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Direct simulations of laminar solid-liquid flow in microchannels with full resolution of the solid-liquid
interfaces have been performed. The solids phase consists of simple agglomerates, assembled of monosized,
spherical particles. The flow of the interstitial liquid is solved with the lattice-Boltzmann method. Solids and
fluid dynamics are two-way coupled. The simulations keep track of the flow-induced forces in the agglomerates.
The effects of agglomerate type (doublets, triplets, and quadruplets), solids loading, and channel geometry
on (the statistics of the) flow and collision-induced forces has been investigated. By comparing these forces
with agglomerate strength, we would be able to assess the potential of microchannels as agglomerate breakage
devices.

Introduction

In many processes involving solid particle formation or solids
handling, particles have a tendency to stick together. In
crystallization processes, crystals tend to agglomerate due to
the supersaturated environment they are in.1,2 Suspension
polymerization processes go through a “sticky-phase” with
significant agglomeration levels.3 In colloidal systems, a variety
of interactions can cause agglomeration (related to van der Waals
forces, electrolyte-induced interactions, surface chemistry),4 and
stabilization of colloids is a central issue. In biorelated applica-
tions, agglomeration plays a role in such diverse fields as blood
flow5 and biomolecular cross-linking of particles.6 The applica-
tion which is driving the present research is the behavior of
asphaltenes, more specifically their deposition on walls in oil
reservoirs (Boek et al.7 and references therein). Asphaltene
agglomeration is a key step in asphaltene deposition since the
agglomerate size and the agglomerate sticking probability to
the wall are intimately related: only relatively small agglomer-
ates stick to the wall while bigger ones are removed with the
flow. The agglomerate size distribution evolves as a result of
agglomeration and also deagglomeration (i.e., breakage of
agglomerates). According to recent work on asphaltene particle
size distributions in a Couette laminar flow,8 asphaltene particles
can be considered as solid particles of nonspherical shapes
(having a fractal dimension smaller than three).

For an agglomeration event to occur, particles (primary
particles and/or agglomerates) need to collide first. Typically
collisions are induced by Brownian motion, gravity, and velocity
gradients in the fluid carrying the particles since these phenom-
ena bring about relative velocities between particles. Also
particle inertia can be a source of collisions.

Next to promoting collisions, fluid velocity gradients and
particle-particle interactions are potential reasons for agglomer-
ate breakage since they cause mechanical loads on agglomerates.
In this paper, we focus on the latter aspect: We investigate the
mechanical load on agglomerates due to deformation of the
surrounding liquid and the presence of other particles/agglomer-
ates. Interactions with other particles/agglomerates can be either
direct (collisions) or indirect, e.g. transmitted by the interstitial
liquid.

In modeling processes involving agglomeration, population
balances are often used to keep track of agglomerate size
distributions.8-10 In order to equip population balances with
adequate agglomeration and breakage physics, rate laws (usually
termed kernel functions) are being developed that relate numbers
of agglomeration and breakage events per unit volume and time
to local (flow and agglomerate) conditions. With the purpose
of devising kernels, there is extensive literature on agglomeration
and breakage as a result of hydrodynamics for small (though
non-Brownian) agglomerates in turbulent flow (see ref 13 and
references therein). Small in this context means that the
agglomerate size is significantly smaller than the smallest
dynamical scale of turbulence, i.e. the Kolmogorov scale. If
this is the case the flow field surrounding the agglomerate can
be assumed to scale with the (local) rate of energy dissipation
and be of some canonical, simple nature, and disruptive forces,
as well as collision probabilities can be modeled fairly accurately
based on Stokes flow principles (see e.g. the works of Nir and
Acrivos,12 Bäbler et al.13). In a previous paper,11 however, it
was argued that the situation significantly complicates if the
agglomerate (in that paper a doublet of spheres) has a size of
the same order as the Kolmogorov scale, or is larger. It then
experiences an inhomogeneous flow, and the (fluctuating) details
of the hydrodynamics around it are crucial for its internal forces
and thus breakage probability. A similar situation occurs in
microreactor equipment where (as an example) agglomerate
slurries are being sent through nozzle-shaped microchannels to
facilitate breakage.14,15 Again, there is a nontrivial flow field
around the agglomerate that induces internal forces that can
break it.

