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Abstract. Cellular automata for mimicking physical systemh® lattice gas and lat-
tice Boltzmann automata, fluid dynamics with thdti¢e-Boltzmann method,

practicalities of the lattice-Boltzmann method, DNS solid-liquid suspensions,

scaling in single-phase turbulence, direct numeéricad large-eddy simulations,
subgrid-scale modeling in LES, solid-liquid flowoipt particles in LES, passive
and reactive scalar transport in turbulent flolefed density function approach to
turbulent reactive flow.

1 Cellular Automata

In computational science, the challenge is to des@nd understand complex systems (that
can be loosely defined as systems with many inieagacomponents) by means of efficient
numerical tools. Cellular automata turn out to beywfruitful in this respect. Von Neumann
introduced the concept of cellular automata (CAjh@ 1940’s. The idea is to represent a
physical system in terms of discrete space and fline physical quantities (the state of the
automaton) take only a finite set of values.

Von Neumann was intrigued by the mechanisms thail te self-reproduction in biology.
He wanted to devise a system that has the capabilieproduce another system of similar
complexity. For this he devised a fully discretaiuerse” made of cells. Each cell is charac-
terized by an internal state, typically consistafca finite number of information bits. The
cells evolve in discrete time like simple automti@ only know a simple rule to compute
their new internal state. The rule determines ttwugion of the system. It is the same for all
cells and relates the state of a cell with thaitsoheighbors. Similarly to what happens in
biological systems, the activity of cells takescplaimultaneously and synchronously.

Thegame of lifgproposed by John Conway in 1970) is an exampdesihple rule lead-
ing to complex behavior. Conway imagined a two-digienal, square lattice (like a
checkerboard). Each cell can be alive (state tlead (state 0). The updating rule is: a dead
cell surrounded by exactly three living cells dedsk to life; a living cell surrounded by less
than two or more than three neighbors dies (oft&wi or over-crowdedness). Here sur-
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Figure 1. Snapshots of the game of life on a 200x200 grileheTis running from left to right

rounding means the four nearest neighbors (nastithseast, west), and the four next near-
est neighbors (along the diagonal). This very singultomaton has rich behavior. Complex
structures appear and show interesting dynamidsigure 1 some single realizations of the
lattice are given. More interesting, however, de dynamics of the system that can be
viewed in animations.

Another example along the same lines: We defingoadimensional square lattice with
values 0 or 1 on each node. Starting from som&liibndition, we evolve the system as
follows: if the sum of the four nearest neighboluea is even, the new state is set to zero, if
it is odd it is set to 1. When this rule is itethtaice geometrical patterns are observed. Fig-
ure 2 shows results if we start from the situatjpren in the left panel. The complexity
evolving in time results from spatial organization.

Above were artificial (and in a way esoteric) ex#sp The route towards describing
physical systems in terms of a CA is not straigiatéod. A natural way is to propose a model
of what we think is going on. The “art of modeling’to retain only those ingredients that
are essential; the degree of reality of the modpkdds on our level of description. If we are
interested in global, macroscopic properties (drad is mostly the case in fluid dynamics
with variables like fluid velocity and pressuréje tmicroscopic details often are not relevant
(as long as we obey symmetries and basic consamiatis).

In 1986, Frisch, Hasslacher and Pomeau (Frisch,et386) announced a striking dis-
covery. They showed that the molecular motion ne&dto be nearly as detailed as real
molecular dynamics (with of the order offifholecules, and even more degrees of freedom)
to give rise to realistic fluid dynamics. Theiriluwas constructed of fictitious particles, each
with the same mass and moving with the same saebdiffering only in their velocity
directions. Moreover, these directions were comgthto a finite set (in two dimensions
only six). This was the so-called lattice-gas awttum, from which later the lattice-
Boltzmann method evolved.

Figure 2. Evolution of a 256x256 cellular automaton.



2 Lattice Gas Automaton

The lattice gas is constructed as a simplifieditificis molecular dynamic in which space,
time, and the particle velocities are all discigben & Doolen, 1998). From this perspec-
tive, the lattice gas method is often referredst@ dattice gas cellular automaton. In general,
a lattice gas cellular automaton consists of alaedattice with particles residing on the
nodes. A set of Boolean variablegdx,t) (i =1,---,M ) describing the particle occupation is
defined, wheré\ is the number of directions of the particle velpeait each node. The evolu-
tion of the LG is as follows

n (x+e,,t+1):n| (x,t)+!2, (n(x,t)) (2.2)

where e are the local particle velocities (agair 1,---,M ), and 2 is the collision opera-
tor that is a function of all particles (i =1--,M) involved in the collision. Starting from
an initial state, the configuration of particlessath time step evolves in two sequential sub-
steps: (ajptreamingin which each particle moves to the nearest nodbe direction of its
velocity, and (byollision, which occurs when particles arriving at a noderact and change
their velocity directions according to scatteringes. For simplicity, the exclusion principle
(not more than one particle being allowed at argti@e and node with given velocity) is
imposed for memory efficiency. This leads to a Feédimac local equilibrium distribution
(Frisch et al., 1987).

3 Lattice-Boltzmann Method

The main feature of the lattice-Boltzmann methoBN]) is to replace the particle occupa-
tion variablen, (Booleans) in Eqg. (2.1) by single particle digitibn functions (real
variables) f, :<ni> and neglect individual particle motion and pagtiphrticle correlations

in the kinetic equations. The bracke{ts} denote an ensemble averaging. This procedure
largely eliminates noise (which is present (andablem) in lattice gases). In the LBM, the
primitive variables are the averaged particle ihigtions, which are mesoscopic variables.
Because the kinetic form is still the same asdtteé gas automaton, the advantage of local-
ity in the kinetic approach is retained. The Idga essential to parallelism.

4 From Lattice-Boltzmann to Navier-Stokes

Since the lattice-Boltzmann method is a derivatifzéhe lattice gas approach, the LBM will
be introduced starting with a discrete kinetic ¢igmafor the particle distribution function,
which is similar to the kinetic equation in lattigas automata, see Eq. (2.1):

f(x+edxt+4t)=f(xt)+2(f(xt) (i=01-,M) (4.)

wheref; is the particle velocity distribution function alpthei-th direction (please note that
now runs from 0 tav, in the LBM often a rest particle having zero-étp and index 0 is



introduced); 2 = @ (f (x,t)) is the collision operator that represents the satshange of;
as a result of the collision. The collision operaf® depends on ali+1 particles (distribu-
tion functions) involved in the collision. The spaand time increments ardx and 4t
respectively. IfAx/ Zt =|e|, Egs. (2.1) and (4.1) have the same discretizaliothe LBM,
space is discretized in a way that is consistetft thie kinetic equation, i.e. the coordinates
of the neighbors of arex+e.

The densityp and momentum densitpu are defined as moments of the distribution
functionf;:

p=3f pu=3fe 4.2)

with the sum ovei=0..M. The collision operator? must satisfy mass and momentum
conservation at each lattice:

Y2 =0 YQe =0 (4.3)

If only the physics in the long-wavelength and liseguency limit are of interest, the lat-
tice spacing4x and time step4t in Eq. (4.1) can be regarded as small paramefeteo
same ordere . Performing a Taylor expansion in time and spaeepbtain the following
continuum form of the kinetic equation, accurategoond order itz :

i+e, of, + & lelel 00f +e ML +=
ot 2

—L == 4.4
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To derive the macroscopic hydrodynamic equatioesapply the Chapman-Enskog expan-
sion, which essentially is a multi-scale expansion
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The above assumes the diffusion time state be much slower than the convection time
scalet;. Likewise, the distribution functiofy can be expanded formally about the local equi-

librium distribution function f =
f,=f+ef™ (4.6)
Here f,** depends on the local macroscopic variabjesapd ou ) and should satisfy

2i=p Tfe = (4.7)



freo= £0 + £ +0(g?) is the non-equilibrium distribution function whishould satisfy
the following constraints

TfY=0 Ti¥% =0 k=12 (4.8)

Insertingf; into the collision operator along with a Tayloparsion gives

PRSI T-X ¢ £ RN ToY ¢ ) IR 7o X € o) S ,
a(f)=a(t q)+ng;>+g( m £+ T fO£9 | +0(e) (4.9)

i i
(summing of repeated indices is implied in thisaiun, and in the rest of the text). From
Eq. (4.4) in the limits - @Qwhich implies f, = f*) it follows Qi(f eq): 0. This teaches us
that we can linearize the collision operator:

Qi(f):ﬂ(fj ~£2) with M, _2e(i")
£ of.

J

(4.10)

The matrixMV; is the collision matrix, which determines the saréitg rate between direction
i andj. M; only depends on the angle between the directiamglj. Mass and momentum
conservation imply:

SM, =0 YeM, =0 (4.11)

In the widely used lattice BGK (Bhatnagar-Grossé&csee Bhatnagar et al. 1954) collision
operator, the distribution function relaxes to guildrium state at a single rate with time
constantr.

M, =-1g (4.12)
r
Then the collision term reads
&:_1 fi"eq:_l(fi(1)+gfi(2)) (4_13)
£ T T
The lattice-BGK equation
f —f*
f (x+e,t+1)=f (x,t)-—— (4.14)
T

forms the heart of many lattice-Boltzmann compuatetes.



If we now substitute the LBGK collision operatondathe expansions of the distribution
functions as given above in Eq. (4.4), equationsttus orders of appear. Fog®

eq 1)
I e o= (4.15)
ot, T
For orders™:
1) eq eq 2 [©)
of= 9, +e [Of © +le|ei :00f* +e M U ~ £ . (4.16)
ot, ot, 2 ot, 20t
Combining Egs. (4.15) and (4.16) gives
(1) (1) ()
o, (1-3j A e mre |-t (4.17)
ot, T ) ot T

From Egs. (4.15) and (4.17) the continuity equatiod momentum balance can be derived:

ai+mgou =0 (4.18)
at
a(;_’?mm:o (4.19)

These equations are accurate to second ordeil lmee momentum flux tensét has the form

n,= Zemelp[ feo +(1—i] fi(”} (4.20)

2T

with e, the component of the velocity vec®in the a-th coordinate direction. Note that the
momentum flux has an equilibrium part and a norilibgum part.

To specify the flux tensor, we need to specifyldiiice structure and the equilibrium dis-
tribution. We consider a two-dimensional, squatticia This relatively simple case has all
the features that also apply to different latti@ed number of dimensions. The set of velocity
vectors can be written as

o I I i P AP |



The requirement for using the nine-velocity mod@2Q9 in the LB jargon: two-dimensions,
nine speeds) instead of the simpler five-velocibded comes from considerations of lattice-
symmetry. The lattice-Boltzmann equation cannobvec the correct Navier-Stokes equa-
tion unless sufficient lattice symmetry is pregémisch et al 1986).

