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A procedure for direct, meso-scale simulations of flexible fibres immersed in liquid flow is introduced. The fibres are composed of chains of
spherical particles connected through ball joints with the bending stiffness of the joints as a variable. The motion of the fibres and the liquid is
two-way coupled with full resolution of the solid–liquid interface. First the simulation procedure is validated by means of an analytical solution
for sphere doublets in zero-Reynolds simple shear flow. Subsequently we use the numerical method to study inertial flows with fibres, more
specifically the interaction of a fibre with isotropic turbulence.

Une procédure pour des simulations directes à la méso-échelle de fibres souples immergées dans la circulation de liquide est présentée. Les
fibres sont composées de châınes de particules sphériques reliées par des joints à rotule avec la rigidité à la flexion des joints comme variable.
Le mouvement des fibres et du liquide est bidirectionnel avec une résolution intégrale de l’interface solide-liquide. D’abord, la procédure de
simulation est validée au moyen d’une solution analytique pour les doublets de sphère dans un écoulement de cisaillement simple à nombre de
Reynolds nul. Par la suite, nous utilisons la méthode numérique pour étudier les flux inertiels avec les fibres, plus précisément l’interaction d’une
fibre avec la turbulence isotrope.
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INTRODUCTION

Motivated by applications in pulp handling, flow of poly-
mer solutions, and crystallisation processes (to mention
a few examples only) we study the mutual interaction

between fibres, and interactions of fibres with liquid flow, specifi-
cally turbulent liquid flow. The details of these interactions matter
for characterising the rheological behaviour of fibre suspensions,
for understanding conditions for fibre coagulation (Schmid and
Klingenberg, 2000), and for assessing breakage probability of
crystalline needles (stiff fibres) or flexible fibres as a result of fluid
deformation. For this we are building direct numerical simulation
tools, with an emphasis on a computational procedure that allows
for the incorporation of inertial effects (of liquid and fibres) so that
also non-colloidal and/or turbulent systems can be studied.
In this paper the modeling approach will be outlined, a basic

validation presented, and the simulated behaviour of a fibre in a
turbulent field discussed. The simulation procedure zooms in on
the mesoscopic level, that is, the direct computation of the motion
of a limited number (a few hundred max) of fibres fully coupled
to the liquid flow, with resolution of the solid–liquid interfaces.
The goal of the simulations is to capture the essential physics at

the scale of a collection of fibres, for a better understanding and
modeling of fibre suspensions at the macro (e.g., process) scale.
In our computational approach fibres consist of spherical parti-

cles connected through ball joints (similar to Qi, 2007) that have
specified bending stiffness. The liquid flow solver is based on the
lattice-Boltzmann scheme, with an immersed boundary method
that resolves the no-slip condition at the spheres’ surfaces. The
immersed boundary method provides the hydrodynamic forces
and torques on the spheres that we use for integrating their lin-
ear and rotational motion. The spheres’ motion is constrained by
the joints. These constraining conditions are employed to deter-
mine the forces and torques required to maintain the integrity of
the fibres. Comparing the joint-related forces and torques with
fibre strength allows us to assess fibre breakage probabilities. The
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spheres (within the same or within different fibres) undergo elas-
tic collisions by means of a soft-sphere scheme. Also, when two
or more spheres get in close proximity (mutual distance smaller
than the grid spacing) we explicitly determine radial lubrication
forces to capture that part of their hydrodynamic interactions that
is not resolved by the finite resolution of the lattice-Boltzmann
scheme.

