
 1 

Agitation and mobilization of thixotropic liquids 

 

J.J. Derksen 

Chemical & Materials Engineering Department, University of Alberta, Edmonton, Alberta,  

T6G 2G6 Canada, jos@ualberta.ca 

 

Submitted to AIChE J, September 2009 

Revision submitted: November 2009 

Accepted: December 2009  

 

Abstract 

Direct numerical simulations of transitional and turbulent flows of purely viscous thixotropic liquids in 

stirred tanks have been performed. The simple thixotropy model employed is based on the notion of a 

network in the liquid with an integrity that builds up with finite rate under quiescent conditions and 

breaks down under liquid deformation. We solve a transport equation for the network integrity which is 

two-way coupled to the lattice-Boltzmann-based flow solver. The liquid’s time scale characterized by the 

dimensionless Deborah number shows a profound impact on the level of mobilization and the flow 

patterns in the mixing tanks, especially if the time scale of the liquid is of the same order as the 

circulation time in the tank. It also is demonstrated to what extent increasing the impeller speed improves 

mobilization and mixing.  
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Introduction 

Processing and handling non-Newtonian liquids is abundant in food, pharmaceutical, paper-and-pulp, and 

(petro) chemical industries. Process design and process efficiency directly interfere with the liquid’s 

rheological properties since fluid flow and fluid deformation are part of virtually any process step. An 

interesting and relevant subset of non-Newtonian behavior is thixotropy. Thixotropic liquids show time-

dependence, i.e. their constitutive relations contain terms related to the liquid’s deformation history. A 

typical (micro physical/chemical) source of thixotropy is the presence of a structural network in the fluid 

that forms as a result of long-range interactions between e.g. macro-molecules or microscopic solid 

particles dispersed in it. A strongly developed network results in a liquid that is hard to deform (highly 

viscous) and/or has elastic properties. Liquid deformation tends to disintegrate the network. Since usually 

the rate at which the network disintegrates under deformation, and builds up at quiescent conditions is 

finite (e.g. due to transport limitations at the micro level), the local deformation history in a Lagrangian 

frame of reference impacts the local rheological behavior, hence thixotropy. 

In many cases agitation of thixotropic liquids in mixing tanks is not so much done to mix the liquid 

at the molecular or a mesoscopic level; it is in the first place done to mobilize the liquid by breaking the 

network. The extent to which this happens is an intricate interplay between time scales (of the liquid and 

of the agitation), liquid inertia (relative to viscous forces), and the geometrical layout of the tank. As an 

example, we expect interesting hydrodynamics if macroscopic flow time scales such as the period of an 

impeller revolution, or the liquid’s circulation time are of the same order of magnitude as the time scales 

contained in the liquid’s rheological behavior. As in many more situations where interaction and 

competition of a multitude of phenomena govern process behavior, numerical simulation is a versatile 

way to reveal the interactions and to gain insight in the relative importance of these phenomena as a 

function of process conditions. If process conditions are externally controllable, simulations may greatly 

support process design and optimization. 
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In this paper a methodology is outlined for direct numerical simulations involving thixotropic 

liquids agitated in mixing tanks. The numerical efficiency of the methodology allows for fine grids so that 

transitional and mildly turbulent flows can be fairly accurately resolved. In a recent paper of ours1 the 

simulation methodology has been successfully verified by comparing its results with analytical and semi-

analytical data of benchmark flows. The focus of the present paper is on the application of the 

methodology to agitation for mobilizing and mixing thixotropic liquids.  

A relatively simple thixotropy model has been adopted. Also, the liquids considered are purely 

viscous, that is, no visco-elastic effects have been incorporated. In spite of these limitations, the 

dimensionality of the parameter space is much larger than it would be with simpler (Newtonian) liquids. 

For this reason we primarily limit our study to three dependencies: the impact of the time scale related to 

network build-up in the liquid (relative to the flow time scales) on the level of mobilization; the effect of 

the impeller speed; and the consequences of the agitation geometry. The latter aspect is represented by 

comparing the performance of two impellers typically used for turbulent agitation of Newtonian liquids, 

viz. a Rushton turbine and a pitched-blade turbine (PBT). 

Literature on turbulent and transitional agitation of non-Newtonian liquids is relatively scarce. It is 

mostly related to shear-thinning and/or Bingham liquids with a time-independent rheology.2-6 Stirring 

yield-stress liquids in mixing tanks usually results in the formation of a cavity around the impeller: liquid 

only gets agitated in a part of the tank volume around the impeller, and – as for thixotropic liquids – 

mobilization is a key issue. Recently, agitation of thixotropic liquids was studied experimentally and 

computationally.7 One of the main findings of that study was that the level of realism of simulations 

would benefit from more refined models for fluid behavior and their computationally efficient 

implementation in CFD codes. This very well relates to the purpose of the present study. 

This paper is organized in the following manner: First the flow geometries are introduced. Then the 

liquid’s rheological model is described. Along with the geometrical characteristics this allows us to define 

a set of dimensionless numbers that are the coordinates of the parameter space we will be partly 
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exploring. The subsequent section briefly describes the numerical methodology (more details are in 

Reference 1). In presenting the results, the focus is on the level of mobilization, and on the flow structures 

encountered. Next to mobilization also the mixing performance in terms of the time required to mix a 

passive scalar to a certain level of homogeneity (mixing time) will be discussed. The final section 

summarizes the results and reiterates conclusions. 