From the above, it may be clear that information regarding
flow-induced and particle-interaction-induced forces in ag-
glomerates is a key in describing their probability to break. In
this paper, a computational procedure is presented to determine
these forces from first principles. In the computations, ag-
glomerates are assembled of primary spherical particles all
having the same size and released in a flow field. We directly
solve the flow around the agglomerates and fully couple flow
and agglomerate motion. The force and torque required to keep
a primary particle attached to the agglomerate follow from this
computational procedure. Comparing that force and/or torque
with a measure of the agglomerate strength allows for assessing
the breakage probability. Usually a primary sphere has more
than one contact point with the other primary spheres in the
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agglomerate. This (in general) makes it fundamentally impos-
sible to calculate the force and torque at each contact point.
However, for a few simple agglomerate configurations, the force
and torque per contact point can be determined with minimal
assumptions.

It should be noted that during the simulations presented in
this paper the agglomerates keep their integrity and shape; we
do not actually break them. In that sense, the present work differs
from computational work due to Higashitani et al.,16 where
agglomerates are actually broken, and from more recent
works,17,18 which focus on flow-induced restructuring of
complex agglomerates with, however, much simpler representa-
tions of the hydrodynamic environments of the agglomerates.

The results of our simulations comprise detailed representa-
tions (time series, probability density functions) of the flow-
induced forces and torques in agglomerates as a function of
process conditions. From this detailed information, the breakage
probability can be assessed once data regarding the mechanical
strength of the specific agglomerates at hand is available.

In this paper, we first define the flow systems in terms of
their dimensionless parameters, and indicate which part of the
parameter space we will be exploring. Then the computational
framework for calculating the flow-induced forces in agglomer-
ates is explained. We then apply the method to flow of
agglomerate slurries in microchannels where we compare forces
in different types of simple agglomerates, viz. doublets, triplets
arranged in triangles, and quadruplets arranged in tetrahedrons,
all made of equally sized spherical particles. By considering a
range of solids volume fractions of the agglomerate slurries,
the role of particle-particle interactions on the mechanical load
on agglomerates is assessed. Furthermore, a few different
microchannel layouts have been compared. Specifically we
compare straight, square channels with channels having
contractions.

Flow System Definitions and Parameter Space

The basic flow geometry in this study is a square channel;
see Figure 1 for a definition of its dimensions and coordinate
system. The flow in the channel is driven by a body force f0

acting in the x () streamwise) direction mimicking a pressure
gradient (or, if vertically placed, gravity). At the four side walls,
a no-slip boundary condition applies; the system is periodic in
the streamwise direction. A Reynolds number characterizing the
flow in the channel can be based on the wall shear velocity uτ

) �τw/F: Rew ) uτH/ν with ν the kinematic viscosity of the
liquid in the channel and F its density. The average wall shear
stress τw follows from an overall force balance: 4Hτw ) H2f0

so that eventually

Inspired by work due to Zaccone et al.14 and Soos et al.,15 in
some of the simulations the channel has a contraction as defined
in the bottom panels of Figure 1. The contraction is two-
dimensional, i.e. the channel is only contracted locally in the
z-direction; the width in the y-direction remains H. The Reynolds
number definition for the contracted channel cases is the same
as for the uniform channel, i.e. eq 1. All channels considered
have a length-over-width aspect ratio L/H ) 2.0.

In the liquid that fills the channel, agglomerates are released.
They consist of equally sized spheres with radius a. Three types
of agglomerates will be considered: (1) two touching spheres
forming a doublet; (2) three touching spheres (triplet) forming
a triangle (two contact points per primary sphere); (3) four
touching spheres (quadruplet) forming a tetrahedron (three
contact points per primary sphere). The introduction of the
agglomerates in the channel gives rise to three additional
dimensionless numbers: an aspect ratio a/H, a density ratio Fs/
F, and a solids volume fraction φ. The density ratio is relevant
with a view to inertial effects, e.g. related to slip velocities and
particle-particle and particle-wall collisions. We do not
consider gravity in the simulations; it is assumed that (Fs -
F)g/f0 , 1.

