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The motion of an n-butanol drop in water under the influence of gravity was nu-
merically studied using a diffuse interface free energy lattice Boltzmann method. A
pure two-liquid system without mass transfer between the phases was considered.
A range of drop diameters of 1.0-4.0 mm covered the flow conditions. Most cal-
culations were carried out in a moving reference frame. This allowed studying of
long-term drop behavior in a relatively small computational domain. The capability
of the method to capture the drop shape especially in the oscillating regime was
demonstrated. For each drop diameter the evolution of the drop velocity in time, the
terminal rise velocity and drop’s shape were determined. The results were compared
to experimental and numerical results and to semi-empirical correlations. The devi-
ation of the simulated terminal velocity from other results is within 5% for smaller
drops and up to 20% for large oscillating drops. It was shown that beyond the onset of
shape oscillations the binary system converges towards a constant capillary number
of 0.056. ©2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4800230]

. INTRODUCTION

Liquid-liquid extraction is a method for separating the components of a solution based on
mass transfer.! The dispersion of one liquid in the form of small drops in another liquid creates
large interfacial surface; thus, enhancing the mass transfer between the liquids. Even though the
motion of swarms of liquid drops under the influence of net gravity through continuous liquid is
frequently encountered in extraction processes,' a comprehensive study of single droplet behavior
is the essential starting point for analysis of the process. The obtained information can be used to
develop engineering models for the full extraction process.” The mass transfer rate, drop terminal
velocity, and related drag coefficient are the crucial parameters that need to be determined.??

Experiments and numerical simulations have been utilized to understand the complex behavior
of a buoyancy-driven drop moving through the ambient liquid. Accurate measurements require con-
siderable effort.* As discussed by Wegener et al.,” the comparison of experimental results might be
difficult because different research groups can obtain dramatically different results while seemingly
investigating the same system. The authors attribute the differences mainly to the impurities in the
systems. In case of numerical studies, one can fully control the purity of the system: a mathemati-
cal description of the problem can be constructed for pure or contaminated systems. However, the
capability of the numerical method to capture the correct physics of the problem must be carefully
checked. Only numerical results verified with reliable experimental data can be used to analyze
engineering systems. In this study numerical simulations have been applied to investigate liquid
drop behavior. A systematic comparison of the results with experiments has been performed.
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Early experimental studies on the motion of single liquid drops falling/rising through a stationary
liquid have been reported.”~'° The influence of walls for the settling of single organic drops through
an aqueous phase was examined by Strom and Kintner.!! The effect of surfactant on the terminal
velocity of drops at small Reynolds numbers was considered by Griffith.'> Recent experiments
were performed by Dehkordi et al.,'”* who studied the sedimentation of n-butanol droplets under
mass transfer conditions with and without surfactants. Transient velocity measurements of toluene
droplets rising in water were carried out by Wegener et al.?

Bertakis et al.* investigated the n-butanol/water system via experiments and numerical simu-
lations. A three-dimensional finite element technique was used. The interface was captured with
the level-set approach. The drop diameters covered the range relevant to extraction processes. The
authors showed spherical, deformed, and oscillating drops. Five drops with diameters spanning all
mentioned flow regimes were simulated. Both experimental and numerical results were in excellent
agreement with each other and with semi-empirical correlations.

Biumler et al.'"* performed experiments and numerical simulations of three binary systems:
toluene/water, n-butyl acetate/water, and n-butanol/water. A numerical approach based on the finite
element method was applied. A sharp interface representation and a mesh moving method were
adopted. The simulated drop terminal velocities agreed well with their experimental findings and
those reported by Bertakis et al.* and Wegener et al.:* the mean deviation was below 5%. A drawback
of the applied moving-mesh method was its difficulty to capture the strong drop deformations in the
oscillatory regime and the inability to handle drop breakup and coalescence.

Petera and Weatherley'> presented a two-dimensional axisymmetric method to determine the
mass transfer from a deformable droplet moving in a continuous phase. A modified Lagrange-
Galerkin finite element method with automatic remeshing to track the droplet shape was used.
The calculated values of drop velocity and mass transfer rate were compared with experimental
data determined for single drops of ethanol/water mixtures extracting into a continuous phase of
n-decanol. It was shown that the method was capable of predicting the terminal velocity and the
deformed droplet shape.

Watanabe and Ebihara'® performed numerical simulations of a rising droplet using the two-
component two-phase lattice Boltzmann method. The authors outlined for the single droplet that the
rise velocities were in good agreement with the empirical correlation proposed by Grace et al.!” which
is valid for contaminated systems only, while the applied numerical technique was not constructed
to take contaminations into account.

The commercial CFD software STAR-CD was used by Wegener et al.'® to simulate the mass
transfer across the interface of moving drops with simultaneous Marangoni convection in a fully
three-dimensional problem statement. Simulations of pure toluene/water systems were performed.
The terminal drop rise velocity was in good agreement with experimental data only up to 3.0 mm
droplets. The applied numerical method was not able to capture deformations of larger drops.

Ohta et al."” presented a sensitivity study of the density and viscosity ratio on a drop moving
through viscous fluid. A two-dimensional axisymmetric formulation of the coupled level-set/volume-
of-fluid method with sharp interface treatment was implemented. The authors demonstrated good
correlation of results using their method with several experimental cases; however, as was noted by
the authors, the axisymmetric assumption might not be applicable for all physical conditions con-
sidered in the work. The essence of complex drop motion was captured, but fully three-dimensional
simulations could reveal additional unstable drop behavior not observed in their work especially for
oscillatory regimes.

Thus, a broad range of numerical methods has been applied to simulate single drop motion
under gravity. Nevertheless, to our knowledge there are no published results where the adopted
numerical approach could simulate a wide range of drop diameters handling the regions of spherical,
deformed, and oscillating drops with significant topological deformations, along with the ability to
model mass transfer, surfactant influence, or swarms of droplets. One of the main issues in numerical
simulations of multiphase flow that might limit the method to specific problems is the description of
the interface between the fluids. The interface approximation methods can be divided in two groups:
interface “capturing” and “tracking” methods. The level-set,”’?! volume of fluid (VOF),?>?3 phase-
field,”*?> and lattice Boltzmann equation (LBE)**~** models are examples of interface capturing
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methods. In these methods the interface is implicitly captured by volume functions that use the data
from the same fixed grid on which the flow is calculated. The front tracking models®'~** track the
interface explicitly using a Lagrangian mesh, while the flow field is solved on a fixed Eulerian grid.
Interface capturing methods are easier to implement: only one mesh is needed for the calculations.
In contrast, the interface tracking models require an additional interface mesh that needs to be
dynamically remeshed and mapped onto the Eulerian mesh. The drawback of the interface capturing
models is that they exhibit unphysical coalescence when drops are in close proximity if no additional
preventing treatments are performed, while front tracking models need a sub-grid model to allow
droplets to merge or break.>*

With special handling, as high mesh resolution, higher order schemes for discretization, and
suppressed artificial coalescence most methods can give accurate results, but only for a small number
of droplets in the system. When the number of droplets is increased, multiple drop interactions as
coalescence and breakup should be taken into account. This requires significant computational
efforts for the interface reconstruction in interface capturing methods or a proper sub-grid model in
interface tracking methods.

In contrast to all multiphase methods discussed above, a diffuse interface method does not
require any explicit interface treatments, as reconstruction or dynamic remeshing. The interface
evolves naturally based on the thermodynamics of the model. It is assumed that the interface
between two immiscible fluids has a small but finite width. Exactly this issue gives the advantage of
the diffuse interface methods over the sharp interface methods because calculations are much easier
for three-dimensional flows in which significant topological changes of the interface take place.®
However, the results obtained using the diffuse interface method might not be as accurate as they
could be with a sharp interface description. In the diffuse interface methods the width of the interface
is deliberately enlarged to allow easier computations, while in real physical systems the interface is
extremely thin. Thus, to properly and accurately model relevant physical phenomena, the interface
thickness must be taken as small as possible which is not always an easy task in terms of numerical
stability. On the positive side, diffuse interface methods provide the possibility to run simulations of
large-scale three-dimensional systems with multiple interacting droplets.