The Navier-Stokes equation has a second-orderimearity. According to Chen et al
(1992), the general form of the equilibrium disatibn can be written up ©(LA):

= pa+be, m+cle ) +a] @22)

wherea, b, ¢, andd are so-called lattice constants. This expansidheoélistribution function
only makes physical sense if the velocities ardlsrompared to the (obviously finite) speed
of sound of the lattice-Boltzmann system. Using ¢bastraints as given in Eq. (4.7), the
lattice constants can be obtained analyticallyBamd(4.22) can be written as

fei= ,a/v{1+3el [ +%(ei Wy —guz} (4.23)

The weight factorsy, are
WOZ% V\/1:W3:WS:W7:}6 W2:W4:W6:W8:}é6 (4.24)

If we now get back to Eq. (4.20), the equilibriuartecan be written as

M =%e.8,f"=pd, +puu, (4.25)
/7;;) = 1_ijze.ae|p fi(l) = M+M (426)
21 )7 ox, 0x,

wherep=0/3 is the pressure, ang(2r-1)/6 is the kinematic viscosity. From the pressure
relation the speed of soungcan be derived:

cl=—== (4.27)
Jdp 3
The momentum balance then reads
o0 Ol | _Op 0 [0p,  dpu, (4.28)
ot X, 0x, ox, | 0x, X,

The momentum balance for a Newtonian fluid (theibla8tokes equation) for a compressi-
ble fluid reads



ot X, ox, 0X, ox, 0x, 30X,

ou,u ou ou
p£aua + 7 ﬂj:—ﬂ-{- 0 [,OV( A +aua _1 yJHBJJ (429)
In the limit of constant density Egs. (4.28) and®2® are the same. The limit of constant
density can be effectuated in the LB scheme byikgeape fluid velocities well below the

speed of sound (low Mach numbers), singell dp/c? D,o|u|2/cj. That is, one should
satisfy

2
% =Ma’® <<1 (4.30)
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5 Some Practical Aspects of the Lattice-Boltzmann Mébd for Single-
Phase Flows

5.1 Implementation of the lattice-Boltzmann method in omputer code

Implementing the above rules in computer code ity fatraightforward. This will be out-
lined here briefly in terms of Fortran-like pseuttale for a D2Q9 lattice-Boltzmann scheme
(that scheme also was the subject of Section 4).

Define a main real arrdy( n, i , j ) containing the distribution functions (or the LRBiél
particles) at some specific moment in time. Expeeelearns that in most cases this can be a
single-precisionr(eal * 4) array. The index relates to the 19 velocity vectors (the number-
ing being the same as in Eq. (4.21)), and the ésdicj to the two coordinate directions
that run froml. . . nx, andl. . . ny respectively (flow the domain is a rectangle vsitre
nx[@y). The evolution of this system has two major stefreaming and collision. In the
streaming step, particles move to neighboringckattites. Computer code could look like
this:

Code fragment

do j=1,ny
do i=1, nx
f(5,i,))=f(5,i+1,j)
f(7,i,))=F(7,i,]+1)

[
f(6,i,j)=f(6,1+1,]j+1)
[

f(8,i,j)=f(8,i-1,]+1)
enddo
enddo
do j=ny,1,-1

do i=nx,1,-1



Figure 3. Schematic of the flow past a circular cylinder.

f(1,i,j)=f(1,i-1,j)
f(3,i,j)=f(3,i,j-1)
f(2,i,j)=f(2,i-1,j-1)
f(4,i,j)=f(4,i+1,j-1)
enddo

enddo

end of code fragment

The above structure has been chosen such thatlyweewd one field arrafy, i.e. we over-
write the array before the streaming step withetinay after the streaming step.

The LBGK collision step, see Eq. (4.14) requirest the determine the equilibrium dis-
tribution According to Eq. (4.28) this needs conmmithe density and velocity per lattice
node. For the latter we use Eq. (4.2).

It is (in my view) convenient to work in lattice-tsmwhile setting up an LB simulation.
The unit of time is then set to 1, and is the tfiorean LB fluid particle (or distribution func-
tion) to travel to the neighboring lattice site.€Timit of length is set to 1 as well and equals
the spacing between two nearest-neighbor latticesioThe lattice spacing is uniform over
the entire lattice and in the coordinate directi(stpiare lattice in two dimensions, cubic in
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Figure 4. Parallellization through domain decomposition.tLgfobal view; right: at node level.



three directions) due to the coupling between vgt@pace and physical space: particles
have velocities such that they travel to their hieiging sites in exactly one time step.

Translating a flow case defined in physical urite B units goes via dimensionless num-
bers. Suppose we would like to determine the fl@stm square cylinder at flow and
geometrical conditions as given in Figure 3. Fragufé 3 a Reynolds number can be de-
duced: Re=UD/v . Suppose we would like to simulate the case Re=19Ghe LB
simulation, we first choose a reasonable spatilugion. Say we would like to resolve the
flow such that the cylinder spans 10 lattice spgiiTherD=10 (in LB units). Flow veloci-
ties need to be such that a1 (Eq. (4.30)). This can be achieved by settiegftee stream
velocity U to 0.1 (LB units). For mimicking the physical cdbat has Re=100, the viscosity
then needs to be setws0.01 (again in LB units).

Parallellization of LB computer code is straightfard. The LB nodes only communi-
cate with each other in the streaming step. Foallplization we decompose the flow
domain in sub-domains. At the borders of the subains we introduce ghost-cells. Before
each streaming step the contents at the edgestofsab-domain is copied in the ghost cells
of the neigboring domain (see Figure 4). Onceithiione, the streaming step can be carried
out in each subdomain according to the proced@septed earlier in this section.
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Figure 5. Streaming step for simulating a no-slip wall pthtalfway lattice nodes.
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Figure 6. Definition of the halfway bounce-back rule foriecalar particle. Right: zoomed-in view.



5.2 Setting boundary conditions

No-slip boundary conditions at solid walls can ke according the so-called bounce-back
rule. In the half-way bounce back rule, the walbsated midway half a lattice-spacing away
from a lattice node (see Figure 5). The particlexpagating in the direction of the wall,
bounce back at the wall and after exactly one 8tap arrive at the lattice node they left at
the beginning of the time step. The half-way botio@ek method for no-slip walls is second
order accurate (Rohde et al 2002), just as theetdiization of the Navier-Stokes equation as
given in Section 4. Placing the wall at a differimmiation with respect to the grid reduces the
accuracy at the boundary to first order.

If the no-slip wall has a non-zero velocity, thauboe-back method as described above
can be generalized such that LB particles that t®am the wall receive additional momen-
tum due to the wall’s motion. The half-way bounesib rule including additional
momentum from moving walls is the basis of Ladd'scedure (Ladd, 1994) of simulating
solid-liquid suspensions with spherical particiigure 6 shows a representation of a circular
object in Ladd’s approach. The lattice-Boltzmanuidflparticles bounce back halfway the
link between two LB nodes, with the bounce baclafion close to the actual surface of the
object. The circle (and sphere in 3D) are represkby a stair-step object. Such a schematic
(rough) approach requires calibration. Usuallystiniition is made between the input radius
of a spherical particle, and the so-called hydradyio radius. The input radius relates to the
particle as discretized in Figure 6. Of this p#etihe Stokes drag force is determined in a
simulation of the sphere in a periodic domain. Téslt is compared to the analytical result
(Hasimoto, 1959). Then the hydrodynamic radiushés adius of a sphere having a drag
force equal to the one of the simulation, but nmeoading to the analytical expression.
Usually the hydrodynamic radius is slightly highiean the input radius (some 0.5 lattice
spacing), it furthermore depends on the viscodithefluid.

Note that in this approach, there also is fluiddeghe particle. This internal fluid has no
physical meaning. It is there for computationalvamience. The particles move relative to
the grid and therefore cover and uncover LB nodea cegular basis. If the particles have
internal fluid, in the cover and uncover procesglfsimply turns into internal and external
fluid respectively and fluid mass is conserved lga3ihe consequence of having internal
fluid is that the density of the particle alwaysha be at least the density of the fluid; the
dynamics of lighter particles cannot be simulat&ido in setting up and solving the equa-
tions of motion of the particles, the internal duieeds to be taken into account. This will be
discussed in Section 6 of this chapter.

Aidun and co-workers (Aidun et al 1998, Ding andl#i 2003) have adapted Ladd’s
method such that internal fluid is largely avoid@tie price is the execution of a dedicated
procedure to conserve fluid mass as good as pessibl

In recent years, immersed boundary methods arénggiopularity in mainstream CFD
based on e.g. the finite volume method, or speniethods (Goldstein et al 1993). Similar
technigues can be employed in an LB context. The id to apply body forces on the fluid
such that at prescribed locations the fluid haseaguibed velocity (equal to the velocity of a
solid wall). An advantage of the method is that ltheations can (in principle) be chosen



independent of the grid. In the case of definingaving sphere, the forcing method works
as follows: The sphere’s surface is defined as af#é control points;™ (j=1...M) on their
surface, where the superscript (n) now indicatesribment in time. There is no restriction
on the position of these points in the flow domdirey do not need to coincide with lattice
sites. At these points we require a velocity edaak; ™= v+Qux(r;"-r,™), with v, the
linear velocity and2, the angular velocity of the particle.

The above demand can be achieved effectively thraugpntrol algorithm (Goldstein et
al 1993) that at each time step determines therfiatated) mismatch between the actual
flow velocity and the prescribed flow velocity Aetcontrol points, and then adapts the force
field in such a way that it suppresses the mismdtol deviation between the actual and the

prescribed velocity dﬁ.”)) is determined by a second-order interpolatiothefflow veloci-
ties at the lattice sites:

d? =w" -3, G,[r®)u® (5.1)

where the sum is over the lattice sites in theniticiof rj("), uy is the fluid velocity at lattice
sitek, andGy are the interpolation coefficients. These coedfits also serve to distribute the

forces that reduce the deviatiat{”, over the lattice sites:
£ =10 +qy, G, (r®)d® (5.2)

with f” the force acting on the fluid at lattice nddand moment, andq a relaxation fac-
tor. Also the forcing method needs calibrationhaf hydrodynamic diameter. For this we use
the same procedure as proposed by Ladd.
Other sorts of boundary conditions can be achiagnetthe LBM relatively easily and
along intuitive lines:
« Zero-shear at flat walls is achieved through speaeflection of the LB particles at the
wall.
 Zero gradient conditions (at inflows and outflovas® achieved by copying distribution
functions in the direction normal to the boundatjnflows the forcing scheme (see
above) can then be used to impose velocity profiles
 Periodic boundaries imply copying outgoing disttiba functions to the other side of
the domain where they enter again.