In this paper, only part of the parameter space as identified
above has been explored; Rew, a/H, and Fs/F have been fixed to
values 2.6, 0.05, and 2.5, respectively (this density ratio is e.g.
representative of glass beads in a watery liquid). We consider
three solids volume fractions φ ) 0.031, 0.062, and 0.093; three
different types of agglomerates doublets, triplets, and quadru-
plets; and three different flow geometries a uniform channel
(h/H ) 0; see Figure 1) and two channels with contractions
having h/H ) 0.2 and 0.3. In all contracted channels, w/L )
0.1.

Simulation Procedure

In the simulations, a number of agglomerates made of equally
sized spheres (primary spheres) are placed in the liquid filled
domain. The motion of the agglomerates and the liquid are fully
coupled, i.e. the fluid flow sets the agglomerates in motion; the
motion of the agglomerates on its turn induces fluid flow. The
fluid flow we solve with the lattice-Boltzmann method (LBM).
For flows in complexly shaped domains and/or with moving
boundaries, this method has proven its usefulness (see e.g. the
review article by Chen and Doolen19). In the LBM, the
computational domain is discretized into a number of lattice
nodes residing on a uniform, cubic grid. Fluid parcels move
from each node to its neighbors according to prescribed rules.
It can be proven by means of a Chapman-Enskog expansion
that, with the proper grid topology and collision rules, this
system obeys, in the low Mach number limit, the incompressible
Navier-Stokes equations.19,20 The specific implementation used
in our simulations has been described by Somers,21 which is a
variant of the widely used lattice BGK scheme to handle the
collision integral (e.g., see the work of Qian et al.22 for a detailed
discussion of LBGK). We use the scheme due to Somers, as it
manifests a more stable behavior at low viscosities when
compared to LBGK. A lattice-Boltzmann fluid is a compressible
fluid. In order to mimic incompressible flow, as is done in this
paper, the Mach number must be sufficiently low. In the
simulations presented here, the local Mach number never
exceeded 0.05.

Figure 1. Definition of the flow channel and coordinate system. (top panels)
Uniform channel; (bottom panels) Channel with contraction. In the
streamwise (x) direction, periodic conditions apply.

Rew ) 1
2

H3/2f0
1/2

F1/2ν
(1)
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The fluid flow and the motion of the agglomerates are coupled
by demanding that at the surface of each primary sphere the
fluid velocity matches the local velocity of the solid surface
(that is the sum of the linear velocity va and ωa × (r - ra) with
ωa being the angular velocity of the agglomerate the primary
sphere is part of, ra is the agglomerate’s center of mass, and r
is a point on the primary sphere’s surface); in the forcing scheme
that is applied here, this is accomplished by imposing additional
forces on the fluid at the surface of the primary spheres (which
are then distributed to the lattice nodes in the vicinity of the
particle surface). The details of the implementation of the forcing
scheme can be found elsewhere.23-25

Determining Forces and Torques in Agglomerates. The
collection of forces acting on the fluid at the surfaces of
the primary spheres forming an agglomerate is used to determine
the hydrodynamic force and torque acting on that agglomerate
(action ) -reaction). In addition to the hydrodynamic force
and torque stemming from the LBM, the motion of the
agglomerates is controlled by lubrication forces and by forces
arising from the soft-sphere interactions that we use to deal with
collisions between agglomerates. The equations of (linear and
rotational) motion that we solve for an agglomerate consisting
of n primary spheres can be written as

with va and ωa being the linear and angular velocity of the
agglomerate, m0 ) Fs4π/3a3 the mass of a primary sphere, and
La and Ia the angular momentum vector and moment of inertia
tensor of the agglomerate (see the Appendix for an expression
in a Cartesian coordinate system of the latter). The vector ri is
the location of the center of sphere i. The torque Ti on primary
sphere i directly follows from the LBM/forcing scheme.

As already indicated above, the force on primary sphere i
(Fi in eq 2) hassin principlesthree contributions: the hydro-
dynamic force stemming from the LBM (and forcing scheme),
a radial lubrication force, and a soft-sphere interaction force
which is also radial. The latter two contributions are nonzero
only if a primary sphere belonging to another agglomerate is
in close proximity of sphere i. Since they are radial, they do
not contribute to the torque on the primary sphere.

The lubrication force is added as a hydrodynamic force in
situations where two primary spheres belonging to different
agglomerates are in close proximity and move relatively to one
another. At some stage of proximitystypically when the surfaces
of the two spheres involved are less than one grid spacing
apartsthe (fixed, i.e. nonadaptive) grid cannot accurately resolve
the hydrodynamic interactions anymore and radial lubrication
is explicitly added.26 The expressions for the radial lubrication
force are given in the Appendix.

