MESO-SCALE SIMULATIONS OF SOLID-LIQUID FLOW
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Solid-liquid flows span a large parameter space, with dimensionless coordinates such as Stokes numbers, the solids volume fraction, the density
ratio between the phases, and Reynolds numbers (e.g., associated with the continuous phase flow). We are interested in systems with appreciable
inertia effects—that is, nonzero Stokes and Reynolds numbers—having density ratios of the order of one and solids volume fractions of order 0.1.
In such flows, direct numerical simulations are desired to reveal the relevant interactions. The resolution required for DNS limits the size of the
systems that we are able to simulate to the meso-scale. In this article, examples of direct simulations based on the lattice-Boltzmann method of
dense solid-liquid flows are presented, along with suggestions as to how to use their results at the macro-scale.
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INTRODUCTION

olid-liquid suspensions are abundant in natural and engi-
Sneered systems. In general, solid-liquid flows span a large

parameter space, with dimensionless components such as
the Stokes number, the solids volume fraction, the density ratio
between the phases, and Reynolds numbers (e.g., associated
with the continuous phase flow). Our interest in large-scale
industrial multiphase flows implies that we have systems with
appreciable inertia effects—that is, nonzero Stokes and Reynolds
numbers—having density ratios of the order of one and solids vol-
ume fractions of order 0.1. In such suspensions many assumptions
that ease the life of the computational researcher do not hold, and
direct simulations—including full resolution of the solid-liquid
interfaces—are desired to reveal the relevant interactions at the
scale of the particles.

This necessarily limits the size of the systems that we are able
to simulate; they typically contain up to a thousand particles. In
this article, the scales related to particle size and multi-particle
interaction will be termed meso-scales, and our direct simulations
are meso-scale simulations. Next to the ambition to fully resolve
meso-scale phenomena, we are faced with the issue as to how
to incorporate insights gained at the meso-scale in macro-scale
modelling approaches (meso-to-macro coupling). In the oppo-
site direction (macro-to-meso), the meso-scale systems need to
be agitated (energised) in a manner that realistically represents
the energy input that in many practical processes comes from the
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macro-scale; think of agitation by impellers, jets, distributor plates
and pumps.

Given the variety of multiple-scale interactions in industrial
multiphase flow systems there is, to our knowledge, not a gen-
eral methodology or framework for establishing the macro-meso
coupling. In this article we present a few examples of meso-scale
simulations in the area of liquid-solid suspensions, and also show
how their results could be incorporated in macroscopic flow and
transport modelling.

The article is organised in the following manner: First, we give
a short overview of our computational methodology which is
largely based on the lattice-Boltzmann method for solving the
flow of the interstitial liquid. We then briefly describe meth-
ods for generating homogeneous, isotropic turbulence as a basic
way to excite meso-scale systems. Subsequently applications
will be discussed. They comprise turbulence-particle interaction,
flow-induced forces in agglomerates and fibres, liquid-solid flu-
idisation, and scalar mixing in solid-liquid flow.
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COMPUTATIONAL APPROACH

Lattice-Boltzmann Method

The continuous phase (liquid) flow we solve with the lattice-
Boltzmann method (LBM). For flows in complexly shaped
domains and/or with moving boundaries, this method has proven
its usefulness (see e.g., the review article by Chen and Doolen,
1998). In the LBM, the computational domain is discretised into
a number of lattice nodes residing on a uniform cubic grid. Fluid
parcels move from each node to its neighbours according to pre-
scribed rules. It can be proven by means of a Chapman-Enskog
expansion that, with the proper grid topology and collision rules,
this system obeys, in the low Mach number limit, the incom-
pressible Navier-Stokes equations (Chen and Doolen, 1998; Succi,
2001). The specific implementation used in our simulations has
been described by Somers (1993); it is a variant of the widely used
Lattice BGK scheme to handle the collision integral (e.g., see Qian
et al., 1992). We use the scheme due to Somers, as it manifests a
more stable behaviour at low viscosities when compared to LBGK.