In this study the motion of an organic n-butanol drop in water under the influence of gravity is
simulated using a diffuse interface free energy LBE technique originally proposed by Swift et al.?’
(see Ref. 36 for a general LBE description). This method is not widely used for complex flow
modeling yet; thus, one of the major goals of the present work is to investigate its capabilities
of liquid/liquid flow simulations. The LBE models operate in so-called lattice space, where all
physical parameters are expressed in lattice units. It is shown in the current paper that all essential
physical parameters of the investigated system can be matched with the corresponding parameters
in the lattice space. The numerical results obtained in this study are compared in great detail to the
experimental and numerical results reported by Bertakis e al.* and Biumler et al.'* A wide range of
drop diameters is considered to show the ability of the method to capture the drop shape deformation
especially in the oscillating regime. Thus, the application of a trustworthy simulation approach, able
to reveal the required flow details with reasonable computational cost is the aim of the present study.

The rest of the paper is organized as follows: Section II outlines the exact problem statement.
The governing equations, the numerical method to solve these equations, the moving frame imple-
mentation, and the scaling procedure are shown in Sec. III. Section IV contains the verification of the
applied numerical method. The main results and comparison with experimental data are presented
in Sec. V. Finally, the main findings of this work are summarized in Sec. VI.

Il. PROBLEM STATEMENT

Numerical simulation of a single n-butanol drop moving through water under the influence of
gravity is the focus of the present study. The computational setup mimics the experimental conditions
described by Bertakis ef al.* A sedimentation apparatus was used in the experiments: the droplets
were generated through a nozzle into a cylindrical cell that contained the continuous phase. The
dimensions of the cell (hight 500 mm and diameter 40 mm) were significantly larger compared to
the drop diameters (4.0 mm and less) to minimize wall confinement effects. After generation, the
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TABLE 1. Physical parameters of the n-butanol/water binary system.*

Liquids Density (kg/m>) Dynamic viscosity (mPa s) Surface tension (mN/m)
n-butanol pa = 845.1 g =3.28 o=1.63
Water pe = 986.5 e =139

droplets were given about 12 cm of acceleration distance to reach terminal velocity. Drops positions
were monitored using a camera recording 30 frames per second. The droplet travel time for the
given distance was calculated as the number of frames recorded from the time the drop enters the
measuring region to the time of exit. The drop terminal rise velocity was calculated from these data.
As outlined by Bertakis et al.,* the organic and aqueous phases were mutually saturated to avoid mass
transfer. A precise cleaning procedure of experimental equipment was accomplished; deionized and
distilled water and only chemicals of high purity were used. The computational approach applied in
the present numerical study is constructed for binary liquid systems only; there are no surfactants or
contaminations. The purity of the experimental system allows comparison of experimental results to
those obtained using our proposed numerical procedure. The mass transfer between the two liquids
was avoided in the experiments; thus, it is not modeled in the present investigation. The physical
parameters of the system are shown in Table 1.

The motion of drops in ambient liquid has two effects that distinguish it from solid particle
motion: the mobility of the interface and the ability of a drop to change its shape. When the drop is
driven by gravity the following parameters define the physics of the flow:

u=fWd, pe pas Me, Has O, &) (1)

here the subscripts d and ¢ stand for the dispersed and continuous phase, respectively; d = (6V /m)!/3
is the volume-equivalent diameter of the drop, V' is the drop volume; p. and p, are the densities
and Ap = p. — pg is the density difference; 1. and p, are the dynamic viscosities; o is the surface
tension; g is the gravitational acceleration.

The system of these parameters gives five independent dimensionless numbers that fully deter-
mine the problem: the Reynolds number Re = udp./u. (where u is the drop terminal velocity); the
Weber number We = p.u>d /o ; the Froude number Fr = u?/(gd); the density ratio A = p,/p.; and
the dynamic viscosity ratio n = wa/(..

Clift et al.*” organized the shapes and terminal velocities of the drops and bubbles based on the
Reynolds, Eotvos (Eo) and Morton (Mo) numbers. The two latter ones are defined as

. gApd? _ Well — 4|
e Fr ~

Eo

2

gApvip?  We’Eo
- o3 T ORet
The Eotvos number is the ratio of the buoyancy over interfacial tension. The Morton number
characterizes the physical properties of the liquids and is constant for the given binary system.
The effect of three dimensionless numbers Re — Eo — Mo on the shape of a drop/bubble moving
through the liquid due to gravity is represented by a plot of Reynolds number against Eotvos number
for different Morton numbers. This diagram of Clift et al.3” is considered a standard reference for
predicting the shape and velocity of fluid particles.

Mo

3)

lil. NUMERICAL METHOD

A. Governing equations

In diffuse interface (or phase field) models*3%:3° the sharp interface between the fluids is

represented by a thin transition region with finite thickness where fluids may mix. The main idea of
the phase field model is that the state of the system at any given time can be described by the order
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parameter of the phase field ¢ which is a function of the position vector r and time ¢.*° Being mostly
uniform in the bulk phases, the ¢ parameter varies continuously over the thin interfacial regions.?’
If the phase field is used to describe the binary mixture behavior, the order parameter has a physical
meaning: for an isothermal binary fluid (as in this study) ¢ is the relative concentration of the two
components.?>* To simulate the fluid dynamics of the binary mixture of two fluids, the continuity
and momentum equations are used in conjunction with the convection-diffusion equation for the
order parameter as proposed by Cahn-Hilliard.*!-4

To describe quantitatively the binary system even when it is not in equilibrium state, a Helmholtz
free energy written as a functional of ¢ can be used.*’ The following form of the free energy functional
is adopted in the present numerical model**** (the Einstein summation convention has been used),

F(p) = f [%(¢)+§(aa¢)2]dr. 4)

Here, 7 (¢) is the bulk energy density which has a double-well structure with two minima corre-
sponding to the two stable phases of the fluid. The term g(&m)2 accounts for the surface energy,
with k a positive constant.

The variation in .% for a small local variation in composition is described by the chemical
potential p,

$F(@) _dV

M(¢) = 5¢ d¢ - Ka(xo(¢’ (5)

For a system with fixed volume and temperature, the equilibrium state refers to the minima of
the functional .7 (¢) with respect to variations of the ¢ function,?* i.e., u(¢) = 0. The evolution

equation of ¢ is a nonlinear convection-diffusion equation of the following form:?#!-43

0 + 0u(Pua) = Mgy, (6)

where u, is the velocity field and M is an order parameter mobility that controls the strength of the
diffusion. The order parameter diffuses due to the composition gradients and is advected by the fluid
flow.**

To simulate the two-phase flow, Eq. (6) has to be coupled with the Navier-Stokes equation. The
non-uniformity of the composition causes a thermodynamic force density —¢d, u that acts at each
point in the fluid* (the chemical potential gradient pulls the two species in opposite directions).
If ¢ = O the net force vanishes. As an alternative way this thermodynamic force density can be
introduced as the divergence of a “chemical” pressure tensor

POapt = 0a Pyp", ©)
where the “chemical” pressure tensor** is given by

) 8V 1
P = 8, [cbg A U 5|aa¢|2}} + K(3ap)(Dp)- ®

Thus, the order parameter influence can be incorporated into the Navier-Stokes equation in two
ways: either by introduction of the term —d,, P;'g”” or by a body force density —¢d, u. In the present
study, the order parameter was taken into account using the first approach.

Complex morphological and topological flow transitions such as coalescence and interface
breakup are captured naturally in the free energy based multiphase models. Moreover, different
phenomena can be accounted for in the model by a suitable modification of the free energy functional.
The main drawback is that to properly model relevant physics, the interface layers have to be thin.?
This issue causes large gradients of the phase field in the interface region which must be resolved
computationally.

