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ABSTRACT

We study by means of direct numerical simulation the mixing performance of fixed and fluidized beds of spherical,

monodisperse particles in narrow channels. Mixing performance is being characterized by an effective diffusion

coefficient. The Reynolds numbers based on the channel width and superficial velocity are of the order of 10. Under
these laminar conditions the mixing of a passive scalar is greatly enhanced by the presence of particles, with mobile
particles (in fluidized beds) performing much better than fixed particles. The simulations allow for the design of
micro-scale mixing devices in terms of reactor size (length and width), particle size, solids volume fraction, and flow

rate.

© 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

For many (chemical) engineering applications, specifically for
those involving heat and mass transfer over solid surfaces,
micro-fluidic devices form an interesting alternative. Micro-
reactors can integrate various functions in compact volumes,
they can be used for efficient chemical and (bio)medical
diagnostics, and for onboard applications (e.g. fuel cells
in portable equipment). Particle formation and handling
is an important application of micro-reactors. Examples
are (nano)crystallization processes in impinging jet reactors
(Johnson and Prud’homme, 2003), orin T or Y mixers (Roelands
etal.,, 2003). Also particles coating processes have been carried
out in micro-reactors (Andersson et al., 2000).

Scalar mixing in micro-reactors is a notoriously difficult
issue. The often laminar flow requires specific active or pas-
sive mixing devices to homogenize initially separate process
streams (Djenida and Moghtaderi, 2006). In this paper we
investigate how the presence of particles may contribute
to scalar mixing. More specifically we compare the mix-
ing performance of fixed and fluidized beds of spherical,
monodisperse particles confined in micro-channels. In terms
of scalar dispersion, beds involving moving particles and those
with fixed particles show intriguing differences: dispersion in
macroscopic fixed beds was discussed in Levenspiel’s mono-
graph (Levenspiel, 1962), where it was demonstrated that an
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increase of the solids volume fraction increases scalar dis-
persion. Simulations involving scalar dispersion by mobile
particles in relatively dilute suspensions show an opposite
trend (Derksen, 2008b): reduction of dispersion towards higher
solids volume fractions, where it should be noted that in these
simulations the moving particles were not confined by walls,
and were one-way coupled (solid-to-fluid only) to the fluid in
which the scalar was dissolved.

Our method of research is purely computational: the flow
ofiinterstitial liquid in the channel with particles is solved with
the lattice-Boltzmann method (Chen and Doolen, 1998; Succi,
2001). Scalar mixing is assessed by solving the convection-
diffusion equation of a passive scalar dissolved in the liquid
phase with a finite volume scheme, and appropriate boundary
conditions at the particles surfaces. Given that laminar flows
are considered and that relatively simple geometries are used,
the computational approach requires a minimum of mod-
elling. The Navier-Stokes equations are solved directly, and
(in the fluidized particle simulations) are fully coupled to the
motion of the solid particles: the moving particles constitute
no-slip conditions for the interstitial liquid; and the parti-
cle motion is the result of hydrodynamic forces induced by
the liquid flow. In the moving-particle-simulations, particles
undergo hard-sphere collisions that are explicitly resolved.

In applications as the ones considered here that require
hardly any modelling, computational simulation is a truly
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Nomenclature

¢, Co scalar concentration, initial scalar concentra-
tion

Cz-H/2 average scalar exit concentration in half the
channel

dp particle diameter

g gravitational acceleration vector

H channel width

Ly, L4, Ly channel portions (bed, downstream, and
upstream length, respectively)

Ip particle center position

Rec =u;,H/v channel Reynolds number

Sc=v/I" Schmidt number

t time

Ty granular temperature
Uiy, inlet velocity

Vp particle velocity

Us particle settling velocity

X,y,z  spatial coordinate system

Greek symbols

¢ solids volume fraction

v kinematic viscosity

Ps, Pl solid and liquid density

r, e diffusivity, effective diffusivity
2p particle angular velocity

competitive alternative for experimentation. The level of
realism that can be reached is very high. On top of that, simula-
tions give direct access to the full data (scalar fields; flow fields;
particle positions, velocities, collisions, etc.). Obviously sim-
ulations cannot fully replace experimentation in the type of
applications discussed here; an appropriate balance between
stimulations and experiments builds confidence in simulation
results and guides experimental effort.