Liquid-Solid Coupling

In the lattice-Boltzmann flow field spherical (usually monosized)
solid particles are suspended. The solid-liquid interfaces are fully
resolved. The fluid flow and the motion of the spheres are coupled
by demanding that at the surface of each sphere the fluid veloc-
ity matches the local velocity of its surface (that is the sum of
the translational velocity v, and Q, x (r —rp) with Q, the angu-
lar velocity of the sphere, r, the center position of the sphere, and
r a point on its surface). In the forcing scheme (aka immersed
boundary method) that is applied here this is accomplished by
imposing additional forces on the fluid at the surface of the solid
sphere (which are then distributed to the lattice nodes in the vicin-
ity of the particle surface). The details of the implementation can
be found elsewhere (Goldstein et al., 1993; Derksen and Van den
Akker, 1999; Ten Cate et al., 2002). The collection of forces acting
on the fluid at the sphere’s surface and its interior is subsequently
used to determine the hydrodynamic force and torque acting on
the sphere (action = —reaction) (Derksen and Sundaresan, 2007).

In our simulations, the radius of each spherical particle is spec-
ified and input radius refers to this radius scaled by the lattice
spacing. In the LBM simulations, as the spherical particle is repre-
sented by forces that are confined to a cubic grid, the input radius
does not reflect the actual radius of the particle. A calibration pro-
cedure to estimate the effective radius of this object (commonly
referred to as the hydrodynamic radius) was introduced by Ladd
(1994). We apply his scheme to estimate the hydrodynamic radius
of the particles. The hydrodynamic radius is recognised as a and
is given in lattice units. In our work radii in the range a = 6-12 are
used. Typically the input radius turns out to be some 10% smaller
than the hydrodynamic radius (Ten Cate et al., 2002).

In multiple-sphere systems when two particles are at close prox-
imity, with their separation being of the order of or less than
the lattice spacing, the hydrodynamic interaction between them
will not be properly resolved by the lattice. Therefore, we explic-
itly impose lubrication forces on the particles, in addition to the
hydrodynamic forces stemming from the LBM. We use the proce-
dure developed by Nguyen and Ladd (2002) to smoothly make
the transition between resolved and unresolved hydrodynamic
interactions.

In addition to interactions via the liquid, spherical particles
undergo direct interactions, mostly hard-sphere. If the motion of
the spheres is constrained (such as with fibres built of strings
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of spheres) we—for reasons of computational efficiency—apply
soft-sphere interactions.

Homogeneous, Isotropic Turbulence

A typical way to agitate our meso-scale systems is by generating
turbulence in fully periodic, three-dimensional domains. Adding
particles to the domains allows us to study the (two-way) cou-
pling of solid and liquid motion. So far mainly homogeneous
isotropic turbulence (HIT) has been considered in our work. HIT
is, for example, characterised by its root-mean-square velocity ;s
and a Kolmogorov length scale ng = (v3/2)!/* with g the volume
and time averaged dissipation rate (which in steady state in a
fully periodic domain equals energy input) and v the kinematic
viscosity of the liquid. If solids are added, the relevant dimen-
sionless numbers are then based on the radius of the spherical
particles involved: a/nx and (if a/nx > 1 so that the turbulence
scales interfere with the sphere size) Re;ns = ((ims@) /v).

We have been using two different strategies to make HIT. One is
based on random forcing and was introduced by Alvelius (1999)
in the context of spectral methods, later adapted for the lattice-
Boltzmann method by Ten Cate et al. (2006). This strategy has
the advantages that the power input can be controlled accurately,
and that it allows for more general forms of turbulence, including
anisotropy. The second strategy is linear forcing, where turbu-
lence is sustained by a force that is proportional to the local
velocity (Rosales and Meneveau, 2005). This method has the ele-
gance of simplicity and (as a result) computational efficiency at
the cost of being less general than random forcing.

CASE STUDIES

DNS of Turbulently Agitated Solid-Liquid
Suspensions

With a view to applications in industrial crystallisation, Ten
Cate et al. (2004) studied the motion of solid, spherical parti-
cles released in HIT. The conditions were such that (a/nk) was of
the order of 10, and Re,,s roughly 50. Given the solid over den-
sity ratio being approximately 1.5 the Stokes number based on
Urms (Stims = (2/9) (ps/ pr) Rems) is typically 15, indicating inertial
particles. The statistics for particle-particle collisions (frequency,
intensity) is of particular interest since attrition, that is, breakage
of crystals due to collisions is an important issue in crystallisation
as it directly and indirectly influences the crystal size distribution.
The direct influence is obvious; the indirect influence on the size
distribution is a result of breakage fragments acting as (secondary)
sources of nucleation.