SIMULATION SETUP AND SETTINGS

Liquid Flow and Solid–Liquid Coupling
For solid–liquid suspensions we have a direct simulation pro-
cedure in place to solve for the liquid flow based on the
lattice-Boltzmann method (LBM) (Succi, 2001), and that couples
the liquid flow and themotion of solid spheres suspended in it. For
the latter: at the surface of each sphere the fluid velocity is forced
to match the local velocity of the solid surface (which is the sum
of the linear velocity Vp, and rotation �p × (r − rp) with �p the
angular velocity of the sphere, rp the centre position of the sphere,
and r a point on its surface). The details of this forcing scheme can
be found elsewhere (Derksen and Van den Akker, 1999). The col-
lections of forces representing the no-slip condition at the spheres’
surfaces are added up to determine the hydrodynamic force and
torque acting on each sphere (action= −reaction). These are used
to evaluate the equations of linear and rotational motion of the
spheres. The spatial resolution of the simulations is such that the
particle radius a spans six lattice spacings. Grid sensitivity studies
and favourable experimental validation (in terms of single particle
motion and the flow field surrounding it) demonstrate that this is
sufficient resolution (Ten Cate et al., 2002) for moderate Reynolds
numbers (up to 15, based on slip velocity and a).
For multiple particle simulations additional features relate to

particle–particle interactions. Hydrodynamic interaction between
the spheres is taken care of by the LBM as long as the sphere
surfaces are not too close. If they are within one lattice spacing
(i.e., roughly 0.15a) the LBM is not able to accurately represent the
hydrodynamic interaction between the spheres anymore (Nguyen
and Ladd, 2002). In such situations the analytical solution for the
radial lubrication force is explicitly invoked. This force diverges
for h → 0as1/hwith h the distance between sphere surfaces.With
a view to numerical stability, and also physical concepts such as
surface roughness, and the continuum assumption we saturate
the lubrication force at very close proximity (at 2.0× 10−4a in the
current simulations) of two spheres.

Figure 1. Definition of fibres as spheres connected through joints. Right:
definition of the rod vectors jm.

For direct sphere–sphere collisions a soft-sphere approach has
been implemented. Given the constraints on particle motion as
a result of the joints, a soft-sphere approach is to be preferred
over hard-spheres. If particle surfaces are within a certain distance
(3.0× 10−3a in the current simulations) a linear elastic repulsive
force is switched on. This effectively prevents the particles from
overlapping. By performing granular simulations with the soft-
sphere scheme we checked and succeeded in conserving energy
making the sphere–sphere collisions fully elastic.

Definition of Fibres
The fibres are defined as solid spheres connected through rods and
ball joints, see Figure 1. The rods and joints have no mass so that
the fibre mass is concentrated in the solid spheres. The parame-
ters defining a fibre are the radius of the spheres it is made of (a),
the density of the solid material (relative to the liquid density),
the length of the rods j that connect the spheres with the joints,
the number of spheres per fibre N, and the properties of the ball
joints. In this paper three types of joints will be considered: (1)
completely stiff joints, not allowing for an angle ( , see Figure 1)
unequal zero between the rods; (2) fully flexible joints, that is,
joints that cannot exert a torque; (3) joints with a finite bending
stiffness, and zero torsion stiffness. In the latter case the bending
torque is proportional to the vector product of the vectors defin-
ing the two rods connected by the joint (see the right panel of
Figure 1):

Tjm = −� jm × jm+1
j2

(1)

with � the stiffness parameter. In terms of the bending stiff-
ness (EI, elastic modulus× area moment of inertia) of a beam:
EI ∝ �j.

Figure 2. Left: Definition of the shear-flow validation case. Right: Rotation rate of the sphere doublet as a function of the angle � for j/a=1.5. Closely
spaced symbols: simulation; drawn line: least squares fit (line and symbols are hard to distinguish).
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Table 1. Angular velocity coefficient C (Equation 2) as a function of
the ratio j/a

j/a C (simulation) C (analytical)

1.2 0.659 0.654
1.5 0.728 0.724
2.0 0.807 0.805

Analytical results due to Arp and Mason (1977).

The forces at the joints are determined such that the fibre keeps
its integrity. This means that if we update the linear and angular
velocity of a particle m and a particle m+ 1 in the fibre, the joint
connecting them must have a unique velocity (i.e., must have
the same velocity from the perspective of particle m and parti-
cle m+ 1). For a fibre having N particles, and thus N− 1 joints,
the integrity condition leads to a linear system of 3(N− 1) equa-
tions in the (N− 1) three-dimensional force vectors at the joints
Fjm,m= 1. . . (N− 1). This linear system we solve for each fibre,
each time step. The forces and torques acting on each sphere
(hydrodynamic due to the LBM, lubrication, soft-sphere-related,
and joint-related) are added up in order to integrate the spheres’
linear and rotational equations of motion.