A soft-sphere approach has been used to deal with collisions
between primary spheres belonging to different agglomerates.
The expressions for the soft-sphere force (which is also radial,
it brings about smooth and fully elastic collisions) are also given
in the Appendix.

The simulations provide us with the force and torque on each
of the primary spheres (Fi and Ti). From solving the set of
equations in eq 2 we know the acceleration (linear and
rotational) of the agglomerate as a whole so that we also know
the acceleration, each primary sphere is undergoing:

As a consequence we can determine the force Fc,i and torque
Tc,i required to keep each primary sphere attached to the
agglomerate:

(with I0 ) (2/5)a2m0 the moment of inertia of the primary sphere
about its center).

If primary sphere i has more than one contact point with other
primary spheres in the agglomerate, Fc,i and Tc,i are the sum of
contact forces and torques, respectively. In the general case of
an agglomerate arbitrarily configured of equally sized, contacting
spheres, it is not possible to determine the force and torque per
contact point based on the collection of Fc,i and Tc,i values only:
Solving for forces and torques per contact point poses an ill
defined problem (analogous to static indeterminacy in structural
analysis). Additional physics, e.g. related to solids deformations
in the agglomerate under mechanical loading, is required to close
the system of equations. Still, we consider the availability of
the summed contact forces and torques per primary sphere to
be useful information for assessing breakage probability.

However, in this paper, we will be considering three simple
agglomerates for which the forces and torques per contact point
can be determined directly based on Fc,i and Tc,i (i ) 1 ... n):
doublets, triplets, and quadruplets. The doublets have a single
contact point, and the resulting Fc,i and Tc,i are the force and
torque in that single contact. The triplets are arranged in a
triangle with two contact points per primary sphere; the
quadruplets are arranged in a tetrahedron with three contact
points per primary sphere. In the Appendix, it is shown for the
triplets and quadruplets that by making a few sensible assump-
tions the force (and torque) per contact point can be determined
based on the set of Fc,i and Tc,i per primary sphere.

Calibration and Validation. In our simulations, the radius
of each primary spherical particle is specified and the input
radius refers to this radius scaled by the lattice spacing in the
(uniform and cubic) computational grid. In the LBM simulations,
as the spherical particle is represented by forces that are confined
to a cubic grid, the input radius does not reflect the actual radius
of the particle. A calibration procedure to estimate the effective
radius of this object (commonly referred to as the hydrodynamic
radius) was introduced by Ladd.27 We apply this scheme to
estimate the hydrodynamic radius of the particles. The hydro-
dynamic radius is recognized as a and is given in lattice units.
In this study, the radius has been set to a ) 6. Previously,28 the
effect of grid resolution has been checked for dense, fluidized
suspensions consisting of spherical particles with radii 6, 8, and
12. The onset and propagation of instabilities (the key issue in
that paper) were virtually independent of the resolution. Wave
speeds at the various resolutions were within 6% and agreed
(within experimental error) with measured wave speeds (experi-
ments due to Duru et al.29).

Derksen11 studied the effect of spatial resolution for sphere
doublets in simple shear flow. Again results for spheres with
radii 6, 8, and 12 were compared in terms of the interaction
force and the doublet’s rotation rate and showed excellent mutual

nm0

dva

dt
) ∑

i)1

n

Fi

dLa

dt
) ∑

i)1

n

(Ti + Fi × (ri - ra))

La ) Iaωa

(2)

dvi

dt
)

dva

dt
+ d

dt
(ωa × (ri - ra))

dωi

dt
)

dωa

dt

(3)

Fc,i ) m0

dvi

dt
- Fi

Tc,i ) I0

dωa

dt
- Ti

(4)
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agreement and excellent agreement with the analytical solution
for creeping flow conditions due to the work of Nir and
Acrivos.12

Numerical Settings. The spatial resolution of the simulations
is fully defined by fixing the primary sphere radius a to 6 lattice
distances. Given the uniform cubic grid and the fixed aspect
ratios, the rest of the dimensions can be derived from this (e.g.,
the channel width H spans 120 lattice spacings since a/H )
0.05 throughout this work). The time step is such that the flow
time scale 1/γ̇w ≡ Fν/τw amounts to 1320 time steps (in a time
period of 1/γ̇w, a fluid element near the center of a uniform
channel travels typically 0.5H). The simulations are started from
a zero flow field. It then takes roughly 50/γ̇w for the multiphase
flow system to fully develop. After that initialization period,
we run the simulations in quasi-steady state for at least 150/γ̇w

to collect statistical data. The cases with lower solids volume
fractions were run longer to have a sufficient number of
collisions for meaningful statistical analysis.

