 600 × 600 × 9000.
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One can argue that a non-uniform grid could be used. How-
ver, the film thickness is a function of the curvatures of the front
ubble tip [2] and the grid would need to be refined just at the

nterface between gas and liquid. This is complicated to achieve for
ynamic systems where a bubble moves in the streamwise direc-
ion. To reduce the computational overhead, we  decided to take a
impler approach and exploit the inherent symmetry of the prob-
em by simulating only a quarter of the channel (see Appendix B for
etails).

It should be noted that the binary liquid model we used has a
niform density. This issue was partially addressed in the intro-
uction: to describe the Bretherton problem one needs to take into
ccount gravitational, viscous, inertial, and surface tension forces.
mong all the works, there is no full agreement between results
ven in the limit of Reynolds number zero. Moreover, as was indi-
ated by Kreutzer et al. [16] and by Thulasidas et al. [6] the pressure
istribution, streamlines and bubble shape are strongly affected by
he length of the liquid slug and the length of the bubble. In the
urrent simulations we minimize the effects of bubbles train and
nertia. Inertia effect are minimized as the largest Reynolds number
s not bigger than 10. The mutual effects of bubbles motion on each
ther is minimized by choosing lengths of a bubble and a chan-
el large enough in comparison with the channel height. However,
ore thorough studies are needed in order to understand precisely

he above-mentioned effects.

. Binary liquid lattice Boltzmann model

The lattice Boltzmann equation (LBE) operates on a rectangular
rid representing the physical domain. It utilizes probability distri-
ution functions (also known as particle populations) containing

nformation about macroscopic variables, such as fluid density and
omentum. LBE consists of two parts: a local collision step, and a

ropagation step which transports information from one node to
nother in certain directions specified by a discrete velocity set. The
BE is typically implemented as follows [32]:

f ∗
i

(x, t) = ωf eq
i

(x, t) − (1 − ω)fi(x, t) + Fi, collision step

fi(x + ci, t + 1) = f ∗
i

(x, t), propagation step

g∗
i
(x, t) = ω�geq

i
(x, t) − (1 − ω�)gi(x, t), collision step

gi(x + ci, t + 1) = g∗
i
(x, t), propagation step,

(3)

here {f, g}i are the probability distribution functions in the direc-
ion ci , ω is the relaxation parameter, ω� is the phase relaxation
arameter, and Fi is the external force population responsible for
orce inclusion to the Navier–Stokes equation.

The binary fluid LB model is based on a free-energy functional
23,33], and operates with two sets of populations: one (fi) to track
he pressure and the velocity fields, and another (gi) to represent
he phase field � indicating gas or liquid. The equilibrium popula-
ions [34] are defined as:

f eq
i

= wi(3p0 − k��� + u˛ci˛

c2
s

+ Qi˛ˇu˛uˇ

2c4
s

) + kw˛ˇ
i

∂˛�∂ˇ�, 1 ≤ i ≤ Q − 1

f eq
0 = 	 −

∑
i /=  0

f eq
i

geq
i

= wi

(

� + �ci˛ui˛

c2
s

+ �
Qi˛ˇu˛uˇ

2c4
s

)
, 1 ≤ i ≤ Q − 1

geq
0 = � −

∑
geq

i
,

(4)
i /=  0

here 
 is the mobility parameter; the chemical potential
 = − A� + A�3 − k��; k is a parameter related to the surface

ension; A is a parameter of the free-energy model; Q is the
g Journal 178 (2011) 306– 316 309

number of directions (19 for the D3Q19 model); the tensor Qi˛ˇ =
ci˛ciˇ − c2

s ı˛ˇ with the sound speed parameter c2
s = 1/3. The bulk

pressure is expressed as p0 = c2
s 	 + A(−0.5�2 + 0.75�4). The dis-

crete velocity set is defined as:

cix = {0, 1, −1, 0, 0, 0, 0, 1, −1, 1, −1, 0, 0, 0, 0, 1, −1, 1, −1}

ciy = {0, 0, 0, 1, −1, 0, 0, 1, 1, −1, −1, 1, −1, 1, −1, 0, 0, 0, 0}

ciz = {0, 0, 0, 0, 0, 1, −1, 0, 0, 0, 0, 1, 1, −1, −1, 1, 1, −1, −1}.