 

Flow geometries 

The baffled mixing tanks are filled to a level H=T (with T the tank diameter) with liquid, see Figure 1. A 

lid closes off the surface, i.e. at the top a no-slip condition applies. Agitation is performed by two 

different impellers, typically used for turbulent agitation: a Rushton turbine and a pitched-blade turbine 

(PBT), see Figure 1. The PBT has four blades under an angle of 45o, mounted on a hub. This impeller 

rotates such that it pumps in the downward direction. The shaft of the PBT runs over the entire tank 

height. The Rushton turbine has six short, vertical blades mounted on a disk. The disk is mounted on a 

shaft that enters from the top down to the level of the impeller. The primary flow induced by this impeller 

is in the radial direction.  The Rushton turbine and the PBT both have a diameter equal to D=T/3. They 

rotate with an angular velocity of N revolutions per second. 

The choice of these standard impeller and tank configurations allows for relating the present 

simulations of thixotropic liquid flow with earlier works on Newtonian and also Bingham liquid flow in 

similar geometries. 

 

Thixotropy model  

The thixotropy model we use is based on work that dates back to the late nineteen-fifties.8,9 More recently 

it has been applied by Ferroir et al.10 in their analysis of particle sedimentation in clay suspensions. It has 

been placed in a larger context of thixotropy modeling in the review due to Mujumdar et al.11. In the 

purely viscous (i.e. non-elastic) model we keep track of a scalar λ that varies between 0 and 1 and 
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indicates the integrity of a structural network in the liquid (λ=0: no network; λ=1: fully developed 

network). Its transport equation reads  

 ( )1 2 1i
i

u k k
t x

λ λ γλ λ∂ ∂+ = − + −
∂ ∂

ɺ  (1) 

(summation over repeated indices) with iu  the ith component of the fluid velocity vector, and 

2 ij ijd dγ =ɺ  a generalized deformation rate; 
1

2
j i

ij
i j

u u
d

x x

 ∂ ∂= +  ∂ ∂ 
 is the rate of strain tensor. The first term 

on the right hand side of Eq. 1 indicates breakdown of the network due to liquid deformation; the second 

term is responsible for build-up of the network with a time constant  
2

1

k
 associated to it. The network 

integrity is fed back to the liquid flow by relating it to the apparent viscosity aη . The simple model10 used 

here adopts a linear relation: 

 ( )1aη η αλ∞= +  (2) 

In a homogeneous shear field with shear rate γɺ , the steady-state solution to Eq. 1 reads  

 2

1 2
ss

k

k k
λ

γ
=

+ɺ
 (3) 

The associated steady state viscosity is (combine Eqs. 2 and 3)  

 2

1 2

1ss

k

k k
η η α

γ∞

 
= + + ɺ

 (4) 

The parameter η∞  can thus be interpreted as the infinite shear viscosity. The zero-shear viscosity is 

( )1η α∞ + . A typical representation of the steady-state rheology (Eq. 4) is given in Figure 2.  

The thixotropic liquid as defined by Eqs. 1 and 2 has four parameters: 1 2, , ,k k η α∞ . This implies 

that once the flow geometry is defined, four dimensionless numbers are needed to fully pin down the flow 

conditions. Three of the dimensionless numbers are quite straightforward: (1) a Reynolds number defined 
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in the same way as traditionally done in Newtonian stirred tank flow but now with η∞ : 
2

Re
NDρ
η∞

∞

= ; 

(2) the ratio of zero-shear over infinite-shear viscosity 1α + ; and (3) a time-scale ratio that we term 

Deborah number: 
2

Db
N

k
=  (having a Deborah number does not mean we consider visco-elasticity). Db is 

the ratio of the time scale of the liquid divided by a macroscopic flow time scale for which we take the 

period of one impeller revolution (
1

N
). The choice of the fourth dimensionless number relates to the 

application perspective. If the rheogram in Figure 2 is interpreted as that of a (pseudo) Bingham liquid the 

intercept of the asymptote for high shear rates with the ordinate can be viewed as a pseudo yield stress: 

2

1
Y

k

k
τ η α∞=  (see Figure 2). The fourth dimensionless number then becomes a pseudo-Bingham number: 

2

1

1
Bn Y k

N k N

τ α
η∞

= = . However, if the liquid is merely interpreted as shear thinning, the ratio 2

1

k

k
 can be 

viewed as the liquid’s “characteristic” shear rate cγɺ  (characteristic in the sense that the transition from 

zero-shear to infinite-shear viscosity takes place around cγ γ=ɺ ɺ , see Eq. 4) and the dimensionless number 

would be typically chosen as c
N

γɺ
. In this paper the Bingham liquid perspective will be taken, and the 

pseudo-Bingham number will be used so that the four dimensionless numbers are Re∞ , α , Db, and Bn. 

 

Numerical approach 

The lattice-Boltzmann method (LBM) has been applied to numerically solve the incompressible flow 

equations. The method originates from the lattice-gas automaton concept as conceived by Frisch, 

Hasslacher, and Pomeau in 1986.12 Lattice gases and lattice-Boltzmann fluids can be viewed as 

(fictitious) fluid particles moving over a regular lattice, and interacting with one another at lattice sites. 