5.3 Alternative collision operators

The LBGK collision operator, based on a single tico@stant with which distribution
functions relax towards equilibrium gets unstalgle 6w viscosity values. This has led to
research towards more stable schemes. Two more stefiemes are mentioned here: the
multiple relaxation time (MRT) scheme (Lallemandidruio, 2000), and a scheme due to
Somers (1993).

For a MRT-LB model withM velocities, a set of velocity distribution funai®
f, (i =01 ,M) is defined. The collision (and this is differerdrh LBGK) is executed in



moment space (not in velocity space). Moment spadevelocity space are connected via a
linear transformation

(5.3)
The evolution equation then reads
f(x+edxt+at)= 1, (x,t)+Q (f(x,t)= =) A (m -mo) (5.4)

The moments are related to density, momentumnstaaid energy. Their equilibriums are
functions of the conserved quantities which aresnaal momentum. ThHd+1 coefficients

A, determine the viscosity (as did the relaxatiorejignd are used to enhance the stability
of the scheme.

The scheme due to Somers has been described inbgeEmgels and Somers (1995). It
goes along similar lines as the MRT approachijtgecollision operator acts on moments of
the velocity distribution function. Furthermoreuges a staggered discretization in space and
time.

6 Direct Numerical Simulations of Solid-Liquid Suspersions

In this section we will discuss a methodology foectly simulating solid-liquid suspen-
sions. In these simulations we resolve the saljdidi interface and the flow of the interstitial
fluid (the latter we do with the LBM), i.e. the gpital solid particles have finite size and the
flow around the particles is directly simulatedeTrcing method described in Section 5.2
is used for setting the no-slip boundary conditibthe sphere’s surfaces. At the end of this
section we will briefly discuss two examples oftsg@mulations: a turbulent suspension, and
solid-liquid fluidization.

Our starting point is a fully periodic, three-dirs@mal domain containing fluid and solid
particles with a spherical shape. In the fluidizatcases, the flow is driven by a net gravity
force acting on the patrticles, and a pressure gmaditing on the fluid to balance gravity. In
the case of the turbulent suspension, a random toody that can generate turbulence with
prescribed properties agitates the suspension.

The fluid flow and the particle motion are coupddemanding that at the surface of the
sphere the fluid velocity matches the local vejooitthe solid surface (that is the sum of the
linear velocityv, and Qx(r—rp) with Q, being the angular velocity of the particle); i th
forcing scheme this is accomplished by imposingtixiél forces on the fluid at the surface
of the solid sphere (which is then distributedhs fattice nodes in the vicinity of the particle
surface). The collection of forces acting on thidflat the sphere's surface and its interior is
subsequently used to determine the hydrodynamaefand torque acting on the sphere
(action =-reaction).

The effective body force on the fluid (in the flizidtion case) mentioned above can be re-
lated to the gravitational acceleratian= —ge, , as follows. The net gravity force acting on
each spherical particle 5, = —(ps —ﬁ)ﬁdsgez , and the force per unit volume acting on
the (internal and external) fluid is



f, =(2-p,)ge, (6.1)

with p = @o;(l—(ﬁ)pf the density of the fluid-solid mixture, ar@ the overall (spatially
averaged) solids volume fraction in the periodiondo.

The fluid inside the spherical particles is anfateof the forcing scheme. As long as
the density of the solid is higher than the densityhe fluid, the effects of the internal
fluid can be effectively corrected for: The forég, acting on the fluid determined by the
forcing method is the sum of the force needed telacate the internal fluid and the force
of the particle acting on the external fluid. Sirtbe internal fluid largely behaves as a
solid body, one can partitioR, as follows:F, =F_, +F,, where the forceF, is the
component that ensures that the internal fluidslees with the particlef_, is the force
on the external fluid due to the particle. The allelinear momentum balance for the
internal fluid can be written as

/g dv _ T — T 3
o Edp d_tp = +FLB,1 + (p ~ 5 )E dp ge, = FLB - Fext + (,0 — 5 )Edp ge, (62)
where it has been recognized that the internad firanslates with the particle. The corre-
sponding equation for the particle is then

dv \TT
—L=-F + (ps - 'O)E d’ge, (6.3)

TT 5
6 " dt

Lubrication forces which arise because of inadexjuasolution of the flow in between
neighbouring particles and those arising from dipesticle-particle interactions (e.g., colli-
sion) will be added to the right hand side latenBining Egs. (6.2) and (6.3), we get

dv
(Ios wZ )_d = _FLB - (ps ~ b5 )I_Tdsgez (64)
6

Following the same reasoning, we obtain the folhgrangular momentum balance:

7 . dQ
&ds dtp :_TLB (65)

(0.-0)
with T, the torque as determined by the forcing methothfise the no-slip conditions at
the sphere’s surface.

In order to test if the above procedure represtgtslynamics of spheres immersed in
liquid properly, we considered the transient motiba single sphere that is accelerated from
rest under the influence of gravity. In the limftzero Reynolds number in an unbounded
fluid the equation of motion of the sphere has beerived by Maxey and Riley (1983).
Results obtained by integrating the Maxey and Réeyation showed excellent agreement



with the LB simulations combined with the above a@ns of motion. Ten Cate et al.
(2002) compared the results on sedimentation wighessphere in a limited-size container at
higher Reynolds numbers (up to Re30) obtained through lattice-Boltzmann simulagion
and forcing boundary conditions with particle imagéocimetry (PIV) data and found good
agreement in terms of the sphere’s trajectory aedfltid flow field around the moving
sphere.

We also take into consideration the interactiowbeh particles through binary, hard-
sphere collisions and lubrication forces. For tener, we apply an event-driven collision
algorithm: we move the collection of particles Lo particles get into contact. At that
moment we carry out the collision (i.e. updatevlecities of the two particles taking part in
the collision). Subsequently, the movements opaiticles are continued until the next colli-
sion or until the end of a LB time step. The calismodel that we apply (described in detail
in Yamamoto et al., 2001) has two parameters:tdutizn coefficiente and a friction coef-
ficient 1. As the default situation we consider fully elasfrictionless collisionsg= 1, ¢ =
0).

When two particles are at close proximity, withittseparation being of the order of or
less than the lattice spacing, the hydrodynaméréaation between them will not be properly
resolved in the LB simulations. Therefore, we eifhji impose lubrication forces on the
particles, in addition to the hydrodynamic forcésnsning from the LBM. The general
framework for lubrication forces and torques actimgtwo particles (1 and 2) as a result of
the relative motion of their surfaces can be wriitethe form of the following vector equa-
tion:

Flub.]. A11 - Bn B 22 || Voiz
Tlub,l = By C., C,|Q (6.6)
T, -B C C Q

with F,, =-F,, andv_,=v_ , —v_, (Kim and Karilla, 1991; Nguyen and Ladd, 2002).

In the tensord\1;, Biy, Boy, Ci1, Cop, @andCyy, We only use the leading order terms in the

p.12

d . . .
parameterF", with h the minimum spacing of the particle surfaces. therradial lubrica-
tion force (contained in the diagonal elements loé A;; matrix in the equation

d
F..=A,V ., ) the leading order isﬁ", while for the tangential lubrication forces and

lub,1 1 " p12?

d . I .
torques it isln[ﬁj (Kim and Karilla, 1991). Two modifications toettabove expressions

were implemented to tailor them to our numericaldse
(@) Lubrication only acts if particle separatiorieiss thand = 0.1d, (which is equivalent to

roughly one lattice spacing in the default resohgiwe use). To smoothly switch on/off the



d d d
lubrication force ath =9, in the lubrication expression?]"— is replaced byﬁ—gp, and

d d d
|n[ﬁj by |n[ﬁj —In[?"j (Nguyen and Ladd, 2002).

(b) The lubrication force saturates once the pagiare very close (at:ffdp). The latter
restriction we use for numerical reasons (to avjth force levels and associated instabili-
ties) but also with the surface roughness of théighes and/or the mean-free-path of the
fluid in mind.

The time-step-driven (LBM) and the event-drivenlli{sional) parts of the simulation
have been combined by first performing the LBM tistep fromt to t+4t and subsequently
moving the particles until also the particle systess advancedt in time. Since in dense
systems usually more than one collision occursduti, the particle motion algorithm sets a
number of sub-time-steps, the number being equahéoplus the number of (potential, see
below) collisions.

At the start of every particle motion sub-time-stepe update the lubrication forces and
torques. Then we move the particles over the snb-$itep, i.e. until the next potential colli-
sion (or untilt+4t is reached). At the new positions of the partiglesagain determine the
lubrication force and torque. The linear and anguédocities of the particles are now up-
dated according to the average of the lubricatiwoels and torques at the beginning and at
the end of the sub-time-step. The velocity updadg rasult in the collision not to occur: in
that situation the lubrication forces were suffithg strong to change the sign of the relative
particle velocity so that a hard-sphere collisi@syprevented.

lcm
Figure 7. Experiment showing the onset of a bubble in afflatlized bed. Left: snapshots of the
bed; right: schematization of the observations.riRégd from Duru and Guazelli (2002).



6.1 Some results for solid-liquid fluidization

Two-dimensional waves and the onset of bubbles baem studied experimentally by
Duru and Guazzelli (2002). They used flat, liquidefized beds that could not develop
three-dimensional structures, and allowed for gasible observations, well-resolved void
fraction measurements, and particle tracking veletily measurements. Figure 7 shows a
typical result of their experiments: the developtmaina bubble-like void, starting from a
planar wave instability. In this case, steel beddssity 7.810° kg/nT) with a diameter ofl,
= 1 mm were fluidized with water in a domain thatsal 2@, wide, 12i, thick and some
2000, high.

Such two-dimensional structures can indeed be abauilusing the approach described
above. In order to see the evolution of two-dimamei structures, we have performed simu-
lations in a 2d,%x6d,%20d, periodic domain (the 2f) being in the streamwise direction). As
an initial condition for the particle positions anelocities (translational and rotational), we
juxtaposed four copies of a fully developed plamave [computed in adgx6d,x20d, peri-
odic domain]. This simulation was performed at avdp resolution such that the
hydrodynamic diameter of the particles was setetd.® lattice units. The density ratio was
set to 8. The viscosity and body force were chaseh that the terminal velocity of a single
bead was 0.04 (in lattice units) and the Reynolamber based on the terminal velocity
matched the value in the experiments €R400). The collisions were smooth and elagtic (
=0,e=1).