As is known from experimental (Elghobashi and Truesdell,
1993) as well as numerical work (Boivin et al., 1998), the pres-
ence of the particles affects the turbulence spectrum. Figure 1
shows spectra at different solids loadings. As evident from the
spectra, and also from a direct look into our simulations, the
spheres generate turbulence at scales comparable to and smaller
than the particle diameter. This effect is a pronounced function
of the solids volume fraction: the more particles, the stronger the
effect. At the same time the slow (inertial) response of the solid
particles reduces the fluctuations levels (damps turbulence) for
smaller wavenumbers (i.e., at larger scales).

Our main interest was to quantify particle collisions, in terms of
frequencies and intensities. In this respect it was revealing to study
the probability density function (PDF) of the time between two
collisions of a particle (as given in Fig. 2). For “long times” this
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Figure 1. Energy spectra of two-phase simulations compared to the
fluid-only spectrum. The wave number « is normalised with the particle
size wave number k4 =7/a.

PDF is exponential indicating Poisson statistics; collisions after
“long” time intervals are uncorrelated events. The slopes in Fig-
ure 2 get steeper for denser systems, that is, the average time
between uncorrelated collisions gets shorter for denser systems.
More interestingly, however, for “short times” the PDF shows a
peak towards zero time, indicating many collisions taking place
shortly after one another. Closer inspection teaches that these are
correlated events: once turbulence has brought two (or more) par-
ticles in each other’s vicinity they tend to cluster due to short range
hydrodynamic interaction and undergo many (weak) collisions at
short time intervals. Lubrication forces play a prominent role in
the lifetime of the clusters. Eventually the particles in the cluster
are separated when a strong enough (turbulent) eddy comes by.

In terms of macro-scale modelling, results related to collision
statistics as a function of turbulence quantities and solids load-
ing could be incorporated in (macro-scale) scale CFD/population
balance simulations of crystallisation processes. Local quanti-
ties for turbulence and solids volume fraction as obtained with
the CFD can be—with the help of our mesoscopic simula-
tion results—translated in collision frequencies and intensities.
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Figure 2. PDF of the time between two collisions for three solids volume
fractions. The lines are linear fits of the tails of the distribution. The
collision time has been made dimensionless with the Kolmogorov time
scale 7.
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Together with information regarding crystal strength this could be
fed into a population balance model for predicting crystal break-
age and (resulting) crystal size distributions.

Flow-Induced Forces in Agglomerates and Fibres

In many processes involving solid particle formation or solids
handling, particles have a tendency to stick together. Some-
times agglomeration is a wanted phenomenon to effectively grow
particles making separation easier. It also is a mechanism that
potentially destroys a narrow particle size distribution, and as
a result could deteriorate product quality. Much effort goes into
preventing or promoting agglomeration, and much effort goes
into repairing the harm agglomeration has done. Regardless of
whether agglomeration is wanted or unwanted, it is relevant to
assess the stability and the integrity of the bond holding the pri-
mary particles together. Agglomerates can break as a result of a
variety of mechanisms, one of them being the flow of fluid sur-
rounding the agglomerate: velocity gradients induce forces on and
in agglomerates that could break them.

Understanding and modelling agglomerate breakage as a result
of fluid flow is largely based on relatively simple concepts involv-
ing estimating shear rates and semi-empirical correlations for
breakage statistics. As described in recent articles on the broader
subject of population balance modelling of colloidal dispersions
(Soos et al., 2006), the physics of breakage due to flow date back
quite some time (Delichatsios and Probstein, 1976; Kusters, 1991),
and are prone to refinement in terms of getting the (statistics of
the) hydrodynamic environment of agglomerates right, and in
terms of estimating the actual hydrodynamic forces in agglom-
erates immersed in complex flow.

As a starting point we here assess the role of some of the non-
ideal factors in the flow-induced forces in agglomerates. For this
we have chosen to consider the virtually simplest agglomerate
possible: two equally sized spheres (radius a), rigidly constrained
together at their (single) point of contact. The two spheres are
touching, they have zero separation.