These interactions (collisions) give rise to viscous behavior of the fluid, just as colliding/interacting 

molecules do in real fluids. Since 1987 particle-based methods for mimicking fluid flow have evolved 
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strongly, as can be witnessed from review articles and text books.13-16 More recently also applications of 

the LBM in non-Newtonian fluid mechanics have been reported (e.g. References 6,17,18). The main 

reasons for employing the LBM for fluid flow simulations are its computational efficiency and its 

inherent parallelism, both not being hampered by geometrical complexity. 

In this paper the LBM formulation of Somers19 has been employed. It falls in the category of three-

dimensional, 18 speed (D3Q18) models. Its grid is uniform and cubic. Planar, no-slip walls naturally 

follow when applying the bounce-back condition. For non-planar and/or moving walls (that we have in 

case we are simulating the flow in a cylindrical, baffled mixing tank with a revolving impeller) an 

adaptive force field technique (a.k.a. immersed boundary method) has been used.20,21 

To incorporate thixotropy, the viscosity needs to be made dependent on the local value of the 

network parameter λ (Eq. 2), and (more importantly) the transport equation for the network parameter 

(Eq. 1) needs to be solved. We solve Eq. 1 with an explicit finite volume discretization on the same 

(uniform and cubic) grid as the LBM. A clear advantage of employing a finite volume formulation is the 

availability of methods for suppressing numerical diffusion. This is particularly important in the present 

application since Eq. 1 does not have a molecular or turbulent diffusion term; in order to correctly solve 

Eq. 1 we cannot afford to have significant numerical diffusion. As in previous works 22,23, TVD 

discretization with the Superbee flux limiter for the convective fluxes 24 was employed. We step in time 

according to an Euler explicit scheme. This finite volume formulation for scalar transport does not 

hamper the parallelism of the overall numerical approach.  

The presence of a source term (i.e. the right-hand side) in Eq. 1, combined with the explicit nature 

of the time stepping in some (rare) cases (specifically related to large 2k , i.e. quickly responding liquids) 

gives rise to unstable behavior. This can be effectively countered by treating the right-hand side semi-

implicitly, i.e. by evaluating it for λ  at the new time level. In that case the discrete version of Eq. 1 

schematically reads  
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with the upper index indicating the (discrete) time level. Equation 6 can be rewritten as an explicit 

expression in ( 1)nλ +  since no spatial derivatives are evaluated at the new time level. In an earlier paper 1 

we have shown that for situations where an explicit formulation is stable, an implicit treatment of the 

source term results only in insignificant differences with explicit results.  

 

Physical, dimensionless and numerical settings 

The values for the infinite-shear viscosity η∞  and the zero-shear viscosity ( )1η α∞ +  were chosen such 

that the flow in the mixing tanks would be mildly turbulent if the liquid would be Newtonian with 

viscosity η∞  (Re∞  of the order of 104), and laminar with viscosity ( )1η α∞ +  ( ( )2Re
10

1
O

α
∞ =

+
). With the 

lattice-Boltzmann flow solver (that enables the use of fine grids) in place, these Reynolds numbers allow 

for direct numerical simulations (DNS). This way we avoid the use of turbulence closure relations or 

subgrid-scale modelling. With DNS we fully resolve the (likely complex) interactions between liquid 

properties and flow structures, without having to consider potential artefacts related to turbulence 

modelling. Also, the state-of-the-art of turbulence modelling of non-Newtonian liquid flow is not as 

strongly developed as that of flow of Newtonian liquids. 

The tanks to be simulated are of lab-scale size with a tank volume of typically 10 liter. 10 liter tanks 

with geometrical layouts as given in Figure 1 have a diameter T=0.234 m. The impeller diameter 

D=T/3=0.078 m. With a liquid having η∞ = 10-2 Pa·s and ρ=103 kg/m3 we generate mildly turbulent flow 

if the impeller spins with N=10 rev/s: Re∞ =6·103. Commonly used thixotropic liquids have time 

constants in the range of 0.1 to 10 s (see e.g. Dullaert & Mewis 25), so that the Deborah numbers fall in 

the range 1 to 100.  
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In this paper we only explore part of the four-dimensional parameter space as defined by the four 

dimensionless numbers Re∞ , Db, Bn, and 1α + . The viscosity ratio 1α +  has been set to a fixed value of 

100. This way we ensure laminar flow if the network would be fully developed ( 1λ =  everywhere). 

Three Deborah numbers will be considered: 1, 10, and 100. In addition, cases will be discussed where the 

liquid has a time-independent, shear thinning rheology according to Eq. 4. Effectively this implies that the 

liquid adapts infinitely fast so that 
2

1
0

k
→  and Db=0. For these four Db numbers, the base-case impeller 

speed has been chosen such that Re∞ =6·103, and Bn=100. Under these conditions (tank size, impeller 

speed, other liquid properties) Bn=100 corresponds to a (pseudo) yield stress of τY=10 N/m2 which is a 

typical yield stress for a clay suspension. As we will see, under these base-case conditions the liquid 

sometimes gets only partially (and sometimes only marginally) mobilized. In order to check to what 

extent increasing the impeller speed helps in mobilizing the liquid also higher impeller speeds are 

investigated. At higher impeller speeds Re∞  and Db increase, while Bn decreases. 