(5)

The weights are w0 = 0, w1−6 = 1/6 and w7−18 = 1/12. The weights
related to the inclusion of the surface tension are:

wxx
1−2 = wyy

3−4 = wzz
5−6 = 5

12
wxx

3−6 = wyy
1−2,5−6 = wzz

1−4 = −1
3

wxx
7−10,15−18 = wyy

7−14 = wzz
11−18 = − 1

24
wxx

11−15, = wyy
15−18 = wzz

7−10 = 1
12

wxy
7,10 = −wxy

8,9 = wyz
11,14 = −wyz

12,13 = wzx
15,18 = −wzx

16,17 = 1
4

.

(6)

The set of equations (4) restores the macroscopic fluid equations
as:

∂t	 + ∂˛	u˛ = 0

	
(
∂t + uˇ∂ˇ

)
u˛ = F˛ − ∂ˇP˛ˇ + �∂ˇ

(
	∂˛uˇ + 	∂ˇu˛

)
∂t� + ∂˛�u˛ = M∂2

ˇˇ�,

(7)

where � = c2
s (� − 1/2) is the kinematic viscosity, M = 
 (�� − 1/2)

is the mobility parameter, and � = 1/ω  and �� = 1/ω� are the relax-
ation parameters of density and phase fields. The first equation of
system (3) simulates the continuity equation and the Navier–Stokes
equation. The lattice Boltzmann equation for the second set gi sim-
ulates the phase propagation with the supplied velocity from the
Navier–Stokes equation.

The system allows the separation of the liquid phase with � = 1
and a so-called gas phase with � = − 1. The relaxation time is taken
to be linearly dependent on the relaxation times �gas and �liq:
� = �gas + ((� + 1)/2)(�liq − �gas). This makes it possible to smoothly
change viscosity from the gas viscosity �gas = (1/3)(�gas − (1/2)) to
the liquid viscosity �liq = (1/3)(�liq − (1/2)) in a region where a
phase gradient exists. The surface tension in the framework of the
binary liquid model is

√
8kA/9. The walls were simulated using the

bounce-back rule [19]. The walls were taken with neutral wettabil-
ity as the studied effects are wettability-independent [1].  Moreover,
there is no two/three phase contact line where wettability plays a
crucial role.

4. Results

This section describes numerical simulations. We  refer to
Appendix A for initialization and scaling procedures. The
simulations were conducted on the following fluid domain
grids 100 × 100 × 1500, 160 × 160 × 1500, 160 × 160 × 2400 and
200 × 200 × 3000. Body forces were varied as dP/dz = 10−6–10−4

lattice units. The binary-liquid model parameters were kept in the
stable region k = A = 0.04 for most simulations and k = A = 0.004 for
simulations with Ca = 6.70. Note that the choice of k = A guarantees
that the film thickness is 5 grid spacings, which is a good choice for
stability reasons. The relaxation rates were taken as �liq = 2.5 and

�gas = 0.7 giving a gas-over-liquid viscosity ratio of 10. The relax-
ation parameter for the phase field was �� = 1.0.

First, we examine when the steady-state is reached. Then,
the critical capillary number is identified where the transition
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Table 1
Results for the steady-state case. One can see that 200,000 steps are enough to shape
the  bubble and approach the steady state. The small noise in the capillary number is
connected to the identification of the interface and spurious currents in the system.
The spurious currents influence the bubble velocity identification which is taken
at  the front bubble tip. The binary liquid model is the continuous interface model.
Thus one needs to interpolate phase function data to obtain the location of the
bubble interface � = 0 and its velocity. Thus, there is a larger deviation for capillary
numbers. All other parameters are relaxed to the steady-state.