Results

Flow Field Impressions. The laminar nature of the flows
we are studying is evident from the velocity vector plot related
to a uniform channel as given in Figure 2. The presence of the
agglomerates, however, adds fluctuations and small-scale struc-
tures to the overall flow. We see that more clearly if we plot
the same instantaneous realization as shown in Figure 2 in terms
of contours of the velocity magnitude, and in terms of the
generalized deformation rate γ̇ ) (2dijdij)1/2 (with dij ) 1/2(∂uj/
∂xi +∂ui/∂xj) the deformation rate tensor) as is done in Figure 3
(left and right panel, respectively). It is important to see that
the agglomerates do not experience a homogeneous deformation
rate around them so that estimating flow-induced disruptive
forces based on the deformation rate of the undisturbed flow
(the flow without agglomerates) is a coarse approximation at
best.

Obviously, with the same body force acting on the liquid,
the flow rates in the channels reduce if a contraction is present;

see Figure 4 (left panels). Therefore, compared to uniform
channels at the same Reynolds number (and thus the same body
force; see eq 1) contracted channels do not necessarily have
higher overall (i.e., volume averaged) deformation rates.
Deformation tends to increase locally as a result of the more
complicated flow structure in a contracted channel and tends to
decrease as a result of decreased flow rate and quiescent parts
of the flow away from the contraction. Cleary, the contractions
have strong impact on the spatial distribution of liquid deforma-
tion over the channel; compare the right panels of Figure 4 with
the deformation field in Figure 3. We expect this to have impact
on the forces experienced at the contact points of the primary
spheres in the agglomerates.

Flow and Collision-Induced Forces in Agglomerates.
During the simulations, we keep track of the entire force and
torque history of every agglomerate so that we can reconstruct
the contact forces and torques as a function of time, according
to the procedures as explained in the Appendix. The discussion
of the results in this paper focuses on the normal contact force.
This is the projection of the contact force in the direction defined
by the vector connecting the centers of the two spheres sharing
the contact point under consideration. A tensile normal contact
force is positive; a compressive normal contact force is negative.
Note that the simulations provide us with the full (three-
dimensional) contact force vectors and contact torque vectors
for every contact point in every agglomerate at every moment
in time. Which components and/or projections of forces and
torques are critical for agglomerate breakage depends on the
physics and/or chemistry of the bonds between the primary
spheres forming the agglomerates. This is a subject beyond the
scope of the present paper. The discussions regarding the normal
contact force allow us to show the detailed level of information
gathered by the simulations and to indicate some major trends
in parameter space while not overloading the reader with the
full (vectorial) contact force and torque information.

In Figure 5, we show samples of time series of the normal
force. It has been nondimensionalized according to Fn* ) Fn/
(µγ̇wa2), with γ̇w ) τw/µ, with dimensionless time being t* )
tγ̇w. Each time series corresponds to one contact point in one
single agglomerate. The top panel compares simulations with
quadruplets at three solids volume fractions, the middle panel
compares three channel layouts (again for quadruplets), and the
bottom panel compares doublets, triplets, and quadruplets.

The smooth parts of the time series relate to the agglomerate
translating and rotating through the laminar flow with a
continuous change in the direct laminar hydrodynamic environ-

Figure 2. Velocity vector field in a cross section through the center of the
uniform channel. Only 1 in 2 vectors in the streamwise direction are
displayed. The circular disks represent the cross sections of the spherical
particles in the same center plane. Quadruplets, φ ) 0.093.

Figure 3. Contours of velocity magnitude (left) and deformation rate γ̇ for
the same realization as Figure 2.