Finally, the mathematical description of the binary mixture at constant temperature can be
formulated. The evolution of density, velocity, and concentration fields is governed by the continuity,
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Outflow boundary

Free-slip boundary

Inflow boundary

Free-slip boundary

-

FIG. 1. Simulation domain with boundary conditions: x = 0 is the outflow boundary; x = L is the inflow boundary; all the
rest side boundaries are the free-slip walls. The drop is kept in the middle of the simulation domain and has a spherical shape
atr=0.

momentum and convection-diffusion equations,’*+* respectively,
9:p + du(puy) =0, (9a)
3 (ptta) + dp(pugup) = —3p Py + dpv(0dattp + pOgta) + ga A0 — Para, (9b)
i + Do (Puue) = Mg, (9c)

where p is the density of the mixture; and v is the shear viscosity. Here Po’lg is the “thermodynamic”
pressure tensor. It contains two parts:** an isotropic contribution P8, p that represents the ideal gas
pressure and the “chemical” pressure tensor ng"m defined by Eq. (8). The isotropic contribution to
the pressure tensor as well as the explicit form of ¥ are discussed in Sec. III B.

This model can be used only for density-matched fluids. Since the relative density difference of
the considered liquids is 14%, the Boussinesq approximation has been adopted for determining the
net gravity forces. The buoyancy force on the dispersed drop is taken into account by introduction
of the net force acting on the drop: the term g, A p in momentum equation (9b).

With the intent to limit the computational resources while studying the long-term evolution of
the drops, the moving frame technique has been adopted (see Sec. III D for details). In addition,
all drops considered in the present simulations rise vertically; therefore, due to the symmetry of the
flow, only a quarter of the drop is considered. The simulation domain is depicted in Fig. 1. Initially
a spherical droplet is placed in the center of the domain. For an external observer, the drop is at rest
while the non-inertial coordinate system is accelerated opposite to the inlet flow. The acceleration
of the reference frame ar has been accounted for in the momentum equation (9b) by the term pag,,.

B. LBE method implementation

The system of Eqs. (9) that governs the binary system behavior can be solved using different
numerical techniques. Swift et al.> developed a lattice Boltzmann approach, known as free energy
model, to solve the system. This method is adopted in the present study. Two particle distribution
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functions are utilized: one function f(r, ¢) is used to solve the continuity (9a) and the Navier-Stokes
(9b) equations and the second one g(r, ¢) is used for the convection-diffusion equation (9c). The
distribution functions evolve with discrete time steps At. Analysis of preliminary results showed that
with the set of numerical parameters representing the given physical system, a two-relaxation-time
(TRT) collision operator*® should be used to increase accuracy and improve stability. The fully
discretized lattice Boltzmann equations have the following form:

folr + e Aot 4+ A0 = fy(ron + 2 (£, 0 = £, 0)

(a0 = F290,0) + Fy,
(10)
8q(r + oAt t + At) = g (r, 1) + 1% (g;(r, 1) — g;eq(r, t))

+ 5 (ghr, 1) = gi¥r, 1),

where the index ¢ stands for the number of the velocity direction (each velocity vector has an opposite
one); bold symbols stand for vectors; ¢, denotes the discrete velocity set, with the magnitude defined
as ¢ = Ax/At (Ax is the mesh step); f,(r + ¢, At, t + At) and g,(r + ¢, At, t + At) represent the
post-collision particle distribution function at (r, ) streamed to the neighboring nodes located at
(r + ¢, At) and at time ¢ + At along direction ¢; f,(r, t) and g,(r, t) are the pre-collision particle
distribution function; f, g5 and . L, g, are the symmetric parts of the particle distribution function
and equilibrium distribution function, respectively; f?, g and f,%, g,™ are the anti-symmetric parts
of the particle distribution function and equilibrium distribution function, respectively; ASE A8 and
A4, A2 are the symmetric and anti-symmetric collision rates for f and g populations, respectively;
F, is the forcing term.

In the TRT collision operator, particle distribution functions are relaxed to the equilibrium state

by relaxing their symmetric and anti-symmetric parts separately, which are given by

s fq+f_q a fq_T(l
= = (11
eq |, ,eq eq _ req
Se +f ae f -
féqz q 5 q qu: q 5 q ,

where fqe 4 is Maxwellian-Boltzmann distributions (or equilibrium distributions); Tq and fqe 4 are the
particle distribution functions and equilibrium distribution function in the direction opposite of g.
The same set of equations can be written for the particle distribution function g.

The D3Q19 lattice (see the Appendix) is adopted here. In this lattice arrangement, each site
communicates with six nearest and 12 diagonal neighbors. Only a uniform cubic lattice can be used;
the mesh step Ax is taken as unity, as is the time step Af.

The particle distribution functions are defined such that the following summations over all
directions ¢, at a single lattice point gives the local density of the fluid, local fluid momentum and
local order parameter, respectively,

. At
dfi=r  defy=putSF ) g =9 (12)
q q q
The forcing term is incorporated as follows:
F, = w, (¢, F). (13)

where F is the macroscopic force and w, are the weight coefficients presented in the Appendix.
The full pressure tensor P, is given by

Pog = qucqacqﬂ' 4
q
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The equilibrium distributions can be derived from conditions (12) along with the condition that
the order parameter is advected by the fluid

Zg;qeqa = Quy, (15)
q

and that the pressure tensor and chemical potential at equilibrium obey

Z [ lequeqp = Pég + pugug,
q

(16)
Z 85'eqaeyp = I'Woup + Puqlip.
q
The equilibrium distributions*’ are presented in the Appendix.
The two liquids have different kinematic viscosities. To take this into account, the kinematic
viscosity of the mixture v is set to be a linear function of the order parameter ¢,
1—-¢ 1+¢
+v )
2 )
where v, and v, are the kinematic viscosities of continuous and dispersed phases, respectively.
Then the relaxation parameter for f'is defined using the kinematic viscosity of the mixture

U(¢) = Ve

A7)

LA (18)
T = -,
TT a2

where cf = 1/3 is the speed of sound in lattice space.
The mobility M, the coefficient of mobility I", and the relaxation parameter 7, are connected
by the following relation:>

1
M = AtF(rg — 5) (19)
The symmetric collision rate for the f distribution function A% is fixed by the kinematic viscosity
of the fluid using the relation ASf = —1/ 77. The symmetric eigenvalue function is calculated as
follows:
o 1 1 5

A =— > + ) (20)

The symmetric and anti-symmetric functions* are related by the “magic” parameter AL,
Ag;; — ASanf. (21)

If the “magic” parameter is fixed, then the anti-symmetric eigenvalue function can be calculated as
A{f = A{; /A f . The anti-symmetric collision rate is then defined as

1
S — (22)

1
Aaf _
+ 2

The parameters for the g distribution function are determined in a similar way. The symmetric
collision rate A% is defined using the relaxation time 7, as follows A% = —1/7,. All steps for
determining A% remain the same provided the “magic” parameter for the g distribution function A,
is given.

In this study, the following form of the free energy functional is used:*+*8

T, pl = f [cfp Inp+7 + g(8a¢)2}dr. (23)

The ideal gas pressure p;; = pT is incorporated via the first term in expression (23), and it does
not affect the phase behavior. A symmetrical double well potential is utilized to describe the phase
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separation
A B
Y = —¢* + —¢*, 24
S8+ 0 (24)

where A < 0 and B determine the properties of the bulk phases.
The chemical potential thus reads

1(p) = Ap + Bo® — k3., (25)

The analytical solution for the planar interface®® is

¢(x) = ¢ tanh (x/§). (26)
Here, ¢ = *¢ is the value of order parameter in the bulk phase at either side of the interface, and
follows from Eq. (25),
AN\ 12
== . 27
$o ( B) 27

It is assumed that A = B which means ¢y = 1.
The thickness of the diffuse interface & is equal to

2\ /2
g:(f) . (28)

The surface tension o follows from

4 2
o ==K @. 29)

3 &
An important addition to (23) is the term dependent on density p, here chosen as an “ideal gas”
type contribution. This gives a diagonal term in the thermodynamic pressure tensor, which becomes

pih — | 2 A, 3B 4 2, 1 2
ap = sp+2¢> + 4¢ K5 2|8a¢| Sup + K (39)(3p9), (30)

so that the thermodynamic stress obeys Potég = 2pdyp + Po‘['g”".