We release a single doublet in homogeneous, isotropic turbu-
lence (now generated through linear forcing) and monitor the
forces and torques at the point of contact needed to keep the two
spheres attached. The time series are highly erratic (see the exam-
ple in Fig. 3), with the fluctuation levels usually much higher than
the averages. Running a number of simulations with (a/nx) as the
main variable shows an interesting scaling of the force fluctuation
levels. As (a/nk) increases, the flow around the agglomerate gets
more inhomogeneous which adds to the fluctuations, see Figure 4.
More details and results can be found in a recent article (Derksen,
2008a).

An extension of the above work is to consider (flexible) fibres
in turbulent flow. If the fibres have a finite bending stiffness, we
expect an interesting competition between turbulence bending the
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Figure 3. Time series of the flow-induced normal force at the point of
contact of a sphere doublet. Time has been normalised with the
Kolmogorov time scale .
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Figure 4. Root-mean-square F" normal force in the sphere doublet at
various turbulence conditions, characterised by the ratio (a/nk) along
with a trend line.

fibres, and stiffness trying to keep the fibres stretched. The fibres
are modelled as equally sized spheres connected through rods
and hinges, see Figure 5. The bending stiffness enters through
a (restoring) torque that is proportional to the vector product of
the vectors defining the two rods connected by the joint (see the
right panel of Fig. 5): Tjm = —((jm X jm+1)/j?) with y the stiffness
parameter. Some preliminary results are given in Figure 6 in terms
of snapshots of the fibres bending in turbulent flow, and Figure 7
in terms of time series of the fibre-averaged bending angle. Obvi-
ously, the stiffer the fibre, the more it stays stretched in turbulent
flow.

Figure 5. Definition of fibres as spheres connected through joints. Right:
definition of the rod vectors jm.

As for the sphere doublets, we also keep track of the forces and
torques required to retain the integrity of the fibres. The torque
obviously increases with increasing fibre stiffness; the force is
quite independent of the stiffness of the fibres, as is evident from
Figure 8.

DNS of Liquid-Solid Fluidisation

Our numerical work of liquid-solid fluidisation is inspired by the
experimental work due to Duru et al. (2002). They carried out an
extensive study of the onset and characteristics of planar waves in
relatively narrow liquid fluidised beds. Their experimental vari-
ables were the ratio of particle and fluid densities, the particle
size, the fluid viscosity, the size ratio (particle diameter divided
by tube diameter) and the average particle volume fraction (which
was controlled by the superficial velocity of the fluidising liquid).
Figure 9 shows a typical experimental result obtained by them: a
space—time plot of the solids volume fraction. Clearly visible are
regions of low particle volume fraction (“voids”) that travel with
a well-defined speed in the vertical (z) direction.

Here we directly simulate one-dimensional travelling waves
such as those shown in Figure 9. The specific experiments that
we selected from Duru et al. (2002) had particles with a = 342 pm
and a density ratio (ps/pf) = 4.1. In order to keep the computa-
tions affordable, we restricted our simulations to a fully periodic

Figure 6. Side views of fibres in the 1283 periodic domain, three snapshots per case. From left to right: increasing bending stiffness y (see text):

(v/(1 2719p@P Ugms)) = 0, 1.78, 14.2, 56.8.
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Figure 7. Time series of the fibre-averaged angle v with from top to
bottom increasing bending stiffness (y/(127vpa®uyms)) =0, 1.78, 14.2,
56.8. The dashed line in the upper panel represents ¥max, that is, the
fibre-averaged angle of a fully curled up fibre.

three-dimensional domain. Since we wish to simulate one-
dimensional travelling waves, we suppress the onset of secondary
instabilities by choosing the lateral dimensions to be small (typi-
cally 12a).

A homogeneous bed was first created by placing a set of
nonoverlapping spheres randomly in space in the periodic
domain. At the start of the simulation, the velocities of the parti-
cles and the fluid were set to zero. At t =0, gravity and the body
force on the fluid were turned on. As the lateral dimensions of the
domain are small, there is very little opportunity for any persis-
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Figure 9. Experimental space-time plot of the solids volume fraction at
an average solids volume fraction of ¢ = 0.540. The wave speed c can be
deduced from the slope of the light lines representing the void regions.
Reprinted from Duru et al. (2002).