Figure 4. Contours of velocity magnitude (left) and deformation rate γ̇
(right) for quadruplets in channels with contractions. (top) Contraction with
h/H ) 0.2. (bottom) h/H ) 0.3. φ ) 0.062.
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ment resulting in a gradual change in the normal force. The
time scale of these smooth fluctuations is of the order of 10/γ̇w.
The spikes and apparent discontinuities in the force signal are
due to collisions with other agglomerates in the channel.

Comparing the different time series obtained under different
conditions and in different channels hints at a few trends. In
the denser suspension, the agglomerate collides more frequently
leading to a normal-force signal with more spikes (top panel of
Figure 5). Also, the flow seen by the agglomerate is more
complex in the denser suspension. This leads to the smooth
fluctuations of the signal in the denser suspension having higher
amplitude and higher frequencies. The effect of the contraction
appears to be a reduction in the amplitude of the normal force
(middle panel of Figure 5). The agglomerates passing through
the contraction can be reconstructed from these time series. A
low-frequency variation of the force signal is from time to time
followed by faster fluctuations when the agglomerate passes
through the contraction (e.g., during 31 < t* < 34 for h/H )
0.3, i.e. the green curve). Comparing the force time series in
doublets, triplets, and quadruplets does not indicate a clear trend.
For this specific time series, triplets (red) show somewhat
stronger force fluctuations than doublets and quadruplets.

In order to more quantitatively analyze the normal force data
based on the full amount of information contained in the
simulations, we condensed the normal forces in all contact points
in all agglomerates at each moment in time in force probability
density functions (PDF’s) and organized them in Figure 6.
Simulations at three solids volume fractions were performed in
the uniform channel (φ ) 0.093, 0.062, and 0.031); in the
contracted channels two solids volume fractions (0.062 and

0.031) were considered. A number of interesting dependencies
can be observed in the various panels of Figure 6 and by
comparing the various panels presented there. An apparent trend
relates to the solids volume fraction. The more agglomerates,
the higher the chances for collisions and also the more vigorous
the collisions (as visible in the upper panel of Figure 5) and
thus the higher the chances for high normal force levels. As a
result, the tails (high and low end) of the PDF’s for the higher
solids volume fractions lie systematically above those for the
lower solids volume fractions. The exception is the lower left
panel of Figure 6 (doublets in a strongly contracted channel)
where the compressive forces in the φ ) 0.031 slurry are higher
than those in the φ ) 0.062 agglomerate slurry.

The force PDF’s of the different agglomerate types (doublets,
triplets, and quadruplets) in the uniform (i.e., noncontracted)
channels (top row of Figure 6) differ significantly. The (smaller)
doublets have narrower PDF’s than the triplets and quadruplets.
The difference not only relates to size but also to shape. The
doublets (at least the ones in the center portion of the channel)
tend to align with the flow, specifically if the solids volume
fraction is low so that collisions do not scatter the orientations.
These effects reduce the chance of collisions and also reduce
the (absolute value of) the contact force since the spheres in
the aligned doublet see more or less the same hydrodynamic
environment. There are minor differences between the force
distributions of triplets and quadruplets.

Changing the channel geometry by placing contractions
influences the flow-induced forces. For the quadruplets and the
triplets, the trend is from more Gaussian-shaped distributions
(quadratic on the lin-log-scale of Figure 6) for uniform channels
toward exponential distributions (linear on lin-log-scale) for the
strongest contractions. For the doublets, the trends as a result
of contractions are less systematic; we do observe a widening
of the normal force PDF as a result of placing a contraction.

Dimensionless force peak levels Fn* ) Fn/(µγ̇wa2) are of the
order of 50 (see Figure 6). To place this number in context: in
an undisturbed channel flow (i.e., the flow without solids), the
wall shear rate γ̇w ) τw/µ is practically the highest shear rate
encountered. That high-end shear rate would result in dimen-
sionless force levels of Fn* ≈ 20.11,12 That the actual peak levels
are a factor of 2.5 higher than this estimate therefore is the result
of the complexity of the flow as induced by the solids and the
collisions between agglomerates.

Conclusions

Motivated by the potential role of liquid deformation in the
breakage of agglomerates we have set up a computational
procedure for determining flow-induced forces in agglomerates
and applied it for three simple agglomerate configurations
(doublets, triplets, and quadruplets all made of equally sized
spheres) in laminar channel flow. The simulations fully resolve
the liquid flow which is two-way coupled with the motion of
the agglomerates. The flow simulations are based on lattice-
Boltzmann discretization; collisions between agglomerates are
based on a soft-sphere approach. During the simulations the
agglomerates maintain their integrity and we keep track of
the forces at the contact points required to keep the spheres,
the agglomerates are made of, attached.

