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1 Cellular Automata 

In computational science, the challenge is to describe and understand complex systems (that 
can be loosely defined as systems with many interacting components) by means of efficient 
numerical tools. Cellular automata turn out to be very fruitful in this respect. Von Neumann 
introduced the concept of cellular automata (CA) in the 1940’s. The idea is to represent a 
physical system in terms of discrete space and time. The physical quantities (the state of the 
automaton) take only a finite set of values. 

Von Neumann was intrigued by the mechanisms that lead to self-reproduction in biology. 
He wanted to devise a system that has the capability to reproduce another system of similar 
complexity. For this he devised a fully discrete “universe” made of cells. Each cell is charac-
terized by an internal state, typically consisting of a finite number of information bits. The 
cells evolve in discrete time like simple automata that only know a simple rule to compute 
their new internal state. The rule determines the evolution of the system. It is the same for all 
cells and relates the state of a cell with that of its neighbors. Similarly to what happens in 
biological systems, the activity of cells takes place simultaneously and synchronously. 

The game of life (proposed by John Conway in 1970) is an example of a simple rule lead-
ing to complex behavior. Conway imagined a two-dimensional, square lattice (like a 
checkerboard). Each cell can be alive (state 1) or dead (state 0). The updating rule is: a dead 
cell surrounded by exactly three living cells gets back to life; a living cell surrounded by less 
than two or more than three neighbors dies (of isolation or over-crowdedness). Here sur-



rounding means the four nearest neighbors (north, south, east, west), and the four next near-
est neighbors (along the diagonal). This very simple automaton has rich behavior. Complex 
structures appear and show interesting dynamics. In Figure 1 some single realizations of the 
lattice are given. More interesting, however, are the dynamics of the system that can be 
viewed in animations. 

Another example along the same lines: We define a two-dimensional square lattice with 
values 0 or 1 on each node. Starting from some initial condition, we evolve the system as 
follows: if the sum of the four nearest neighbor values is even, the new state is set to zero, if 
it is odd it is set to 1. When this rule is iterated, nice geometrical patterns are observed. Fig-
ure 2 shows results if we start from the situation given in the left panel. The complexity 
evolving in time results from spatial organization. 

Above were artificial (and in a way esoteric) examples. The route towards describing 
physical systems in terms of a CA is not straightforward. A natural way is to propose a model 
of what we think is going on. The “art of modeling” is to retain only those ingredients that 
are essential; the degree of reality of the model depends on our level of description. If we are 
interested in global, macroscopic properties (and that is mostly the case in fluid dynamics 
with variables like fluid velocity and pressure), the microscopic details often are not relevant 
(as long as we obey symmetries and basic conservation laws). 

In 1986, Frisch, Hasslacher and Pomeau (Frisch et al., 1986) announced a striking dis-
covery. They showed that the molecular motion need not to be nearly as detailed as real 
molecular dynamics (with of the order of 1023 molecules, and even more degrees of freedom) 
to give rise to realistic fluid dynamics. Their fluid was constructed of fictitious particles, each 
with the same mass and moving with the same speed, and differing only in their velocity 
directions. Moreover, these directions were constrained to a finite set (in two dimensions 
only six). This was the so-called lattice-gas automaton, from which later the lattice-
Boltzmann method evolved. 

Figure 1. Snapshots of the game of life on a 200x200 grid. Time is running from left to right 

Figure 2. Evolution of a 256x256 cellular automaton. 



2 Lattice Gas Automaton   

The lattice gas is constructed as a simplified, fictitious molecular dynamic in which space, 
time, and the particle velocities are all discrete (Chen & Doolen, 1998). From this perspec-
tive, the lattice gas method is often referred to as a lattice gas cellular automaton. In general, 
a lattice gas cellular automaton consists of a regular lattice with particles residing on the 
nodes. A set of Boolean variables ( ) ( )M,,it,ni L1=x  describing the particle occupation is 
defined, where M is the number of directions of the particle velocity at each node. The evolu-
tion of the LG is as follows 
 

     ( ) ( ) ( )( )tntntn iiii ,,1, xxex Ω+=++  (2.1) 
 

where ie  are the local particle velocities (again M,,i L1= ), and iΩ  is the collision opera-
tor that is a function of all particles ( )M,,ini L1=  involved in the collision. Starting from 
an initial state, the configuration of particles at each time step evolves in two sequential sub-
steps: (a) streaming in which each particle moves to the nearest node in the direction of its 
velocity, and (b) collision, which occurs when particles arriving at a node interact and change 
their velocity directions according to scattering rules. For simplicity, the exclusion principle 
(not more than one particle being allowed at a given time and node with given velocity) is 
imposed for memory efficiency. This leads to a Fermi-Dirac local equilibrium distribution 
(Frisch et al., 1987). 

3 Lattice-Boltzmann Method   

The main feature of the lattice-Boltzmann method (LBM) is to replace the particle occupa-
tion variable ni (Booleans) in Eq. (2.1) by single particle distribution functions (real 
variables) ii nf =  and neglect individual particle motion and particle-particle correlations 
in the kinetic equations. The brackets  denote an ensemble averaging. This procedure 
largely eliminates noise (which is present (and a problem) in lattice gases). In the LBM, the 
primitive variables are the averaged particle distributions, which are mesoscopic variables. 
Because the kinetic form is still the same as the lattice gas automaton, the advantage of local-
ity in the kinetic approach is retained. The locality is essential to parallelism. 

4 From Lattice-Boltzmann to Navier-Stokes   

Since the lattice-Boltzmann method is a derivative of the lattice gas approach, the LBM will 
be introduced starting with a discrete kinetic equation for the particle distribution function, 
which is similar to the kinetic equation in lattice gas automata, see Eq. (2.1): 
 
 ( ) ( ) ( )( ) ( )Mitftfttxf iiii ,1,0,,, L=+=++ xxex Ω∆∆  (4.1) 

 
where fi is the particle velocity distribution function along the i-th direction (please note that i 
now runs from 0 to M, in the LBM often a rest particle having zero-velocity and index 0 is 



introduced); ( )( )tfii ,xΩΩ =  is the collision operator that represents the rate of change of fi 
as a result of the collision. The collision operator iΩ  depends on all M+1 particles (distribu-
tion functions) involved in the collision. The space and time increments are tx ∆∆ and  
respectively. If itx e=∆∆ / , Eqs. (2.1) and (4.1) have the same discretization. In the LBM, 
space is discretized in a way that is consistent with the kinetic equation, i.e. the coordinates 
of the neighbors of x are x+ei. 

The density ρ  and momentum density uρ  are defined as moments of the distribution 
function fi:  
 
 ∑ ∑==

i i
iii ff euρρ  (4.2) 

 
with the sum over i=0...M. The collision operator iΩ  must satisfy mass and momentum 
conservation at each lattice: 
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If only the physics in the long-wavelength and low-frequency limit are of interest, the lat-

tice spacing x∆  and time step t∆  in Eq. (4.1) can be regarded as small parameters of the 
same order ε . Performing a Taylor expansion in time and space, we obtain the following 
continuum form of the kinetic equation, accurate to second order in ε : 
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To derive the macroscopic hydrodynamic equations, we apply the Chapman-Enskog expan-
sion, which essentially is a multi-scale expansion 
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The above assumes the diffusion time scale t2 to be much slower than the convection time 
scale t1. Likewise, the distribution function fi can be expanded formally about the local equi-
librium distribution function eq

if  

 
 neqeq

iii fff ε+=  (4.6) 

 
Here eq

if  depends on the local macroscopic variables (ρ  and uρ ) and should satisfy 
 
 ue ρρ =∑ ∑=

i i
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( ) ( ) ( )221neq εε Offf iii ++=  is the non-equilibrium distribution function which should satisfy 
the following constraints 
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Inserting fi into the collision operator along with a Taylor expansion gives 
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(summing of repeated indices is implied in this equation, and in the rest of the text). From 
Eq. (4.4) in the limit 0→ε (which implies eq

ii ff = ) it follows ( ) 0eq =fiΩ . This teaches us 
that we can linearize the collision operator: 
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The matrix Mij is the collision matrix, which determines the scattering rate between direction 
i and j. Mij only depends on the angle between the directions i and j. Mass and momentum 
conservation imply: 
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In the widely used lattice BGK (Bhatnagar-Gross-Krook, see Bhatnagar et al. 1954) collision 
operator, the distribution function relaxes to an equilibrium state at a single rate with time 
constant τ: 
 

 ijijM δ
τ
1−=  (4.12) 

 
Then the collision term reads 
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The lattice-BGK equation  
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forms the heart of many lattice-Boltzmann computer codes. 



If we now substitute the LBGK collision operator, and the expansions of the distribution 
functions as given above in Eq. (4.4), equations to various orders of ε appear. For ε 0: 
 

 
τ

(1)
eq

1

1

eq
i

ii
i f

f
t

f −=∇⋅+
∂

∂
e  (4.15) 

 
For order ε 1: 
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Combining Eqs. (4.15) and (4.16) gives 
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From Eqs. (4.15) and (4.17) the continuity equation and momentum balance can be derived: 
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These equations are accurate to second order in ε. The momentum flux tensor ΠΠΠΠ has the form 
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with eiα the component of the velocity vector ei in the α-th coordinate direction. Note that the 
momentum flux has an equilibrium part and a non-equilibrium part.  

To specify the flux tensor, we need to specify the lattice structure and the equilibrium dis-
tribution. We consider a two-dimensional, square lattice. This relatively simple case has all 
the features that also apply to different lattices and number of dimensions. The set of velocity 
vectors can be written as 
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The requirement for using the nine-velocity model (D2Q9 in the LB jargon: two-dimensions, 
nine speeds) instead of the simpler five-velocity model comes from considerations of lattice-
symmetry. The lattice-Boltzmann equation cannot recover the correct Navier-Stokes equa-
tion unless sufficient lattice symmetry is present (Frisch et al 1986). 