Fibre-in-Turbulence Simulations Setup
For studying the interaction between fibres and turbulence, we
place a single fibre in a three-dimensional, cubic, fully periodic

Figure 3. Cross-section in terms of velocity vectors through the 1283
fully periodic domain. The circles are the cross-sections of the spheres.
The resolution is such that one in four vectors is on display.

Figure 4. Side views of fibres in the 1283 periodic domain, three snapshots per case. From left to right: increasing bending stiffness � (Equation 1):
�/(12���a2urms)=0, 1.78, 14.2, 56.8.
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domain. The default domain size is 1283 lattice nodes. (For
comparison: the spheres forming the fibre have a diameter
2a= 12 lattice spacings). In the computational domain we
create a homogeneous, isotropic turbulent flow by linear forcing
(Rosales and Meneveau, 2005). In the linear forcing method
turbulence is sustained by a force on the fluid that is proportional
to the local velocity. The fluid develops isotropic and (due to the
full periodicity of the three-dimensional domain) homogeneous
turbulence with Kolmogorov spectral characteristics (see Rosales
and Meneveau, 2005). This flow is characterised by its time and
space averaged energy dissipation rate ε̄ and the root-mean-square
velocity urms of the liquid. From these quantities measures for the
Kolmogorov scales and relevant Reynolds numbers are derived.
The single fibre released in this domain has a solid over fluid den-
sity ratio �s/�f = 3.0, and consists of six spheres. Ourmain interest
is in how fibres with different stiffness respond to turbulence.
We are particularly interested in cases with strongly inho-

mogeneous flows around the spheres constituting the fibres so
that they are subjected to erratic hydrodynamic forces that twist
and bend them. The level of inhomogeneity of flow around the
spheres is expressed as the ratio of sphere radius and Kolmogorov
length scale: a/�K = a(�3/ε̄)

−1/4 that has been set to 8.1. The
Reynolds number associated with the flow around the spheres
is: Rerms = (urmsa)/�= 25.

VALIDATION: SPHERE DOUBLETS IN SIMPLE
SHEAR
Before discussing the turbulence simulations we report on a
numerical experiment intended to validate (at least partly) our
numerical procedure. The case considered is a (degenerate) fibre
consisting of two spheres, stiffly linked together in simple shear
flow at low Reynolds number (Re = �̇a2/�); see Figure 2, left
panel. In simple shear the fibre rotates around the y-axis with
an angular velocity that depends on its orientation:

�y ≡ d�
dt

= 1
2
�̇(1+ C cos(2�)) (2)

The parameter C is a function of the spacing between the
spheres (Arp and Mason, 1977). The special case with j= a (two
touching spheres) has been discussed in a previous paper (Derk-
sen, 2008). In Figure 2 (right panel) we show simulation results
in terms of �y as a function of � if j= 1.5a. The least-squares
fit in that figure has C= 0.728; the analytical result for this case
is C= 0.724 (Arp and Mason, 1977). In Table 1 we summarise
more cases, showing good agreement of the numerical with the
analytical solutions.

FIBRES IN TURBULENCE
Now that we have established some confidence in our way to sim-
ulate fibres in liquid flow, we turn to fibres immersed in turbulent
flow. A typical realisation of the flow in a cross-section through the
1283 domain is given in Figure 3. The circles represent the spheres
constituting the fibre. The six spheres constituting the fibre have
the same size. However, not all spheres are visible in the cross-
section; and not all spheres visible are cut in the same manner.
The figure illustrates the size of the turbulent structures relative
the sphere diameter. In Figure 4 we show single realisations of
fibres with different bending stiffness � (Equation 1), released
in turbulent flows with constant statistical properties. Obviously
turbulence has a harder job bending the stiffer fibres. To make