In its basic implementation (as used in this study) the lattice-Boltzmann method applies a uniform, 

cubic grid. The spatial resolution of the grid was such that the tank diameter T equals 180 grid spacings ∆ 

(∆=T/180). The time step is such that the impellers revolves once in 2000 time steps. The rotation of the 

impeller in the static grid is represented by an immersed boundary technique. In order to assess grid 

effects, two flow cases were also simulated on a grid with resolution ∆=T/240, and compared with their 

T/180 counterparts in terms of global characteristics as well as the spatial distribution of the structure 

parameter λ  in the stirred tank. 

As the default situation, the simulations were started with a zero liquid velocity field and a uniform 

network parameter 1λ =  (fully developed network). This mimics the common situation that the liquid has 

been standing still for sufficient time to develop a network after which we turn on the agitation to 

mobilize it. In a few cases we also started spinning the impellers from a liquid without a network ( 0λ =  

throughout the tank). Our primary interests are in how the flow develops towards a (quasi) steady state, 
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what flow structures can be observed in (quasi) steady state, and what the influence of the Deborah 

number and the impeller speed is on all this.  

 

Results 

Flow evolution from startup 

In order to assess how the flow in the tank evolves from a zero-velocity, fully networked ( 1λ = ) state 

towards a quasi steady, agitated state we show in Figure 3 time series of the tank-averaged network 

parameter λ  for Db=10 (and further base-case conditions, Re∞ =6·103, Bn=100, 1 100α + = ) for the 

two impellers considered. Obviously agitation breaks down the network to a large extent. At Db=10, it 

does so on a time scale of a few tens of impeller revolutions, with differences between the two impellers. 

In fact, the route towards steady state with the Rushton turbine is quite peculiar. After some 40 

revolutions - when it looks like a steady state with 0.33λ ≈  has been established - λ  starts increasing 

slightly, however significantly with a final steady state that has 0.39λ ≈  reached after about 100 

impeller revolutions. At the same Deborah number the flow generated by the PBT goes seemingly to a 

steady state via a simpler decay process that takes approximately 40 revolutions.  

In order to interpret the evolution of the mobilization process at Db=10 in more detail, scalar 

distributions in the vertical, mid-baffle plane at various stages are given in Figure 4. The Rushton turbine 

first reduces the network parameter in its direct vicinity after which the breakdown process spreads 

throughout the tank. The slight increase of λ  that sets in after 40 impeller revolutions as observed in 

Figure 3 is due to an intricate interplay between macro-scale flow and thixotropy effects. The strong 

radial stream emerging from the impeller and hitting the tank wall starts deflecting more and more 

downwards, thereby favoring the strength of the flow in the lower part of the tank, and weakening the 

flow in the upper part of the tank. This is a positive feedback process: It allows the network in the upper 

part of the tank to recover which further contributes to the downward deflection of the impeller stream 
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and weakening the flow in the upper part even further. After roughly 100 revolutions the flow has settled 

in a state with strong flow in the volume below the impeller, and weak flow (and marginal mobilization) 

in the volume above.   

At Db=10 also the flow generated by the PBT goes through interesting transitional stages (Figure 4, 

bottom panels), very much different from the flow generated by the Rushton turbine though. Initially the 

stream emerging from this axially pumping impeller gets deflected radially and hits the tank wall at 

approximately at z=0.2T in a (left-right in Figure 4) symmetric pattern. After approximately 80 impeller 

revolutions this pattern gets unstable, and left-right symmetry is broken. Now from time to time the 

impeller stream reaches much lower vertical locations and then gets pushed up again allowing the stream 

at the other side to reach lower in a quasi periodic manner. To illustrate this unstable behaviour we show 

(in Figure 5) a time series of λ  in a point in the lower-left corner of the plane shown in Figure 4. After a 

quick decline of λ  (first 20 revolutions, see Figure 5) the flow goes through a stage with slow 

development of the local network parameter (between 20 and 80 revolutions) after which the quasi 

periodic behaviour sets in with a period time of the order of 5 impeller revolutions. 

The Deborah number (and thus the time-dependent nature of the liquids) appears to be a crucial 

parameter for the level of mobilization and (related) flow structures in the tank. In Figure 6 we show how 

much differently λ  evolves in the mixing tanks if Db=1, 10, or 100. It is worthwhile noting that under 

steady, homogeneous shear conditions the three liquids as used in Figure 6 display exactly the same 

shear-thinning behaviour (according to Eq. 4).  

The lower the Deborah number, the faster the flow reaches (quasi) steady state, and also the higher 

the steady-state λ .  For low Deborah numbers, the liquid responds quickly to deformation (and absence 

of deformation). Therefore the regions in the liquid undergoing strong deformation due to agitation 

(notably the impeller-swept volume, and the impeller stream) largely overlap with regions of lowλ . 