The Navier-Stokes equation has a second-order non-linearity. According to Chen et al 
(1992), the general form of the equilibrium distribution can be written up to O(u2): 
 

 ( )[ ]22eq ducbaf iii +⋅+⋅+= ueueρ  (4.22) 

 
where a, b, c, and d are so-called lattice constants. This expansion of the distribution function 
only makes physical sense if the velocities are small compared to the (obviously finite) speed 
of sound of the lattice-Boltzmann system. Using the constraints as given in Eq. (4.7), the 
lattice constants can be obtained analytically and Eq. (4.22) can be written as 
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The weight factors wi are 
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If we now get back to Eq. (4.20), the equilibrium part can be written as 
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where p=ρ/3 is the pressure, and ν=(2τ−1)/6 is the kinematic viscosity. From the pressure 
relation the speed of sound cs can be derived: 
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The momentum balance then reads 
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The momentum balance for a Newtonian fluid (the Navier-Stokes equation) for a compressi-
ble fluid reads 
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In the limit of constant density Eqs. (4.28) and (4.29) are the same. The limit of constant 
density can be effectuated in the LB scheme by keeping the fluid velocities well below the 

speed of sound (low Mach numbers), since 2
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5 Some Practical Aspects of the Lattice-Boltzmann Method for Single-
Phase Flows   

5.1 Implementation of the lattice-Boltzmann method in computer code   

Implementing the above rules in computer code is fairly straightforward. This will be out-
lined here briefly in terms of Fortran-like pseudo code for a D2Q9 lattice-Boltzmann scheme 
(that scheme also was the subject of Section 4).  

Define a main real array f(n,i,j)containing the distribution functions (or the LB fluid 
particles) at some specific moment in time. Experience learns that in most cases this can be a 
single-precision (real*4) array. The index n relates to the 19 velocity vectors (the number-
ing being the same as in Eq. (4.21)), and the indices i,j to the two coordinate directions 
that run from 1...nx, and 1...ny respectively (flow the domain is a rectangle with size 
nx⋅ny). The evolution of this system has two major steps: streaming and collision. In the 
streaming step, particles move to neighboring lattice sites. Computer code could look like 
this: 
 
Code fragment 
 
do j=1,ny 
  do i=1,nx 
    f(5,i,j)=f(5,i+1,j) 
    f(7,i,j)=f(7,i,j+1) 
    f(6,i,j)=f(6,i+1,j+1) 
    f(8,i,j)=f(8,i-1,j+1) 
  enddo 
enddo 
 
do j=ny,1,-1 
  do i=nx,1,-1 



    f(1,i,j)=f(1,i-1,j) 
    f(3,i,j)=f(3,i,j-1) 
    f(2,i,j)=f(2,i-1,j-1) 
    f(4,i,j)=f(4,i+1,j-1) 
  enddo 
enddo 
end of code fragment 
 
The above structure has been chosen such that we only need one field array f, i.e. we over-
write the array before the streaming step with the array after the streaming step. 

The LBGK collision step, see Eq. (4.14) requires that we determine the equilibrium dis-
tribution According to Eq. (4.28) this needs computing the density and velocity per lattice 
node. For the latter we use Eq. (4.2). 

It is (in my view) convenient to work in lattice-units while setting up an LB simulation. 
The unit of time is then set to 1, and is the time for an LB fluid particle (or distribution func-
tion) to travel to the neighboring lattice site. The unit of length is set to 1 as well and equals 
the spacing between two nearest-neighbor lattice nodes. The lattice spacing is uniform over 
the entire lattice and in the coordinate directions (square lattice in two dimensions, cubic in 
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Figure 3. Schematic of the flow past a circular cylinder. 

 

Figure 4. Parallellization through domain decomposition. Left: global view; right: at node level. 
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three directions) due to the coupling between velocity-space and physical space: particles 
have velocities such that they travel to their neighboring sites in exactly one time step.  

Translating a flow case defined in physical units to LB units goes via dimensionless num-
bers. Suppose we would like to determine the flow past a square cylinder at flow and 
geometrical conditions as given in Figure 3. From Figure 3 a Reynolds number can be de-
duced: ν/Re UD= . Suppose we would like to simulate the case Re=100. In the LB 
simulation, we first choose a reasonable spatial resolution. Say we would like to resolve the 
flow such that the cylinder spans 10 lattice spacings. Then D=10 (in LB units). Flow veloci-
ties need to be such that Ma2<<1 (Eq. (4.30)). This can be achieved by setting the free stream 
velocity U to 0.1 (LB units). For mimicking the physical case that has Re=100, the viscosity 
then needs to be set to ν=0.01 (again in LB units). 

Parallellization of LB computer code is straightforward. The LB nodes only communi-
cate with each other in the streaming step. For parallellization we decompose the flow 
domain in sub-domains. At the borders of the sub-domains we introduce ghost-cells. Before 
each streaming step the contents at the edges of each sub-domain is copied in the ghost cells 
of the neigboring domain (see Figure 4). Once this is done, the streaming step can be carried 
out in each subdomain according to the procedure presented earlier in this section. 
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Figure 5. Streaming step for simulating a no-slip wall placed halfway lattice nodes. 
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Figure 6. Definition of the halfway bounce-back rule for a circular particle. Right: zoomed-in view. 



 

5.2 Setting boundary conditions   

No-slip boundary conditions at solid walls can be set according the so-called bounce-back 
rule. In the half-way bounce back rule, the wall is located midway half a lattice-spacing away 
from a lattice node (see Figure 5). The particles propagating in the direction of the wall, 
bounce back at the wall and after exactly one time step arrive at the lattice node they left at 
the beginning of the time step. The half-way bounce-back method for no-slip walls is second 
order accurate (Rohde et al 2002), just as the discretization of the Navier-Stokes equation as 
given in Section 4. Placing the wall at a different location with respect to the grid reduces the 
accuracy at the boundary to first order. 

If the no-slip wall has a non-zero velocity, the bounce-back method as described above 
can be generalized such that LB particles that bounce at the wall receive additional momen-
tum due to the wall’s motion. The half-way bounce-back rule including additional 
momentum from moving walls is the basis of Ladd’s procedure (Ladd, 1994) of simulating 
solid-liquid suspensions with spherical particles. Figure 6 shows a representation of a circular 
object in Ladd’s approach. The lattice-Boltzmann fluid particles bounce back halfway the 
link between two LB nodes, with the bounce back location close to the actual surface of the 
object. The circle (and sphere in 3D) are represented by a stair-step object. Such a schematic 
(rough) approach requires calibration. Usually a distinction is made between the input radius 
of a spherical particle, and the so-called hydrodynamic radius. The input radius relates to the 
particle as discretized in Figure 6. Of this particle the Stokes drag force is determined in a 
simulation of the sphere in a periodic domain. The result is compared to the analytical result 
(Hasimoto, 1959). Then the hydrodynamic radius is the radius of a sphere having a drag 
force equal to the one of the simulation, but now according to the analytical expression. 
Usually the hydrodynamic radius is slightly higher than the input radius (some 0.5 lattice 
spacing), it furthermore depends on the viscosity of the fluid. 

Note that in this approach, there also is fluid inside the particle. This internal fluid has no 
physical meaning. It is there for computational convenience. The particles move relative to 
the grid and therefore cover and uncover LB nodes on a regular basis. If the particles have 
internal fluid, in the cover and uncover process fluid simply turns into internal and external 
fluid respectively and fluid mass is conserved easily. The consequence of having internal 
fluid is that the density of the particle always has to be at least the density of the fluid; the 
dynamics of lighter particles cannot be simulated. Also in setting up and solving the equa-
tions of motion of the particles, the internal fluid needs to be taken into account. This will be 
discussed in Section 6 of this chapter. 

Aidun and co-workers (Aidun et al 1998, Ding and Aidun 2003) have adapted Ladd’s 
method such that internal fluid is largely avoided. The price is the execution of a dedicated 
procedure to conserve fluid mass as good as possible. 

In recent years, immersed boundary methods are gaining popularity in mainstream CFD 
based on e.g. the finite volume method, or spectral methods (Goldstein et al 1993). Similar 
techniques can be employed in an LB context. The idea is to apply body forces on the fluid 
such that at prescribed locations the fluid has a prescribed velocity (equal to the velocity of a 
solid wall). An advantage of the method is that the locations can (in principle) be chosen 



independent of the grid. In the case of defining a moving sphere, the forcing method works 
as follows: The sphere’s surface is defined as a set of M control points r j

(n) (j=1…M) on their 
surface, where the superscript (n) now indicates the moment in time. There is no restriction 
on the position of these points in the flow domain; they do not need to coincide with lattice 
sites. At these points we require a velocity equal to wj

(n)= vp+ΩΩΩΩp×(r j
(n)−rp

(n)), with vp the 
linear velocity and ΩΩΩΩp the angular velocity of the particle.  

The above demand can be achieved effectively through a control algorithm (Goldstein et 
al 1993) that at each time step determines the (interpolated) mismatch between the actual 
flow velocity and the prescribed flow velocity at the control points, and then adapts the force 
field in such a way that it suppresses the mismatch. The deviation between the actual and the 
prescribed velocity ( (n)

jd ) is determined by a second-order interpolation of the flow veloci-

ties at the lattice sites: 
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with (n)

kf  the force acting on the fluid at lattice node k and moment n, and q a relaxation fac-
tor. Also the forcing method needs calibration of the hydrodynamic diameter. For this we use 
the same procedure as proposed by Ladd. 

Other sorts of boundary conditions can be achieved in the LBM relatively easily and 
along intuitive lines: 

• Zero-shear at flat walls is achieved through specular reflection of the LB particles at the 
wall.  

• Zero gradient conditions (at inflows and outflows) are achieved by copying distribution 
functions in the direction normal to the boundary; at inflows the forcing scheme (see 
above) can then be used to impose velocity profiles. 

• Periodic boundaries imply copying outgoing distribution functions to the other side of 
the domain where they enter again. 

5.3 Alternative collision operators   

The LBGK collision operator, based on a single time constant with which distribution 
functions relax towards equilibrium gets unstable for low viscosity values. This has led to 
research towards more stable schemes. Two more stable schemes are mentioned here: the 
multiple relaxation time (MRT) scheme (Lallemand and Luo, 2000), and a scheme due to 
Somers (1993). 

For a MRT-LB model with M velocities, a set of velocity distribution functions 
( )M,,if i L10=  is defined. The collision (and this is different from LBGK) is executed in 



moment space (not in velocity space). Moment space and velocity space are connected via a 
linear transformation 
 
 ( ) jijijiji mTffTm 1−==  (5.3) 
 
The evolution equation then reads 
 
 ( ) ( ) ( )( ) ( ) ( )eq

jjjijiiii mmTtftfttxf −−=+=++ − ΛΩ∆∆ 1,,, xxex  (5.4) 
 
The moments are related to density, momentum, strain, and energy. Their equilibriums are 
functions of the conserved quantities which are mass and momentum. The M+1 coefficients 

jΛ  determine the viscosity (as did the relaxation time) and are used to enhance the stability 
of the scheme.  