Niter Ca Raxis Rdiag

140,000 0.1879 0.8657 0.8708
150,000 0.1879 0.8652 0.8704
160,000 0.1878 0.8650 0.8702
170,000 0.1880 0.8648 0.8701
180,000 0.1882 0.8647 0.8700
190,000 0.1885 0.8646 0.8699
20,0000 0.1893 0.8645 0.8698
210,000 0.1963 0.8645 0.8697
220,000 0.1925 0.8644 0.8697
230,000 0.1936 0.8644 0.8697
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Fig. 4. The bubble shape and the corresponding streamwise velocities taken on the
bubble interface after 240,000 iterations. Directions y and z are scaled to the half of

patterns are expected. We  examined velocity patterns to identify
the moment of the streamlines pattern change. We  chose two  rep-
resentative capillary numbers as Ca = 0.47 and Ca = 0.63. One can

Table 2
Simulation results in terms of Raxis and Rdiag for the transition region between non-

axisymmetric and axisymmetric cases. The transition occurs at Ĉa = 0.09, which is a
linear interpolation between data with radii not equal and equal to each other. The
grid  for simulations was chosen as 50 × 50 × 1500 for a quarter of a channel. That
means that the corresponding interpolation error of determining radii is a half of
the reverse grid number, 1/2Nx = 0.01. Thus, if radii values are within 1% we consider
them equal to each other. We also included a corresponding Reynolds number to
show that inertia effects can be neglected.

Ca Raxis Rdiag Re
240,000 0.1961 0.8645 0.8697
250,000 0.1932 0.8645 0.8698

rom the non-symmetrical to axisymmetrical bubble shape
ccurs. The dependency of the radii on the capillary num-
er is presented for the range of moderate capillary numbers
.05 ≤ Ca ≤ 6.0. Results are concluded with studies of the velocity
attern.

.1. Steady-state approach

We  performed different simulations to understand the number
f time steps required for the system to settle down to a steady
tate. The grid was 52 × 52 × 750 which represents a quarter of the
hannel with the initial film thickness of 6.5 lattice units together
ith the body force dP/dx = 1.6 × 10−6. The simulation was  per-

ormed for 250,000 iterations with the step of 10,000 iterations.
he results for time iterations 140,000–250,000 are summarized
n Table 1. While the capillary number variation is around 5%, the
adii variation is 0.1%. Note, that the interface velocity is defined as
he bubble tip velocity in the microchannel center. Multiphase lat-
ice Boltzmann models is known to have spurious currents near
he interface [35,36]. Therefore, the bubble interface velocity is
nfluenced by spurious currents and capillary numbers show larger
ariation than radii.

To further examine the steady-state, the velocity in the stream-
ise direction is plotted. The values of the velocity are taken on

he contour where � = 0. This corresponds to the bubble inter-
ace. That allows to check whether the bubble is propagating as

 whole rigid body or it’s shrinking or elongating. This is one of
he characteristics of the steady-state. One can see in Fig. 4 the
ontour plot and the corresponding streamwise velocity compo-
ent. The cross section is a plane x = 0, where x points towards the
eader, z is the streamwise direction. As fluxes inside the bubble
ave clockwise and counterclockwise directions, see Section 4.3,
ne needs to thoroughly examine only the points corresponding
o the front and the rear bubble caps. If they are equal, then it
s exactly the velocity with which the bubble propagates in the

icrochannel as a rigid body. For a physical analogy, one can
magine the rotating ball propagating in the streamwise direc-
ion. The front and rear ball points have the same streamwise
elocity.
.2. Radii transition

Due to computational power restrictions we can only access the
egion of Ca ≥ 0.05. In this region the proper resolution of the film
the channel Heff/2. One can see that the bubble front and rear caps are propagating
with nearly the same velocity, that is the actual bubble velocity. For more details on
velocity patterns see Section 4.3.

thickness is achievable. To identify the critical capillary number Ĉa a
number of simulations were conducted, see Table 2. In comparison
with the results of the Hazel and Heil [11] (Ĉa = 0.04) our results
are closer to the VOF continuous interface method simulation by
Liu and Wang [12] (Ĉa = 0.1). Due to linear approximation we  con-
sider a bubble to have a circular cross section if Raxis and Rdiag differ
by less than 1%. The transition for current simulations happens
for Ca ≈ 0.09 calculated as linear interpolation between data pre-
sented in Table 2. One can see two  examples of non-axisymmetric
and axisymmetric bubble shapes for Ca = 0.053 and Ca = 1.13, see
Fig. 5.