To determine the pressure tensor, the spatial gradients of ¢ have to be calculated. The stencils
for gradients and Laplacian calculations adopted in this study are given in the Appendix.

The discretized equations (10) are solved in two steps:

Collision step: f, (r, 1) = fy(r, 1) + ka(f; — £+ )»af(f; — IS+ F,

(3D
g,(r, 1) = go(r, 1) + 2°8(gy — g, + 1*(g;, — g5,
Streaming step: f, (r + ¢, At, t + At) = fi(r, 1)
(32)

8q(r +c At t + Ar) = g‘/[(r, t).

To complete the mathematical problem statement, boundary conditions have to be specified.
Since the LBE method deals with particle distribution functions instead of general hydrodynamic
variables, one should apply boundary conditions for the distribution functions such that boundary
conditions for the hydrodynamic variables are met.

The solution of the problem in the moving reference frame requires inflow and outflow boundary
conditions. At the inlet x = L (Fig. 1), a uniform velocity is imposed. At the outlet x = 0, a constant
pressure boundary condition corresponding to p = 1 is used. These boundary conditions for velocity
u and pressure p can be set using the procedures proposed by Mussa et al.>® For the second
distribution function g the periodic boundary condition is imposed on the inflow/outflow faces. On
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all side walls the free-slip condition for both distribution functions is applied. This type of boundary
treatment can be handled by specular reflection’®! of fand g.

C. Scaling procedure

The lattice Boltzmann method operates in so-called lattice space, and all system parameters are
presented in lattice units [lu]. Thus, it is very important to correctly match the parameters of the
physical system (in physical units) with the numerical system in lattice units. The physical system
translation into lattice space is performed using scaling factors. The scaling factor is the ratio of any
parameter value in physical units to the corresponding parameter in lattice units. To obtain the values
of these scaling factors it is necessary to equate the essential dimensionless parameters defined in
physical and lattice space. Further in this section, the symbols with a tilde stand for parameters in
lattice units.

By definition, the scaling factor for surface tension reads C, = o/ . Two numerical parameters
related to the free energy model and particularly to surface tension, ¥ and A, have to be determined.
The expression for k is derived from Eq. (29) and reads

3 o

= G (33)

K

In this study the interface width & was fixed to 1.14 [lu] for all cases (based on the results reported
by Kendon et al.**). Once « is determined the value of A is calculated using Eq. (28).

For the adopted LBE model, the value of the density in the incompressible limit should be equal
to unity. Thus, the continuous phase density in lattice space is set to p. = 1. The dispersed phase
density is defined by the density ratio py = Ap,.

The Boussinesq approximation states that if the density difference is small compared to the
actual density of the liquids, density variations are only important in the forcing term Apg for
the present problem. The proper scaling of forcing should be performed. Using the definition of
the Eotvos number the forcing term reads

c
Apg = E_ZEO’ (34)

where d is the drop diameter in lattice units.
Utilizing the definition of the Morton number and given the viscosity ratio n, the dynamic
viscosities of continuous i, and dispersed i, phases are calculated

~ Mo\ ~ ~
e = (ﬁ?ojcﬁE_O) Hd = NHc- (35)

The kinematic viscosities of the phases are V, = ji./P¢, Vg = fa/0d-
The relaxation parameters corresponding to both phases are given by

Ve 1 Va 1
- - - - 36
K 2 At + 2 td C2At + 2 (36)

Therefore, the following scale factors are introduced:

Surface tension scale, N/m: C, = 0/
Density scale, kg/m*: C, = p/p

(37)
Kinematic viscosity scale, m?/s: Cy = v, /Ve

Forcing scale, N/m3: Cioree = Apg/Apg.
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TABLE II. Drop diameter d and corresponding Eotvos number Eo consid-
ered in the present simulations.

d (mm) Eo d (mm) Eo

1.0 0.85 2.26 434
1.2 1.22 2.48 5.22
1.4 1.66 2.6 5.74
1.5 1.91 2.8 6.66
1.56 2.07 3.0 7.64
1.79 2.72 32 8.69
1.8 2.75 3.48 10.28
1.9 3.06 3.6 11.00
2.0 3.39 3.8 12.26
2.12 3.82 4.0 13.58

Using the definitions of Froude, Reynolds, and Weber numbers and utilizing the scaling factors (37)
the values of velocity, length, and time scaling factors, are defined as follows:

Length scale, m: C; = Cpr/Cg
Velocity scale, m/s: C, = C,/(C,C,) (38)
Time scale, s: C; = CSCﬁ/Ci.

With the use of scaling factors (37) and (38) all parameters of the system in physical space are
translated to the lattice space.

The dimensionless numbers that define the problem can be divided in two groups: the input
dimensionless numbers that are based on input parameters and do not contain the resulting terminal
drop velocity (Eo, Mo, X, n), and output dimensionless numbers (Re, We, Fr) that can be calculated
only when the drop velocity is known. Thus, in the present study for the given binary liquid system
(n-butanol/water) with density ratio A = 0.86, dynamic viscosity ratio n = 2.36 and the Morton
number Mo = 1.23 x 10~ the range of Eo numbers that corresponds to different drop diameters
being considered is listed in Table II.

To perform simulations that capture the physics of the problem, the input dimensionless numbers
defined in physical and lattice spaces should be matched. With the proposed scaling procedure, the
forcing term (34) and phase viscosities (35) depend on the drop diameter d. This means that the
input parameters in lattice space are not unique. The simulation results obtained using different sets
of input parameters all having the same Eo, Mo, A, n will not be precisely the same. There are three
main factors that determine the choice of numerical parameters and, consequently, influence the
results: accuracy, stability, and compressibility effects. The results of several test problems helped
to define the proper set of input parameters in lattice space. First of all, the simulation results have to
satisfy the incompressibility limit, i.e., the terminal drop velocity in lattice units should be not more
than 0.1c;. If the resulting velocity of the drop does not fulfill this inequality, then the chosen set of
parameters cannot be used. This criterion was used as the first filter to “sort” the proper numerical
parameters.

The choice of the drop diameter in lattice units d defines the spatial resolution and, thus, has
a significant effect on the accuracy of the results and the computational effort. A proper balance
between resolution and simulation time should be found. A drop diameter of 30—40 [lu] to represent
the smallest drop of 1.0 mm gives small values of the phase viscosities in lattice space. This leads to
relaxation parameters t. and t4 close to 0.5. Such small values of the relaxation times for the flow
field cause numerical instability. Moreover, together with a low surface tension value, they limit the
range of 7, values for which the simulation remains stable. To improve the stability and gain the
accuracy the TRT collision operator has been adopted.
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FIG. 2. Simulation domain slice (z = 0). Inertial (stationary) reference frame (x-y); non-inertial (moving) reference frame
(&-9).

In order to make the proper choice of &, a benchmark problem is needed to verify the numerical
results. This validation gives strong evidence that the numerical model produces physically correct
results.

In the present study, the drop diameter in lattice units d that represents a 1.0 mm drop is fixed to
30 [lu]. Also it was found during test simulations that the value of the surface tension scaling factor
should be C, = 1.0 N/m. This choice of parameters gives a continuous phase kinematic viscosity
of U, = 7.67 x 1073, the linear dimension scale factor, or the mesh step, Cq = 3.33 x 10~ m and
time scale factor, or the time step, C; = 6.04 x 107 s. This set of parameters is our base set. The
accuracy of the results obtained using this base set is discussed in Sec. IV B. The diameters d of the
larger drops are determined in a such way as to keep the kinematic viscosity of the continuous phase
constant and equal to 7.67 x 1073.