The scheme due to Somers has been described in detail by Eggels and Somers (1995). It 
goes along similar lines as the MRT approach, i.e. its collision operator acts on moments of 
the velocity distribution function. Furthermore, it uses a staggered discretization in space and 
time. 

6 Direct Numerical Simulations of Solid-Liquid Suspensions   

In this section we will discuss a methodology for directly simulating solid-liquid suspen-
sions. In these simulations we resolve the solid-liquid interface and the flow of the interstitial 
fluid (the latter we do with the LBM), i.e. the spherical solid particles have finite size and the 
flow around the particles is directly simulated. The forcing method described in Section 5.2 
is used for setting the no-slip boundary condition at the sphere’s surfaces. At the end of this 
section we will briefly discuss two examples of such simulations: a turbulent suspension, and 
solid-liquid fluidization. 

Our starting point is a fully periodic, three-dimensional domain containing fluid and solid 
particles with a spherical shape. In the fluidization cases, the flow is driven by a net gravity 
force acting on the particles, and a pressure gradient acting on the fluid to balance gravity. In 
the case of the turbulent suspension, a random body force that can generate turbulence with 
prescribed properties agitates the suspension. 

The fluid flow and the particle motion are coupled by demanding that at the surface of the 
sphere the fluid velocity matches the local velocity of the solid surface (that is the sum of the 
linear velocity vp and ΩΩΩΩp×(r−rp) with ΩΩΩΩp being the angular velocity of the particle); in the 
forcing scheme this is accomplished by imposing additional forces on the fluid at the surface 
of the solid sphere (which is then distributed to the lattice nodes in the vicinity of the particle 
surface). The collection of forces acting on the fluid at the sphere's surface and its interior is 
subsequently used to determine the hydrodynamic force and torque acting on the sphere 
(action = −reaction). 

The effective body force on the fluid (in the fluidization case) mentioned above can be re-
lated to the gravitational acceleration, zeg g−= , as follows. The net gravity force acting on 
each spherical particle is ( ) z

3
psG 6

eF gd
πρρ −−= , and the force per unit volume acting on 

the (internal and external) fluid is 



 
 ( ) zfB ef gρρ −=  (6.1) 
 
with ( ) fs 1 ρφρφρ −+=  the density of the fluid-solid mixture, and φ  the overall (spatially 
averaged) solids volume fraction in the periodic domain. 

The fluid inside the spherical particles is an artefact of the forcing scheme. As long as 
the density of the solid is higher than the density of the fluid, the effects of the internal 
fluid can be effectively corrected for: The force LBF  acting on the fluid determined by the 
forcing method is the sum of the force needed to accelerate the internal fluid and the force 
of the particle acting on the external fluid. Since the internal fluid largely behaves as a 
solid body, one can partition LBF  as follows: extLB,LB FFF 1 +=  where the force LB,1F  is the 
component that ensures that the internal fluid translates with the particle; extF  is the force 
on the external fluid due to the particle. The overall linear momentum balance for the 
internal fluid can be written as  
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where it has been recognized that the internal fluid translates with the particle. The corre-
sponding equation for the particle is then 
 

 ( ) zt eF
v

gd
t

d 3

psex

p3

ps 6d

d

6

πρρπρ −+−=  (6.3) 

 
Lubrication forces which arise because of inadequate resolution of the flow in between 
neighbouring particles and those arising from direct particle-particle interactions (e.g., colli-
sion) will be added to the right hand side later. Combining Eqs. (6.2) and (6.3), we get 
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Following the same reasoning, we obtain the following angular momentum balance: 
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with LBT  the torque as determined by the forcing method to impose the no-slip conditions at 
the sphere’s surface. 

In order to test if the above procedure represents the dynamics of spheres immersed in 
liquid properly, we considered the transient motion of a single sphere that is accelerated from 
rest under the influence of gravity. In the limit of zero Reynolds number in an unbounded 
fluid the equation of motion of the sphere has been derived by Maxey and Riley (1983). 
Results obtained by integrating the Maxey and Riley equation showed excellent agreement 



with the LB simulations combined with the above equations of motion. Ten Cate et al. 
(2002) compared the results on sedimentation of a single sphere in a limited-size container at 
higher Reynolds numbers (up to Re = 30) obtained through lattice-Boltzmann simulations 
and forcing boundary conditions with particle image velocimetry (PIV) data and found good 
agreement in terms of the sphere’s trajectory and the fluid flow field around the moving 
sphere. 

We also take into consideration the interaction between particles through binary, hard-
sphere collisions and lubrication forces. For the former, we apply an event-driven collision 
algorithm: we move the collection of particles until two particles get into contact. At that 
moment we carry out the collision (i.e. update the velocities of the two particles taking part in 
the collision). Subsequently, the movements of all particles are continued until the next colli-
sion or until the end of a LB time step. The collision model that we apply (described in detail 
in Yamamoto et al., 2001) has two parameters: a restitution coefficient e and a friction coef-
ficient µ. As the default situation we consider fully elastic, frictionless collisions (e = 1, µ = 
0). 

When two particles are at close proximity, with their separation being of the order of or 
less than the lattice spacing, the hydrodynamic interaction between them will not be properly 
resolved in the LB simulations. Therefore, we explicitly impose lubrication forces on the 
particles, in addition to the hydrodynamic forces stemming from the LBM. The general 
framework for lubrication forces and torques acting on two particles (1 and 2) as a result of 
the relative motion of their surfaces can be written in the form of the following vector equa-
tion: 
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with lub,1lub,2 FF −=  and p,2p,1p,12 vvv −=  (Kim and Karilla, 1991; Nguyen and Ladd, 2002). 

In the tensors A11, B11, B22, C11, C22, and C12, we only use the leading order terms in the 

parameter 
h

dp , with h the minimum spacing of the particle surfaces. For the radial lubrica-

tion force (contained in the diagonal elements of the A11 matrix in the equation 

p,1211lub,1 vAF = , ) the leading order is 
h

dp , while for the tangential lubrication forces and 

torques it is 
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h

dpln  (Kim and Karilla, 1991). Two modifications to the above expressions 

were implemented to tailor them to our numerical needs: 
(a) Lubrication only acts if particle separation is less than p1.0 d=δ  (which is equivalent to 

roughly one lattice spacing in the default resolutions we use). To smoothly switch on/off the 



lubrication force at δ=h , in the lubrication expressions 
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 (Nguyen and Ladd, 2002). 

(b) The lubrication force saturates once the particles are very close (at10-4dp). The latter 
restriction we use for numerical reasons (to avoid high force levels and associated instabili-
ties) but also with the surface roughness of the particles and/or the mean-free-path of the 
fluid in mind. 

The time-step-driven (LBM) and the event-driven (collisional) parts of the simulation 
have been combined by first performing the LBM time step from t to t+∆t and subsequently 
moving the particles until also the particle system has advanced ∆t in time. Since in dense 
systems usually more than one collision occurs during ∆t, the particle motion algorithm sets a 
number of sub-time-steps, the number being equal to one plus the number of (potential, see 
below) collisions. 

At the start of every particle motion sub-time-step, we update the lubrication forces and 
torques. Then we move the particles over the sub-time-step, i.e. until the next potential colli-
sion (or until t+∆t is reached). At the new positions of the particles we again determine the 
lubrication force and torque. The linear and angular velocities of the particles are now up-
dated according to the average of the lubrication forces and torques at the beginning and at 
the end of the sub-time-step. The velocity update may result in the collision not to occur: in 
that situation the lubrication forces were sufficiently strong to change the sign of the relative 
particle velocity so that a hard-sphere collision was prevented. 

 

1 cm 

Figure 7. Experiment showing the onset of a bubble in a flat fluidized bed. Left: snapshots of the 
bed; right: schematization of the observations. Reprinted from Duru and Guazelli (2002). 



6.1 Some results for solid-liquid fluidization   

Two-dimensional waves and the onset of bubbles have been studied experimentally by 
Duru and Guazzelli (2002). They used flat, liquid-fluidized beds that could not develop 
three-dimensional structures, and allowed for good visible observations, well-resolved void 
fraction measurements, and particle tracking velocimetry measurements. Figure 7 shows a 
typical result of their experiments: the development of a bubble-like void, starting from a 
planar wave instability. In this case, steel beads (density 7.8⋅103 kg/m3) with a diameter of dp 

= 1 mm were fluidized with water in a domain that was 120dp wide, 12dp thick and some 
2000dp high. 

Such two-dimensional structures can indeed be simulated using the approach described 
above. In order to see the evolution of two-dimensional structures, we have performed simu-
lations in a 24dp×6dp×20dp periodic domain (the 20dp being in the streamwise direction). As 
an initial condition for the particle positions and velocities (translational and rotational), we 
juxtaposed four copies of a fully developed planar wave [computed in a 6dp×6dp×20dp peri-
odic domain]. This simulation was performed at a lower resolution such that the 
hydrodynamic diameter of the particles was set to be 12 lattice units. The density ratio was 
set to 8. The viscosity and body force were chosen such that the terminal velocity of a single 
bead was 0.04 (in lattice units) and the Reynolds number based on the terminal velocity 
matched the value in the experiments (Re = 400). The collisions were smooth and elastic (µ 
= 0,  e = 1). 

In Figure 8 we show how the numerical system developed a bubble very similar to the 
experimental observations: the initially plane wave buckles and at its crest forms a bubble-
like void. The particle velocity field in the vicinity shows qualitative similarity with the field 
measured by Duru and Guazzelli (2002); see Figure 9. We again note that non-ideality of 
bead-bead collisions is not an essential condition for resolving the behavior of void fraction 

  

Figure 8. Series of snapshots showing bubble formation. The upper left frame shows the initial 
condition. The time-spacing between the subsequent (left-to-right, top-to-bottom) frames is 
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instabilities in fluidized beds. The domain size in the flow direction is too short for the bub-
ble to behave as an isolated bubble. The periodic system resembles a bubble train, which 
generally has a higher velocity than an isolated bubble. If we estimate the bubble rise veloc-
ity and translate it back to the experimental steel-water system, the bubble rise velocity in the 
simulation is approximately 15 cm/s. The bubble radius is approximately 0.4 cm. This bub-
ble size and rise velocity combination is at the lower end of the range of rise velocities for 
bubble trains which is 15 to 22 cm/s according to the experiments (Duru and Guazzelli, 
2002). 

6.2 DNS of turbulently agitated solid-liquid suspensions   

Another example of the application of our approach for directly simulating solid-liquid 
suspensions is in the field of turbulence and has been reported earlier by ten Cate et al. 
(2004). We again define a three-dimensional system of solid particles dispersed in a liquid 

 
Figure 9. Measured (left, reprinted from Duru and Guazelli 2002), and simulated particle velocities 

in the vicinity of a bubble. 