4.3. Velocity pattern

The liquid velocity pattern is known to change its behavior
depending on the capillary number. For relatively low capillary
numbers Ca < 0.6, in a reference frame moving with the bubble a
vortex is observed [11]. For larger capillary numbers it is indicated
that there is no vortex in front of the bubble. The transition capil-
lary number specified by Hazel and Heil [11] for a square channel as
Ca = 0.691. However, the distribution of vorticity strongly depends
on the Reynolds number [4],  as well as on the pressure distribution.
In the case of the bubble train it is indicated by Kreutzer et al. [16]
that the pressure is significantly influenced by bubble frequency
and slug distance. The present simulations are conducted for bub-
ble trains and certain differences in terms of changing streamline
0.053 0.95 1.01 0.907
0.078  0.93 0.95 1.062
0.102  0.91 0.91 1.392
0.132 0.89 0.89 1.80
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Fig. 5. Cross sections of the phase field in the middle of the bubble for Ca = 0.053
(top) and Ca = 1.13 (bottom). Cross sections are rescaled on the half channel height.
Other parameters are indicated in Table 2. One can see that the left picture is non-
axisymmetric in contrast with the right one, i.e. Rdiag /=  Raxis . The transition happens
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Fig. 6. Velocity vector maps for Ca = 0.47 and Ca = 0.63. One can see that there are no
vortexes created in front of the bubble for Ca = 0.63. For presented simulations the
transition happens between Ca = 0.47 and Ca = 0.63, which is a different value from

numbers Ca > 4 near the bubble front cap which after certain dis-
tance relaxes to have radii equal to each other. The bubble shape
was  calculated for the large capillary number Ca = 6.43, see Fig. 8.

Fig. 7. Simulations radii variations (left) along the bubble for different capillary
numbers in the plane x = 0. One can see that the diagonal radius shows the jump
t Ĉa = 0.09.

ee in Fig. 6 a clear transition between associated patterns. Among
ll different simulation runs with different grids and initial condi-
ions, the transition occurs at Ca = 0.6–0.7, see Fig. 6. The transition
s identified between regimes where there exists and does not exist

 vortex in the slug. Either all streamwise slug velocities have the
ame sign (no vortex), or have different signs (vortex). It is indicated
y Kreutzer et al. [4,37] that the bubble train flow depends on the
lugs and bubbles lengths. Thus, we expect the difference of bub-
le train simulations and simulations of a semi-infinite air finger
ropagation [11]. The transition also depends on the identification

f the bubble velocity which is influenced by spurious currents and
nterpolation errors.
Ca  = 0.69 [11]. However, we performed a number of different types of simulations

(different force, width initialization). The critical transition capillary number Ĉa is

not  well fixed and varies from Ĉa = 0.6–0.7.

4.4. Variation over bubble length

The work of Liu and Wang [12] shows the variation of the bub-
ble radii along the bubble. The bubble shape in terms of axial and
diagonal radii is reconstructed for a number of capillary numbers,
Fig. 7. One can see that for smaller capillary numbers the diagonal
radius exhibits a small jump near the rear bubble cap. That agrees
with results of Liu and Wang [12]. However, our simulations show
smoother behavior of the jump.

Another interesting phenomenon regarding the bubble shape
was  indicated by Hazel and Heil [11]. In their simulations the
non-axisymmetric shape was observed even for larger capillary
near the bubble rear cap. This agrees with the VOF simulations of Liu and Wang [12]
(right). Coordinate z increases in the streamwise direction. The discretization of Liu
and Wang [12] data was performed with “Engauge Digitizer”.
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Fig. 8. The bubble shape for the capillary number Ca = 6.43 is presented (top). z
increases in the streamwise direction. One can see that near the front tip (large z)
the diagonal radius exhibits a jump which is relaxed to the axis radius (small z).
Even though this resembles the shape of the curves obtained by Hazel and Heil
[11]  (bottom, opposite streamwise direction), there is a difference between radii
of  the current simulation (top) of around 1%, which can be attributed to the linear
i
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[11] who  mentioned that for radii to coincide one needs to have
really long bubbles, at least 100 shorter semi-axis bubble length
nterpolation used in the calculation of the interface.

owever, even the diagonal radius shows the jump near the front
ip of the bubble and it resembles the shape given by Hazel and
eil [11], but the difference is around 1% and can be explained
y error in the linear interpolation used for the interface calcu-

ation. Therefore, we do not observe the symmetry breakage for
a > 4.