To check the mesh convergence or possibility to coarsen the mesh, it is necessary to rescale the
parameters. The idea of mesh refinement is to increase the drop diameter d fin times (dz f,,,dl,
fm > 1 0) while keeping all dimensionless numbers and liquid viscosities the same ., = .1,
ILa2 = [L41- The same idea applies to mesh coarsening, but the drop diameter is reduced in 0 < f,,
< 1 times. The interface thickness remains the same (£, = &). To rescale the simulation parameters
it is necessary to equate the Eotvos and Morton numbers for the fine and coarse drops. The following
relations are obtained:

5 _ 1 (Apg) _ 1 o _ 1 A _ 1 39
51 fm (Apg)l fn31 K1 fm Al fm '

The results of the mesh convergence study are discussed in Sec. IV B.

D. Moving reference frame

The larger the droplet diameter the longer distance it should travel to reach steady-state. Long
computational domains can be avoided if the problem is solved in a moving reference frame. The
idea is to move the computational domain along with the drop and keep the drop centered within the
domain by adjusting the velocity of the frame. The implementation of the moving frame has been
done in the same manner as presented by Rusche.>

The drop moves with respect to the stationary (inertial) reference frame (x-y), but remains
centered within the moving (non-inertial) reference frame (X-y) (see Fig. 2). Every time step the
velocity of the moving reference frame vy is corrected as follows:

VF = Ve + Avp, (40)

where v is the velocity of the reference frame at the previous (old) time step. The negative value of
the moving frame velocity is imposed as the inlet boundary condition u;, = —vg.
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The correction for the velocity Avy is calculated using the following expression:

~f o~ ~ =

X5 — Xg Xa — Xy

Avp = rp=4 — A , 41
F f At o At ( )

where At is the time step and X, is the center of mass of the drop relative to the moving reference

frame; the superscripts f and o denote values at the first (f = 0) and the previous time step. The A,

and A, are under-relaxation factors. The center of mass of the drop relative to the moving frame is

calculated as follows:

5 = 29

d S¢

where the summation is performed over all positive ¢; it is assumed that the drop is represented only
by positive order parameter value (¢ = O represents the interface).

As discussed by Rusche,” the first term in Eq. (41) is the velocity sufficient to translate the drop
back to its original position in the moving frame of reference within a single time step. The second
term represents the drop velocity relative to the moving reference frame. The purpose of the second
term is to avoid overshoots that appear as a result of the first term’s corrections: these corrections
accumulate until the drop reaches its original position. To damp both terms, under-relaxation factors
Arand A, are used. It was outlined by Rusche’? that Ar= X, = 0.1 yields good results. In the present
study the same values have been used.

To account for the time-dependent motion of the domain an extra acceleration term is added to
the momentum equation (9b). To obtain the value of moving reference frame acceleration, the time
derivative of the frame velocity has to be determined as follows:

(42)

AVF
= - 43
ar At (43)

The velocity of the drop in a stationary reference frame u is calculated as the sum of the
volume-averaged drop velocity in the moving reference frame and the velocity of the moving
frame vg.

IV. NUMERICAL TECHNIQUE VERIFICATION

A computer code for three-dimensional simulations has been developed using FORTRAN 90 in
both serial and parallel versions. The parallel code uses domain decomposition and the MPI (message
passing interface) platform. The simulation domain was decomposed into slabs in the flow direction
(x axis), one for each CPU. The number of CPUs varied based on the drop diameter starting from 14
for d = 30 [lu] and up to 20 for d = 60. Depending on the drop diameter the duration of simulations
ranged from several hours for the smallest drops to four days for the largest drops.

The details on the choice of the collision operator and related numerical parameters are discussed
first. Only two collision operators were considered in the present study: a Bhatnagar-Gross-Krook
(BGK)*? or single-relaxation-time (SRT) and a two-relaxation-time (TRT).*® The relaxation times
(or symmetric contributions if TRT is used) for the f particle distribution function t, and t, are fixed
by the kinematic viscosity of the liquids (36) and will not be changed. The relaxation time for the
g distribution function can be tuned to obtain stable, accurate results. Based on test simulations T,
equal to 1/(3 — +/3) was utilized.*** This value of 7 is called the optimum value. Two simulations
of a 2.0 mm diameter drop were carried out to outline the impact of the collision operator. Case 1
utilized TRT for both fand g with “magic” numbers Aefo = A$, = 1/12 and the optimum value of T,

Case 2 stands for BGK for both fand g and optimum 7. It can be noted that when 7, = 1/(3 — V3)

and AS, =1 /12 the anti-symmetric relaxation time r:,’ is also equal to 1/(3 — «/§) and TRT for g
reduces to BGK. Thus, with this choice of parameters the influence of the collision operator for f is
demonstrated.

The evolution of the drop rise velocity for both cases together with terminal drop shape is
shown in Fig. 3. The reference value of 2.0 mm drop terminal velocity'* is 56.92 mm/s. The
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FIG. 3. The evolution of 2 mm drop rise velocity in time and terminal drop shape for different cases. ——Case 1 (TRT);

—————— case 2 (BGK).

deviation between this reference velocity and velocities obtained in Cases 1 and 2 is 3% and 15.8%,
respectively. In addition, slight drop shape oscillations are observed in Case 2. It can be seen from
the drop rise velocity time series that does not evolve monotonously. No shape oscillations for a
2.0 mm drop take place during neither experiments nor Case 1. Moreover, the terminal drop shape
is different in Cases 1 and 2. The reference aspect ratio (see definition below) is £ = 0.66, while the
values obtained in Cases 1 and 2 are 0.65 and 0.55, respectively. Based on this comparison we will
be using a TRT scheme in the remainder of this paper.

The influence of “magic” numbers A, was also examined. If A,, = 1/4 or 1/6 are specified for
both fand g the simulations are unstable. If Aefo = 1/12iskeptand A§, = 1/4 or 1/6 the simulations
are also unstable. Thus, for the n-butanol/water system the simulations are accurate and stable for a
wide range of drop diameters only when AL, =A% =1 /12and 7, =1/(3 — V/3). The analyses of
stability and high-order truncated corrections of physically simpler system performed by Ginzburg>>
showed that A, = 1/12 with the BGK collision operator removes the third-order advection error.
Additional investigation of the numerical scheme for the present complex physical system is required
to further justify the choice of “magic” numbers. This is beyond the scope of the present paper.

Hence, for the rest of the simulations the following parameters were used: TRT collision
operator with Ago =AS =1/12,75 =1/3 — «/5), the mobility coefficient I" = 8 and the mobility
M = 2.31. For this base set of parameters the surface tension related values were A = —4.3 x 1073,
k=28 x 1073,

The diffuse interface method adopted here is prone to spurious currents over the interface due to
discretization of the velocity space. However, the velocities related to spurious currents are several
orders of magnitude smaller than the physical velocities. The equilibration of a single stationary drop
was simulated with the same stencils and relaxation times as mentioned before. Spurious velocities
over the interface were 10~*~1073 in lattice units, while the order of the velocity field in the rising
drop simulation is of 1072 in lattice units.

To verify the newly developed computer code and numerical technique, sensitivity analyses
have been carried out on simulation domain size and mesh resolution. In addition, the correct-
ness of the moving reference frame implementation has been checked. The results are presented
below.
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FIG. 4. Domain size influence. The evolution of 2.0 mm drop rise velocity in time for different simulation domain widths.
The length of the domain is 14d; —-—-— W =2d; —W =3d; ------ W =4d.

A. Domain size influence

The proper simulation domain size should have such width and length that wall confinement
effects are negligibly small and there is no impact from the outflow boundary. On the other hand, the
size of the domain should be reasonable to avoid extensive computations. The simulations of 2.0 mm
drops were carried out in domains with the width W (see Fig. 1) equal to 2—4 drop diameters. All
computations were performed in a moving reference frame with drop diameter d =30 [lu] and
length of the domain L = 14d.