 

Figure 10. Energy spectrum of the random forcing and the resulting single-phase fluid flow. The 
wavenumber κ was normalized with the peak-forcing wavenumber κf. The energy E is non-

dimenionalized with u*
2l* with u* the rms velocity, and l*=2π/κf. 
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with fully periodic boundary conditions. Instead of driving the system by a uniform body 
force on the particles and a (opposing) body force on the fluid (mimicking the pressure gra-
dient), we now force the system in a random manner as to generate homogeneous, isotropic 
turbulence. The procedure for doing this is due to Alvelius (1999); Ten Cate et al (2006) 
adapted the method so that it could be combined with the lattice-Boltzmann method. In Fig-
ure 10 we show results for single-phase turbulence in terms of the energy spectrum. The 
spectrum of the random forcing is limited to small wavenumbers (large scales). With increas-
ing Reynolds number, the flow develops smaller and smaller scales (the spectrum extends to 
higher wavenumbers), and develops and inertial subrange characterized by a -5/3 slope in the 
energy spectrum. 

The presence of particles changes the spectrum (see Figure 11): the particles create turbu-
lence at scales comparable to and smaller than the particle diameter. One of our interests in 
this study was the way particles collide (collision frequencies and intensities). In this respect 
it was interesting to study the PDF of the time between two collisions of a particle (as given 
in Figure 12). For “long times” this PDF is exponential indicating Poisson statistics (with a 
steeper slope for more dense systems). These collisions are uncorrelated events. For “short 
times” the PDF deviates from exponential and shows a peak towards zero time. These are 
correlated events: once turbulence has brought two (or more) particles in each others vicinity 
they tend to cluster due to short range hydrodynamic interaction (lubrication) and undergo 
many (weak) collisions at short time intervals. Eventually the particles in the cluster are sepa-
rated when a strong enough eddy comes by. 

 

κ/κd 

E*(κ) 

φ =0.02 
φ =0.06 
φ =0.10 

Figure 11. Energy spectra of the two-phase simulations (with solids volume fractions φ) compared to 
the single-phase (fluid) spectrum. The wavenumber κ was normalized with the particle size 

wavenumber κd=2π/dp. The energy E is non-dimenionalized with ε2/3η5/3 with ε the average energy 
dissipation rate, and η the Kolmogorov lenght scale. 



7 Single Phase Turbulence 

A turbulent flow exhibits an irregular behavior in space and time. A typical example of a 
time signal corresponding to a turbulent flow quantity is shown in Figure 13 where the 
streamwise velocity recorded in a turbulent pipe flow is shown as a function of time. At first 
glance, the velocity may seem to behave randomly. Detailed studies, however, have shown 
that turbulent flows are not completely random in space and time. They contain spatial (co-
herent) structures that evolve in time. These structures are often referred to as eddies, as they 
are usually associated with rotating motions of fluid flow. A fundamental result of turbulence 
theory is that these eddies are not all of a particular size, but that an often broad continuous 
range of large to small eddies exists. If we return to Figure 13, and carefully study the tempo-
ral evolution of the turbulence signal shown there, we see that in this signal both “fast” and 
“slow” temporal variations occur, that might be associated to small and large eddies respec-
tively. In general, the size of the largest eddies in a turbulent flow is determined by the 
geometry of the flow configuration. Here it is characterized by a length scale l. Typical val-
ues of l for wall-bounded, shear-driven turbulence are l≈0.1L with L a length scale 
corresponding to the flow geometry (e.g. the pipe diameter). Besides a length scale, these 
large eddies also have a velocity scale denoted by u. From this we can deduce that large-
scale eddies have a typical time-scale proportional to l/u, and a turbulent kinetic energy (per 

 

Figure 12. PDF of the time between two collisions of a particle for three solids volume fractions. 
The lines are linear fits of the tails of the distributions. The collision time has been made 

dimensionless with the Kolmogorov time scale τ. 
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unit mass) proportional to u2. This kinetic energy is extracted from the mean flow by interac-
tion of the mean flow and the turbulent fluctuations. 

The smaller eddies do not extract their kinetic energy directly from the mean flow but are 
fed by a continuous decay of (unstable) large eddies which break up into smaller ones. These 
smaller ones in turn decay to even smaller eddies until this cascade reaches the smallest 
scales of turbulent motion (the energy cascade). The length and velocity scales of these 
smallest eddies are determined by the amount of kinetic energy that is being transformed 
along the energy cascade from large to small eddies, and by the molecular viscosity of the 
fluid that eventually (at the smallest dynamical scales) dissipates the energy. 

The loss of kinetic energy of the large-scale eddies is represented by the dissipation rate ε 
(energy per unit time and unit mass). In turbulence theory, it is assumed that the dissipation 
rate is independent of the turbulent micro-structure (or the small eddies) since it is fully de-
termined by what happens at the large scales. This is expressed by the following: 
 

 
l

u3

=ε  (7.1) 

 
This relation can be interpreted as the kinetic energy of the macro-structure eddies (u2) being 
transferred to smaller scales (break-up of bigger eddies into smaller eddies) during their 
lifetime (l/u).  

The smallest eddies are fully controlled by the energy transfer (or, equivalently, by the 
dissipation rate ε), and by the molecular viscosity ν, they are e.g. decoupled from the flow 

 

Figure 13. Evolution of the streamwise velocity as a function of time measured in fully developed 
turbulent pipe flow (reprinted from Eggels, 1994; courtesy J. den Toonder). 



geometry. By means of dimensional analysis, the length, velocity, and time scales of these 
smallest eddies can be determined: 
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These are the celebrated Kolmogorov scales. Since the dissipation rate is known in terms of 
macro-structure properties, we can easily deduce relations between the various scales of 
macro-structure and micro-structure. Substituting Eq. (7.1) into Eq. (7.2) yields 
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For large Reynolds numbers Rel, the scales of the micro-structure become much smaller 
compared to those of the macro-structure. In other words, the energy cascade process deter-
mines the scales of the micro-structure in such a way that the smallest eddies can transform 
their kinetic energy into internal energy (heat) by means of molecular viscosity. If e.g. the 
kinetic energy of the macro-structure is increased (i.e. if Rel becomes larger), then the scales 
of the micro-structure become smaller (compared to l and u) in order to more effectively 
transform the increased amount of kinetic energy into internal energy. 

The appearance of a broad range of scales in a turbulent flow with the macro-structure 
characterized by its large eddies on one hand and the micro-structure with its small-scale 
eddies on the other, is our point of departure to illustrate the principles of the simulation 
techniques described here. 

8 Numerical Simulation of Fluid Flow 

For an incompressible, Newtonian fluid, the conservation of mass and momentum are as 
follows 
 
 0=⋅∇ v  (8.1) 
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with v the velocity vector, ρ the fluid density, and p the pressure. The Reynolds number 
(introduced in Section 7), can be interpreted as the ratio of the advection term vv ∇⋅  and the 
viscous term v2∇ν  both scaled by the macro-scales u and l: 
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For large Rel, the nonlinear advection term dominates over the viscous term and (in general) 
the flow will be turbulent. The nonlinearity of the advection term is the reason for the ap-
pearance of a broad range of scales in turbulent flows. If the viscous term dominates over the 
advection term (small Rel), the flow is laminar and has a regular flow pattern. 

Since the equations which describe the flow field are known, it should be possible (in 
principle) to solve them in a discretized form by means of a computer. Such a numerical 
simulation should resolve the spatial and temporal evolution of the flow field in all detail to 
capture all relevant flow phenomena. For laminar flow with low Rel, the equations of motion 
can be discretized and solved straightforwardly from a computational point of view. For 
turbulent flows, the situation is different and more complicated. 

8.1 Direct numerical simulation (DNS)  

Discretized versions of the partial differential equations involve a grid (spatial discretization) 
and time steps. Let the distance between two sequential point in space and time be denoted 
by ∆x and ∆t respectively. Turbulent flows are characterized by a broad range of length and 
time scales that should be resolved in all detail by the simulation. Hence, ∆x and ∆t should be 
proportional to the smallest length and time scales respectively: ∆x∝η and ∆t∝τ. A more 
restrictive criterion, however, must sometimes be applied for ∆t in which ∆t∝τa, with τa the 
time scale associated with a small-scale eddy passing a fixed point when being advected by 
the macro-structure velocity, i.e. τa∝η/u. 

In Eq. (7.3) we related the macro and micro-structure. Using l≈0.1L: 
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For the ratio T and ∆t with T a time interval during which the flow field is monitored, a simi-
lar expression can be obtained. As for the length l and L, we have to relate T to the time-scale 
of the macro-structure l/u. To obtain a correct impression of the turbulent flow, it should be 
at least monitored for several time scales l/u, say 50 times. Then we find 
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in which we used the (in general) most restrictive criterion to the time step.  

The computational time TC for direct numerical simulations scales at least as the total 
number of grid points (being 3

LN ) and the number of time steps NT. Memory requirements 
MC scale with 3

LN . As a result 
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(for wall bounded flows with boundary layers the above scalings are even on the low side 
since generally more resolution is required close to walls). Both MC and TC are proportional 



to Rel raised to a positive power larger than 1. With increasing Rel, the computational effort 
rapidly increases. It is obvious that for strongly turbulent flows (say Rel=104) DNS cannot be 
performed due to the limited capacity of present-day (super)computers. For relatively modest 
Rel, DNS is a very useful technique for studying turbulence in all its detail. 

8.2 Large-eddy simulation (LES)  

A remedy to overcome the limitations of DNS with increasing Rel is to reduce the range of 
scales that are resolved on the numerical grid. A viable concept is to remove the small-scale 
eddies by a spatial filtering procedure, and to resolve the large-scale eddies only. This ap-
proach is called large-eddy simulation (LES). The separation of large and small scales is 
inspired by observations that the large eddies of the macro-structure are mostly anisotropic. 
Furthermore, they depend on the geometry of the flow considered. On the other hand, the 
small eddies of the micro-structure can be considered to be closer to isotropic. They are 
much less dependent on the flow geometry, as they are fed by the energy cascade in which 
the geometry information present in the larger eddies gets lost due to break-ups. Therefore, 
the micro-structure-eddies may tentatively be regarded more or less universal. Since in LES 
the large eddies are resolved explicitly on the spatial grid, only the effect of the removed 
small scales remains to be modeled. The more isotropic and (perhaps) universal nature of the 
small scales is a favorable point of departure for the modeling of the small-scale eddies. This 
modeling is referred to as subgrid-scale (SGS) modeling.  