.5. Capillary number

The purpose of this section is to study dependence of the radii
n the capillary number. The film thicknesses were extracted from
he middle of the bubble. The data presented in Fig. 9 is simulated
ith different techniques including different initialization, and dif-

erent grids: 52 × 52 × 1500, 82 × 82 × 1500 and 82 × 82 × 2400.
ll our results are consistent and show grid and initialization

ndependence. Therefore one can conclude that for the capillary

umber Ca ≥ 0.05 grid independence is achieved. The results are
ompared with the results of Hazel and Heil [11] and of Liu
nd Wang [12]. The data were extracted from the correspond-
ng references with the help of the program “Engauge Digitizer”.
g Journal 178 (2011) 306– 316

We  observe that lattice Boltzmann simulations exhibit the tran-
sition between non-axisymmetric and axisymmetric shape of the
bubble.

The present simulations show that the corresponding critical
capillary number is close to Ĉa = 0.1 that agrees with the work of
Liu and Wang [12] and is different from the results of Hazel and
Heil [11], Ĉa = 0.04. However, in the range of the moderate capil-
lary numbers our results are closer to the results of Hazel and Heil
[11] and exhibit less noisy trend in radii values and a more accu-
rate transition between non-axisymmetric and axisymmetric cases
than results of Liu and Wang [12].

4.6. Relative velocity

One of the differences between the flow in tubes and square cap-
illaries is that the flow has different streamline patterns. In square
microchannels, the main mass flow occurs through corners [11,12].
This affects the mass flow significantly. One of the characteristics of
the mass flow is the normalized dependence of the relative veloc-
ity on the capillary number. The bubble always moves faster than
the surrounding liquid. The following quantity is defined as relative
velocity [6]:

W = Ububble − Uls

Ububble
, (8)

where Ububble is the bubble interface velocity, and Uls is the liquid
superficial velocity. As far as the steady state is achieved one can
take the liquid superficial velocity exactly at the cross section in the
middle between bubbles. The liquid superficial velocity is defined
as:

Uls =
∫

A
Uliq dA

A
. (9)

The relative velocity was  calculated and compared with the results
of Hazel and Heil [12], see Fig. 10.  One can see an agreement
between the simulations indicating that one of the mass transport
characteristics can be captured accurately.

The relative velocity is an important quantity of mass flow
characterization [16,38].  However, there are other important
characteristics that significantly influence the mass transfer,
i.e. the frequency of the bubbles [16] and inertia effects [4].
Future work is planned to study this phenomenon and calculate
the mass transfer coefficient by solving the advection-diffusion
equation.

4.7. Rectangular channel simulations

While the main focus of this paper is on the square microchannel
simulations, we  performed a number of simulations for rectangu-
lar channels with varying aspect ratio  ̨ = W/Heff = ax/ay, where ax

and ay are sides of the rectangular in x and y directions. Hazel and
Heil [11] performed a number of simulations for the propagation
of semi-infinite air finger in the microchannel. They indicated that
the radii in x and y directions are increasing with the aspect ratio

 ̨ increases. The same trend can be seen for the current simulation
results, see Fig. 11.  One can see that diagonal and axial radii are not
the same as they were in square channels for the capillary number
range investigated here. The same is indicated by Hazel and Heil
for the aspect ratio  ̨ = 1.5. This is not possible to achieve with the
current bubble train simulations.

They as well indicated that the simulations results with different
aspect ratio can be put on one curve by calculating non-dimensional
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Fig. 9. The comparison for the axial and the diagonal radii versus capillary numbers between present simulations and the results of Hazel and Heil [11] (top), of Liu and
Wang  [12] (bottom). One can see that the code mimics behavior of the earlier published r

Fig. 10. Relative velocity comparison between current simulations and simulations
of  Liu and Wang [12]. One can see a qualitative agreement.
esults.