Figure 5. Time series of the fibre-averaged angle  ̄ with from top to
bottom increasing bending stiffness �/(12���a2urms)=0, 1.780, 14.2,
56.8. The dashed line in the upper panel represents  max (see text).

this a more objective and quantitative statement we plot time
series of the fibre-averaged angle  ̄ (the average absolute angle
of the five joints in the fibre) in Figure 5. The maximum angle
 max is reached when the fibre is bent such that two neighbour-
ing spheres touch: cos(1/2 max) = a/j. The fibre-averaged angle
strongly fluctuates in time. For the fully flexible fibre (� = 0) the
state ofmaximumbending  ̄ =  maxis approached regularly.With
increased stiffness the fibre-averaged angle decreases.
In Figure 6 we have summarised the main results so far. It

shows the decay of the time-averaged, fibre-averaged angle with
increasing bending stiffness. The bending stiffness has been non-
dimensionalised with the torque related to the Stokes drag force
at slip velocity urms times the particle diameter 2a. In Figure 6 we
also plot the time-averaged forces and torques in the joints. The
symbols Fj and Tj denote the time-averaged, fibre-averaged abso-

lute values; for example, Tj =
〈
1/5

∑5
m=1

∣∣Tjm
∣∣〉 for a fibre with

six spheres (and five joints), 〈 〉 denotes time averaging. The force
is quite insensitive of the fibre stiffness; it is roughly five times
the Stokes drag on a sphere with slip velocity urms. Since the flow
around the fibre is very inhomogeneous, apparently the details of
the fibre morphology (level of stretching) do not matter much for
the forces at the joints. Obviously the torque is dependent on the
fibre stiffness with the torque being zero at � = 0 by definition.

SUMMARY
In this preliminary study we introduced a direct method for sim-
ulating the interactions of fibres and (turbulent) fluid flow. Fibres
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Figure 6. Time-averaged, fibre-averaged angle, absolute joint force, and absolute joint torque (from left to right) as a function of the fibres’ bending
stiffness �.

were built of spherical particles connected through joints. We val-
idated the method with an analytical solution for dumbbells in
simple shear flow under creeping flow conditions. Subsequently
we studied the behaviour of a single fibre released in homoge-
neous, isotropic turbulence (with the Kolmogorov scale typically
smaller than the sphere size) with a focus on the response of the
fibre as a function of its stiffness. The stiffness has a marked effect
on the level of bending (and stretching) of the fibre. The forces
needed to hold the fibre in tact were quite independent of the
bending stiffness.
In future work we will broaden the parameter space with turbu-

lence properties (more specifically fibre and sphere size relative
to the Kolmogorov length scale), and on fibre-fibre interactions in
vigorous turbulent flow.With respect to the latter: for fibre cluster-
ing (as experimentally observed in many studies) it is considered
essential for the direct contact between fibres to have stickiness, or
friction and non-ideal collisions (Schmid and Klingenberg, 2000).
In direct simulations on fibre–fibre interactions we would be able
to investigate the detailed nature of such direct contact required
for fibres to cluster and to distinguish between the effects of direct
contact and of the interstitial liquid. Also the role of a fibre size dis-
tribution on the collective behaviour of a fibre suspension could
be investigated.

NOMENCLATURE
a radius of sphere
C parameter in Equation (2)
Fjm force in joint m
Fj fibre and time averaged absolute force
h distance between sphere surfaces
jm rod vector
j length of rod
N number of spheres per fibre
r position vector
rp centre position of sphere
Tjm torque in joint m
Tj fibre and time averaged absolute torque
urms root-mean-square velocity
vp (linear) velocity of sphere
� fibre stiffness
�̇ shear rate
ε, ε̄ (average) dissipation rate
�K Kolmogorov length scale
� doublet orientation
� kinematic viscosity
�s,�f solid and liquid density

 ,  ̄,  max angle between rods (and fibre-averaged, and maxi-
mum angle)

�p angular velocity of sphere
�y doublet’s angular velocity
Re, Rerms Reynolds number (based on rms velocity)
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