Before turning to the subject of SGS modeling, let us first consider the equations that 
need to be solved in an LES and estimate the associated computational effort. In an LES, a 
flow variable φ is decomposed in a grid-scale (GS) component φ  and a SGS component φ ′ . 
The GS component is defined by the moving average filter operation: 
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in which G is a spatial filter function that depends on the separation between x and x’ , and V 
is the total volume of the computational domain. An often applied filter is the top-hat filter: 
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Here lf is a characteristic filter length. Application of the filter (Eq. 8.7) to the flow equations 
(Eqs. (8.1) and (8.2)) yields equations for the GS variables 
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where the continuity equations has been used in the momentum equation to reformulate the 
advective term in its conservative form. The stress τ  tensor represents the influence of the 
SGS motion on the GS motion. It reads 
 
 ( ) ( ) vvvvvvvvvvτ ′′+′+′+−=  (8.11) 
 
In a later stage, Eq. (8.11) will be discussed in more detail; for the moment it suffices to 
realize that τ  contains the unknown v′  and requires modeling. 

In LES, the macro-structure with length-scale l is still resolved on the spatial grid. The fil-
ter length lf associated to the filter function ( )xx ′−G  is now the characteristic length of the 
smallest resolved (GS) motions, as well as of the largest SGS motions. For LES to be realis-
tic, the ratio l/lf representing the range of length-scales of the GS motion should be l/lf>1 
(smaller than one would imply that even the large-scale eddies of the macro structure are 
filtered out). The filter length lf can be associated with the grid-spacing ∆x where one usually 
assumes lf=2∆x (Nyquist criterion). Larger values of lf with unchanged ∆x yield a more accu-
rate numerical representation of the smallest resolved scales but simultaneously reduce the 
range of GS motions without any reduction of the computational effort. In LES one aims at 
keeping the range of GS motion as large as possible and therefore retains lf=2∆x. Thus, the 
linear grid-size NL now becomes 
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In contrast to Eq. (8.4), Eq. (8.12) is not related to Rel anymore, but to the ratio l/lf. As a 
result, LES is not restricted to low Rel. The coefficient “20” in Eq. (8.12) appears due to the 
product L/l and lf/∆x. The parameter L/l depends on the type of flow. For shear driven flow it 
typically is 10. Apparently the ratio l/lf is essential in LES. The choice of the ratio depends 
on the flow type under consideration. Roughly speaking, an LES with a value larger than 10 
is considered to be well resolved. 

Let us turn to the temporal resolution in LES. We have seen that the smallest resolved 
motions in LES are characterized by the filter length lf. On similar grounds as before for the 
DNS, the time step ∆t should thus be proportional to the time scale lf/u. In practice, however, 
∆t in LES computations is determined by criteria for numerical stability that generally lead to 
small time steps such that the time-scale lf/u is well-resolved.  

8.3 Subgrid-scale modeling in LES  

Due to the filtering operation, a stress tensor is introduced in the momentum equations which 
represents the effect of the SGS motion on the GS motion, see Eqs. (8.10) and (8.11). Here 
we repeat the expression for the stress tensor: 
 
 ( ) ( ) RCLvvvvvvvvvveeτ ++=′′+′+′+−== jiijτ  (8.13) 
 



with ijτ  the components of τ , and L , R and C the Leonard stress, cross-terms, and SGS 

stress respectively. In most SGS modeling approaches, modeling applies to the tensor τ  as a 
whole. In that context τ  is simply referred to as the SGS stress. The tensor τ  is usually 
decomposed in an isotropic part and a non-isotropic part 
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with ijδ  the Kronecker delta. The summation convention applies to the repeated index k. 
Usually, the isotropic part is combined with the resolved pressure. The non-isotropic part is 
denoted by τ′  and is thus given by 
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Let us now consider modeling of τ′ . Various approaches can be followed. Prognostic 

differential equations for all components ijτ ′  can be derived form the momentum equations. 
In these equations, however, several terms appear which need to be parametrized, as they 
contain higher-order correlations of small scale fluctuations. Using this so-called second-
order modeling would require solving 7 additional partial differential equations. Deardorff 
(1973) performed second-order LES for atmospheric turbulence. It yielded results superior to 
first-order approaches at increased computational cost. It is noteworthy that in later papers 
Deardorff reverted to much simpler gradient hypothesis approaches. A general simplification 
of second-order modeling is the reduction of partial differential equations into algebraic 
equations to parametrize the SGS stresses. It is believed that this approach retains the advan-
tage of second-order modeling while it avoids an increase of computing time and memory 
usage. Applications of algebraic SGS models have been reported by Schem and Lipps 
(1976) and Schmidt and Schumann (1989) for studies of atmospheric turbulence. Of particu-
lar concern in second-order models is the attention that must be paid to the determination of 
the various coefficients involved (see also Schmidt and Schumann, 1989). 

In view of the above remarks, one usually turns to first-order modeling in LES, where the 
SGS stresses are directly related to the GS velocity field in an algebraic way. To mimic the 
net energy transfer from large to small scales, the stress tensor τ′  is formulated in such a 
way that the SGS stresses reduce the kinetic energy of the GS velocity field. In this respect 
one introduces the so-called SGS eddy viscosity eν  in analogy to the molecular viscosity to 
write τ′  as 
 
 ( )( )Tvvτ ∇+∇−=′

eν  (8.16) 
 
Application of Eq. (8.16) requires a specification of eν . The most widely used model is the 
one proposed by Smagorinsky (1963) in which eν  is related to the deformation of the re-
solved velocity field as 
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mixeν  (8.17) 

 
The length-scale lmix represents the mixing length of the SGS motions and will be specified 
below. 

The Smagorinsky model originates from the assumption of local equilibrium between 
production and dissipation in the equation governing the SGS kinetic energy ESGS By defini-
tion: 
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with ( )κE  the three-dimensional energy spectrum, κ the wavenumber and 2π/lf the smallest 
wavenumber corresponding to SGS motions. Local equilibrium between production and 
dissipation of ESGS.is expressed by 
 
 ( ) ε=∇′− vτ :  (8.19) 
 
which can be written with Eq. (8.16) as 
 
 εν =2

eS  (8.20) 
 

We now would like to relate the mixing length lmix with the filter length lf. For this reason 
the deformation rate 2S  is formulated in terms of the energy spectrum ( )κE : 
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This equation states that the resolved deformation rate 2S  equals the dissipation spectrum 

( )κκ E2  integrated over the resolved scales. For high Reynolds number turbulent flows and 
wavenumbers κ in the inertial subrange, the energy spectrum ( )κE  can be written as (e.g. 
Tennekes and Lumley, 1972) 
 
 ( ) 3/53/2

K

−= κεακE  (8.22) 

 
known as the 35/−κ -law. The constant (attributed to Kolmogorov) Kα  is approximately 1.6. 
Substitution of Eq. (8.22) in Eq. (8.18) and Eq. (8.21) respectively yields: 
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where we assumed Eq. (8.22) also for small wavenumbers (κ→0). This is not a valid as-
sumption. However, ( )κκ E2  increases with increasing κ, and the contribution of the lower 
wavenumbers to the integral is relatively small. Substituting the expression for eν  (Eq. 8.17), 
and the expression for ε that can be derived from Eq. (8.24) into Eq. (8.20) yields an expres-
sion for the ratio of mixing length and filter length: 
 

 0825.0
2

2

3
4/3

K

f

mix =









=

−

π

α

l

l
 (8.25) 

 
Let us now specify the mixing length. Similar to the filter length, the mixing length can be 

related to the grid spacing ∆ (that for convenience is considered uniform and the same in all 
directions; a cubic grid). The ratio lmix and ∆ is denoted by the Smagorinsky constant cS.: 
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l
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If we assume lf=2∆, and use Eq. (8.25) we find 165.0S =c . 

This value of the Smagorinsky constant was based on the equilibrium assumption, and on 
the existence of an inertial subrange (3/5−κ -law). Especially in wall bounded flows one finds 
that 165.0S =c  leads to overly damped simulations in which turbulence sometimes cannot 
be sustained. The remedy is to reduce Sc  to values of typically 0.1. In principle this implies 
that the simulations are underresolved: 165.0S <c  can be interpreted as a filter length 
smaller than 2∆. 

The Smagorinsky model is a simple and robust model. It has two major drawbacks: it 
does not allow for backscatter (i.e. transfer of energy from the SGS to the GS), and it yields 
unrealistic results in the vicinity of walls. Since eν  is a positive quantity, the effect of the 
SGS stresses in the momentum equations will always cause an energy transfer from GS to 
SGS, mimicking a cascade process. In real turbulence, there indeed is a net energy transfer 
from large to small scales. This net transfer, however, is the sum of forward scatter (GS to 
SGS) and backscatter (SGS to GS), where forward scatter dominates. In DNS it has been 
observed, however, that backscatter occurs in significant parts of a flow.  

The Smagorinsky model has an isotropic eν . In particular near walls, eν  should pre-
sumably be taken anisotropic which is not included in the standard Smagorinsky model. Also 
related to walls is the unphysical behavior of the SGS stress near walls. Precisely at walls, the 
SGS stress should vanish (no-slip condition), which is not guaranteed in the SGS model 
governed by Eqs. (8.16), (8.17), (8.26). A way to repair this is by means of wall-damping 
functions that reduce the mixing length towards the wall. An often-used damping function is 
due to Van Driest (1965) which relates lmix to the (dimensionless) distance to the wall y+: 
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The parameter  
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is the wall unit or Reynolds number based on the distance to the wall y and the wall-shear 
velocity u*. A

+ is a constant equal to 26. 
Dynamic subgrid-scale models (Germano et al, 1991) address the issues of walls and 

backscatter in the Smagorinsky model (see also the review article by Lesieur and Métais, 1996). 
In dynamic models the idea of an eddy viscosity related to the deformation rate, i.e. (Eqs. 
(8.17) and (8.26)) 
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is retained. The Sc  in Eq. (8.29), however, is not a constant but is determined locally. It can 
become negative, thereby allowing for backscatter. In dynamic modeling, two filters are 
applied with different filter widths: e.g. 2121 withand ∆∆∆∆ > . Two eddy viscosities can 
now be determined: 
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with ( ) ( )21 and SS  the resolved deformation rates according to the two filters. The energy 

transfer (dissipation rate) at the two filter wavenumbers κ1 and κ2 is the same if the filter 
wavenumbers are chosen within the inertial subrange. Therefore (see Eq. 8.20) 
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The set of three equations (Eqs. 8.30 and 8.31) allows us to determine the unknowns 

Se2e1 and, cνν . There are quite some practical issues in applying dynamic models. The most 

important is stability. Negative values of cS (can) lead to negative viscosities and as a result 
unstable behavior of numerical schemes. Since the work of Germano et al. (1991) there have 
been extensive efforts in improving dynamic models. 
 