radius s∞ that scales different aspect ratio microchannels. It is based
on the calculation of r∞ (the radius that the air finger will have at
an infinite distance from the bubble tip):

r∞
Heff/2

=
√

Q/�

Heff/2
s∞ = r∞

Heff/2
˛−1/2,

(10)

where Q is the area occupied by air in the cross section. Hazel and
Heil [11] indicated a simple physical interpretation of this phenom-
ena: providing that air is injected with the same velocity to the
channels with different aspect ratio but the same area, the result-
ing occupied area by the bubble should not depend on the aspect
ratio. That is quite interesting phenomena indicating that if bub-

bles are infinite long then they would have the same radius and will
be circular. The current results, see Fig. 12 show that this hypoth-
esis can be extended for bubble train flows with different radii
Rh /= Rv.
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Fig. 11. Radii in x (Rx) and y (Ry) directions for rectangular microchannels with
different aspect ratios. Radii are rescaled on the length of channel in y direction.
One  can see that with the increase of  ̨ the radii increase as well. However, Rx /= Ry .
It  was indicated by Hazel and Heil [11] one needs semi-infinite bubble to achieve
Rx = Ry .
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obtain the desired bubble velocity U from the equation for the
ig. 12. The non-dimensional radius s∞ for different aspect ratio rectangular
icrochannels. One can see that all the curves coincide independently of the aspect

atio.

. Conclusion

This work presents results of binary-liquid simulations for
hree-dimensional channels with square cross sections with the
attice Boltzmann method. By resolving properly the film thickness
s twice the interface thickness [1] the results were shown to be
onsistent with those available in the literature. Note that the
iterature results show some variations. This work falls within
he range of data presented in the literature. For instance, the
ransition from the non-axisymmetric to the axisymmetric case
s shown to be at Ĉa = 0.09 which is close to results of Liu and

ang [12]. However, in the moderate range of parameters sim-
lation results are close to the results of Hazel and Heil [11]
nd exhibit more accurate transition between non-axisymmetric
nd symmetric cases than results of Liu and Wang [12]. Over-
ll, the film thickness dependency on the capillary number,
he transition from the non-axisymmetric to symmetric case,
nd the velocity patterns were investigated. While the goal

f this work is a feasibility study, more numerical studies
re needed to understand the influence of the slug length,
nertia effects, pressure distributions [16,38] on the design of
g Journal 178 (2011) 306– 316

microchannels. Our results show that the lattice Boltzmann
binary liquid model can be used for simulation of gas bubbles in
microchannels.

Appendix A. Scaling procedure

The scaling procedure has been extensively described in our
previous work [1].  Here, we present only an outline of how the
simulations are initialized:

Capillary number: One first needs to set the capillary number and
the Reynolds number for simulations.

Film thickness: After the capillary number is prescribed, one
needs to approximate the axial bubble radius
Raxial, the corresponding film thickness is
ı = 1 − Raxial. One can use correlations of Han
and Shikazono [10] or of Kreutzer et al. [16].
It can also be done by taking correlations from
numerical simulations by Heil [4] and Giave-
doni and Saita [9].

Grid choice: After specifying the film thickness, one needs
to choose the number of nodes to resolve
the film thickness. For binary liquid param-
eters used in simulations, k = A = 0.04 and
k = A = 0.004 the interface is spread over
approximately 5 lattice units. To obtain grid
independent results one needs to choose the
film thickness to be 2–2.5 times larger than
the interface thickness [1].  Given the num-
ber of nodes to resolve the film thickness and
given the lattice Boltzmann benchmark, see
Section 2, one can obtain the grid dimensions.

Velocity: The Reynolds and capillary numbers are sup-
plied from the physical world:

Ca = Ububble�liq

�

Re = UbubbleHeff

�liq
.

(A.1)

In Eq. (A.1) the interface tension coefficient is
prescribed by parameters of the binary liquid
model k and A, the effective channel height
Heff is obtained from the film thickness resolu-
tion, �liq is defined through the relaxation rate
�liq. The relaxation rate �liq is prescribed from
the gas–liquid viscosity ratio �liq/�gas, where
�gas is defined through the gas relaxation rate
�gas. The parameter �gas ≥ 0.5, therefore con-
straining the linked parameter �liq. Moreover,
the stability of the lattice Boltzmann scheme
is known to deteriorate with the relaxation
parameter �liq,gas ≈ 0.5 [39]. On the other hand
the accuracy of the lattice Boltzmann liquid
model deteriorates as (�liq,gas − (1/2))2 [40].
Thus, there is a compromise of the choice of
parameters �liq and �gas. The gas–liquid viscos-
ity ratio in the current simulations was chosen
as �liq/�gas = �liq/�gas = 10 and the relaxation
parameters were chosen to be in the safe
region, i.e. �liq = 2.5 and �gas = 0.7.