This paper is organized in the following manner. We first
describe the flow systems in terms of their geometry and
dimensionless numbers. Then we briefly describe the com-
putational approach. Results comprise the characterization of
the mixing performance of the various micro solid-liquid sys-
tems investigated, and the liquid-solid fluidization behaviour
in narrow channels at low Reynolds numbers. Furthermore, it
is shown how design choices (e.g. particle size relative to chan-
nel width, channel length, and flow rate) influence mixing
performance. Finally we summarize our findings.

1.1. Channel layouts and flow conditions

We consider vertically placed channels with square cross-
sections (see Fig. 1). At the bottom of the channel we force fluid
in by imposing a uniform velocity u;, over the cross-sectional
area. This velocity, the channel width H and the fluid’s vis-
cosity v define the channel’s Reynolds number: Re. =u;,H/v.
In the channel we place uniformly sized spherical particles
with diameter dp. Two situations are being considered. In the
first, spheres are placed in random close packing with fixed
positions. The bed of particles has a length L;,. Upstream and
downstream of the bed the channel is void of particles over
length L, and Ly, respectively (see Fig. 1). In the second situa-
tion, the particles are confined to the same space with length
Ly. However, they now move freely around within this space. At

x=0

Fig. 1 - Micro-channel flow geometry including definition
of the coordinate system. The vector g indicates the
direction of gravity and is in the negative x-direction.

its lower and upper end the particles collide on an imaginary
wall that the fluid passes undisturbed. These boundaries can
be viewed as very fine wire meshes (with mesh width much
smaller than dp). The particles are fluidized by the upward
liquid flow.

The main dimensionless numbers governing the
liquid-solid system are the solids volume fraction ¢ of
the particle bed (with ¢ being defined as the volume occupied
by the solids over the part of the channel volume allowed for
the particles H2Ly), the aspects ratios dp/H and Ly/H, and the
solid over fluid density ratio ps/p;. Finally — since we will be
considering cases with fluidized particles in vertical channels
- gravitational acceleration g plays a role. It is introduced via
the Stokes settling velocity of a single particle in unbounded
fluid vs = 1/18(ps — p1)Igl/o1v df, as included in the velocity
ratio vs/ujy.

Scalar mixing is quantified by solving the convection-
diffusion equation for a passive scalar concentration ¢ with
scalar diffusivity I" (and Schmidt number Sc=v/I") dissolved
in the liquid. The scalar enters fully segregated at the bottom
side (at x=0) of the mixer: in half of the inlet cross-section
(z<H/2), no scalar is added,; in the other half of the inlet cross-
section (z>H/2) we maintain a scalar concentration of c=cg.
The scalar release at x=0 only starts when the solid-liquid
flow is fully developed; the start of scalar release is denoted
with t=0.

To limit our parameter space, two dimensionless groups
were set constant throughout the research: ps/p; = 2.5 (e.g. solid
glass beads in water) and Sc=103 (which is a typical Schmidt
number for liquid systems).

1.2 Computational approach

The lattice-Boltzmann method (LBM) (Chen and Doolen, 1998;
Succi, 2001) has been used to solve the fluid flow in the chan-
nel and in between the spherical particles. At the inlet (x=0) a
uniform velocity uy, is imposed; at the outlet (at x=Ly + Ly, +Lg)
we have a zero-axial-gradient condition (3/0x=0). The chan-
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nel walls as well as the spherical particle surfaces are no-slip
boundaries. For the fixed bed cases, the fluid velocity at the
spherical particle surfaces is zero. In case of mobile parti-
cles, fluid and particle motion are fully coupled by demanding
that at the surface of each sphere the fluid velocity matches
the local velocity of its surface (which is the sum of the lin-
ear velocity vp, and rotation &p x (r —rp) with €, the angular
velocity of the sphere, rp the center position of the sphere,
and r a point on its surface). In the forcing scheme that
is applied here for establishing no-slip at the spherical sur-
faces this is accomplished by imposing additional forces on
the fluid at the surface of the solid sphere. The details of
the implementation can be found elsewhere (Goldstein et al.,
1993; Derksen and Van den Akker, 1999). The collection of
forces representing the no-slip conditions are added up to
determine the hydrodynamic force and torque acting on each
sphere (action=—reaction). In case of mobile spheres, these
are used to evaluate the equations of linear and rotational
motion of the spheres. Sphere-sphere and sphere-wall col-
lisions are considered fully elastic and smooth (no friction).
In the low Reynolds number/highly viscous flows considered
here this is not a drastic assumption since energy is largely
dissipated in the liquid anyhow (Derksen and Sundaresan,
2007).