tent lateral structure to evolve, but one can readily see nonuniform
structures that travel in the direction of the mean fluid flow. This is
illustrated in Figure 10, which shows a series of snapshots taken at
an arbitrary vertical cross section of the periodic domain. The sys-
tem develops a wave structure in a time span of the order of a?/v.
A region of lower particle volume fraction, henceforth referred to
as “void”, travels in the direction opposite to gravity (i.e., the pos-
itive z-direction). Outside the void, the particle volume fraction is
significantly higher than the average value ¢. Above the void, par-
ticles detach from the dense region, then “rain” through the void,
and subsequently collect on the dense region below the void.
The simulated wave was averaged over the horizontal direc-
tions (x and y), and represented in a space-time plot similar to
the experimental ones, as an example at ¢ = 0.488 see Figure 11.
The dimensionless wave speed ¢ = (ca)/v (with ¢ being the
dimensional wave speed) extracted from Figure 11 is 16.6. The
error margin in determining ¢ from the simulation results was
estimated as +1. For the comparable experimental system Duru
et al. (2002) measured a dimensionless wave speed of 14 (£1).
The liquid-particle system transfers momentum through a
variety of mechanisms: particle and fluid streaming motion
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Figure 8. Time-averaged, fibre-averaged angle, absolute joint force, and absolute joint torque (from left to right) as a function of the fibres” bending

stiffness y.
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Figure 10. Cross section through the simulated liquid—solid field with

¢ =0.505 at various moments in time. Colours indicate liquid velocity
magnitude. [Color figure can be seen in the online version of this article,
available at http://onlinelibrary.wiley.com/journal/10.1002/
(ISSN)1939-019X]

Figure 11. Space (vertical) versus time plot of the solids volume fraction
for a simulation at ¢ = 0.488. [Color figure can be seen in the online
version of this article, available at http://onlinelibrary.wiley.com/
journal/10.1002/(ISSN)1939-019X]

(streaming stresses), particle-particle collisions (collisional
stress), particle-particle interaction through lubrication forces,
and fluid-phase viscous stresses. The wave clearly induces
anisotropy. As an example, we show in Figure 12 (left panel) the
three components of the collisional normal stress. As expected,
the two lateral components (xx and yy) are approximately equal
to one another, and the axial component (zz) differs appreciably
from the other two. The effects of particle volume fraction are
clearly visible in the stress profiles. The collisional stress is much
lower in the void region than in the dense plug.

5001
5001

0 20 zia 40

Figure 12. Dimensionless stress & = o(a?/(ofv?)) as a function of height
for ¢ =0.505. Left: the three components of the collisional normal stress
with the drawn line the zz component. Right: thick, drawn line:
collisional stress; thin drawn line: stress due to lubrication; dotted line:
fluid streaming stress; dashed line: particle streaming stress.
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Figure 13. Particle-phase viscosity as a function of solids volume
fraction. The squares (triangles) denote the shear viscosity in the
compaction (dilation) branch. The plusses are bulk viscosity estimates.

The most important zz-stresses are presented in Figure 12 (right
panel). Collisions are largely responsible for the particle phase
stress in the parts of the flow that have a high particle volume
fraction. In the void, fluid and particle streaming stress are sig-
nificant and of comparable magnitude. Lubrication only plays a
modest role. The fluid-phase viscous normal stresses (not shown
in Fig. 12) are negligible.

The results have been further analysed in terms of the solids
phase bulk and shear viscosity (Derksen and Sundaresan, 2007).
Given the expansion and compression of the solids phase in the
wave, and the significant stresses related to the compaction part,
the bulk viscosity is significant and in general is higher than the
shear viscosity, see Figure 13.

Analysis of its results towards two-fluid closure of multiphase
flow is a primary motivation for performing direct simulations
as described above. Two-fluid closure requires expressions that
relate, for example, solids-phase viscosity with the properties of
the granular system (such as local solids volume fraction and
granular temperature). Our mesoscale simulations can directly
assess the quality of such expressions given the availability of
both the input and the output parameters in the simulations. Next
to solids phase stress closure (as touched upon here in terms of
solids phase viscosities), also closures for inter-phase momentum
transfer (drag as a function of solids volume fraction and poten-
tially fluctuating quantities) have been considered (Derksen and
Sundaresan, 2007).