In Figure 8 we show how the numerical system depezloa bubble very similar to the
experimental observations: the initially plane winekles and at its crest forms a bubble-
like void. The particle velocity field in the vidtg shows qualitative similarity with the field
measured by Duru and Guazzelli (2002); see Figu/® again note that non-ideality of
bead-bead collisions is not an essential condftomesolving the behavior of void fraction

Figure 8. Series of snapshots showing bubble formation.ufiper left frame shows the initial

condition. The time-spacing between the subseqleftto-right, top-to-bottom) frames is
2
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Figure 9. Measured (left, reprinted from Duru and Guazeéd02), and simulated particle velocities
in the vicinity of a bubble

instabilities in fluidized beds. The domain sizehe flow direction is too short for the bub-
ble to behave as an isolated bubble. The perigdiem resembles a bubble train, which
generally has a higher velocity than an isolatdobl®i If we estimate the bubble rise veloc-
ity and translate it back to the experimental stester system, the bubble rise velocity in the
simulation is approximately 15 cm/s. The bubblausds approximately 0.4 cm. This bub-
ble size and rise velocity combination is at thedbend of the range of rise velocities for

bubble trains which is 15 to 22 cm/s accordingh® éxperiments (Duru and Guazzelli,
2002).

6.2 DNS of turbulently agitated solid-liquid suspensios

Another example of the application of our approfmhdirectly simulating solid-liquid
suspensions is in the field of turbulence and reentreported earlier by ten Cate et al.
(2004). We again define a three-dimensional sysiEsolid particles dispersed in a liquid
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Figure 10 Energy spectrum of the random forcing and theltiegusingle-phase fluid flow. The
wavenumbek was normalized with the peak-forcing wavenumielhe energ¥ is non-
dimenionalized withu2. with u. the rms velocity, antd=217k;.



with fully periodic boundary conditions. Instead driving the system by a uniform body
force on the particles and a (opposing) body farc¢he fluid (mimicking the pressure gra-
dient), we now force the system in a random maardn generate homogeneous, isotropic
turbulence. The procedure for doing this is duélicelius (1999); Ten Cate et al (2006)
adapted the method so that it could be combinedul th lattice-Boltzmann method. In Fig-
ure 10 we show results for single-phase turbulénderms of the energy spectrum. The
spectrum of the random forcing is limited to smelvenumbers (large scales). With increas-
ing Reynolds number, the flow develops smaller smdller scales (the spectrum extends to
higher wavenumbers), and develops and inertiabsigler characterized by a -5/3 slope in the
energy spectrum.

The presence of particles changes the spectrunfrigee 11): the particles create turbu-
lence at scales comparable to and smaller thapatttiele diameter. One of our interests in
this study was the way patrticles collide (collisfoequencies and intensities). In this respect
it was interesting to study the PDF of the timensein two collisions of a particle (as given
in Figure 12). For “long times” this PDF is expotiahindicating Poisson statistics (with a
steeper slope for more dense systems). Theseiamdliare uncorrelated events. For “short
times” the PDF deviates from exponential and shaweak towards zero time. These are
correlated events: once turbulence has brough{dmmore) particles in each others vicinity
they tend to cluster due to short range hydrodyoantéraction (lubrication) and undergo

many (weak) collisions at short time intervals. Evally the particles in the cluster are sepa-
rated when a strong enough eddy comes by.

T, ]
L ¢20.02 0 |
100 F ¢=0.06 - 3
* T . e ¢=0.10  -------- |
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Figure 11.Energy spectra of the two-phase simulations (satids volume fractiong) compared ti
the single-phase (fluid) spectrum. The wavenurmb&as normalized with the particle size
wavenumbek,=217d,. The energ¥ is non-dimenionalized wite”*n*? with ¢ the average energy
dissipation rate, ang the Kolmogorov lenght scale.
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7 Single Phase Turbulence

A turbulent flow exhibits an irregular behavior space and time. A typical example of a
time signal corresponding to a turbulent flow qignis shown in Figure 13 where the
streamwise velocity recorded in a turbulent pip&fls shown as a function of time. At first
glance, the velocity may seem to behave randongjail®d studies, however, have shown
that turbulent flows are not completely randompace and time. They contain spatial (co-
herent) structures that evolve in time. These tiras are often referred to as eddies, as they
are usually associated with rotating motions atifitow. A fundamental result of turbulence
theory is that these eddies are not all of a paaticsize, but that an often broad continuous
range of large to small eddies exists. If we retarRigure 13, and carefully study the tempo-
ral evolution of the turbulence signal shown theve,see that in this signal both “fast” and
“slow” temporal variations occur, that might beadated to small and large eddies respec-
tively. In general, the size of the largest eddies turbulent flow is determined by the
geometry of the flow configuration. Here it is cheterized by a length scdleTypical val-
ues of | for wall-bounded, shear-driven turbulence #&0.1L with L a length scale
corresponding to the flow geometry (e.g. the pijanéter). Besides a length scale, these
large eddies also have a velocity scale denoted Byom this we can deduce that large-
scale eddies have a typical time-scale proportitmidl, and a turbulent kinetic energy (per
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Figure 13. Evolution of the streamwise velocity as a functidrtime measured in fully developed
turbulent pipe flow (reprinted from Eggels, 199dutesy J. den Toonder).

unit mass) proportional ta. This kinetic energy is extracted from the meawfby interac-
tion of the mean flow and the turbulent fluctuation

The smaller eddies do not extract their kinetiagydirectly from the mean flow but are
fed by a continuous decay of (unstable) large addafgch break up into smaller ones. These
smaller ones in turn decay to even smaller edditi this cascade reaches the smallest
scales of turbulent motion (the energy cascadeg. [€hgth and velocity scales of these
smallest eddies are determined by the amount eftikirenergy that is being transformed
along the energy cascade from large to small eddie$ by the molecular viscosity of the
fluid that eventually (at the smallest dynamicalles) dissipates the energy.

The loss of kinetic energy of the large-scale esldieepresented by the dissipation eate
(energy per unit time and unit mass). In turbulethesry, it is assumed that the dissipation
rate is independent of the turbulent micro-strieiiar the small eddies) since it is fully de-
termined by what happens at the large scales.i§ bigoressed by the following:

E=— (7.1)

This relation can be interpreted as the kinetiaggnef the macro-structure eddieg)(being
transferred to smaller scales (break-up of bigghties into smaller eddies) during their
lifetime (/u).

The smallest eddies are fully controlled by thergpdransfer (or, equivalently, by the
dissipation rates), and by the molecular viscosity they are e.g. decoupled from the flow



geometry. By means of dimensional analysis, thgtlervelocity, and time scales of these
smallest eddies can be determined:

n:(v_sj v=(ve)” r:(v—j (72)

£ £

These are the celebrated Kolmogorov scales. Sirecdissipation rate is known in terms of
macro-structure properties, we can easily dedulzgiaes between the various scales of
macro-structure and micro-structure. Substitutigg(Z.1) into Eq. (7.2) yields

n - Rqs/zx 4 — RQ_M r — RQ_UZ with Re, :u_l (7.3)
v

I u %

For large Reynolds numbers |Rthe scales of the micro-structure become mucHlema
compared to those of the macro-structure. In offweds, the energy cascade process deter-
mines the scales of the micro-structure in suctag tvat the smallest eddies can transform
their kinetic energy into internal energy (heat)rbgans of molecular viscosity. If e.g. the
kinetic energy of the macro-structure is incregged if Rg becomes larger), then the scales
of the micro-structure become smaller (comparetl dad u) in order to more effectively
transform the increased amount of kinetic energyimernal energy.

The appearance of a broad range of scales in aleatlflow with the macro-structure
characterized by its large eddies on one hand laanicro-structure with its small-scale
eddies on the other, is our point of departurdltistiate the principles of the simulation
techniques described here.

8 Numerical Simulation of Fluid Flow

For an incompressible, Newtonian fluid, the conaton of mass and momentum are as
follows

Olv=0 (8.1)
ov

—+V[|]:|V:—i|:|p+V[|2V (8.2)
ot Yo

with v the velocity vectorp the fluid density, angh the pressure. The Reynolds number
(introduced in Section 7), can be interpreted asdkio of the advection term(Ov and the
viscous termv®v both scaled by the macro-scalesndl:

1
|v D]]v| Rt
v 0T == =Re (8.3)
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For large Rg the nonlinear advection term dominates over tbeous term and (in general)
the flow will be turbulent. The nonlinearity of tlalvection term is the reason for the ap-
pearance of a broad range of scales in turbulensflIf the viscous term dominates over the
advection term (small Rethe flow is laminar and has a regular flow patte

Since the equations which describe the flow fietel known, it should be possible (in
principle) to solve them in a discretized form bgans of a computer. Such a numerical
simulation should resolve the spatial and tempevalution of the flow field in all detail to
capture all relevant flow phenomena. For laminawflvith low Re, the equations of motion
can be discretized and solved straightforwardlynfra computational point of view. For
turbulent flows, the situation is different and maomplicated.

8.1 Direct numerical simulation (DNS)

Discretized versions of the partial differentialiations involve a grid (spatial discretization)
and time steps. Let the distance between two séglpuoint in space and time be denoted
by Ax and 4t respectively. Turbulent flows are characterizediliyroad range of length and
time scales that should be resolved in all detaihk simulation. Hencelx and4t should be
proportional to the smallest length and time scedspectively:Ax(ln and 407 A more
restrictive criterion, however, must sometimes pgliad for At in which At z, with 7, the
time scale associated with a small-scale eddyqmassfixed point when being advected by
the macro-structure velocity, i.g007/u.
In Eq. (7.3) we related the macro and micro-stmectusingl=0.1L:

L 10 514

N =— [0-==10R 8.4
x0T € (8.4

For the ratiol andAt with T a time interval during which the flow field is mtored, a simi-
lar expression can be obtained. As for the lehgtidL, we have to relat€ to the time-scale
of the macro-structuru. To obtain a correct impression of the turbulémwf it should be
at least monitored for several time scédassay 50 times. Then we find

507U _ 5o (8.5)

N, =10
2t

a

in which we used the (in general) most restrictirerion to the time step.

The computational tim@c for direct numerical simulations scales at leasthe total
number of grid points (being\}) and the number of time stejls. Memory requirements
Mc scale withN?®. As a result

T.0RE M, ORe™ (8.6)

(for wall bounded flows with boundary layers theoad scalings are even on the low side
since generally more resolution is required clasedlls). BothM¢ and T are proportional



to Re raised to a positive power larger than 1. Withréasing Rg the computational effort
rapidly increases. It is obvious that for strortgigoulent flows (say Re10) DNS cannot be
performed due to the limited capacity of presemnt{8aper)computers. For relatively modest
Re, DNS is a very useful technique for studying tlebae in all its detail.