Given the liquid’s quick response, the low-λ regions do not get a chance to be transported to the rest of 

the tank, leaving that part quite inactive (similar to cavern formation with Bingham liquids) and giving 
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rise to relatively high tank-averaged network parameters. As we discussed above, the interactions 

between liquid and flow time scales give rise to a complex evolution of the flow for Db=10. If Db 

increases further to 100, the delay between the moment the deformation is applied to the liquid and the 

destruction of the network increases, so that high deformation regions get dislocated from low viscosity 

regions. Similarly, more quiescent regions not necessarily get the change to develop high apparent 

viscosities. At Db=100 the liquid is responding so slow that the network parameter λ  gets fairly 

uniformly distributed in the tank (in a way this is analogous with very slow chemical reactions occurring 

in turbulent flow; if the time scales of the reactions are large compared to the flow time scales, chemical 

species concentrations tend to uniformity allowing the use of ideally mixed CSTR concepts).  

In Figure 7 we show typical distributions of λ  after quasi-steady state has been reached for Db=0, 

1, and 100. For Db=0, the transport equation in λ  (Eq. 1) does not need to be solved; it can be 

determined directly from the local γɺ  and Eq. 3. Comparison of infinitely fast liquids (Db=0) and time-

dependent liquids agitated such that Db=1 shows minor differences. This implies that the liquid’s time 

dependence plays a minor role if it is agitated at Db=1. At the other side of the spectrum, for large Db 

(Db=100), λ  gets (more or less) uniformly distributed throughout the tank. For the specific cases 

considered here we expect laminar flow; the uniformity of λ  results in a uniform and relatively high 

viscosity: for the Rushton turbine in quasi steady state 0.30λ ≈  so that 30aη η∞≈  and 

2

Re 200
a

NDρ
η

= ≈ ; for the pitched blade turbine the network is on average a bit more developed 

resulting in 
2

Re 150
a

NDρ
η

= ≈ .  

For the λ -fields depicted in Figure 7 at Db=1 and Db=100, the corresponding velocity vector plots 

are given in Figure 8. For the pitched-blade turbine at Db=1 the impeller stream is transitional / turbulent 

whereas the liquid in the upper half of the tank is virtually immobile. As expected, at Db=100 the flow is 

laminar, however with a better overall mobility compared to the Db=1 case. Compared to the pitched-
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blade turbine, the radial stream being redirected up and down at the tank wall generated by the Rushton 

turbine helps in mobilization at Db=1. At Db=100 the two impellers perform similarly in terms of liquid 

agitation. 

An obvious way of enhancing liquid mobility is increasing the impeller speed N. Since changing N 

has consequences for three of the four dimensionless numbers that have been identified above we have 

chosen to present the simulation results directly as a function of the impeller speed relative to the base-

case impeller speed (that gave rise to Re∞ =6·103, Bn=100): Figure 9 shows the impact of impeller speed 

on the eventual (steady-state) tank-averaged network parameter λ  (averaging over tank volume and 

time). The different liquids have been identified by their Deborah numbers under base case impeller 

speed (denoted Db-base in Figure 9). The network breaks down to an increasing extent with an increase 

of the impeller speed; approximately in an exponential manner (the dashed trend line in Figure 9 

represents 10
N

Nbase
β

λ
−

=  with 0.43β = ).  

Slower liquids (liquids with higher Db-base values) benefit relatively more from increasing the 

impeller speed than faster liquids, especially in terms of the enhanced agitation mobilizing bigger parts of 

the tank. This is illustrated for two pitched-blade turbine cases in Figure 10. This figure shows velocity 

vectors at an impeller speed that is three times higher than the vector fields of Figure 8 (for the rest the 

conditions are the same). Figure 10 indicates more active volume for Db-base=100 compared to Db-

base=1. The λ  contour plots (Figure 11) confirm this with lower network parameters in the upper part of 

the tank for higher Db-base. The Rushton turbine cases show a qualitatively similar trend (not shown for 

brevity). 

All simulations so far were at a spatial resolution such that the tank diameter is spanned by 180 

lattice spacings: ∆=T/180. In order to assess grid effects, two Rushton turbine flow cases that we did with 

∆=T/180 were repeated with ∆=T/240. For the latter we used a parallel implementation of the computer 

code; usually running on 6 cpu’s in parallel. If we compare the evolution of the tank-average structure 
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parameter λ , the simulations at the two resolutions agree very well, see Figure 12. Looking into more 

detail reveals some deviation though: in Figure 13 time-averaged, impeller-angle-resolved structure 

parameters over a vertical cross section are shown. The case with higher spatial resolution shows slightly 

better mobilization (lower λ ) in the upper parts of the tank volume. Generally speaking, however, the 

results with different resolution agree reasonably well. 

 

Passive scalar transport 

Next to mobilization, also mixing is at issue when agitating thixotropic liquids. To quantify mixing, in a 

few of the simulations discussed above a passive scalar has been tracked during the start-up and quasi-

steady-state stages the simulations are going through. We specifically study the base-case flow generated 

with a PBT at Db=10, and the same case with a three times higher impeller speed. For reference also a 

Newtonian system with the base-case Reynolds number (Re=6000) has been simulated.  