Scalar Mixing by Granular Particles

The fluctuations and inhomogeneities in fluidisation are consid-
ered helpful in mixing the solids phase. If and to what extent
the motion of the solids support scalar mixing in the continuous
phase is less clear. So far notions regarding this are largely based
on empirical dispersion models as they can be found in, for exam-
ple, the monograph by Levenspiel (1962) and references therein.
Interpretation of experimental results on, for example, gas mixing
in fluidised beds (e.g., Al-Sherehy et al., 2004) would benefit from
a more fundamental understanding of the contribution of solids
to scalar dispersion.
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Figure 14. Snapshots of concentration contours in xz cross sections through the cubic domain. The white disks represent the particles that all have the
same size but different distance to the plane of cross section. ¢ =0.30 and Reg =104 at (from left to right) (t\/?g/ZG) =0.05, 1.96, 3.88, and 5.79
respectively. [Color figure can be seen in the online version of this article, available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1939-019X]

Also—in the context of CFD of turbulent disperse multiphase
flows—it is quite common to apply the analogy of transport of
momentum by eddies and of a scalar for estimating scalar eddy
diffusion/dispersion coefficients. It is questionable if such an
approach would be valid for systems with high volumetric dis-
perse phase loadings. In dense systems turbulence can hardly
develop due to the small interparticle spacings, leaving an eddy
diffusivity concept without a firm physical basis.

To address and investigate the issues identified above, we here
describe fully resolved numerical experiments that directly probe
the spreading of a passive scalar as a result of solid particle motion.
The moving particles agitate the interstitial fluid. Subsequently
the flow disperses the scalar dissolved in the fluid. Goals of the
simulations are to find out how the scalar spreading scales with
the parameters governing the particle and fluid motion such as the
granular temperature, the mean free path of the particles and the
fluid’s viscosity, and to propose expressions for scalar dispersion
coefficients.

The systems we study numerically consist of three-dimensional
periodic domains that contain solid particles and interstitial fluid.
The particles move as a granular gas with a constant temperature,
that is, they move ballistically through the fluid and undergo fully
elastic and smooth collisions. The particles do not feel the pres-
ence of the fluid. At the fluid-solid interfaces, however, we impose
a no-slip condition on the fluid. In that manner the fluid responds
to the particle motion and gets agitated. Once this fluid—solid sys-
tem is fully developed we release a passive scalar in the fluid
phase. By solving the convection equation for the tracer with non-
penetration boundary conditions at the solid surfaces, we observe
how the tracer spreads by the action of the moving solid particles
only.

The primary independent variables in the numerical experi-
ments are the solids phase volume fraction ¢, and the Reynolds
number based on the granular temperature T, of the particles
Reg = (y/Tga)/v. To limit the parameter space, we give the dis-
solved scalar a very high Schmidt number, that is, we set the
molecular diffusivity of the passive scalar to zero. The (inevitable)
numerical diffusion is minimised using a total variation dimin-
ishing (TVD) scheme in estimating convective fluxes (Harten,
1983). Since the fluid motion is one-way coupled to the (gran-
ular) motion of particles, the impact of the Reynolds number in
scalar spreading is only via the (size of) the flow structures being
generated, the Reynolds number affecting particle trajectories is
not part of the computational picture.

We consider passive scalar transport in a fully developed flow
of particles and fluid. As initial condition for the scalar concen-
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tration we give a thin yz-slab (with slab thickness a/2) of fluid a
concentration ¢ =1, and the rest of the fluid c=0. Subsequently
we keep track of the spreading of the scalar as a result of the fluid
flow induced by the solid particle motion. Typical sequences are
given in Figure 14. The full, three-dimensional data is reduced to a
one-dimensional scalar concentration function and subsequently
(by fitting a Gaussian to the concentration function) to a single
number characterising the width of the distribution as a function
of time: o (1).