8.2 Large-eddy simulation (LES)

A remedy to overcome the limitations of DNS witleri@asing Reis to reduce the range of
scales that are resolved on the numerical gridiaBle concept is to remove the small-scale
eddies by a spatial filtering procedure, and tolkesthe large-scale eddies only. This ap-
proach is called large-eddy simulation (LES). Thpasation of large and small scales is
inspired by observations that the large eddies@®fbacro-structure are mostly anisotropic.
Furthermore, they depend on the geometry of the flonsidered. On the other hand, the
small eddies of the micro-structure can be consitléo be closer to isotropic. They are
much less dependent on the flow geometry, as treefed by the energy cascade in which
the geometry information present in the larger esldjets lost due to break-ups. Therefore,
the micro-structure-eddies may tentatively be g@more or less universal. Since in LES
the large eddies are resolved explicitly on theiapgrid, only the effect of the removed
small scales remains to be modeled. The more fsEotemd (perhaps) universal nature of the
small scales is a favorable point of departuréHfermodeling of the small-scale eddies. This
modeling is referred to as subgrid-scale (SGS) tirgle

Before turning to the subject of SGS modeling,uetfirst consider the equations that
need to be solved in an LES and estimate the assdatomputational effort. In an LES, a
flow variableg is decomposed in a grid-scale (GS) componrersind a SGS componet .
The GS component is defined by the moving averitige dperation:

o(x.t) = [ G(x = x")glx',t)ax’ (8.7)

in which G is a spatial filter function that depends on thgasation betweexandx’, andV
is the total volume of the computational domain.often applied filter is the top-hat filter:

if x-x|04v with 4vOI?
0 elsewhere

1
Gx-x)= v 8.8)

Herel; is a characteristic filter length. Applicationtoe filter (Eq. 8.7) to the flow equations
(Egs. (8.1) and (8.2)) yields equations for thev@fables

gw=0 (8.9)
%m V)= -~ Op+0v -0 (8.10)
o)



where the continuity equations has been used imtraentum equation to reformulate the
advective term in its conservative form. The stresgnsor represents the influence of the
SGS motion on the GS motion. It reads

r:(—_v—vv)+ w+ﬁ)+W (8.11)
In a later stage, Eq. (8.11) will be discussed orardetail; for the moment it suffices to
realize thatr contains the unknows’ and requires modeling.

In LES, the macro-structure with length-sdalestill resolved on the spatial grid. The fil-
ter lengthl; associated to the filter functio@(x —x') is now the characteristic length of the
smallest resolved (GS) motions, as well as ofahgelst SGS motions. For LES to be realis-
tic, the ratiol/l; representing the range of length-scales of thenr@®8on should bd/l>1
(smaller than one would imply that even the larcgdes eddies of the macro structure are
filtered out). The filter length can be associated with the grid-spadimgvhere one usually
assume=24x (Nyquist criterion). Larger values bfwith unchangedix yield a more accu-
rate numerical representation of the smallest vedoscales but simultaneously reduce the
range of GS motions without any reduction of thenpotational effort. In LES one aims at
keeping the range of GS motion as large as possitleherefore retairls=24x. Thus, the
linear grid-sizeN_ nhow becomes

N =—=—— " =20— (8.12)

In contrast to Eq. (8.4), Eq. (8.12) is not relatedRg anymore, but to the ratid;. As a
result, LES is not restricted to low R€&he coefficient “20” in Eq. (8.12) appears duétte
productL/l andl{/Ax. The parametdt/| depends on the type of flow. For shear driven flow
typically is 10. Apparently the ratid; is essential in LES. The choice of the ratio degen
on the flow type under consideration. Roughly spealkan LES with a value larger than 10
is considered to be well resolved.

Let us turn to the temporal resolution in LES. Wavéhseen that the smallest resolved
motions in LES are characterized by the filter tarig On similar grounds as before for the
DNS, the time steplt should thus be proportional to the time st¢éle In practice, however,
At in LES computations is determined by criteriarffomerical stability that generally lead to
small time steps such that the time-s¢#lds well-resolved.

8.3 Subgrid-scale modeling in LES
Due to the filtering operation, a stress tensamti®duced in the momentum equations which
represents the effect of the SGS motion on the G%m see Egs. (8.10) and (8.11). Here
we repeat the expression for the stress tensor:

T=ree :(ﬁ—vv)+ \—/v’+ﬁ)+W:L+C+R (8.13)
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with 7, the components ot , andL, R andC the Leonard stress, cross-terms, and SGS

stress respectively. In most SGS modeling appr@achedeling applies to the tensoras a
whole. In that contextr is simply referred to as the SGS stress. The tens usually
decomposed in an isotropic part and a non-isotrijogit

Ll Ll

r = % 10, + (rij —% 7,0, j (8.14)

with J; the Kronecker delta. The summation conventionieppb the repeated indéx
Usually, the isotropic part is combined with thealeed pressure. The non-isotropic part is
denoted byr' and is thus given by

v=ree = (rij —%rkkjeiej (8.15)

Let us now consider modeling af . Various approaches can be followed. Prognostic
differential equations for all component$ can be derived form the momentum equations.
In these equations, however, several terms appeighweed to be parametrized, as they
contain higher-order correlations of small scaletfiations. Using this so-called second-
order modeling would require solving 7 additionattal differential equations. Deardorff
(1973) performed second-order LES for atmospherimdence. It yielded results superior to
first-order approaches at increased computationstl ¢ is noteworthy that in later papers
Deardorff reverted to much simpler gradient hypsithapproaches. A general simplification
of second-order modeling is the reduction of phdifferential equations into algebraic
equations to parametrize the SGS stresses. Iliévba that this approach retains the advan-
tage of second-order modeling while it avoids araase of computing time and memory
usage. Applications of algebraic SGS models hawn breported by Schem and Lipps
(1976) and Schmidt and Schumann (1989) for stuafiasmospheric turbulence. Of particu-
lar concern in second-order models is the attertiahmust be paid to the determination of
the various coefficients involved (see also Schiaugt Schumann, 1989).

In view of the above remarks, one usually turnfirst-order modeling in LES, where the
SGS stresses are directly related to the GS wglfieit in an algebraic way. To mimic the
net energy transfer from large to small scales sthess tensor’ is formulated in such a
way that the SGS stresses reduce the kinetic eéripe GS velocity field. In this respect
one introduces the so-called SGS eddy viscasityn analogy to the molecular viscosity to
write t' as

v = v, (v + (o)) (8.16)

Application of Eq. (8.16) requires a specificatmhy,. The most widely used model is the
one proposed by Smagorinsky (1963) in whichis related to the deformation of the re-
solved velocity field as



v, =12,/ with 522%(DV+(DV)T):(DV+(D\‘/)T) (8.17)

mix

The length-scalé,, represents the mixing length of the SGS motiombwili be specified
below.

The Smagorinsky model originates from the assumpbiblocal equilibrium between
production and dissipation in the equation goveyiie SGS kinetic enerdggss By defini-
tion:

E..= |E(x)d« (8.18)
i

with E(K) the three-dimensional energy spectrunthe wavenumber andi@; the smallest
wavenumber corresponding to SGS motions. Locallibqum between production and
dissipation oEggsis expressed by

-(v:ov)=¢ (8.19)
which can be written with Eq. (8.16) as

v.S*=¢ (8.20)
We now would like to relate the mixing lendgky with the filter lengthi;. For this reason
the deformation rat&? is formulated in terms of the energy spectrE(n) :

2m

5 =2 KE(x)dk (8.21)

This equation states that the resolved deformatiemS® equals the dissipation spectrum
KZE(K) integrated over the resolved scales. For high dgmumber turbulent flows and

wavenumbers in the inertial subrange, the energy spectﬂE(n) can be written as (e.g.

Tennekes and Lumley, 1972)

E(k)=a.e°k™" (8.22)

known as thek ™ -law. The constant (attributed to Kolmogoraw) is approximately 1.6.
Substitution of Eq. (8.22) in Eq. (8.18) and Eq2{8§ respectively yields:

-2/3
E..= %aKeZ’S(zl—”j (8.23)
f



4/3
5 =24 g 27 (8.24)
3°“ l,

where we assumed Eq. (8.22) also for small wavestsnk - 0). This is not a valid as-
sumption. HOWGVGI‘KZE(KS increases with increasing and the contribution of the lower
wavenumbers to the integral is relatively smalb&iuting the expression for, (Eq. 8.17),
and the expression farthat can be derived from Eq. (8.24) into Eq. (By6lds an expres-
sion for the ratio of mixing length and filter lehg

-3/4
L[5
=25/ =00825 (8.25)

f

Let us now specify the mixing length. Similar te fiiter length, the mixing length can be
related to the grid spacing)(that for convenience is considered uniform ardstime in all
directions; a cubic grid). The rafig, and4 is denoted by the Smagorinsky constant

I
Cs == 8.26
== (8.26)

If we assumé=24, and use Eq. (8.25) we fird = 0. 165

This value of the Smagorinsky constant was basdtebaquilibrium assumption, and on
the existence of an inertial subrange®( -law). Especially in wall bounded flows one finds
that c, = 0. 165 leads to overly damped simulations in which tuebak sometimes cannot
be sustained. The remedy is to redegeo values of typically 0.1. In principle this inigs
that the simulations are underresolvey:<O. 16 be interpreted as a filter length
smaller than 2.

The Smagorinsky model is a simple and robust mdtékas two major drawbacks: it
does not allow for backscatter (i.e. transfer afrgyp from the SGS to the GS), and it yields
unrealistic results in the vicinity of walls. Sinee is a positive quantity, the effect of the
SGS stresses in the momentum equations will alvayse an energy transfer from GS to
SGS, mimicking a cascade process. In real turbelehere indeed is a net energy transfer
from large to small scales. This net transfer, hamneis the sum of forward scatter (GS to
SGS) and backscatter (SGS to GS), where forwartesaominates. In DNS it has been
observed, however, that backscatter occurs infsignt parts of a flow.

The Smagorinsky model has an isotropic In particular near wallsy, should pre-
sumably be taken anisotropic which is not incluitethe standard Smagorinsky model. Also
related to walls is the unphysical behavior of §@&S stress near walls. Precisely at walls, the
SGS stress should vanish (no-slip condition), whgcimot guaranteed in the SGS model
governed by Egs. (8.16), (8.17), (8.26). A wayadpair this is by means of wall-damping
functions that reduce the mixing length towardswiadl. An often-used damping function is
due to Van Driest (1965) which relatgg to the (dimensionless) distance to the wall



I, = cAf-e7") (8.27)

The parameter
yr=— (8.28)

is the wall unit or Reynolds number based on tistadce to the walf and the wall-shear
velocity u.. A" is a constant equal to 26.