Given the considerations of the relaxation parameters, one can

bubble

Reynolds number (A.1). Substituting the bubble velocity Ububble to
the definition of the capillary number, Eq. (A.1), one can obtain
the interface tension which is connected with the binary liquid
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arameters k and A. The stability of the lattice Boltzmann scheme
mplies the simultaneous change of �� with the change of parame-
ers k and A [41]. Therefore, if Reynolds number is less than 50–100
ne can neglect the inertia effects and obtain the bubble velocity
traight from the capillary number limiting the complex interplay
f the parameters for the LBM simulations to be stable:

bubble = Ca
�

�liq
= Ca

√
8kA/9

1/3(�liq − (1/2))
, (A.2)

here usually k = A = 0.004, 0.04.

ody force: It is desired to obtain the prescribed velocity Ububble in
simulations. Since the flow in the simulations is driven
by a body force, a connection between this force and
the bubble velocity Ububble has to be established. We
assume that the flow is close to the planar Poiseuille
flow with Ububble being the maximum in the Poiseuille
profile for the square shaped microchannels:

dP

dz
= �liqUbubble∑

i≤0,j≤0(16/�6)((−1)i(−1)j)/((2i + 1)(2j + 1)[(2

Though the Poiseuille profile assumption works rea-
sonably well [1],  instead of calculating sums (A.3) we
suggest to simply start simulations with the body force
dP/dz = 10−6 − 10−5 for grids of size 50 × 50 × 1500
and the capillary number Ca ≈ 0.1–6.0.

fter imposing the body force the simulations can be run. A typ-
cal simulation runs approximately 100,000–300,000 time steps
o reach steady-state, see Section 4.1.  To design the simulations
ne needs to keep proportionality between parameters through
he equations above. For example if one knows the capillary num-
er Ca1 and the corresponding body force dP1/dz  for simulations
onducted on the grid with the characteristic number of nodes Ny1,
he body force for another simulation can be calculated as:

dP1/dx

dP2/dx
= Ca1

Ca2

N2
y2

N2
y1

(A.4)

ppendix B. Symmetric boundary conditions

To reduce the computational load in terms of memory and CPU
ower by a factor of 4, we performed the simulation of only a quar-
er of the channel using symmetric boundary conditions. The scalar

acroscopic variables at the boundary nodes have the same values
s those of the adjacent fluid nodes. The same applies for tangential
elocities U� , while velocities perpendicular to the mirror bound-
ry Un have opposite signs to that of the velocity of the fluid node.
his can be summarized as:

B = 	F , �B = �F , UB� = UF�, UBn = UFn, (B.1)

here the subscripts B and F stand for the boundary and the nearest
uid node, respectively.

For the lattice Boltzmann model the incoming populations on
he boundary node need to be specified. For generality we  assume
hat the symmetry plane is  ̨ = 0, where  ̨ is the direction x or y.
hen, for lattice Boltzmann populations the symmetric boundary
onditions can be expressed through the following steps:

I: Identify complementary directions. For the direction i′ to be
complementary to the ith direction, the following relations must

hold:

ci˛ = −ci′˛, where  ̨ = is the symmetry plane
ciˇ = −ci′ˇ, where  ̌ /= ˛.

(B.2)

[

[
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)2/W2
eff + (2j  + 1)2/H2

eff])
. (A.3)

Note that the complementary directions for the directions par-
allel to the symmetry plane coincide with the original direction.

II: Take the distributions from the nearest fluid node and apply
them to the boundary node utilizing the complementary direc-
tions:

fi,B = fi′,F . (B.3)

It can easily be seen that the procedure described above conserves
the scalar fields and the tangential velocity, while reversing the
normal flux. The plane of symmetry is located half-way between
fluid and boundary nodes.
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