8.4 Examples of single-phase LES by means of the lattice-Boltzmann method   

The implementation of the concept of an eddy viscosity in the lattice-Boltzmann scheme is 
fairly straightforward. Instead of the molecular (constant) viscosity we substitute the sum of 
the molecular viscosity and the eddy viscosity in Eq. (4.28). The eddy viscosity varies in 
space and time and is determined via a SGS model. 



If the viscosity is based on the local deformation rate, as is the case for the Smagorinsky 
model (see Eqs. (8.16) and (8.17)), an advantage of applying the LBM is that the deforma-
tion rate is readily available from the LB distribution functions (see Eq. (4.26)). This means 
that we do not need to calculate spatial derivatives of the velocity field (based on e.g. finite 
differences) to determine deformation rates. 

What now follows are a few examples of LB/LES of flow systems typically encountered 
in (chemical) engineering. Such systems have complexly shaped (and sometimes moving) 
boundaries. In these situations, lattice-Boltzmann discretization of the flow equations can be 
a favorable approach in view of computational efficiency; in order to do realistic LES we 
need to have a sufficiently fine grid and numerical (parallel) efficiency is then of key impor-
tance. The examples are the flow in a mixing tank, and the flow in a swirl tube. In the latter 
case some aspects of SGS modeling will be highlighted. 

 
Mixing tank simulation.  Turbulently agitated tanks are used in various industries to per-
form mixing tasks in order to e.g. stimulate chemical reactions, bring species into contact, or 
disperse gases or solids into liquid. Predicting the single-phase flow in a mixing tank there-
fore is a relevant task. In order to prepare such a single-phase simulation for inclusion of 
chemical reactions, or solid particle dispersion, an LES approach is highly desirable. For 
instance: the dynamics of solid particles suspended in the turbulent flow is governed by their 
direct (hydrodynamic) surroundings that can be largely provided by an LES, not by the 
(time) averaged flow in the tank that would follow from a RANS-type of simulation. Here we 
report on simulations in a tank geometry as given in Figure 14. A revolving turbine with six 
vertical blades drives the flow. The vertically placed baffles at the perimeter of the tank en-
hance mixing as they largely prevent a solid-body rotation of the fluid. The Reynolds number 
of this flow is traditionally based on the impeller diameter D, and the angular velocity of the 
impeller N [in rev/s]: Re=D2N/ν. Here, Re=1⋅105. This flow has been simulated by means of 
lattice-Boltzmann discretization and a Smagorinsky subgrid-scale model with cS=0.1. The 
uniform cubic mesh had a size of 2403. The off-grid, no-slip boundary conditions at the tank 
wall, baffles, and revolving impeller were imposed by means of an immersed boundary tech-
nique that has been briefly described in Section 5.2. Further details of the simulations shown 
here can be found in e.g. Derksen and Van den Akker (1999), and Derksen (2003). 

Figure 14. Typical mixing tank geometry: a baffled tank with a disk impeller (Rushton turbine) 
placed one-third of the tank height from the bottom. 



In Figure 15, a snapshot and the average flow in a vertical cross section are compared. 
The average flow visualizes the action of the impeller: fluid is pumped in radial direction. 
Once it hits the outer wall, the fluid stream emerging from the impeller splits and drives two 

 

Figure 16. Comparison between experimental velocity data (top row, from Derksen et al 1999) and 
LES results (bottom row) at three angular positions in the wake of an impeller blade. From left to 
right the observation plane and the impeller blade make an angle of 10o, 31o and 49o respectively. 

vtip 

 

Figure 15. Flow field (in terms of velocity vectors) in a vertical plane through the center. 
Left: time-averaged flow; right: single realization. 



large recirculations, one above and one below the impeller. The slight upward inclination of 
the impeller stream is due to the impeller being placed closer to the bottom than to the top. 
This makes the lower recirculation stronger and pushes the impeller stream slightly upwards. 
A solid particle dispersed in the tank does not “see” the average flow. It is moved around by 
the instantaneous flow structures that are to a large extent resolved by the LES. 

Validation of these simulations by means of experimental data is essential. Figure 16 
shows a simulation-experiment comparison in a critical region of the flow: the wake of an 
impeller blade. The trailing vortex structure is well resolved by the simulations. Also the 
fluctuation levels (in terms of the turbulent kinetic energy) are well predicted by the LES (not 
shown here, see Derksen and Van den Akker, 1999). 

 
Swirl tube with tangential inlet.  Turbulent swirling flows form a good testing ground for 
assessing simulation techniques and turbulence modeling approaches. This is because the 
turbulence is swirling flow is known to be highly anisotropic. Furthermore, swirl tends to 
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Figure 17. Flow geometry of the experimental setup due to Escudier et al’ (1980). 
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Figure 18. Top: (experimental) flow visualization due to Escudier et al’ (1980) at Re=410, 
De/D=0.58. Bottom: LES snapshot at Re=2,100, De/D=0.73 in terms of the vorticity. 



laminarize parts of turbulent flows. Swirling flows have practical significance in separation 
devices and combustion (flames stabilized by swirl). A classical experimental data set on 
turbulent swirling flow is due to Escudier and co-workers (see Escudier et al, 1980). The 
flow geometry is given in Figure 17. The complexity of the turbulence can be appreciated 
from Figure 18, which shows the flow visualized in an axial cross-section. A laminar-like 
vortex core can be distinguished from a turbulent outer region. Furthermore, vortex break-
down is observed (not shown here). Large-eddy simulations (Derksen, 2005) were able to 
represent these specific flow features very well (see Figure 18). 
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Figure 19. Average velocity and eddy-viscosity profiles for De/D=0.33. Top: tangential velocity; 
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2.15, and 3.61. The symbols denote experimental data. The short-dashed line is the LES result with 
the Smagorinsky model, the long-dashed line with the model due to Voke, and the solid line with the 

mixed-scale model. 



A quantitative comparison was made based on velocity profiles measured by Escudier et 
al (1980) by means of laser-Doppler anemometry (LDA). It was interesting to see the impact 
of the grid resolution, and the choice of the SGS model on the quality of the LES predictions. 
Next to the Smagorinsly model supplemented with Van Driest wall damping functions (Eq. 
(8.27)), we also applied a mixed-scale model due to Sagaut et al (2000), and a low-Reynolds 
number version of the Smagorinsky model due to Voke (1996). Some sample results are 
shown in Figure 19. They show that Sagaut et al’s model is better capable of resolving the 
large gradients present in the flow. In relation to that, it can be seen that Sagaut et al’s model 
has much lower eddy viscosities. Apparently the Smagorinsky model (and Voke’s variant) 
produce relatively high eddy viscosities that smear out (dampen) steep flow gradients. 
 

9 Point Particles in LES   

In the previous section, two single-phase LES examples were discussed. In typical applica-
tions, however, mixing tanks and swirl separators are operated with multiple phases. Here we 
will discuss how to incorporate solid particles in LES flow fields. We will limit ourselves to 
a “point” particle approach. With this we mean that we do not resolve the flow around the 
particles with our lattice-Boltzmann discretization; the particles are smaller than the lattice 
spacing ∆ (in Section 6, an approach is discussed where we do resolve the finite size of the 
particles; per particle such an approach requires much more computer resources than a point-
particle approach and only small systems containing typically 103 particles can be simulated). 

In a point-particle approach, the motion of the particles is determined by integrating the 
equation of motion of each individual particle (Lagrangian type simulations). The underlying 
fluid flow is based on an Eulerian (fixed-grid) method. Such Euler-Lagrange flow simula-
tions are mostly limited to relatively dilute systems, i.e. systems with a low dispersed phase 
volume fraction. This is because of computational reasons: we can only track a limited num-
ber of particles that have relatively simple interactions; and because of reasons related to 
physical modeling: in dense suspensions the finite extent of the particles becomes relatively 
important and a point-particle approach cannot represent the physics very well. As an exam-
ple: in fluidized beds (with typically 50% solids volume fractions) the fluid flow in between 
the solid particles is akin to the flow through a porous medium (i.e. flow through the channel-
like structures in between particles) that is mimicked poorly by viewing the particles as 
points in space. 

In the dilute limit amenable to an Euler-Lagrange approach, various subdivisions can be 
made, one of the most important being the choice of taking or not taking into account parti-
cle-particle collisions. In my view there is no general rule for taking into account collisions, 
especially in inhomogeneous flows with regions preferentially occupied by particles. In what 
follows we discuss a mixing tank containing a mixture of liquid and solid particles. The fluid 
flow is solved based on an LES approach and LB discretization (see Section 8.4). The ge-
ometry and fluid properties are the same as in the example discussed in that section.  

In order to better appreciate the agitated solid-liquid system, we will now relate to dimen-
sional numbers. The vessel volume was 10-2 m3. This implies D=7.78⋅10-2 m. The continuous 
phase was water (with ν=1⋅10-6 m2/s, and ρl=1⋅103 kg/m3). A set of 6,705,623 spherical parti-



cles was released in the tank. The particles have a diameter of dp=0.30 mm, and density ratio 

5.2
l

p =
ρ
ρ

 (with ρp the density of the particles), typical for glass beads in water. As a result, 

the solids volume and mass fractions amounted to ΦV=0.95% and Φm=2.37% respectively. 
The impeller was set to revolve with N=16.5 rev/s (Re=1⋅105). The Stokes number of the 

particles was Stk=1.2 (with N
d
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= ; the ratio of the Stokesian particle relaxation 

time, and the time of one impeller blade passage). The Stokes number is of the order of 1, 
and we may expect appreciable effects of particle inertia (i.e. the particles neither follow the 
flow (Stk<<1), nor move around in a ballistic manner (Stk>>1) and hardly feel the turbulent 
flow variations). 

Without much discussion it can be anticipated that particle inertia and fluid inertia 
(added mass), gravity, and drag need to be part of the equations of motion of the solid 
particles. Since a stirred tank flow is very inhomogeneous, it is difficult to estimate a 
priori  if more exotic forces like lift and history forces play an important role. For instance, 
an estimate of the ratio between lift (Magnus and/or Saffman force) and drag forces is 

ν
ω̂

2.0
2

pd
, with ω̂  the vorticity in the liquid phase or the angular (slip) velocity of the 

particle. In the impeller region of single-phase stirred tank flow, vorticity easily exceeds 
10N (Derksen and Van den Akker, 1999). With N=16.5 rev/s, and dp=0.3 mm the ratio 
amounts to 0.8, indicating the potential relevance of lift forces. 