Dynamic subgrid-scale models (Germano et al, 1@@itress the issues of walls and
backscatter in the Smagorinsky model (see alstethew article by esieur and Métais, 1996)
In dynamic models the idea of an eddy viscositgtesl to the deformation rate, i.e. (Egs.
(8.17) and (8.26))

v, =25 (8.29)

is retained. The, in Eq. (8.29), however, is not a constant bukiednined locally. It can
become negative, thereby allowing for backscatterdynamic modeling, two filters are
applied with different filter widthse.g 4 and4, with 4 > 4,. Two eddy viscosities can

now be determined:
v =4S v.=cays) (8.30)

with (5)1 and(§)2 the resolved deformation rates according to tteftiters. The energy
transfer (dissipation rate) at the two filter wawaersk; and « is the same if the filter
wavenumbers are chosen within the inertial subrahigerefore (see Eq. 8.20)

2

v.(Sk =v..(S) (8.31)

The set of three equations (Egs. 8.30 and 8.3bwsllus to determine the unknowns
V. Vo, @andcg . There are quite some practical issues in applgymgmic models. The most
important is stability. Negative values @f (can) lead to negative viscosities and as a result
unstable behavior of numerical schemes. Since ¢k ®f Germano et al. (1991) there have
been extensive efforts in improving dynamic models.

8.4 Examples of single-phase LES by means of the lagidoltzmann method

The implementation of the concept of an eddy visgas the lattice-Boltzmann scheme is

fairly straightforward. Instead of the moleculaorstant) viscosity we substitute the sum of
the molecular viscosity and the eddy viscosity @ &.28). The eddy viscosity varies in

space and time and is determined via a SGS model.



If the viscosity is based on the local deformatiate, as is the case for the Smagorinsky
model (see Egs. (8.16) and (8.17)), an advantagpmying the LBM is that the deforma-
tion rate is readily available from the LB distrilown functions (see Eq. (4.26)). This means
that we do not need to calculate spatial derivatafethe velocity field (based on e.g. finite
differences) to determine deformation rates.

What now follows are a few examples of LB/LES ofifl systems typically encountered
in (chemical) engineering. Such systems have codypfhaped (and sometimes moving)
boundaries. In these situations, lattice-Boltzmdisaretization of the flow equations can be
a favorable approach in view of computational &fficy; in order to do realistic LES we
need to have a sufficiently fine grid and numer{galrallel) efficiency is then of key impor-
tance. The examples are the flow in a mixing tamki the flow in a swirl tube. In the latter
case some aspects of SGS modeling will be higleliht

Mixing tank simulation. Turbulently agitated tanks are used in variousistries to per-
form mixing tasks in order to e.g. stimulate chezhieactions, bring species into contact, or
disperse gases or solids into liquid. Predictirggdimgle-phase flow in a mixing tank there-
fore is a relevant task. In order to prepare susingle-phase simulation for inclusion of
chemical reactions, or solid particle dispersiam,L&S approach is highly desirable. For
instance: the dynamics of solid particles suspeiéuk turbulent flow is governed by their
direct (hydrodynamic) surroundings that can bedigrgrovided by an LES, not by the
(time) averaged flow in the tank that would follfrem a RANS-type of simulation. Here we
report on simulations in a tank geometry as giveRigure 14. A revolving turbine with six
vertical blades drives the flow. The verticallygdd baffles at the perimeter of the tank en-
hance mixing as they largely prevent a solid-badstion of the fluid. The Reynolds number
of this flow is traditionally based on the impeliameterD, and the angular velocity of the
impellerN [in rev/s]: Re?N/v. Here, Re=0". This flow has been simulated by means of
lattice-Boltzmann discretization and a Smagorinsiigrid-scale model withs=0.1. The
uniform cubic mesh had a size of 240he off-grid, no-slip boundary conditions at taak
wall, baffles, and revolving impeller were impodgdmeans of an immersed boundary tech-
nique that has been briefly described in Secti@nFEurther details of the simulations shown
here can be found in e.g. Derksen and Van den ARIg99), and Derksen (2003).

Figure 14.Typical mixing tank geometry: a baffled tank wahlisk impeller (Rushton turbine)
placed one-third of the tank height from the bottom



Figure 15 Flow field (in terms of velocity vectors) in a tieal plane through the center.
Left: time-averaged flow; right: single realization

In Figure 15, a snapshot and the average flowvartical cross section are compared.
The average flow visualizes the action of the itgpefluid is pumped in radial direction.
Once it hits the outer wall, the fluid stream enmagdrom the impeller splits and drives two
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Figure 16. Comparison between experimental velocity data ¢ep from Derksen et al 1999) and
LES results (bottom row) at three angular positionthe wake of an impeller blade. From left to
right the observation plane and the impeller blazde an angle of £031° and 49 respectively.



large recirculations, one above and one belowrtipelier. The slight upward inclination of
the impeller stream is due to the impeller beiragetl closer to the bottom than to the top.
This makes the lower recirculation stronger anchesishe impeller stream slightly upwards.
A solid particle dispersed in the tank does noe™ske average flow. It is moved around by
the instantaneous flow structures that are togelaextent resolved by the LES.

Validation of these simulations by means of expental data is essential. Figure 16
shows a simulation-experiment comparison in acetlittegion of the flow: the wake of an
impeller blade. The trailing vortex structure isliwesolved by the simulations. Also the
fluctuation levels (in terms of the turbulent kicetnergy) are well predicted by the LES (not
shown here, see Derksen and Van den Akker, 1999).

inlet area

8
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Figure 18.Top: (experimental) flow visualization due to Ediar et al’ (1980) at Re=410,
D¢/D=0.58. Bottom: LES snapshot at Re=2,109P=0.73 in terms of the vorticity.

Swirl tube with tangential inlet. Turbulent swirling flows form a good testing groufor
assessing simulation techniques and turbulence limgdgpproaches. This is because the
turbulence is swirling flow is known to be highlpisotropic. Furthermore, swirl tends to
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Figure 19. Average velocity and eddy-viscosity profiles awD=0.33. Top: tangential velocity;
middle: axial velocity; bottom: eddy viscosity. Fndeft to right: three axial positiongD=0.15,
2.15, and 3.61. The symbols denote experimental d&e short-dashed line is the LES result with
the Smagorinsky model, the long-dashed line withrttodel due to Voke, and the solid line with the
mixed-scale model.

laminarize parts of turbulent flows. Swirling flovagve practical significance in separation
devices and combustion (flames stabilized by swilxlassical experimental data set on
turbulent swirling flow is due to Escudier and corlkers (see Escudier et al, 1980). The
flow geometry is given in Figure 17. The complexdtythe turbulence can be appreciated
from Figure 18, which shows the flow visualizedain axial cross-section. A laminar-like

vortex core can be distinguished from a turbulernieoregion. Furthermore, vortex break-
down is observed (not shown here). Large-eddy sitioms (Derksen, 2005) were able to
represent these specific flow features very wek (Sigure 18).



A quantitative comparison was made based on vglpaifiles measured by Escudier et
al (1980) by means of laser-Doppler anemometry (J.DIAwvas interesting to see the impact
of the grid resolution, and the choice of the SG@hon the quality of the LES predictions.
Next to the Smagorinsly model supplemented with Waiest wall damping functions (Eq.
(8.27)), we also applied a mixed-scale model dugeaigaut et al (2000), and a low-Reynolds
number version of the Smagorinsky model due to V(d896). Some sample results are
shown in Figure 19. They show that Sagaut et aigehis better capable of resolving the
large gradients present in the flow. In relatiotht, it can be seen that Sagaut et al's model
has much lower eddy viscosities. Apparently the @miasky model (and Voke's variant)
produce relatively high eddy viscosities that snoedardampen) steep flow gradients.

9 Point Particles in LES

In the previous section, two single-phase LES eXasnpere discussed. In typical applica-
tions, however, mixing tanks and swirl separatoesoperated with multiple phases. Here we
will discuss how to incorporate solid particlediaS flow fields. We will limit ourselves to

a “point” particle approach. With this we mean that do not resolve the flow around the
particles with our lattice-Boltzmann discretizatidhe particles are smaller than the lattice
spacingd (in Section 6, an approach is discussed whereoaresblve the finite size of the
particles; per particle such an approach requitgshrmore computer resources than a point-
particle approach and only small systems contaityipigally 1¢ particles can be simulated).

In a point-particle approach, the motion of thetiples is determined by integrating the
equation of motion of each individual particle (kaggian type simulations). The underlying
fluid flow is based on an Eulerian (fixed-grid) tmed. Such Euler-Lagrange flow simula-
tions are mostly limited to relatively dilute sysi® i.e. systems with a low dispersed phase
volume fraction. This is because of computatioeakons: we can only track a limited hum-
ber of particles that have relatively simple intdicans; and because of reasons related to
physical modeling: in dense suspensions the feitent of the particles becomes relatively
important and a point-particle approach cannotasgt the physics very well. As an exam-
ple: in fluidized beds (with typically 50% solidslume fractions) the fluid flow in between
the solid particles is akin to the flow throughaqus medium (i.e. flow through the channel-
like structures in between particles) that is mkeit poorly by viewing the particles as
points in space.

In the dilute limit amenable to an Euler-Lagrangeraach, various subdivisions can be
made, one of the most important being the choidalafig or not taking into account parti-
cle-particle collisions. In my view there is no geal rule for taking into account collisions,
especially in inhomogeneous flows with regions gnerfitially occupied by particles. In what
follows we discuss a mixing tank containing a migtof liquid and solid particles. The fluid
flow is solved based on an LES approach and LBrelization (see Section 8.4). The ge-
ometry and fluid properties are the same as iexenple discussed in that section.

In order to better appreciate the agitated sadjdidi system, we will now relate to dimen-
sional numbers. The vessel volume wa$ tf. This impliesD=7.7810% m. The continuous
phase was water (with=1[10° n/s, andg=110° kg/n?). A set of 6,705,623 spherical parti-



cles was released in the tank. The particles halt@naeter ofl;=0.30 mm, and density ratio
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the solids volume and mass fractions amounte@t0.95% and®,=2.37% respectively.

The impeller was set to revolve wiNF16.5 rev/is (Re=10°). The Stokes number of the

d 2
particles was Stk=1.2 (WitlStkzﬁﬁ 6N ; the ratio of the Stokesian particle relaxation
|

time, and the time of one impeller blade passafje. Stokes number is of the order of 1,
and we may expect appreciable effects of particetia (i.e. the particles neither follow the
flow (Stk<<1), nor move around in a ballistic man(@tk>>1) and hardly feel the turbulent
flow variations).