In terms of probability density functions (PDF’s), the forces
in the agglomerates depend on the solids volume fraction in
the agglomerate slurry with increased chances for high force
levels at high solids loading. This is largely due to increasing
the collision probabilities in denser suspensions but also due to
the more complex hydrodynamic environment of an agglomerate

Figure 5. Time series of the normal force in a single point of contact. Force
has been normalized according to Fn* ) Fn/(µγ̇wa2), and time was normalized
according to t* ) tγ̇w with γ̇w ) τw/µ the average wall shear rate. (top
panel) Quadruplets in a uniform channel with solids volume fraction φ )
0.093 (blue curve), 0.062 (red), and 0.031 (green). (middle panel)
Quadruplets at φ ) 0.062 in a uniform channel (blue), a channel with
contraction h/H ) 0.2 (red), and a channel with contraction h/H ) 0.3
(green). (bottom panel) Doublets (blue), triplets (red), and quadruplets
(green) in a uniform channel at φ ) 0.062. The ordinate has the same scale
in all panels.
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in a dense suspension. Sphere doublets experience weaker
normal forces compared to triplets and quadruplets.

We also investigated the impact of placing a contraction in
the channel has on the flow-induced force levels. Sharp
contractions have been used in experiments to promote ag-
glomerate breakage.14 In our study, contracted channels have
been compared with uniform channels on the basis of equal
pressure drop. This implies that the volumetric flow rate in the
contracted channels is smaller than in uniform channels. Still
(in general) the contracted channels widen the normal force
PDF’s hinting at their usefulness for promoting breakage.

Future work will be in applying the procedures for determin-
ing flow-induced forces in agglomerates to more generic flows,
first and foremost homogeneous, isotropic turbulence. Such
simulations will allow us to relate turbulence characteristics such
as energy dissipation rate and Kolmogorov scale (relative to
agglomerate size) with force and torque levels in agglomerates.
This information would be useful for assessing breakage
probabilities in turbulent, large-scale process equipment-size
flows. Performing simulations with finite-strength agglomerates
is another direction for future work. In such simulations, we
actually would break agglomerates if certain threshold forces,
torques, and/or stresses are exceeded. By specifying direct
interparticle force fields, we could study and fully couple the
interplay between agglomerate morphology and fluid flow.
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Appendix

In this appendix, a few detailed issues regarding the mechanics
of agglomerate motion and agglomerate interaction are discussed.

Agglomerate Moment of Inertia Tensor

The moment of inertia tensor Ia for an agglomerate consisting
of n equally sized spheres with respect to its center of mass as
used in eq 2 in Cartesian coordinates reads

with ∆xi, ∆yi, and ∆zi the components of the vector ri - ra, i.e.
the vector connecting the center of primary sphere i and the
center of mass of the agglomerate, m0 ) Fs(4π/3)a3, and I0 )
(2/5)a2m0.

Radial Lubrication Sphere-Sphere Interaction

If two solid spheres of the same size (radius a) and relative
position r12 ) r1 - r2 move with relative velocity u12 ) u1 -
u2 through a liquid with viscosity µ ) Fν, the leading order
term for the radial lubrication force on sphere 1 is26,30

Figure 6. Probability density functions (PDF’s) of the normal contact force. (from left to right) Doublets, triplets, and quadruplets. (from top to bottom)
Uniform channel, contracted channel with h/H ) 0.2, and contracted channel with h/H ) 0.3. Blue curves have φ ) 0.093, red curves have φ ) 0.062, and
green curves have φ ) 0.031. The abscissa and ordinate have the same scale in all panels.