The default initial conditions for the velocity and network integrity apply (zero flow, fully 

developed network). As the initial condition for the passive scalar we set its concentration to 1c =  in the 

upper half of the tank (
2

H
z ≥ , z defined in Figure 1), and 0c =  in the rest of the tank. For c we solve a 

convection-diffusion equation: 
2

2i
i i

c c c
u

t x x

∂ ∂ ∂+ = Γ
∂ ∂ ∂

. The numerical method used for solving the passive 

scalar concentration field is the same as used for solving λ , i.e. TVD discretization and Euler forward 

time stepping with the same (uniform cubic) grid as used for λ . In the computer code, the diffusivity has 

been set to 310
η
ρ

− ∞Γ = . In turbulent flow such a low value makes the microscopic scalar scales much 

smaller than the microscopic turbulence scales and full resolution of the micro scalar scales is generally 

not achieved. In the simulations – specifically those with strong turbulence - the effective diffusivity is 

largely determined by the grid resolution. However, the simulated concentration fields (reflecting a low-
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passed filtered version of the actual fields) serve the purpose of quantifying the macroscopic transport of 

the passive scalar. 

Passive scalar concentrations in a vertical field, midway between baffles are shown in Figure 14. At 

Re=6000 the Newtonian liquid is clearly turbulently agitated. At tN=20, the scalar field still remembers 

its initial status with high concentration in the top part, and low concentration at the bottom; at tN=40 the 

tank’s content is largely mixed with, however, still some high concentration spots at the top surface. 

Compared with this, the base-case with Db=10 (and Re 6000∞ = , Bn=100, 1 100α + = ) gets poorly 

mixed. The limited liquid mobilization of the top of the tank as witnessed in Figure 4 translates in 

concentrations remaining close to 1c =  for at least 40 impeller revolutions. The coherence of structures 

and left-right symmetry in Figure 14 (middle panels) indicates laminar flow. Increasing the impeller 

speed by a factor of three turns the flow into a turbulent one and enables mobilization and mixing 

throughout the tank (Figure 14, bottom panels). 

The observations in Figure 14 are quantified and monitored over longer periods of time by means of 

the normalized standard deviation σ  of the concentration in a vertical, mid-baffle plane through the 

center of the tank. The standard deviation as a function of time is based on vertical snapshots of the 

passive scalar field like the ones presented in Figure 14: ( ) ( ) ( ) ( )( )2 2 2
2

1
, av

av

t c t c t dA
c t A

σ = −∫∫ x  with A 

the plane’s surface area and ( ) ( )1
,avc t c t dA

A
= ∫∫ x  the plane-averaged concentration. Figure 15 shows 

the σ  time series and reflect the observations made in Figure 14. By 74 impeller revolutions, the standard 

deviation for the Newtonian case has reduced by two orders of magnitude. The base-case with Db=10 

only reaches down to a level of σ =0.21 after 120 impeller revolutions and appears to be leveling off at 

that stage. Increasing the impeller speed by a factor of three helps in bringing down the passive scalar 

standard deviation; it gets to a level of 0.032 after 120 impeller revolutions. 

 

Summary & outlook 
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In this paper, a procedure for detailed simulations of flow of thixotropic liquids is applied to transitional 

and mildly turbulent agitated tank flow. Thixotropy is considered to be the result of the finite rate 

response of the integrity of a network in the liquid to local flow conditions. The thixotropy model used is 

very simple: It is purely viscous, it assumes linear relations for network build-up and breakdown (the 

latter due to deformation), and a linear relation between apparent viscosity and network integrity. This 

simple model, however, already comes with four parameters. Where single-phase mixing tank flow of 

Newtonian liquids can be captured by a single dimensionless number – the Reynolds number – (once the 

tank and impeller geometry in terms of aspect ratios has been defined, and if the tank does not have a free 

surface), we now need four dimensionless numbers to pin down the flow conditions. In this paper these 

dimensionless numbers are a Reynolds number Re∞  based on the infinite-shear viscosity, a Deborah 

number Db being the time scale of the liquid relative to the time of a single impeller revolution, a pseudo-

Bingham number Bn, and the ratio of zero-shear over infinite-shear viscosity. The aim of this paper is to 

see how thixotropy qualitatively impacts global flow structures and mixing and liquid mobilization in 

agitated tanks. For this we explore part of the dimensionless parameter space and consider two different 

agitation devices, viz. a tank agitated by a Rushton turbine and one by a pitched-blade turbine. Exploring 

the full parameter space is unpractical given its four-dimensionality combined with the significant 

computational effort per simulation. In our base-case simulations we fix the Reynolds number to 

3Re 6 10∞ = ⋅  which allows us to perform DNS, the Bingham number to Bn=100 which translates to a 

pseudo yield stress of order 10 N/m2 in our lab-scale (10 liter) setups, and the viscosity ratio to 100. 

The primary characteristic of thixotropy is the effect of the deformation history on the liquid’s 

rheological behavior. In terms of the dimensionless numbers considered here, thixotropic liquids give rise 

to non-zero Deborah number. For this reason we studied the effect the Deborah number has on the flow. 