The spatial resolution of the simulations is such that the
particle diameter dy, spans 12 lattice spacings. Grid sensitivity
of the forcing method in LBM context (Ten Cate et al., 2002;
Derksen and Sundaresan, 2007; Derksen, 2008a) has shown
that d, =12 is sufficient resolution.

The dispersion of the passive scalar dissolved in the con-
tinuous phase fluid is simulated by numerically solving a
convection-diffusion equation for the scalar concentration c.
For this an explicit finite volume representation on the same
grid as used by the LBM is employed. To limit numerical dif-
fusion, we apply TVD discretization with the Superbee flux
limiter for the convective fluxes (Hartmann et al., 2006; Harten,
1983; Sweby, 1984). We step in time according to an Adams-
Bashford scheme. We do not allow scalar concentration inside
the spherical particles. At the surface of the particles we
impose dc/on=0. This condition is also applied for assigning
concentrations to grid nodes that get uncovered by a mov-
ing solid particle. Since particles typically move less than 0.05
times the lattice spacing per time step, an uncovered node
always is close to a solid particle interface. We draw the normal
out of the particle into the fluid at the position of the uncov-
ered node. By interpolation we determine the concentration
on the normal 1 additional grid spacing into the fluid and
assign that concentration to the uncovered node. In some sit-
uations this cannot be done: it occasionally occurs that a grid
node gets uncovered in between two closely spaced particles
moving away from each other after a collision. In such cases
we assign the average concentration in the direct vicinity to
the uncovered grid node, while keeping that vicinity as small
as possible. Particles covering and uncovering grid nodes con-
taining concentration information makes the simulations not
inherently mass conservative. In practice mass is conserved
within 0.5% over the full length of a simulation (the latter
being of the order of 5x 10° time steps, which corresponds
to approximately 20(H/uj,)).

2. Results

In discussing the results, the focus will be on comparing the
mixing performance of fixed and fluidized beds, and on the

"
:

Fig. 2 - Scalar concentration in the center xz-plane at three
moments in time (t=2, 4, 8 x H/u;,)) after starting the release
of the scalar at x=0. Left three panels: fixed bed (¢ =0.504).
Right three panels: fluidized bed (¢ = 0.365, vs/u;, = 24). In
both cases Re.=12.2, dp/H=0.197, and L;,/H=3.28.

fluidization characteristics in the narrow and low-Reynolds
number beds as used here.

Typical results in terms of evolving concentration fields
for a fixed bed and a fluidized bed case are given in Fig. 2.
We look at the center cross-section through the channel at
three moments after the scalar release. The round disks are
the cross-sections of the spheres; all spheres have the same
size but are positioned differently with respect to the cross-
section. In the fluid bed we keep track of the orientation of the
spheres (indicated by the black markers on each sphere); the
orientation of the spheres in case of a fixed bed is irrelevant.
The thin, horizontal white lines in the panels related to flu-
idized particles are the boundaries the spheres are confined
to. In Fig. 3 are snapshots of the scalar concentration fields in
the exit plane for the fixed and fluidized bed, clearly showing
that at the exit the scalar field has not completely forgotten
its segregated state in which it entered.

The scalar mixing performances of the fixed and fluidized
bed are clearly different. The motion of the fluidized particles
induces fluid motion that helps in dispersing the scalar. Parti-
cle motion induces temporal variation as well as shown in the
time series of the cross-sectional average concentration in the
exit plane (Fig. 4). A simple way to characterize scalar disper-
sion is by monitoring at the exit plane how much scalar has
reached the “other” side of the channel, i.e. that part of the
channel’s cross-section where no scalar was injected at the
inlet plane. We quantify this with the average scalar concen-
tration over that part of the exit plane with z<H/2 (denoted as
C,-ny2)- Avalue of ¢,_p/, =0 implies no dispersion at all; a value
of 0.5¢o implies ideal dispersion since in that case the exit
concentration must be virtually uniform. Time series of ¢,_y/»
have been included in Fig. 4. They show a steady-state value
of ¢, /2 =0.139¢, for the fixed bed case, and a time-averaged
value of 0.291cy (and standard deviation 0.43cg) for the flu-
idized case in quasi-steady-state (reached after tu;,/H ~ 10).