Ia ) ∑
i)1

n

[I0 + m0(∆yi
2 + ∆zi

2) -m0∆xi∆yi -m0∆xi∆zi

-m0∆xi∆yi I0 + m0(∆xi
2 + ∆zi

2) -m0∆yi∆zi

-m0∆xi∆zi -m0∆yi∆zi I0 + m0(∆xi
2 + ∆yi

2) ]
(A1)

Flub1 ) -3πµa2(u12 · r12)
1
s

r12

|r12|2
(A2)
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with s being the distance between the sphere surfaces (s ) |r12|
- 2a). An opposite force acts on sphere 2. This leading order
term scales with a/s. Subsequent terms are of order ln(a/s) and
of lower order.30

When implementing eq A2 in a lattice-Boltzmann framework,
we need to deal with two issues. In the first place, the lubrication
force only needs to be switched on when s gets of the order
ofsor smaller thansthe lattice spacing. If s is larger, the LBM
effectively deals with the hydrodynamic interactions between
the spheres and explicitly adding the lubrication force is not
required. We follow the approach due to Nguyen and Ladd:26

instead of eq A2, we write

If the numerical parameter s0 is chosen as 0.2a, radial lubrication
is recovered accurately.28

In the second place, we prevent the lubrication force from
becoming singular by saturating it when s gets below a threshold
value δ, here chosen as δ ) 2 × 10-4a. Earlier results28 show
that overall results are not sensitive to this choice.

Soft-Sphere Interactions

The soft-sphere interaction model used to mimic sphere-sphere
collisions has two parameters: the distance δ0 between two
sphere surfaces at which a repulsive force is switched on and a
spring constant k. The expression for the soft-sphere related force
on sphere 1 is

By choosing δ0 ) 0.015a and k ) 0.75(uτ
2/δ0

2)Fs(4π/3)a3

(the latter implies that the work done by the soft-sphere
related force acting from s ) δ0 to s ) 0 is 0.75 times the
kinetic energy of a sphere traveling with the wall-shear
velocity which is a characteristic velocity of the flow system),
we hardly have any overlap of spheres; if overlap occurs it
is always less than 0.01a. Furthermore, the collisions are
elastic and frictionless. The latter was confirmed by achieving
energy conservation when doing dry granular simulations
(i.e., simulations without interstitial liquid) with a number
of spheres having uτ as rms velocity.

Sphere-wall interactions were dealt with in a similar
manner as sphere-sphere interactions, i.e. by using an
expression similar to eq A4. The force now points in the
wall-normal direction, s is the distance between sphere
surface and wall, for δ0 we took 0.0075a, and k was the same
as for the sphere-sphere contacts.

Forces and Torques Per Contact Point for Triplets and
Quadruplets

Triplets. The triplets are arranged in a triangle; see Figure
A1. From our simulations, we know Fc,i and Tc,i, i ) 1, 2, 3.
From these, we want to determine the forces and torques at the
points of contact, i.e. FA, FB, FC and TA, TB, TC. In three
dimensions, there are 18 unknowns. The equations we have
available express the fact that Fc,i and Tc,i (i ) 1, 2, 3) stem
from forces and torques at the contact points:

Since ∑i)1
3 Fc,i ) 0 and ∑i)1

3 Tc,i ) 0, the equations are not
independent; we only have two independent force equations and
two independent torque equations leading (in 3D) to 12 linearly
independent equations in the 18 unknown force and torque
components in the contact points A, B, and C. We “close” the
system by assuming that the contact point torques TA, TB, and
TC only have a bending component in the plane defined by the
three sphere center points, the rationale being that torques in
the other two directions (torsion and bending in the plane’s
normal direction) are not necessarily required to keep the
integrity of the agglomerate, contact forces are able to ascertain
integrity. This reduces the number of unknowns to 12 for which
we have 12 linear equations that we solve.

Quadruplets. The quadruplets are arranged in a tetrahedron
so that each of the four spheres is in contact with the other
three. There is a total of 6 contact points and thus a total of 36
unknowns (being the components of the contact forces and
torques). In analogy to triplets, we can set up three (the number
of spheres minus one) independent force and torque equations,
making a total of 18 equations. In the quadruplets, we close
the set of equations by setting all torque components equal to
zero. Compared to the triplets, the extra sphere in the quadruplets
makes that also the in-plane bending torque component can be
taken care of by contact forces. We then only have 18
(unknown) contact forces that we solve with the 18 equations.
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(13) Bäbler, M. U.; Morbidelli, M.; Bałdyga, J. Modelling the breakup
of solid aggregates in turbulent flows. J. Fluid Mech. 2008, 612, 261.

(14) Zaccone, A.; Soos, M.; Lattuada, M.; Wu, H.; Bäbler, M. U.;
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