Each particle dispersed in the stirred tank has six degrees of freedom associated to it: 
three linear coordinates, and three angles. Since we consider the particles to be spherical, 
the particle's orientation has no physical consequence. As will be demonstrated below, the 
angular velocity has physical significance. For the linear motion, the following set of 
equations will to be solved: 
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with xp the center position of the particle, vp and v the velocity of the particle, and the 
velocity of the liquid at xp respectively, and CD the drag coefficient. The latter depends on 

the particle Reynolds number 
ν

pp

pRe
dvv −

=  according to Eq. (A.1), given in the Ap-

pendix (Sommerfeld, 2001). The solids volume fractions are considered to be sufficiently 
low not to include a dependency of CD on ΦV. Added mass is accounted for by the addi-



tional particle inertia l

3

p12
ρπ

d  (Maxey and Riley, 1983). The influence of the Saffman 

force (FSaffman), Magnus force (FMagnus), and the force due to stress gradients (Fstress) will be 
discussed below where simulations with and without these forces will be compared. 

The Basset history force (Odar and Hamilton, 1964) may have some impact in the im-
peller region, with its strong velocity fluctuations at frequencies of the order of 6N. The 
ratio between the Basset history force and Stokes drag in a time-varying flow field with 

frequency f is of the order of 
ν

fd 2

p1.0 . If we take f=6N, the ratio is 0.3. It will be dem-

onstrated, however, that in the impeller region, Rep is of the order 102. As a result, the 
drag force is one order of magnitude higher than estimated from Stokes drag, and the 
Basset force becomes small compared to the drag force. For this reason, and for computa-
tional reasons (inclusion of the force would add appreciably to the computational effort), 
the Basset force has been neglected. 

The non-Stokes expressions we use for the Saffman and Magnus force respectively 
are (Mei, 1992; Oesterlé and Bui Dinh, 1998) 
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with ω the vorticity of the liquid, and pω the angular velocity of the particle. The lift coef-

ficients CS and CM depend on Rep, and on the rotational Reynolds numbers
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=  according Eqs. (A.2) and (A.3). The force due to stress gradi-

ents has a pressure and a viscous stress part: 
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In order to determine the Magnus force (Eq. (9.4)), the angular velocity of the particles 

needs to be solved. This is done by solving the following dynamic equation: 
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which is valid for 30ReR ≤ (Dennis et al., 1980). The particles’ angular velocity may also 
be relevant from a practical point of view. Mass transfer between solid particles and con-



tinuous phase liquid depends on the motion of the solid surface relative to the liquid. 
Apart from linear velocities, particle rotation might play a role in mass exchange. 

The fluid's velocity v, vorticity ωωωω, pressure p and viscous stress v∇νρ l  contained in 

the above equations all consist of a resolved and a subgrid-scale (SGS) part. For reasons 
of simplicity, the SGS parts have been discarded, except when the drag force is involved. 
For determining the drag force, the local fluid velocity is considered to be the sum of the 
resolved velocity and a Gaussian random process with standard deviation 

sgssgs 3

2
ku = representing the SGS motion. The SGS kinetic energy ksgs was estimated 

based on isotropic, local-equilibrium mixing-length reasoning according to  
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sksgs ScCk ∆=  (9.7) 

 
with Ck a constant amounting to 5 (Mason and Callen, 1986). To have temporal coherency 
in the SGS motion, a new random velocity was picked after the elapse of a SGS eddy 
lifetime 
 

 
ε
sgs

Lsgs

k
Ct =  (9.8) 

 
with the constant CL=0.15 (Weber et al. 1984), and ε the energy dissipation rate. 

The resolved part of the liquid velocity was determined by linearly interpolating the ve-
locities on the lattice-Boltzmann grid to the particle position (although a higher order 
interpolation scheme may be needed for accurate evaluation of single- and, especially, two-
particle Lagrangian statistics; see, for example Kontomaris et al. 1992). The vorticity, and 
the pressure and viscous stress gradients felt by the solid particles were taken uniform over a 
grid cell. The stresses are directly contained in the solution vector of the lattice-Boltzmann 
scheme. Their gradients, as well as the velocity gradients contained in the vorticity were 
determined from central finite differencing. Note that the determination of the force due to 
stress-gradients differs from how it is usually done, i.e. by means of the material time deriva-
tive of the fluid velocity (see e.g. Crowe et al. 1998). Since in a lattice-Boltzmann scheme 
the stresses are readily available, it is not expensive to directly determine the stress gradients. 

Two types of collisions need to be distinguished: particle-wall, and particle-particle 
collisions. Collisions of all types were considered to be fully elastic and frictionless (the 
latter implies that in a particle-wall collision the wall parallel components of the velocity 
of the particle surface are unchanged after a collision; in a particle-particle collision the 
rotation of the particles does not play a role in the collisional process). For the particle-
wall collisions with the wall being part of the impeller, only a collision with one of the 
(six) impeller blades adds momentum to a particle since only the impeller blades have a 
velocity component in their wall-normal direction.  



The method for detecting and handling particle-particle collisions was similar to the 
one proposed by Chen et al. (1998). In their method, they make use of a collision detec-
tion algorithm that anticipates collisions in the upcoming time step. Subsequently, the path 
of two particles that are bound to collide is integrated in a three-step-process: the pre-
collision step, the collision step (in which the particles exchange momentum), and the 
post-collision step. In order to limit the computational effort spent in handling the particle-
particle collisions (which in principle is an M2 process, with M the number of particles) we 
have grouped the particles in each other's vicinity in a so-called link-list (Chen et al., 
1998). The extent of the vicinity of a particle in which potential collision partners are 
sought is the lattice cell in which the particle under consideration resides, and the 26 
neighboring cells. The distance traveled by a particle during one time step was at most 
0.2∆. This reduces the number of possible collisions partners to a few for a specific parti-
cle during a specific time-step. The collision algorithm assumes that one particle can only 
collide once during one time step. The reason is purely practical: taking into account mul-
tiple collisions in one time step would lengthen the computations to an unfeasible extent 
(e.g. allowing for the possibility to have two collisions per particle per time step would 
make an M3 process).  The assumption either limits the time step, or the particle volume 
fraction. In any case, in the simulations there is a finite chance that the collision detection 
algorithm misses a collision. This is reflected in the situation that at the next time step, 
two approaching particles have a mutual distance less than dp. If this occurs, a so-called 
missed collision procedure is executed: directly at the start of the time-step, the particles 
involved are given their post-collision velocities (making that they now are moving apart). 
During the time step, the particles are displaced as a pair according to their average veloc-

Figure 20. Instantaneous realization of the particle distribution in the tank. Left: vertical cross 
section through the center of the tank midway between two baffles; bottom: horizontal cross sec-
tion at z/T=0.308 (i.e. just below the impeller disk). The impeller rotates in the counter-clockwise 

direction. In both graphs, the particles in a slice with thickness 0.0083T have been displayed. 
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Figure 21. Phase-averaged particle concentration profiles in the plane midway between two 
baffles as a function of the vertical position in the tank at four different radial positions. Com-

parison between case #1A (only drag and gravity), #1B (plus lift forces), and #1C (plus particle-
particle collisions). 

ity, and they move apart with their relative velocity until they have a mutual separation of 
at least dp. 

The particle-particle collision algorithm has been tested by (numerically) releasing a 
set of particles with random initial velocity (according to a uniform distribution) in a peri-
odic vacuum box. The velocity distribution should relax to a Maxwellian distribution, 
which it did. In the same setup, the algorithm described above to repair missed collisions 
was tested. Ignoring missed collisions led to one order of magnitude more overlapping 
particles at any moment in time compared to a situation in which the missed collision 
procedure was applied. 

In the simulations, solids volume fractions are such that it is expected that two-way 
coupling effects are relevant (Elgobashi, 1994). Two-way coupling was achieved by feed-
ing the force that the fluid exerts on the particle back to the fluid. Since the center position 
of a particle in general does not coincide with a grid point, the back-coupling force needs 
to be distributed over the (lattice-Boltzmann) grid nodes in the vicinity of the particle 
(particle-source-in-cell (PSIC) method, see Crow et al, 1996). For this extrapolation we 
used the same coefficients as were used for the linear interpolation of the velocity at the 
grid nodes to the particle location. 

Some impressions of these Euler-lagrange two-phase flow simulations are given in 
Figures 20 and 21. In Figure 20 we see the strongly inhomogeneous distribution of parti-
cles throughout the tank. In the vertical cross-section, a highly concentrated region 
underneath the impeller can be observed. Here gravity and an upwardly directed flow 
somehow balance the particle motion. This gives rise to long residence times there. The 
streaky patterns are due to particles collecting at the edges of eddies. This is a typical 
phenomenon for particles with Stokes numbers of the order of one. Smaller particles 
would show a much more homogeneous distribution. Particle inertia is also apparent from 
the horizontal cross-section: particles collect in front of the impeller blades while the 
wakes of the blades are almost void of particles. In Figure 21 particle concentration pro-
files are presented obtained with different modeling assumptions. The most striking 
feature is the impact of taking into account particle-particle collisions has on the concen-
tration profiles. A more detailed analysis reveals that it is the volume exclusion effect 



brought about by the collision algorithm that makes the difference. If particle-particle 
collisions are not taken into account, unrealistically high particle concentrations closely 
above the bottom of the tank are observed. Volume exclusion reduces these concentra-
tions strongly. The profiles obtained with particle-particle collisions fairly well agree with 
experimental data (Derksen, 2003); the strong peak at the impeller level has also been 
observed in experiments. 

10 Passive Scalar Transport   

In order to describe passive scalar transport in a laminar or turbulent flow, the convection-
diffusion-equation needs to be solved 
 

 Jv ⋅−∇=∇⋅+
∂
∂ φφ

t
 (10.1) 

 
with φ  the scalar concentration, and J the diffusive mass flux. In many cases Fick’s law 
applies: 
 
 φΓ ∇−=J  (10.2) 
 
with Γ  the scalar’s diffusivity. The scalar transport has its own micro length and time-
scales. Of prime importance in this respect is the Batchelor length-scale: 
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The Batchelor scale can be interpreted as the diffusion distance during one Kolmogorov 
time scale. Now an essential difference between gases and liquids can be appreciated. In 
gases the Schmidt number is of the order 1 (momentum and species diffuse at approxi-
mately the same pace); in liquids the Schmidt number is O(103) (species diffuse much 
slower than momentum). In a direct numerical simulation of turbulent flow and associated 
scalar transport, the grid needs to be fine enough to resolve all scales. If the medium is a 
gas, the grid that was used to resolve the gas motion is sufficiently fine to also resolve the 
concentration field. If the medium is a liquid, a DNS resolving the all scales of the con-
centration field would require a grid that (in linear terms) is of the order of 301000≈  
times finer than the grid required for flow simulations. 