Comparing flows with Db=1 and Db=0 only shows marginal differences which implies that the liquid’s 

time dependence is not strongly felt if its time scale is of the order of the time required for one impeller 

revolution. At Db=100, i.e. at the other side of the Db-range considered, a slow evolutions towards a 
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fairly homogeneous distribution of the network parameter is observed resulting in – given the rest of the 

conditions – laminar flow. The uniformity is due to the large delay between deformation and network 

breakdown, and the slow build-up of the network under quiescent conditions. The more intriguing 

situations occur when Db=10. These cases show the strongest interaction between flow and liquid time 

scale, the reason probably being that the liquid time scale now gets comparable to the circulation time of 

the liquid in the tank (the flow numbers for the Rushton turbine and PBT are roughly equal to one which 

results in a circulation time of approximately 20/N, see e.g. Reference 26). The Rushton turbine flow at 

Db=10 slowly (over some 100 revolutions) evolves to the undesired situation with strong flow underneath 

the impeller, and a largely immobile volume above. The flow generated by the PBT develops a coherent 

instability with a frequency of 0.2N. 

Given the sometimes poorly mobilized tank volumes we subsequently studied to what extent 

increasing the impeller speed improves overall mobilization (the latter is characterized by the steady-

state, volume averaged network integrity parameter λ ). It does so in a fairly universal manner, i.e. quite 

independent of the base-case Deborah number or impeller type; tentatively according to an exponential 

function: 10
N

Nbase
β

λ
−

=  with 0.43β = . 

Passive scalar mixing is largely slaved to the levels of liquid mobilization achieved by the impeller. 

As shown for a few cases, limited mobilization keeps parts of the tank volume unmixed for long times. 

Again the effect of increasing the impeller speed has been studied. 

The results presented in this paper are largely qualitative, and sensitive to the specific thixotropy 

model chosen. However, they do show the rich response of stirred tank flow to thixotropy. Furthermore, 

the methodology as outlined here is generic and can be easily adapted to more complicated (albeit 

viscous) rheological liquid descriptions. The method is computationally efficient (as demonstrated by the 

significant number of flow systems, and the significant numbers of impeller revolutions per flow system 

simulated) and geometrically flexible so that attacking practical mixing and mobilization problems is 
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within reach. By means of parallelization the spatial resolution can be easily enhanced. This helps in 

extending the range of Reynolds numbers for which DNS can be performed. 
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Figure captions 

Figure 1. The two stirred tank geometries considered in this paper. Top: baffled tank with Rushton 
turbine (left: side view, right: top view); bottom: baffled tank with pitched-blade impeller. The (r,z) 
coordinate system has its origins in the center at the bottom of the tank. 
 
Figure 2. Steady-state rheology according to Eq. 4. The infinite-shear viscosity is η∞ , the zero-shear 

viscosity is ( )1η α∞ + . The pseudo yield stress Yτ  is defined by extrapolating the infinite shear behavior 

towards 0γ =ɺ .  
 
Figure 3. Time series of the tank average network parameter λ  for Db=10, starting at t=0 from a zero 

flow field and 1λ =  everywhere. Solid line: pitched blade turbine; dashed line: Rushton turbine. 
 
Figure 4. Instantaneous realizations of the λ -field in the vertical plane midway between baffles. Base-
cases with Db=10. Top row: Rushton turbine flow at (from left to right) 10, 40, 70, 100, and 180 impeller 
revolutions after start-up; bottom row: pitched blade turbine flow after 10, 30, 90, 93, and 95 impeller 
revolutions. 
 

Figure 5. Time series of λ  at the point 
2

0.91, 0.056
r z

T T
= =  in the mid-baffle plane for the PBT case 

with Db=10. 
 
Figure 6. Time series of the tank average network parameter λ  for three Deborah numbers as 

indicated. Top panel: pitched-blade turbine; bottom panel: Rushton turbine. 
 
Figure 7. Instantaneous realizations of the λ -field in the vertical plane midway between baffles after 
quasi steady-state has been reached. Top row: pitched blade turbine flow with (from left to right) Db=0, 
1, and 100. Bottom row: Rushton turbine flow with (from left to right) Db=0, 1, and 100. 
 
Figure 8. Snapshot of velocity vectors in the mid-baffle plane in the tank equipped with a pitched blade 
turbine for Db=1 (top-left) and Db=100 (top-right), and with a Rushton turbine for Db=1 (bottom-left) 
and Db=100 (bottom-right)  after quasi steady state has been reached. 
 

Figure 9. Time and tank-average network parameter λ  as a function of impeller speed relative to the 

base-case impeller speed. Time averaging was performed after (quasi) steady state was reached. The 
dashed line illustrates the general trend. 
 
Figure 10. Snapshot of velocity vectors in a vertical, mid-baffle plane. Pitched-blade turbine flow with 
Db-base=1 (left), and Db-base=100 (right), and three times the impeller speed as the base-case. 
 
Figure 11. Snapshots of λ-contours for three times the base-case impeller speed. Pitched-blade turbine 
flow with (from left to right) Db-base=1, 10, 100 respectively. Note the small high-λ spots in the upper 
corners of the right panel. 
 
Figure 12. Time series of tank average structure λ  parameter for simulations with different spatial 

resolution. Dashed curves: 
180

T∆ =  ; solid curves: 
240

T∆ = . Top: Re=6000, Db=1 starting from a zero 
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flow field and 0λ =  everywhere. Bottom: Re=18000, Db=30 (Db-base=10) starting from a zero flow 
field with 1λ =  everywhere. Rushton turbine. 
 