The terminal rise velocity was used to assess the wall effects for various domain sizes. The
resulting drop terminal velocities for W = 2d, 3d, and 4d are 53.81, 55.21, and 55.58 mm/s,
respectively. In Fig. 4, the velocity evolution in time is shown. The terminal velocity of the drop
obtained in the narrowest domain is within 5% of the one corresponding to the widest domain.
The relative deviation of the steady-state velocity obtained for W = 3d and W = 4d is less than
1%. Thus, the simulation domain width was chosen to be W = 3d to limit computational cost. In
addition, the width of the domain caused only minor changes of the drop shape in the steady-state
regime.

The influence of the simulation domain length was checked again using 2.0 mm drop simulations.
The moving reference frame implementation requires the outflow boundary condition. The entire
flow is influenced by the outlet boundary location: it is necessary to make sure that the wake behind
the drop becomes fully developed and does hardly interfere with the outlet. Several simulation
domain lengths L were considered eqlial to 8, 10, 12, 14, and 16 drop diamete;vs. The terminal
drop velocity for the case with L = 8d is 55.04 mm/s, and for the case L = 16d the velocity is
55.22 mm/s. Thus, the influence of simulation domain length on terminal drop rise velocity is
negligibly small. If not specified otherwise, the simulation domain length was set to 14d.

B. Mesh resolution

The accuracy of the results obtained using the basic set of parameters (discussed in Sec. III C)
was examined. Two sensitivity analyses on mesh resolution were performed: mesh refinement
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FIG. 5. Mesh resolution. Terminal drop velocity as a function of drop diameter d in lattice units for 1.0 and 2.0 mm drops
obtained.

(f, > 1.0) and mesh coarsening (0.0 < f,, < 1.0). In both procedures the absolute value of the
interface thickness was kept constant (§ = 1.14).

Mesh refinement was performed for simulations of 1.0 mm drops with domain size 12d x 3d
x 3d. Six drop diameters in lattice units were considered with corresponding length scaling factors,
or mesh steps, in the range C; = 1.7 x 107> — 2.9 x 10~> m. The resulting terminal drop velocities
are plotted in Fig. 5. The terminal drop velocity of the 1.0 mm drop obtained using the basic set
of parameters with d = 30 [lu] is depicted by the red square. The relative deviation of the velocity
between the basic mesh and the finest mesh is 6.2%. The basic set of parameters is adopted further
for the simulations, since it is a good balance between accuracy and simulation time.

Mesh coarsening has also been checked for the 1.0 mm drop. Two cases were simulated
with drop diameters 25 and 20 [lu], the corresponding length scaling factors are 4.0 x 107> and
5.0 x 107> m. The results are shown in Fig. 5: the relative deviation of terminal velocity between
20 and 30 [lu] drops is 7.5%, while the deviation between 20 and 60 [lu] drops is 13.2%.

A mesh coarsening procedure has been applied for a 2.0 mm drop. With the basic set of
parameters such drop is represented by a 60 [lu] drop diameters in lattice space (red circle in
Fig. 5). Eight smaller drop diameters in lattice space were considered with the mesh step in the range
C, =333 x 1075 = 10.0 x 10~ m. The domain size was equal to 14d x 3d x 3d. The terminal
drop velocities for all cases are shown in Fig. 5. The relative deviation between the terminal velocity
obtained with the basic set of parameters ((7 = 60 [Iu] for 2.0 mm drop) and the rescaled parameters
for coarser drops with d = 30 [lu] (fo = 0.5) is 4%. This value of the coarsening factor is used for
all drops larger than 2.0 mm, since it reduces the domain size and, subsequently, the simulation time
while giving result that are in good agreement with those obtained using a finer mesh.

C. Moving reference frame implementation

In the present study the numerical simulations of a n-butanol drop moving in water were per-
formed in a moving reference frame. Since the moving frame implementation involves modification
of the governing equations it is important to verify the results by confronting them to those obtained
on a stationary reference frame.
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FIG. 6. Time evolution of terminal rise velocity of 2.0 mm drop calculated in two test cases: ——stationary reference frame;
------ moving reference frame.

A 2.0 mm drop was simulated both in stationary and moving reference frames. The diameter
of the drop in lattice space was d = 30. The size of the stationary domain was 24d x 3d x 3d.
Bounce-back (walls) boundary conditions were imposed on boundaries of the domain with x = 0
and x = L, specular reflection conditions were applied on all side walls since only a quarter of the
domain was considered (see Fig. 1). The initial position of the drop in case of the stationary domain
was at a distance 7.5d from the boundary x = 0.

In the moving reference frame implementation when a velocity inflow boundary condition is
used together with outflow boundary condition, at the beginning of the simulation a pressure wave
appears: it moves back and forth over the domain and eventually dissipates.’® The cause of the wave is
the inconsistency of the initialization: the density (pressure) field does not match the velocity values
set at the inflow boundary.’® Since the simulated drop is initially at rest and smoothly accelerates by
the external gravity force, the imposed velocity at the inlet boundary u;, is zero at the first time step
and increases slowly over the time. Thus, the impact of the pressure wave on the flow development
during the initial time steps is small as will be shown below.

The development of the drop rise velocity in time for both test cases carried out using stationary
and moving reference frames is presented in Fig. 6. The results are in excellent agreement. The drop
terminal velocity obtained using the moving reference frame is 55.21 mm/s and 55.35 mm/s using
the stationary frame of reference. The streamlines corresponding to both frames have also been
compared. To enable this comparison between the moving and stationary frames, the velocity of the
moving frame was subtracted from the velocity field computed on stationary frame. The streamlines
together with the x-component of the velocity field for the test simulations at time instants 0.05, 0.15,
and 0.3 s are shown in Fig. 7. The last moment is during steady-state. The white curve represents
the interface. The external flow is from the right to left, the front of the drop is facing the positive
x-direction. As one can see, the results agree well. The streamlines at time step 0.05 s are identical,
which means there is no impact of the inflow/outflow boundary conditions or inconsistency of the
initialization in the moving frame implementation. The slight difference of streamline behavior in
the wake of the drop is attributed to the sensitivity of streamlines plotting: there is a significant
influence of the exact value of the subtracted velocity of the moving frame on the streamline pattern.
Since the magnitude of the velocities in that regions is small compared to the velocity of the drop,
even slight differences of velocity cause notable changes in streamlines behavior. Since the deviation
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FIG. 7. Streamlines with x-component of velocity for 2.0 mm drop in two cases: moving reference frame and stationary
reference frame. The white curve represents the interface.

of terminal velocities in both cases is negligible, the moving reference frame approach was adopted
for the rest of the simulations.

V. ANALYSES OF N-BUTANOL DROP MOTION IN WATER

The numerical simulations of n-butanol droplets motion in water have been performed for
drops within the diameter range 1.0-4.0 mm with the aim to observe three flow regimes relevant
to extraction processes: spherical, deformed, and oscillating drops. For each drop the terminal rise
velocity and drop deformation were analyzed. The terminal velocity of non-oscillating droplets was
determined when steady-state had been reached after an acceleration period. The mean terminal
velocity for shape oscillating drops was evaluated by averaging the rise velocity over the time
spent on several shape oscillations. Each simulation was run until the steady-state was reached
for non-oscillating drops or when the velocity of oscillating drops reached the steady oscillations.
The terminal velocity values obtained in this study were compared to experimental and numerical
results reported by Bertakis et al.,* a semi-empirical correlation proposed by Henschke (see Ref. 4
for details) and numerical results obtained by Biumler et al.'* The maximum diameter of the drop
considered by Baumler et al.'* was 3.1 mm, Bertakis ef al.* considered the maximum drop diameter
of 3.48 mm in experiments and 4.0 mm in simulations.