Suppose we perform an LES, and would like to represent the scalar concentration fields 
on the same grid as the velocity and pressure field. This implies filtering of Eq. (10.1): 
 

 ( ) σv ⋅∇−∇=⋅∇+
∂
∂ φΓφφ 2

t
 (10.4) 

 



with σ  the equivalent of τ  in Eq. (8.10). Usually σ  is closed in a manner similar to the 
closure of τ : we assume that the subgrid-scales merely act in a diffusive manner on the 
concentration field. The eddy diffusion coefficient is then taken proportional to the eddy-
viscosity: 
 

 
e

e
e Sc

νΓ =  (10.5) 

 
with eSc  the turbulent (eddy) Schmidt number. For eSc  a value in the range of 0.6 to 1.0 

is usually taken. The rationale behind 1Sce <  (at least in liquid systems) is that the unre-

solved part of the scalar spectrum is larger (it runs up to 
B

2
η

πκ ≈ ) than the unresolved 

part of the turbulent kinetic energy spectrum. 
Eggels and Somers (1995) have performed scalar transport calculations on free convec-

tive cavity flow with the lattice-Boltzmann discretization scheme (i.e. they solved the fluid 
flow equations, and the convection diffusion equation with the lattice-Boltzmann method). 
This approach, however, is more memory intensive than using a finite volume formulation 
for the convection-diffusion equation. In a finite volume discretization we only need to store 
two or three (depending on the time integrator) double precision concentration fields, 

Figure 22. Snapshot of the particle distribution in a vertical plane midway between two baffles. 



whereas in the lattice-Boltzmann discretization typically 18 single-precision variables need 
to be stored. In a time-explicit approximation of the discretized convection-diffusion equa-
tion we have (as in the lattice-Boltzmann scheme) fully local operations: The communication 
between the nodes of the grid defining the concentration field does not go beyond the stencil 
that is used for discretizing the convection and diffusion term in Eq. (10.4). An additional 
advantage of using finite volume discretization for the convection diffusion equation is that 
we can make use of the various methods to suppress numerical diffusion and still retain sta-
bility, such as TVD (total variation diminishing) schemes introduced by Harten (1983). 

As an example of LES including scalar transport and solid particle dynamics we briefly 
discuss here work presented earlier by Hartmann et al (2006) on a dissolution process in a 
mixing tank. In this example we combine the solid-liquid LES based on the point particle 
approach (see Section 9) with a finite-volume scalar transport solver for keeping track of the 
scalar concentration as a result of dissolution. The coupling between the scalar field and the 
solids is established via a mass transfer coefficient k, which is a function of the particle size, 
the relative velocity of particle and fluid vslip, and the material properties (viscosity and diffu-
sivity) of the fluid. In dimensionless form this implies that the Sherwood number 

Γ/Sh pkd=  is a function of the particle Reynolds number and the Schmidt number. We use 
the correlation due to Ranz and Marshall (1952): 
 
 
 3/12/1

p ScRe0.2Sh +=  (10.6) 
 

Figure 23. Instantaneous realizations of the particle size distribution throughout the tank. 



The mass transfer from solid to liquid is then modeled as 
 
 ( )ccdkm −= sat

2

pπ&  (10.7) 
 
Since this relation is linear in the solute concentration, micro-mixing effects are consid-
ered not important (there is, however, a velocity-concentration correlation since k is a 
function of Re that in principle requires SGS closure; here this correlation is neglected). 

The tank that Hartmann et al (2006) used was the same as the one discussed in the pre-
vious sections. Particles of uniform size were released in the top part of the tank in a fully 
developed flow field. They spread through the tank and reduce in size (see Figure 22). As 
they reduce in size they go through a spectrum of Stokes numbers, and the particle field 
gradually loses its streaky structure; particles get more homogeneously dispersed over the 
entire tank (Figure 22). The simulations allow for an estimate of the dissolution time. The 
evolution of the particle size distribution (Figure 23) reflects the diversity in the history of 
the dissolution process per particle, and thereby the inhomogeneous flow conditions in the 
tank. 

11 Filtered Density Functions for Reactive Flows   

In the final section of this chapter, we consider reactive scalar transport. In that case, the 
species transport equation (the convection diffusion Eq. (10.1)) is adapted in two ways. In 
the first place, instead of a single scalar φ we now write the vector φ , reflecting that we have 
a number of species involved in the reactions that can be organized in a vector. In the second 
place, concentrations can now change as a result of reactions: we need to add a reaction term 
ω  that (in the general case) depends on all species involved (i.e. the vector φ ): 
 

 ( )φωJφv
φ +⋅−∇=∇⋅+

∂
∂

t
 (11.1) 

 
In the case of second order reactions, ω  depends on products of the elements of the vector 
φ . In an LES context, Eq. (11.1) could be filtered just as Eq. (10.1). The result is (again we 
have assumed Fickian diffusion for all species involved) 
 

 ( ) ( ) σφωφvφ
φ ⋅∇−+∇=⋅∇+

∂
∂ 2Γ

t
 (11.2) 

 
where σ  now is a tensor. The filtered reaction term ( )φω needs specific care. It would be 
too gross a simplification to write ( ) ( )φωφω = . Remember that we are performing an LES. 
It only makes sense to perform an LES if the grid is courser than the Kolmogorov scale. This 
implies that also the Batchelor scale (the smallest scale of scalar transport) is not resolved. 
As a result, the concentration field shows details finer than the grid spacing. If we would 
state ( ) ( )φωφω = , this would imply the assumption that at the grid level species concentra-
tions are uniform, and this is not the case.  



The filtered reaction term ( )φω  is known once the filtered version of the probability 
density function ( )tP ,;L xφ  (the fdf, filtered density function) of the vector φ  at the nodes of 
the computational domain is known. For example, for a second order reaction A+B→C with 
reaction rate k  
 
 ( ) ( ) BABALBA , ψψψψψψ ddPk∫=φω  (11.3) 
 
where the integration is over the entire (in this case two-dimensional) composition space. 

This would imply that, instead of solving transport equations for the species concentra-
tions φ , we would need to solve transport equations for ( )tP ,;L xφ . This may seem a quite 
impossible task since the dimensionality of the system of equations to be solved increases 
rapidly. Apart from the three spatial dimensions the composition space adds to the dimen-
sionality. With each species the dimension of the problem increases with 1. A way around 
this is to solve the fdf-transport equations by means of a Monte-Carlo (MC) method, i.e. to 
release computational particles in the flow domain and track their position in spatial and 
compositional space, the major advantage being that adding a reactant increases the compu-
tational load approximately linearly. 

The idea is to release MC particles randomly in the computational domain. Each particle 
represent the scalar composition ϕϕϕϕ at its current position x(t). The MC particle position and 
composition are evolved according to the following stochastic differential equations 
 
 ( )( ) ( )( ) ( )tttEttt WxxDx d,d,d +=   and  ( )( ) ttt d,d φBφ =  (11.4) 
 
where D and E are the drift (convection) and diffusion coefficients of the particles in the 
physical domain. The random process Wd  is a Wiener process; ii tW ζddd ==W  with iζ  
a random variable with Gaussian pdf. The drift B in the scalar domain is due to micro-mixing 
and chemical reactions. The various processes in Eq. (11.4) can be related to physical quanti-
ties: 
 

( )e2 ΓΓ +=E ,  ( )eΓΓ +∇+= vD   and  ( ) ( )φωφφB +−−= mΩ  
 
where as a micro-mixing model we have substituted the interaction-by-exchange-with-the-
mean (IEM) model. The SGS mixing frequency mΩ  can be related to the total (molecular 
plus eddy) diffusivity eΓΓ + : 
 

 
( )

2

eΩ

m ∆
ΓΓΩ += C

 (11.5) 

 
with ∆ the filter width, and ΩC  a constant equal to 3 (Colucci et al 1998). 

As an example of the application of the LES/FDF approach to a semi-practical system, 
some results earlier presented by Van Vliet et al (2005) are shown here. Van Vliet et al per-
formed an LES in a straight tube with a deeply protruding feed pipe. The Reynolds number 
of the main flow was 4,000. Upstream of the feed pipe, the main flow contained species B 
and C in the same amount. Component A was fed through the feed pipe. A could react either 



with B or C according to a second-order reaction to form product P or Q respectively. The 
reaction rate to form P, however, was 103 higher than the one to form Q. If the chemical 
kinetics would control the system, the amount of Q formed (ΦQ) would be a thousand times 
smaller than the amount of P formed (ΦP). Non-ideal mixing, however, will generally in-
crease the ratio ΦQ/ΦP: The reaction between A and B locally depletes the flow of B. If 
mixing cannot bring A into contact with fresh B quickly enough, the slow reaction will get a 
chance.  

The strength of mixing has been quantified in terms of a Damkohler number, which we 
define as the ratio of the integral hydrodynamic time-scale D/U (with D and U the tube di-

ameter and bulk velocity respectively), and the chemical time scale C0A02/1 cck  with k2 the 

rate constant of the slow reaction, and cA0 and cC0 the inlet concentrations: 
 

 
U

cckD C0A02Da =  (11.6) 

 
Some results of the simulations are shown in Figures 24 and 25. In Figure 24 we see that 

Figure 24. Instantaneous realizations of cB in the tube reactor. Top: at Da=2.5⋅103 (poor mixing); 
bottom: Da=2.5⋅10-5 (intense mixing). 

10-2 100 102 104 106

Da

0

0.5

1

Φ
Q

/Φ
P

Figure 25. The product ratio ΦQ/ΦP as a function of the Damkohler number. 



in the case of poor mixing (high Da) component B is not very well able to penetrate the reac-
tion zone which in turn allows for the formation of Q. Figure 25 illustrates this point further. 
Here it is shown how the product ratio varies with Da between its theoretical limits (10-3 for 
Da→0; 1 for Da→∞). 

Appendix: Coefficients in hydrodynamic force relations 

Drag force: 
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