ISOTROPY OF 6-DIMENSIONAL QUADRATIC FORMS OVER FUNCTION FIELDS OF QUADRICS

OLEG T. IZHBOLDIN AND NIKITA A. KARPENKO

ABSTRACT. Let F be a field of characteristic different from 2 and ϕ be an anisotropic 6-dimensional quadratic form over F. We study the last open cases in the problem of describing the quadratic forms ψ such that ϕ becomes isotropic over the function field $F(\psi)$.

CONTENTS

0.	Introduction	1
1.	Terminology, notation, and backgrounds	3
2.	The group $H^3(F(\rho_1,\rho_2)/F)$	4
3.	The Grothendieck group of a quadric	7
4.	The Grothendieck group of a product of quadrics	10
5.	CH^2 of a product of quadrics	11
6.	The group $I^3(F(\rho,\psi)/F)$	16
7.	The case of index 1	17
8.	Main theorem	20
9.	The case of index 2	23
References		24

0. INTRODUCTION

Let F be a field of characteristic different from 2 and let ϕ and ψ be two anisotropic quadratic forms over F. An important problem in the algebraic theory of quadratic forms is to find conditions on ϕ and ψ so that $\phi_{F(\psi)}$ is isotropic.

More precisely, one studies the question whether the isotropy of ϕ over $F(\psi)$ is standard in a sense. In this paper we will use the following definition of "standard isotropy":

Definition. Let ϕ and ψ be anisotropic quadratic forms such that $\phi_{F(\psi)}$ is isotropic. We say that the isotropy of $\phi_{F(\psi)}$ is *standard*, if at least one of the following conditions holds:

- ψ is similar to a subform in ϕ ;
- there exists a subform $\phi_0 \subset \phi$ with the following two properties:
 - the form ϕ_0 is a Pfister neighbor,
 - the form $(\phi_0)_{F(\psi)}$ is isotropic.

Otherwise, we say that the isotropy is *non-standard*.

In the case when dim $\phi \leq 5$, the isotropy of $\phi_{F(\psi)}$ is always standard ([24], [3]). For 6-dimensional quadratic forms, the problem was studied by A. S. Merkurjev ([15]), D. Leep ([13]), D. W. Hoffmann ([4]), A. Laghribi ([10], [11]), and the authors ([5]). It was proved that the isotropy of a 6-dimensional quadratic form ϕ over the function field of a quadratic form ψ is always standard except (possibly) for the following case (see [10], [5]):

• dim $\psi = 4$, $d_{\pm} \psi \neq 1$, $d_{\pm} \phi \neq 1$, and ind $C_0(\phi) = 2$.

In the present paper we study the isotropy of $\phi_{F(\psi)}$ for quadratic forms ϕ and ψ satisfying these conditions (with dim $\phi = 6$).

Note that the condition ind $C_0(\phi) = 2$ implies that there exist $a, b, c, d \in F^*$ such that ϕ is similar to the form $\langle\!\langle a, b \rangle\!\rangle \perp -c \langle\!\langle d \rangle\!\rangle$. Since ϕ can be replaced by a similar form, we can assume that $\phi = \langle\!\langle a, b \rangle\!\rangle \perp -c \langle\!\langle d \rangle\!\rangle$. Note that in this case $[C_0(\phi)] = [(a, b)_{F(\sqrt{d})}] = [C_0(\rho)]$, where ρ is defined as follows: $\rho = \langle -a, -b, ab, d \rangle$.

Since dim $\psi = 4$, there exist $u, v, \delta \in F^*$ such that ψ is similar to the quadratic form $\langle -u, -v, uv, \delta \rangle$. Since $d_{\pm} \psi \neq 1$, we have $\delta \notin F^{*2}$. Thus our main problem is reduced to the following

Question. Let $\phi = \langle\!\langle a, b \rangle\!\rangle \perp -c \langle\!\langle d \rangle\!\rangle$ and $\psi = \langle -u, -v, uv, \delta \rangle$ be anisotropic quadratic forms over F with $d, \delta \notin F^{*2}$. Suppose that $\phi_{F(\psi)}$ is isotropic. Is the isotropy standard?

This question naturally splits into the following four cases:

- (1) $d = \delta$ as elements of F^*/F^{*2} ,
- (2) $d \neq \delta$ and ind $C_0(\phi) \otimes_F C_0(\psi) = 1$,
- (3) $d \neq \delta$ and ind $C_0(\phi) \otimes_F C_0(\psi) = 2$,
- (4) $d \neq \delta$ and ind $C_0(\phi) \otimes_F C_0(\psi) = 4$.

We prove that in the cases (1), (2), and (4) the isotropy of $\phi_{F(\psi)}$ is always standard (see Theorem 8.5, Propositions 8.6 and 8.7). This statement gives rise to the following one (which is Theorem 8.8):

Theorem. Let ϕ be an anisotropic quadratic form of dimension ≤ 6 and ψ be such that $\phi_{F(\psi)}$ is isotropic. Then isotropy is standard except (possibly) the following case: dim $\phi = 6$, dim $\psi = 4$, $1 \neq d_{\pm} \phi \neq d_{\pm} \psi \neq 1$, and ind $C_0(\phi) = 2 = \text{ind } C_0(\phi) \otimes_F C_0(\psi)$.