Increasing the length of the channel helps in better spread-
ing the scalar. In Fig. 5a we show results of three simulations
in terms of ¢,_y, for three lengths of the reactor; the rest of the
conditions are the same for these three cases. The exit con-
centration c,_y, increases, albeit marginal for the fixed bed;
its standard deviation (for the fluidization cases) decreases
with length. The exit concentration c,_y/, can be translated
in an effective diffusion (or dispersion) coefficient I"e through
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Fig. 3 - Scalar concentration in the exit plane at t=8 H/u;,.
Top panel: fixed bed; bottom panel: fluidized bed. Same
conditions and color scale as Fig. 2.

a simple, one-dimensional diffusion model:

1 (Cz<H/2 ) 2 H?ujn (1 — ¢)

Ie=—
¢ 4w Co Ly

(1)

In the analysis leading to Eq. (1) we use penetration theory to
estimate the mass transfer across the z=H/2 plane. The mass

Fig. 4 - Time series of the average concentration in the exit
plane (a), and lower portion of the exit plane (with z<H/2)
(b) for the fixed bed (dashed line) and fluidized bed (solid
line) cases as depicted and defined in Fig. 2.
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Fig. 5 - Exit concentrations c,_y» (a), and effective
diffusivities (b) as a function of reactor length. The open
squares indicate the fluidized bed; the triangles the fixed
bed. The filled squares in (a) indicate the RMS of the
fluctuations for the fluidized cases.

transfer coefficient then is k = 2./ I's/te with t, the time a fluid
package spends on average in the bed: te =Ly, (1 — ¢)/ujy,-

The results in Fig. 5b show that for the fluidized system I,
only weakly depends on Ly, giving credit to the simple diffu-
sion model. For the fixed beds the effective diffusivity varies
much stronger with length making the one-dimensional
model less appropriate for such systems. In any case, the dif-
fusivity brought about by the fluidized particles is generally
four times higher than for fixed beds. Fixed beds in turn have
aroughly five times higher diffusivity than the no-particles sit-
uation where the ratio of (molecular) diffusivity over viscosity
is 1/Sc=0.001.

From now on, the mixing performance will be expressed
in terms of I, calculated from Eq. (1) and (in quasi-steady-
state) the time-averaged values of c,_p/,. Given the relatively
poor dispersion capacity of the laminar fixed bed, the remain-
der of this paper will focus on low Reynolds number fluidized
beds.

There are many choices to be made in designing a micro-
fluidized bed mixer. We will discuss three of them here:

e The flow rate through the bed: it has a lower bound for
which the particles do not get fluidized, and an upper
bound for which the particles get blown against the
upper grating; in both cases the bed approaches a fixed
state with apparently bad consequences for its mixing
capacity.

o The size of the particles relative to the channel width H.

e The solids volume fraction ¢.
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Fig. 6 — Fluidized bed height (a), granular temperature (b),
and effective diffusion coefficient (c) as a function of the
ratio vs/uj,. Rec=12.2, ¢ =0.365, dp/H=0.197, L;,/H=3.28.

In general, the flow rate (u;,H2) and also the ratio H/d, may
have consequences for the channel’s Reynolds number Re.
With respect to the latter: for a given channel size, smaller
particles require a lower flow rate for fluidization. With the
same liquid properties this would imply a lower Re.. However,
in order to single out the effect of fluidization properties (bed
expansion, granular temperature) on scalar mixing, the sim-
ulations were set up such that Re. was fixed to 12.2. This was
achieved by adjusting the liquid’s viscosity.