Without much discussion it can be anticipated theticle inertia and fluid inertia
(added mass), gravity, and drag need to be pattteobBquations of motion of the solid
particles. Since a stirred tank flow is very inh@@apeous, it is difficult to estimate
priori if more exotic forces like lift and history forcptay an important role. For instance,
an estimate of the ratio between lift (Magnus an®affman force) and drag forces is

25 (with g, the density of the particles), typical for glagsts in water. As a result,

s
0.2 de|‘”| , with |€o| the vorticity in the liquid phase or the angulsiip)) velocity of the
particle. In the impeller region of single-phaserstl tank flow, vorticity easily exceeds
10N (Derksen and Van den Akker, 1999). WK16.5 rev/s, andi,=0.3 mm the ratio
amounts to 0.8, indicating the potential relevaoicit forces.

Each particle dispersed in the stirred tank hasisixrees of freedom associated to it;
three linear coordinates, and three angles. Sirceomsider the particles to be spherical,
the particle's orientation has no physical consecgleAs will be demonstrated below, the
angular velocity has physical significance. For timear motion, the following set of
equations will to be solved:

dx,
v 9.1
el (9.1)

d;(ﬁp +_:0|j de = ]_8po2p|CD|v - Vp|(v - Vp)+ FSaffman + FMagnus + Fstress+ I_GTdDB (pp P )g

(9.2)

with x, the center position of the particlg, andv the velocity of the particle, and the
velocity of the liquid ak, respectively, an€y the drag coefficient. The latter depends on

. |v - vp|dp

the particle Reynolds numbd®e, =-——
v

pendix(Sommerfeld, 2001). The solids volume fractiores @snsidered to be sufficiently

low not to include a dependency @f on @&,. Added mass is accounted for by the addi-

according to Eq. (A.1), given in thep-



tional particle inertia1—722dp3p| (Maxey and Riley, 1983). The influence of the Beih

force Fsafmay, Magnus forceRyagnud, and the force due to stress gradieRtge() will be
discussed below where simulations with and witlbese forces will be compared.

The Basset history force (Odar and Hamilton, 1964y have some impact in the im-
peller region, with its strong velocity fluctuat®mt frequencies of the order dfl.6The
ratio between the Basset history force and Stokag oh a time-varying flow field with

2

. d . ,
frequencyf is of the order of0.1,/—— . If we takef=6N, the ratio is 0.3. It will be dem-
v

onstrated, however, that in the impeller region, Reof the order 10 As a result, the
drag force is one order of magnitude higher thaimesed from Stokes drag, and the
Basset force becomes small compared to the drag.féor this reason, and for computa-
tional reasons (inclusion of the force would adg@rapiably to the computational effort),
the Basset force has been neglected.

The non-Stokes expressions we use for the Saffmdrviagnus force respectively
are (Mei, 1992; Oesterlé and Bui Dinh, 1998)

Foarar = 3 0, 2 C[(v v, )x0) ©.3)
T 2P, _o-20,)xv-v,)
s = 0" 5-Cuv v,| |c0i2(op| p (9.4)

with o the vorticity of the liquid, ando_the angular velocity of the particle. The lift coef
_ Jold,’

ficients Cs andCy depend on Rgand on the rotational Reynolds numifees
v

‘1(:) -0, dp2

and Re, = according Egs. (A.2) and (A.3). The force duettess gradi-

ents has a pressure and a viscous stress part:

—ﬁdps(—[]p+p|v[]2v) (9.5)

stress 6

In order to determine the Magnus force (Eq. (9#h)g,angular velocity of the particles
needs to be solved. This is done by solving tHew@hg dynamic equation:

d
&:G_Q&V(lm_mpj (9.6)
d d p, \2

which is valid for Re, < 30(Dennis et al., 1980). The particles’ angular vitjomay also
be relevant from a practical point of view. Masmsfer between solid particles and con-



tinuous phase liquid depends on the motion of th& surface relative to the liquid.
Apart from linear velocities, particle rotation rhigplay a role in mass exchange.
The fluid's velocityv, vorticity w, pressurep and viscous strespuilv contained in

the above equations all consist of a resolved asubgrid-scale (SGS) part. For reasons
of simplicity, the SGS parts have been discardede@ when the drag force is involved.

For determining the drag force, the local fluidogity is considered to be the sum of the
resolved velocity and a Gaussian random processh vdtandard deviation

u = gk representing the SGS motion. The SGS kinetic enkygyvas estimated

sgs 3 'sgs

based on isotropic, local-equilibrium mixing-lengdasoning according to
K, =C.c A4S (9.7)

with Cy a constant amounting to 5 (Mason and Callen, 198%have temporal coherency
in the SGS motion, a new random velocity was picaétdr the elapse of a SGS eddy
lifetime

K
=C = (9.8)

with the constan€ =0.15 (Weber et al. 1984), aadhe energy dissipation rate.

The resolved part of the liquid velocity was deteed by linearly interpolating the ve-
locities on the lattice-Boltzmann grid to the paei position (although a higher order
interpolation scheme may be needed for accurateaiam of single- and, especially, two-
particle Lagrangian statistics; see, for examplat&maris et al. 1992). The vorticity, and
the pressure and viscous stress gradients fefitebgdlid particles were taken uniform over a
grid cell. The stresses are directly containechédolution vector of the lattice-Boltzmann
scheme. Their gradients, as well as the velociggignts contained in the vorticity were
determined from central finite differencing. Notet the determination of the force due to
stress-gradients differs from how it is usually eloire. by means of the material time deriva-
tive of the fluid velocity (see e.g. Crowe et é98). Since in a lattice-Boltzmann scheme
the stresses are readily available, it is not esigerio directly determine the stress gradients.

Two types of collisions need to be distinguishedrtiple-wall, and particle-particle
collisions. Collisions of all types were considetedbe fully elastic and frictionless (the
latter implies that in a particle-wall collisionettwall parallel components of the velocity
of the particlesurfaceare unchanged after a collision; in a particleipiar collision the
rotation of the particles does not play a rolehia tollisional process). For the particle-
wall collisions with the wall being part of the ielfer, only a collision with one of the
(six) impeller blades adds momentum to a particleesonly the impeller blades have a
velocity component in their wall-normal direction.



The method for detecting and handling particleiplrtcollisions was similar to the
one proposed by Chen et al. (1998). In their methtioely make use of a collision detec-
tion algorithm that anticipates collisions in thgcaming time step. Subsequently, the path
of two particles that are bound to collide is im&gd in a three-step-process: the pre-
collision step, the collision step (in which thertpdes exchange momentum), and the
post-collision step. In order to limit the compidagl effort spent in handling the particle-
particle collisions (which in principle is a” process, withM the number of particles) we
have grouped the particles in each other's vicimity so-called link-list (Chen et al.,
1998). The extent of the vicinity of a particle which potential collision partners are
sought is the lattice cell in which the particledan consideration resides, and the 26
neighboring cells. The distance traveled by a glartiluring one time step was at most
0.24. This reduces the number of possible collision$neas to a few for a specific parti-
cle during a specific time-step. The collision altfion assumes that one particle can only
collide once during one time step. The reason islpyractical: taking into account mul-
tiple collisions in one time step would lengthee tomputations to an unfeasible extent
(e.g. allowing for the possibility to have two dsibns per particle per time step would
make anM® process). The assumption either limits the tite@,sor the particle volume
fraction. In any case, in the simulations thera fiite chance that the collision detection
algorithm misses a collision. This is reflectedtlie situation that at the next time step,
two approaching particles have a mutual distanse fleand,. If this occurs, a so-called
missed collision procedure is executed: directlyhatstart of the time-step, the particles
involved are given their post-collision velocitigsaking that they now are moving apart).
During the time step, the particles are displaced pair according to their average veloc-

Figure 20. Instantaneous realization of the particle distidmuin the tank. Left: vertical cross
section through the center of the tank midway betw®o baffles; bottom: horizontal cross sec-
tion atz/T=0.308 (i.e. just below the impeller disk). The #fipr rotates in the counter-clockwise

direction. In both graphs, the particles in a slidg#h thickness 0.0083T have been displayed.
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Figure 21.Phase-averaged particle concentration profilésarplane midway between two
baffles as a function of the vertical position e tank at four different radial positions. Com-
parison between case #1A (only drag and gravity, ¢plus lift forces), and #1C (plus particle-
particle collisions’

ity, and they move apart with their relative vetgaintil they have a mutual separation of
at leastd,,.

The particle-particle collision algorithm has beested by (numerically) releasing a
set of particles with random initial velocity (acding to a uniform distribution) in a peri-
odic vacuum box. The velocity distribution shoukdax to a Maxwellian distribution,
which it did. In the same setup, the algorithm désd above to repair missed collisions
was tested. Ignoring missed collisions led to orgen of magnitude more overlapping
particles at any moment in time compared to a sitnan which the missed collision
procedure was applied.

In the simulations, solids volume fractions arebstitat it is expected that two-way
coupling effects are relevant (Elgobashi, 1994)o®way coupling was achieved by feed-
ing the force that the fluid exerts on the partizdek to the fluid. Since the center position
of a particle in general does not coincide withrid goint, the back-coupling force needs
to be distributed over the (lattice-Boltzmann) griddes in the vicinity of the particle
(particle-source-in-cell (PSIC) method, see Crovaletl996). For this extrapolation we
used the same coefficients as were used for tlearlimterpolation of the velocity at the
grid nodes to the particle location.

Some impressions of these Euler-lagrange two-pflagesimulations are given in
Figures 20 and 21. In Figure 20 we see the stronglymogeneous distribution of parti-
cles throughout the tank. In the vertical crossisec a highly concentrated region
underneath the impeller can be observed. Here tgravid an upwardly directed flow
somehow balance the particle motion. This gives tislong residence times there. The
streaky patterns are due to particles collectinthatedges of eddies. This is a typical
phenomenon for particles with Stokes numbers ofdtder of one. Smaller particles
would show a much more homogeneous distributiortidRainertia is also apparent from
the horizontal cross-section: particles collectfront of the impeller blades while the
wakes of the blades are almost void of particlegrigure 21 particle concentration pro-
files are presented obtained with different modglesssumptions. The most striking
feature is the impact of taking into account péetjgarticle collisions has on the concen-
tration profiles. A more detailed analysis revedat it is the volume exclusion effect



brought about by the collision algorithm that maltes difference. If particle-particle
collisions are not taken into account, unrealidiiichigh particle concentrations closely
above the bottom of the tank are observed. Volurzdusion reduces these concentra-
tions strongly. The profiles obtained with partiplarticle collisions fairly well agree with
experimental data (Derksen, 2003); the strong faatke impeller level has also been
observed in experiments.