Analysing these data (also see Derksen, 2008b) shows that if o
as a function of time is scaled with “collisional” length and time
scales, that is, the mean-free path (1) of the granular gas as the
characteristic length, and the inverse of the collision frequency
(1/f.) as the characteristic time, the scalar spreading behaves
quite universally over a wide range of solids volume fractions, see
Figure 15. This analysis eventually leads to a tentative expres-
sion for the effective dispersion coefficient: D = (1/2)a)*f, with

o/h

107

Figure 15. o as a function of time for various solids volume fractions.
Time has been scaled with the collision frequency fc, o with the MFP A.
Panels (a), (b), (c), and (d), respectively have Req=2.8, 28, 104, and

280. The fit also included is the function o/% = +/atfc. The fitting
parameter « differs per panel and is 0.9, 1.1, 1.4, and 1.5, respectively.
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a a coefficient of order 1 that weakly depends on the granular
Reynolds number Re; (Derksen, 2008b). This expression for the
dispersion coefficient as a function of mean-free path, collision fre-
quency and granular Reynolds number can be used in macro-scale
CFD simulations to assess the level of scalar mixing brought about
by solid particle motion. For this, information regarding solids
volume fraction and granular temperature obtained through the
CFD is employed to estimate collision frequencies and mean-free
paths.

SUMMARY AND OUTLOOK

This article presents a few case studies of mesoscopic modelling
of solid-liquid flows, with underlying topics such as momentum
transfer, turbulence modulation, scalar spreading, and flow-
induced forces in and on agglomerates. Except for lubrication
modelling, the simulations are direct, meaning that no (empir-
ical) closures or empirical correlations, for example, forces on
particles enter the simulations.

From an industrial standpoint the flow systems studied are
(still) very simple: monosized spherical, solid particles in Newto-
nian carrier fluids. The choice for monodispersed systems is not
fundamental; the simulation strategy easily allows for size distri-
butions. The extension towards nonspherical particles would be
much less straightforward. Specifically in dense systems, handling
collisions of nonspherical particles would get (computationally)
more complicated.

In retrospect, the reason for the relative simplicity at the
mesoscale was to keep the parameter space limited. Adding
complications (at the mesoscale) strongly adds to the dimen-
sionality of the parameter space (then size distributions, particle
shape characterisation, and rheological parameters would enter).
It would be useful though to add complexity to the mesoscale, the
challenge being to directly mimic the interactions there and for
instance see how particle shape impacts momentum transfer in
dense suspensions. The price to pay for this is getting less general
(i.e., work towards more and more specific applications); results
only apply to the specific systems of choice; the (general) link to
the macro-scale would be harder to establish.

Relating with real processes and industry in this respect is
essential. Zooming in on practical systems and making choices
regarding the physics to be incorporated there only pays off if it
helps in solving practical problems with economical and environ-
mental impact.

From a computational perspective there is significant opportu-
nity for increasing the size and/or complexity of the meso-scale
simulations through parallelisation. The results presented above
are almost exclusively based on sequential (i.e., one-cpu) com-
putations with memory requirements per simulation in the range
of 100 Mbyte to 5 Gbyte. The simulations run on Linux clusters
with standard (PC) processors. Runtimes obviously depend upon
the flow system characteristics. The lengthiest simulations are the
ones of liquid-solid fluidisation that ran for up to 6 weeks: it first
takes time for the micro-structure to develop the wave instability.
Subsequent run time is needed to establish sufficiently converged
flow statistics.

Parallelisation of the lattice-Boltzmann part of the computa-
tional procedure is straightforward given the local nature (only
nearest neighbour interaction) of its operations. Parallelisation of
the solid particle dynamics and its coupling with LBM is more
complicated with the particles extending over of the order of 10
grid spacings and thus requiring more communication between
cpu’s in parallel runs.
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NOMENCLATURE

a sphere radius

c,C (dimensionless) wave speed
scalar concentration

D dispersion coefficient

fe collision frequency

jm fiber joint vector

j fiber joint length

r location vector

Ip sphere center position

t time

T, granular temperature

Tjn  restoring torque in fibres

Us ~ root-mean-square velocity

Vp sphere’s linear velocity

o coefficient in dispersion relation
g average energy dissipation rate
¢.¢  (average) solids volume fraction
y fiber stiffness

nK Kolmogorov length scale

K wave number

A mean-free path

W dynamic viscosity

Ws, ks solids phase shear and bulk viscosity
v kinematic viscosity

ps>p¢  solids and fluid density

0,6 (dimensionless) stress

o scalar spreading width

y Kolmogorov time scale

W, U (average) fiber angle

Qp sphere’s angular velocity

Reynolds number based on

Reg;  Reynolds number based on /T,

Stims  Stokes number based on 11,5 (Stims = (2/9) (0s/01) Reims)
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