Figure 13. Averaged λ-contours in the vertical, mid-baffle plane for Rushton turbine simulations. These 
are impeller-angle resolved averages, i.e. the averages are conditioned with the impeller angle. In the 
panels shown the condition is such that an impeller blade is in the mid-baffle plane. Top row: Re=6000, 

Db=1; left resolution such that 
180

T∆ = , right  
240

T∆ = . Bottom row: Re=18000, Db=30 (Db-base=10); 

left resolution such that 
180

T∆ = , right  
240

T∆ = . 

 
Figure 14. Instantaneous passive scalar concentrations in vertical mid-baffle planes. Left panels: 20 
revolutions after start up; right panels: 40 revolutions after start up. Top: Newtonian liquid agitated at 
Re=6000; middle: base-case with Db=10; bottom: Db-base=10 with a 3 times higher impeller speed. 
 
Figure 15. Time series of the passive scalar standard deviation σ in the vertical, mid-baffle plane. Solid 
curve: base case with Db=10; dashed curve: Db-base=10 with three times the base case impeller speed; 
dotted curve: Newtonian liquid agitated at Re=6·103. 
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Figure 1. The two stirred tank geometries considered in this paper. Top: baffled tank with Rushton 
turbine (left: side view, right: top view); bottom: baffled tank with pitched-blade impeller. The (r,z) 
coordinate system has its origins in the center at the bottom of the tank. 
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Figure 2. Steady-state rheology according to Eq. 4. The infinite-shear viscosity is η∞ , the zero-shear 

viscosity is ( )1η α∞ + . The pseudo yield stress Yτ  is defined by extrapolating the infinite shear behavior 

towards 0γ =ɺ . 
 

 



 26 

Figure 3. Time series of the tank average network parameter λ  for Db=10, starting at t=0 from a zero 

flow field and 1λ =  everywhere. Solid line: pitched blade turbine; dashed line: Rushton turbine. 
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Figure 4. Instantaneous realizations of the λ -field in the vertical plane midway between baffles. Base-
cases with Db=10. Top row: Rushton turbine flow at (from left to right) 10, 40, 70, 100, and 180 impeller 
revolutions after start-up; bottom row: pitched blade turbine flow after 10, 30, 90, 93, and 95 impeller 
revolutions. 
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Figure 5. Time series of λ  at the point 
2

0.91, 0.056
r z

T T
= =  in the mid-baffle plane for the PBT case 

with Db=10. 
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Figure 6. Time series of the tank average network parameter λ  for three Deborah numbers as 

indicated. Top panel: pitched-blade turbine; bottom panel: Rushton turbine. 
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Figure 7. Instantaneous realizations of the λ -field in the vertical plane midway between baffles after 
quasi steady-state has been reached. Top row: pitched blade turbine flow with (from left to right) Db=0, 
1, and 100. Bottom row: Rushton turbine flow with (from left to right) Db=0, 1, and 100. 
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Figure 8. Snapshot of velocity vectors in the mid-baffle plane in the tank equipped with a pitched blade 
turbine for Db=1 (top-left) and Db=100 (top-right), and with a Rushton turbine for Db=1 (bottom-left) 
and Db=100 (bottom-right)  after quasi steady state has been reached. 
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Figure 9. Time and tank-average network parameter λ  as a function of impeller speed relative to the 

base-case impeller speed. Time averaging was performed after (quasi) steady state was reached. The 
dashed line illustrates the general trend. 
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Figure 10. Snapshot of velocity vectors in a vertical, mid-baffle plane. Pitched-blade turbine flow with 
Db-base=1 (left), and Db-base=100 (right), and three times the impeller speed as the base-case. 
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Figure 11. Snapshots of λ-contours for three times the base-case impeller speed. Pitched-blade turbine 
flow with (from left to right) Db-base=1, 10, 100 respectively. Note the small high-λ spots in the upper 
corners of the right panel. 
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Figure 12. Time series of tank average structure λ  parameter for simulations with different spatial 

resolution. Dashed curves: 
180

T∆ =  ; solid curves: 
240

T∆ = . Top: Re=6000, Db=1 starting from a zero 

flow field and 0λ =  everywhere. Bottom: Re=18000, Db=30 (Db-base=10) starting from a zero flow 
field with 1λ =  everywhere. Rushton turbine. 
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Figure 13. Averaged λ-contours in the vertical, mid-baffle plane for Rushton turbine simulations. These 
are impeller-angle resolved averages, i.e. the averages are conditioned with the impeller angle. In the 
panels shown the condition is such that an impeller blade is in the mid-baffle plane. Top row: Re=6000, 

Db=1; left resolution such that 
180

T∆ = , right  
240

T∆ = . Bottom row: Re=18000, Db=30 (Db-base=10); 

left resolution such that 
180

T∆ = , right  
240

T∆ = . 
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Figure 14. Instantaneous passive scalar concentrations in vertical mid-baffle planes. Left panels: 20 
revolutions after start up; right panels: 40 revolutions after start up. Top: Newtonian liquid agitated at 
Re=6000; middle: base-case with Db=10; bottom: Db-base=10 with a 3 times higher impeller speed. 
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Figure 15. Time series of the passive scalar standard deviation σ in the vertical, mid-baffle plane. Solid 
curve: base case with Db=10; dashed curve: Db-base=10 with three times the base case impeller speed; 
dotted curve: Newtonian liquid agitated at Re=6·103. 
 

 