10 Passive Scalar Transport

In order to describe passive scalar transportlamménar or turbulent flow, the convection-
diffusion-equation needs to be solved

g—?+vD]]¢: -00 (10.1)

with ¢ the scalar concentration, addhe diffusive mass flux. In many cases Fick’s law
applies:

J=-rO¢ (10.2)

with /~ the scalar’s diffusivity. The scalar transport litasown micro length and time-
scales. Of prime importance in this respect isRhtehelor length-scale:

1/4
N, :(/-ZKJ =nSc™?  with Sc:% theSchmidtnumber (10.3)
£

The Batchelor scale can be interpreted as thesiliffudistance during one Kolmogorov
time scale. Now an essential difference betweersgand liquids can be appreciated. In
gases the Schmidt number is of the order 1 (momemtad species diffuse at approxi-
mately the same pace); in liquids the Schmidt nunib@©(10%) (species diffuse much
slower than momentum). In a direct numerical sitoiteof turbulent flow and associated
scalar transport, the grid needs to be fine endogksolve all scales. If the medium is a
gas, the grid that was used to resolve the gaomdtisufficiently fine to also resolve the
concentration field. If the medium is a liquid, &B resolving the all scales of the con-
centration field would require a grid that (in lareterms) is of the order 6f1000= 30
times finer than the grid required for flow simirdais.

Suppose we perform an LES, and would like to regmiethe scalar concentration fields
on the same grid as the velocity and pressure fidlid implies filtering of Eq. (10.1):

‘Z—fmﬁa):rmza—m& (10.4)



with ¢ the equivalent ofr in Eqg. (8.10). Usuallys is closed in a manner similar to the
closure oft: we assume that the subgrid-scales merely actdiffsive manner on the
concentration field. The eddy diffusion coefficiéntthen taken proportional to the eddy-
viscosity:

ro==e (10.5)

with Sc, the turbulent (eddy) Schmidt number. Bar a value in the range of 0.6 to 1.0
is usually taken. The rationale behid, < (&t least in liquid systems) is that the unre-

solved part of the scalar spectrum is larger filsrup tox = 2% ) than the unresolved
B

part of the turbulent kinetic energy spectrum.

Eggels and Somers (1995) have performed scalaspibancalculations on free convec-
tive cavity flow with the lattice-Boltzmann discidtion scheme (i.e. they solved the fluid
flow equations, and the convection diffusion edquativith the lattice-Boltzmann method).
This approach, however, is more memory intensiea thsing a finite volume formulation
for the convection-diffusion equation. In a finitelume discretization we only need to store
two or three (depending on the time integrator) biuprecision concentration fields,

()

Figure 22. Snapshot of the particle distribution in a veitgiane midway between two baffles.



whereas in the lattice-Boltzmann discretizatioridgity 18 single-precision variables need
to be stored. In a time-explicit approximation loé wiscretized convection-diffusion equa-
tion we have (as in the lattice-Boltzmann schemi) focal operations: The communication
between the nodes of the grid defining the conatatr field does not go beyond the stencil
that is used for discretizing the convection arftusion term in Eqg. (10.4). An additional

advantage of using finite volume discretizationtfoe convection diffusion equation is that
we can make use of the various methods to suppuessrical diffusion and still retain sta-

bility, such as TVD (total variation diminishingdteemes introduced by Harten (1983).

As an example of LES including scalar transport solil particle dynamics we briefly
discuss here work presented earlier by Hartmarah @006) on a dissolution process in a
mixing tank. In this example we combine the saligid LES based on the point particle
approach (see Section 9) with a finite-volume sdatasport solver for keeping track of the
scalar concentration as a result of dissolutiore @tupling between the scalar field and the
solids is established via a mass transfer coefitikiewhich is a function of the particle size,
the relative velocity of particle and fluid; and the material properties (viscosity and diffu-
sivity) of the fluid. In dimensionless form this pifes that the Sherwood number
Sh=kd,/ /" is a function of the particle Reynolds number #ngdSchmidt number. We use
the correlation due to Ranz and Marshall (1952):

Sh=20+ Re:’2 Sc’® (10.6)
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Figure 23.Instantaneous realizations of the particle siz&ridution throughout the tank.



The mass transfer from solid to liquid is then nedas
m=km?(c,, —c) (10.7)

Since this relation is linear in the solute concatidn, micro-mixing effects are consid-
ered not important (there is, however, a velocggaentration correlation sindeis a
function of Re that in principle requires SGS clasinere this correlation is neglected).

The tank that Hartmann et al (2006) used was time s the one discussed in the pre-
vious sections. Particles of uniform size wereasésl in the top part of the tank in a fully
developed flow field. They spread through the tand reduce in size (see Figure 22). As
they reduce in size they go through a spectrumtafeS numbers, and the particle field
gradually loses its streaky structure; particleisngere homogeneously dispersed over the
entire tank (Figure 22). The simulations allow &or estimate of the dissolution time. The
evolution of the particle size distribution (Figut8) reflects the diversity in the history of
the dissolution process per particle, and therbbyrthomogeneous flow conditions in the
tank.

11 Filtered Density Functions for Reactive Flows

In the final section of this chapter, we considsactive scalar transport. In that case, the
species transport equation (the convection diffugig. (10.1)) is adapted in two ways. In
the first place, instead of a single scaiave now write the vectog , reflecting that we have
a number of species involved in the reactionsdhatbe organized in a vector. In the second
place, concentrations can now change as a res@acfions: we need to add a reaction term
o that (in the general case) depends on all spewielved (i.e. the vectop ):

%—‘t"+ v =-00 +op) (11.1)

In the case of second order reactionsdepends on products of the elements of the vector
¢ . In an LES context, Eq. (11.1) could be filtered ps Eq. (10.1). The result is (again we
have assumed Fickian diffusion for all species lve)

%—?+D[ﬂ$V)=/’DZ$+6(¢)—DB‘ (11.2)

where ¢ now is a tensor. The filtered reaction teﬁ@p) needs specific care. It would be
too gross a simplification to writ6(q>) = m($). Remember that we are performing an LES.
It only makes sense to perform an LES if the giddurser than the Kolmogorov scale. This
implies that also the Batchelor scale (the smatleate of scalar transport) is not resolved.
As a result, the concentration field shows detilsr than the grid spacing. If we would
statea(q)) = m($), this would imply the assumption that at the dgiekl species concentra-
tions are uniform, and this is not the case.



The filtered reaction term_n((p) is known once the filtered version of the prokigpil
density functionPL(q);x,t) (the fdf, filtered density function) of the vector at the nodes of
the computational domain is known. For exampleafgecond order reactiéaB - C with
reaction raté

(o) = [k WP (. v, )dw,dy, (11.3)

where the integration is over the entire (in tlisectwo-dimensional) composition space.

This would imply that, instead of solving transpequations for the species concentra-
tions ¢ , we would need to solve transport equationstLc(rp;x,t). This may seem a quite
impossible task since the dimensionality of thdesysof equations to be solved increases
rapidly. Apart from the three spatial dimensions tomposition space adds to the dimen-
sionality. With each species the dimension of theblem increases with 1. A way around
this is to solve the fdf-transport equations by mseaf a Monte-Carlo (MC) method, i.e. to
release computational particles in the flow doremd track their position in spatial and
compositional space, the major advantage beingatldihg a reactant increases the compu-
tational load approximately linearly.

The idea is to release MC particles randomly incth@putational domain. Each particle
represent the scalar compositiprat its current positior(t). The MC particle position and
composition are evolved according to the followstgchastic differential equations

dx = D(x(t),t)dt + E(x(t),t)aw(t) and de = B(e(t)t)dt (11.4)

whereD andE are the drift (convection) and diffusion coeffitig of the particles in the
physical domain. The random procebd is a Wiener processV = dW, = \/EZ. with ¢,

a random variable with Gaussian pdf. The d@ifh the scalar domain is due to micro-mixing
and chemical reactions. The various processes.i(ilEgl) can be related to physical quanti-
ties:

E=2(r+r)), D=v+0(r +7,) and B=-2,(¢p-9)+o(e)

where as a micro-mixing model we have substitutedinteraction-by-exchange-with-the-
mean (IEM) model. The SGS mixing frequengy, can be related to the total (molecular
plus eddy) diffusivity/” + /_:

_C,(r+r)

o =
" Vig

(11.5)

with A the filter width, andC, a constant equal to 3 (Colucci et al 1998).

As an example of the application of the LES/FDFrapph to a semi-practical system,
some results earlier presented by Van Vliet e2@D%) are shown here. Van Vliet et al per-
formed an LES in a straight tube with a deeplynoiding feed pipe. The Reynolds number
of the main flow was 4,000. Upstream of the fequkpthe main flow contained speckgs
andC in the same amount. Componéntvas fed through the feed pigecould react either



Figure 24. Instantaneous realizations@fin the tube reactor. Top: at Da=A.6° (poor mixing);
bottom: Da=2.810° (intense mixing).

with B or C according to a second-order reaction to form pcoBwr Q respectively. The
reaction rate to forn®, however, was Tohigher than the one to for@. If the chemical
kinetics would control the system, the amoun@Qdbrmed @) would be a thousand times
smaller than the amount &f formed @). Non-ideal mixing, however, will generally in-
crease the rati@@y/ & The reaction betweeA andB locally depletes the flow oB. If

mixing cannot bringA into contact with fresiB quickly enough, the slow reaction will get a
chance.

The strength of mixing has been quantified in teafna Damkohler number, which we
define as the ratio of the integral hydrodynamieetiscaleD/U (with D andU the tube di-

ameter and bulk velocity respectively), and thengbal time scalel/ \/k,c,,c., with k; the
rate constant of the slow reaction, agglandcc, the inlet concentrations:

Da - D \' kZCAOCCO

u (11.6)

Some results of the simulations are shown in Fgy@eand 25. In Figure 24 we see that

o/Pp

o @

0 Lol
102 10° 102 10* 108
Da

Figure 25.The product ratig?y/ @ as a function of the Damkohler number.



in the case of poor mixing (high Da) comporBiig not very well able to penetrate the reac-
tion zone which in turn allows for the formation@f Figure 25 illustrates this point further.
Here it is shown how the product ratio varies Vil between its theoretical limits (16or
Da- 0; 1 for Da- ).

Appendix: Coefficients in hydrodynamic force relatons

Drag force:

C, :RZ—:(1.0+ O.lSReS“”) Re, <1000

p

C, = 044 Re >1000 (A1)

Saffman force:

c.=211201 10 0234 R& | | 10234 R& | | Re <40
Re; Re Re

P P

C,=0.1524 Re, =40 (A.2)

Magnus force:

C, = o.45+[—ReR - 045}e‘°-°56m%"%33 (A.3)
Re

p
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