The terminal velocities as a function of drop diameter are plotted in Fig. 8. The results are
in good agreement for drops up to 3.0 mm in diameter. The relative deviation of velocity for the
3.0 mm drop compared to simulation results of Bertakis et al.* is 8% and compared to Biumler
et al.'* is 2%. The relative deviation in the terminal velocity for the 4.0 mm drop calculated here
with the result presented by Bertakis et al.* is 20% which is the largest deviation between the results
of the present study and the existing data. However, several facts should be taken into account when
comparing the results. As is shown later, Bertakis et al.* performed simulations over a time window
that is not long enough for the drop rise velocity to reach steady-state, and the values of the velocity
might be larger than outlined. In addition, the authors mentioned that the larger the velocity of the
drop, the bigger the relative error of the terminal velocity measurements (up to 2.1% for the fastest
one). Biumler et al.'* obtained the maximum velocity of the drop at maximum considered drop
diameter. A more detailed discussion of the results is presented below.
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FIG. 8. Simulated drop terminal velocities (*) of n-butanol drops in water as a function of drop diameter compared to
semi-empirical correlation proposed by Henschke (solid line), experiments (o), and simulations (>>) by Bertakis er al.,*
simulations (CJ) by Baumler et al.'*

In the experimental data by Bertakis ef al.* the maximum velocity is reached at d = 2.48 mm,
according to the data fit (Henschke model) the maximum velocity is found at 2.5 mm, whereas the
simulations of Bertakis et al.* have the maximum at 3.0 mm; just slightly below the simulations of
Biumler et al.,'* with 3.1 mm. In present simulation the maximum velocity is reached for the droplet
of 3.8 mm diameter. However, it is difficult to clearly distinguish this maximum velocity since the
drops with diameter d > 3.5 mm have close terminal drop velocity values (see Fig. 8).

To describe the shape deformation quantitatively, the aspect ratio E is used, which is defined
as the ratio of the two principal axes of the drop.’’ Referring to the simulation domain depicted in
Fig. 1, the aspect ratio can be calculated as E = L /(2L ), where L is the size of the drop parallel
to the flow direction and L, is the size of the drop perpendicular to the flow direction. £ = 1 means
that the droplet has spherical shape.’’ If E < 1 the shape of the drop is called “oblate” and if E > 1,
then it is a “prolate” shape. In all simulations presented here only spherical and oblate drop shapes
were observed at steady-state drop motion. The value of E was compared to the results of Baumler
et al.'* who fitted their simulated data with the following equation:

E =B (44)
where @ = 0.081 and b = 1.299. The simulated aspect ratio as a function of Eotvos number Eo is
plotted in Fig. 9 together with the results obtained by Biumler et al.'* Good agreement is observed.

According to Michaelides®’ if E > 0.95 the drop can be regarded as spherical. Among
the drop diameters considered in the present simulations only the 1.0 mm drop has a spherical
shape at steady-state. Drops with larger diameters are either deformed or shape-oscillating. Small
drops accelerate monotonously over the time and, finally attain a steady-state terminal velocity. In
Fig. 10(a), one can see the evolution of the drop rise velocity in time for 1.0, 1.5, and 2.48 mm drops.
The acceleration period for 1.0 mm drop is less than 0.2 s which is in good correlation with results
of Bertakis et al.* and Biaumler et al.'* For all drops with diameter d > 2.0 mm vortices appear in
the wake.

When drop diameters exceed 2.6 mm a different behavior of the drop is noticed: slight os-
cillations appear over the acceleration period. The possible reason behind this is the low interfa-
cial tension of the n-butanol/water system compared, for example, to a toluene/water system. In
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FIG. 9. Simulated aspect ratio E (*) as a function of EStvis number Eo in comparison with Biumler ef al.'* (the results of
numerical simulation due to Ref. 14 are denoted as [J; the solid curve stands for the data fitting curve described by Eq. (44)).

Fig. 10(b), time series of the rise velocity for drops with diameter 2.6 and 2.8 mm are depicted. The
amplitude of oscillations of 2.6 mm drop is so small that they are damped during the acceleration pe-
riod, and the drop reaches a steady terminal velocity. The acceleration of the 2.8 mm drop goes along
with more developed oscillations that do not vanish over the time. This denotes the onset of shape
oscillations of drops with diameter d > 2.8 mm. The terminal velocity of the drop oscillates around
the mean value at the steady-state regime. According to Bertakis et al.* the onset of oscillations is
at approximately 2.86 mm which agrees well with the present results.

The rise velocity of 3.0 mm drop is presented in Fig. 10(c). The behavior is in excellent
agreement with Biumler et al.'* (see their Fig. 12). The following terminal velocities of the drop
are obtained in present simulation, numerical simulation by Bertakis et al* and Baumler et al.,'*
respectively: 64.75, 60.0, and 63.30 mm/s. Even though all results are in good agreement, the lower
value obtained by Bertakis et al.* could be explained by the fact that simulations were carried out
only until 0.4 s after startup, while the velocity of the drop keeps increasing until = 0.8 s.

The larger the drop diameter, the longer the acceleration period. The amplitude of the velocity
oscillations also becomes larger, both in accelerating and steady regimes. A representative result of
the rise velocity evolution in time in the oscillating drop regime is shown in Fig. 10(d) that relates
to a 3.48 mm drop. A further increase in drop diameter leads to significant drop deformations at
initial times that changes the value and oscillations behavior of drop rise velocity. The results of
the 3.8 mm drop terminal velocity calculations are shown in Fig. 10(e). For all previous oscillating
drops (Figs. 10(c) and 10(d)), the second peak during the acceleration period was higher than the
first one. In contrast, for the 3.8 mm drop, the value of the second peak is below the value of the
first one. The evolution of rise velocity for later times has the same trends as discussed earlier. To
see the difference in drop deformations at initial times, the flow streamlines together with the drop
shape are presented in Fig. 11 for the 3.48 and 3.8 mm drops. At r = 0.1 s, the shape of the drops
and flow streamlines are similar in both cases. However, at t = 0.2 s, the 3.8 mm drop deforms in a
way (possibly because of the low surface tension and high velocity compared to the velocity of the
3.48 mm drop at this time instant) that at later time # = 0.4 s the droplet gets a concave shape. In
addition, the size and shape of the wake behind the drops is different. The concave shaped drop has
a wider and shorter wake compared to the ellipsoidal drop.
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FIG. 10. Drop rise velocity as a function of time for different drop diameters; (a) 1.0 mm drop in spherical regime and 1.5,
2.48 mm drops in deformed regime; (b) 2.6 and 2.8 mm drops refer to transition between deformed and oscillating droplets;
(c) 3.0 mm drop; (d) 3.48 mm drop; (e) 3.8 mm drop; (f) 4.0 mm drop is the largest simulated drop in the present study.
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FIG. 11. Streamlines and drop shape for d = 3.48 mm (upper row) and d = 3.8 mm (bottom row) drops at different moments.

Notable differences in the drop rise velocity evolution are observed for the 4.0 mm drop
(Fig. 10(f)). After significant velocity oscillations and shape deformations at initial time steps, the
velocity rapidly increases and, finally, the droplet attains a steady regime with oscillations around
a mean value. The 4.0 mm drop deformation at different times are presented in Fig. 12. After
significant deformation up to # = 0.6 s the droplet gets a concave shape and with slight oscillations
accelerates while changing its shape to ellipsoidal with a flattened surface on top. Finally, the drop
oscillates around the mean terminal velocity and ellipsoidal drop shape. The mean terminal drop
velocity is equal to 66.75 mm/s, while Bertakis e al.* obtained a value of 55.0 mm/s. It should be
mentioned that the simulations of the 4.0 mm drop were carried out by Bertakis et al.* only until
t = 0.7 s. As can be seen in Fig. 10(f) the velocity keeps increasing until 1.75 s. The drop velocity
value at f = 0.7 s obtained in the present study is 56.25 mm/s which is close to Bertakis et al.* Also
the evolution of the rise velocity in time agrees well with reference data.

To validate our numerical results of shape deformation the well known diagram by Clift et al.>’
is used. The simulated data are plotted in the graphical correlation in Fig. 13. The plot shows the
Reynolds number versus Eotvos for the Morton number of n-butanol/water system equal to 1.23
x 1076, The simulated data excellently match the correlation: the 1.0 mm drop lies exactly on the
curve dividing the regions of spherical and ellipsoidal drops. The correlation appears to better predict
the behavior of n-butanol water system for larger drop diameters.