As the relevant dimensionless parameter controlling the
flow rate we consider the ratio of the settling velocity of the
particles over the inlet velocity vs/u;,. In Fig. 6 we show how
the fluidized bed characteristics depend on this velocity ratio.
In terms of the bed height (which is defined as the time-
average of the average x-position of the top eight particles at
any moment in the bed) we clearly see an upper limit (par-
ticles pushed against the upper grating for low vs/u;,) and a
lower limit (particles forming an almost fixed bed supported
by the lower grating for high vs/uy,). This reflects in the granu-
lar temperature (T = 1/2(ug - ug) with ug the fluctuating part of
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Fig. 7 - Fluidized bed height (a), granular temperature (b),
and effective diffusion coefficient (c) as a function of
particle diameter d, relative to bed width H. Squares relate
to vs/u;, = 24, triangles to vs/u;, = 30. Re. =12.2, ¢ =0.365,
and L,/H=3.28.

the solids velocity)! going through a maximum at vs/u;, &~ 20.
As a consequence of this, the effective diffusivity goes through
a maximum at a nearby vs/u;, value (us/uy, ~ 22); the higher
the granular temperature, the better the liquid is stirred by the
particles.

The mixing performance of the bed clearly depends on
the particle size relative to the channel width; see Fig. 7.
Smaller particles generally show higher effective diffusion
coefficients. It should be noted that at the high end of the
particle size, the particles are blown against the upper grat-
ing if vs/u;, ~ 24. Increasing that value to 30 prevents this and
strongly increases I'. for the big particles (see the triangular
symbol in Fig. 7c at dp/H=0.32).

1 Which in this specific case is the same as the instantaneous
particle velocity given the average particle velocity being zero.
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Fig. 8 - Fluidized bed height (a), granular temperature (b),
and effective diffusion coefficient (c) as a function ¢ with
further vs/u;, = 24, Rec=12.2, dp/H=0.197, and L,/H=3.28.

Finally the effect of the overall solids volume fraction (as
defined in Section 1.1) on fluidization and mixing is displayed
in Fig. 8. In the range of solids volume fractions investigated,
we observe a slight but continuous increase of the effective
diffusion coefficient with increasing ¢. At the higher end this
trend levels off as the mobility of the particles decreases
(reflectedin e.g. a decrease in granular temperature). The trend
observed here is opposite to the one observed in the simula-
tions by Derksen (2008b) for unconfined, granular particles.
There a decrease of effective diffusivity was observed with
increasing solids volume fraction. Two effects could explain
this potential controversy: (1) In Derksen (2008b) the granu-
lar temperature and domain size were imposed and constant
for simulations and therefore decoupled from the solids vol-
ume fractions; in this paper the granular temperature and the
bed height vary, partly as a result of the varying solids volume
fraction (Fig. 8a and b). (2) In the present work the particles are
confined by walls, limiting their mean-free path as opposed to
the unconfined particles (fully periodic boundary conditions)
in Derksen (2008b).

3. Summary

In this paper we discussed the mixing in narrow (laminar)
channels of a passive scalar dissolved in a liquid in the pres-
ence of fixed and fluidized spherical, solid particles. The
method of research was purely computational: the liquid
flow, the solid particle motion (in case of fluidized beds),
and the scalar transport were all directly resolved by the
numerical methodology. Fluid flow was solved with the lattice-
Boltzmann method; solid particle motion was directly coupled
to this method with particles undergoing hard-sphere colli-
sions; passive scalar transport was simulated with a finite
volume scheme on the same grid as used for the LBM. The
computational method did not involve ad hoc models; the
governing equations were directly solved.

Compared to fixed beds, the mixing performance (quanti-
fied in terms of an effective diffusion coefficient) of fluidized
beds was much better, and the focus of the paper is therefore
on the latter.

We have been able to relate the mixing performance of
the fluidized mixing device in terms of an effective diffusion
coefficient (scaled with the liquid’s kinematic viscosity) with a
number of dimensionless process parameters. The sensitivi-
ties observed are partly typical for the specific geometry (with
confined space for the particles), partly more universal (e.g. in
terms of the impact of solids volume fraction or relative par-
ticle size on effective diffusivity). An important finding was
that the micro-channel mixing device is operable in a broad
range of superficial liquid velocities. As shown (Fig. 6c) it mixes
much better than a fixed bed reactor in the investigated range
of settling velocity over superficial velocity. Furthermore, finer
particles mix better than coarser particles, and increasing the
solids volume fraction also slightly helps in mixing the scalar.
The latter against the “cost” of a higher pressure drop.
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