In addition, the numerical data were organized using Reynolds and Weber numbers. In contrast
to the previous correlation, the We number contains the terminal drop velocity, and shows the ratio of
continuous phase internal fluid stresses (that cause the deformation of the drop) and surface tension
stresses resisting the deformation. The plot is shown in Fig. 14, where the steady state shape of
the drops are also depicted (for the shape oscillating drops the shape at the mean terminal velocity
is presented). For We <1.0, only negligibly small deviation of the drop shape from a sphere is
observed. With the increase of We number, the drop is more deformed.

The ratio between Weber and Reynolds numbers gives a capillary number Ca = up./o. The
capillary number measures the balance between two competing effects: the viscous stress of the
continuous liquid that causes the drop deformation, and capillary stress that resists the deformation.
In Fig. 15, the simulated capillary number is plotted as a function of Eotvos number. With the
increase of Eo (i.e., the drop diameter since Eo ~ d?) the Ca number approaches a constant value.
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FIG. 12. The n-butanol drop deformation of 4.0 mm diameter at different time steps.
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FIG. 15. Capillary number Ca versus E6tvos number Eo; (*) present simulations; ((J) the Ca number value plotted using the
terminal velocity obtained with semi-empirical correlation proposed by Henschke.'*

The drop enters the shape oscillation regime when Eo > 7.0. As one can see from the graph this
is the point where Ca gets to a constant value of 0.056. During the shape oscillations viscous and
internal forces balance not letting the drop break or return to a stable shape. With further increase of
drop diameter the surrounding liquid might cause more significant drop deformations and break the
drop.

VL. CONCLUSION

In this paper numerical simulations of single n#-butanol drops rising in water under the influence
of gravity are presented. The free energy LBE model with TRT collision operator was used to
perform three-dimensional simulations of this binary system in order to determine the drop terminal
velocity and its shape. The drop diameters that were studied 1.0-4.0 mm spanned the regions
of spherical, deformed, and oscillating droplets, allowing to test the numerical technique under
different conditions relevant to liquid-liquid extraction processes. The simulations were carried
out in a moving reference frame to reduce the domain size, and thus the computational cost. The
computer code was developed in FORTRAN 90 with MPI for parallel processing.

The proposed scaling procedure allowed to determine the parameters in lattice space, where the
LBE models operate, that correspond to the real physical parameters of the given binary system. It was
outlined that in order to determine the proper values of the LBE parameters it is necessary to validate
the results with a benchmark solution. In our case the benchmark data were the experimental results
and the results of simulations obtained using different numerical techniques. Once the numerical
approach is validated, it can be applied for simulations of multiphase systems in other problem
statements, e.g., consideration of n-butanol drop breakup or coalescence in water, or multiple drops
interaction in laminar shear of fully developed turbulent flow.

The simulation parameters as computational domain size, mesh resolution, and LBE numerical
parameters were tested to verify the developed computer code. For negligible effects of boundary
walls, the width of the domain should be at least three drop diameters.

The mesh resolution has a significant effect on the results. It is important to capture the essential
drop deformations and oscillations, circulations inside the drop and wake development behind the
drop. Mesh refinement has been performed to determine the required mesh resolution: the relative
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deviation between the terminal velocity obtained on the coarsest and the finest grids is 13.2%
for a 1.0 mm drop. For the same drop, the relative deviation in drop velocity obtained on the
mesh resolution with which most of the simulations have been carried out and the finest mesh
i5 6.2%.

The simulations captured drop acceleration, shape deformation, steady motion with constant
velocity of non-oscillating drop, and shape-oscillating motion of drops in the oscillatory regime. The
results obtained in the study have been compared to experimental data and numerical simulations
using other methods. The results show that the numerical technique can be adopted to perform
multiphase simulations with moving and deforming interfaces. The results of the simulations are in
good agreement with experimental and numerical data. The deviation in terminal drop velocity for
small drop diameters is within 5% and up to 20% for the largest one. The capability of the method
to capture the drop shape deformation especially in the oscillating regime is also demonstrated. The
results are in excellent correlation with the standard reference diagram by Clift et al.’’ for predicting
the shape of fluid particles. In addition, it was outlined that the regime of shape oscillations of the
drop in the considered drop diameter range is characterized by an almost constant capillary number
of Ca = 0.056.

The regimes of drop motion did not cover drop breakup. As future work, the n-butanol drops in
water under simple shear flow will be considered. Such a problem will allow us to test the capability
of the developed numerical technique of interface disintegration capturing. Also drop coalescence
will be considered. This is one of the most challenging problems to solve since the drawback of
the utilized interface capturing technique is artificial merging of the drops even in the cases where
the drops should not coalescence. After the developed numerical tools have been tested using these
benchmark problems, n-butanol drop dispersions in water will be considered with hundreds of
dispersed drops subjected to turbulent flow conditions.

APPENDIX: THE D3Q19 MODEL PARAMETERS

The D3Q19 model is used to discretize the velocity space.’® The lattice vectors are separated
into two groups. Velocities ¢j_¢ point in the nearest neighbor directions

Cx1-6 c —C 0 0 0
cyi—¢ =10 0 ¢ —c 0 O
Co1—6 0O 0 0 0 ¢ —-c

and ¢7_g point in the 12 square diagonal directions

Cy7-18 c —¢c ¢ —c 0 0 0 0 ¢ —c ¢ -—c
¢y—i8 | =|¢c ¢ —-¢ —c ¢ —c ¢ —c 0 0 0 0 1. (A1)
C7-18 0 O 0 0O ¢ ¢ —c —c ¢ ¢ - -—c

The equilibrium distributions*’ f£,;4, go? for population g = (1-18) are calculated as follows:

w 3 C2
s =C—§ (Po — k(07,0 + 3)29&15 + 02.0) + ewqplte + 502 [eaqeﬂq - ?505/5],0140#5)4'
K cx . zz X Xz z
5 (w3 060,0 + ) 0,0,0 + W 0.90.6 + W) D, B0,6 + Wy 0,0.6 + w) 0, $0.0).
(A2)
eq Wy 3 62
8, = 2 I'i+ eqqpug + 22 wq€hq — ?B(Xﬁ Ququg |, (A3)
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while the distributions for ¢ = 0 are given by

18
eq __ eq
0 _'O_qu
g=1

(A4)
18
eq __ el
8 =¢— E gqq
g=1
) ) A, 3B ,
and the bulk pressure is pg = c;p + Ed: + Tqﬁ .
And the weights*’ read
1
Wi-6 = 7 W7-18 = 77
6’ 12’
R yy _ zz _ R yy _ zz _ _1
Wi_p = W3y = W5 g = 12 W3_g =W 5 6= Wj_4= 3
XX XX Y — p?Z — _i
Wr_jp = Wis_13 = W14 = Wyj_18 = R
{ (AS)
XX — yy _ zz _
Wii_1g = Wi5_13 = W7_190 = 1
S Xy o oyro o oox _l
Wi_g = Wj_g = Wi =V, Wyp = Wi 14 = Wi518 = 2’
wyh = wi .= w . = ! wl c=wl =w?,,=0
89 = W23 = Wiear = ~ - 11-18 = Wy_10 = W7_14 = V.

The stencils for the gradients and Laplacian calculations in the pressure tensor and chemical
potential are

X 0 00\ /=1 0 1N/0 0 0

.= 10 1).l=20 2|[=1 0 1] (A6)
2ax1 Vo 0 0/ \=1 0 1/\o o0 o0
| 010\ /1 2 1\/0 10

v=——(|1 2 1| (2 —24 2f[1 2 1]] (A7)
6Ax 1 \o 1 0 1 2 1)J\o 1 0

where the left, middle, and right matrices show slices of the stencil when ¢, = ¢, 0, and —c,
respectively.
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