The proof of this theorem is based on a computation of the second Chow group for certain homogeneous varieties. Namely, we show that the question on the standard isotropy can be reduced to a question on the group Tors $\operatorname{CH}^2(X_{\psi} \times X_{\rho})$, where $\rho = \langle -a, -b, ab, d \rangle$ and X_{ψ} and X_{ρ} are the projective quadrics corresponding to ψ and ρ . In the cases (1), (2) and (4), we compute the group Tors $\operatorname{CH}^2(X_{\psi} \times X_{\rho})$ completely (see Theorems 5.7, 5.1, 5.8, and Lemma 7.7):

Theorem. Let ψ and ρ be 4-dimensional quadratic forms. Then the group $\operatorname{Tors} \operatorname{CH}^2(X_{\psi} \times X_{\rho})$ is zero or isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Moreover,

- if det $\psi = \det \rho$ or if ind $C_0(\psi) \otimes_F C_0(\rho) = 4$, then the group Tors $\operatorname{CH}^2(X_{\psi} \times X_{\rho})$ is trivial;
- in the case ind $C_0(\psi) \otimes_F C_0(\rho) = 1$, the group Tors $\operatorname{CH}^2(X_{\psi} \times X_{\rho})$ is trivial if and only if ρ and ψ contain similar 3-dimensional subforms.

In the case (3) where $d \neq \delta$ and $\operatorname{ind} C_0(\phi) \otimes_F C_0(\psi) = 2$, we show that our main question is equivalent to the following one (see §9): is the group $\operatorname{Tors} \operatorname{CH}^2(X_{\psi} \times X_{\rho})$ trivial for any 4-dimensional quadratic forms ψ and ρ such that $1 \neq \det \psi \neq \det \delta \neq 1$ and $\operatorname{ind} C_0(\psi) \otimes C_0(\rho) = 2$? As shown in [6], the answer to this distinguished in the counterexample exists.

ACKNOWLEDGMENTS. The authors would like to thank the Universität Bielefeld and the Université de Franche-Comté for their hospitality and support.

1. TERMINOLOGY, NOTATION, AND BACKGROUNDS

Quadratic forms. By $\phi \perp \psi$, $\phi \simeq \psi$, and $[\phi]$ we denote respectively orthogonal sum of forms, isometry of forms, and the class of ϕ in the Witt ring W(F) of the field F. To simplify notation, we write $\phi_1 + \phi_2$ instead of $[\phi_1] + [\phi_2]$. For a quadratic form ϕ of dimension n, we set $d_{\pm}\phi = (-1)^{n(n-1)/2} \det \phi \in$ F^*/F^{*2} . The maximal ideal of W(F) generated by the classes of the evendimensional forms is denoted by I(F). The anisotropic part of ϕ is denoted by ϕ_{an} . We denote by $\langle \langle a_1, \ldots, a_n \rangle \rangle$ the *n*-fold Pfister form

$$\langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$$

and by $P_n(F)$ the set of all *n*-fold Pfister forms. The set of all forms similar to an *n*-fold Pfister form we denote by $GP_n(F)$. For any field extension L/F, we put $\phi_L = \phi \otimes_F L$, $W(L/F) = \ker(W(F) \to W(L))$, and $I^n(L/F) = \ker(I^n(F) \to I^n(L))$.

For a quadratic form ϕ and a field extension L/F, we denote by $D_L(\phi)$ the set of the non-zero values of the quadratic form ϕ_L .

For a quadratic form ϕ of dimension ≥ 3 , we denote by X_{ϕ} the projective variety given by the equation $\phi = 0$. We set $F(\phi) = F(X_{\phi})$ and $F(\phi, \psi) = F(X_{\phi} \times X_{\psi})$ for quadratic forms ϕ and ψ of dimensions ≥ 3 .

Algebras. We consider only finite-dimensional *F*-algebras.

For a simple *F*-algebra *A*, by ind(A) we denote the Schur index of *A*. For an algebra *B* of the form $B = A \times \cdots \times A$ with simple *A*, we set ind B = ind A.

Let ϕ be a quadratic form. We denote by $C(\phi)$ the Clifford algebra of ϕ . By $C_0(\phi)$ we denote the even part of $C(\phi)$. For any collection ρ_1, \ldots, ρ_m of quadratic forms, the algebra $C_0(\rho_1) \otimes_F \cdots \otimes_F C_0(\rho_m)$ is of the form $A \times \cdots \times A$ with simple A. Therefore, we get a well-defined positive integer ind $C_0(\rho_1) \otimes_F \cdots \otimes_F C_0(\rho_m)$.

If $\phi \in I^2(F)$ then $C(\phi)$ is a central simple algebra. Hence we get a welldefined element $[C(\phi)]$ in the 2-part $\operatorname{Br}_2(F)$ of the Brauer group $\operatorname{Br}(F)$ which we denote by $c(\phi)$. **Cohomology groups.** By $H^*(F)$ we denote the graded ring of Galois cohomology $H^*(F, \mathbb{Z}/2\mathbb{Z}) \stackrel{\text{def}}{=} H^*(\text{Gal}(F_{\text{sep}}/F), \mathbb{Z}/2\mathbb{Z})$. For any field extension L/F, we set $H^*(L/F) = \ker (H^*(F) \to H^*(L))$.

We use the standard canonical isomorphisms $H^0(F) = \mathbb{Z}/2\mathbb{Z}$, $H^1(F) = F^*/F^{*2}$, and $H^2(F) = \operatorname{Br}_2(F)$. So any element $a \in F^*$ gives rise to an element of $H^1(F)$ which we denote by (a). The cup product $(a_1) \cup \cdots \cup (a_n)$ we denote by (a_1, \ldots, a_n) .

For n = 0, 1, 2, there is a homomorphism $e^n : I^n(F) \to H^n(F)$ defined as follows: $e^0(\phi) = \dim \phi \pmod{2}, e^1(\phi) = d_{\pm} \phi$, and $e^2(\phi) = c(\phi)$. Moreover there exists a homomorphism $e^3 : I^3(F) \to H^3(F)$ which is uniquely determined by the condition $e^3(\langle\!\langle a_1, a_2, a_3 \rangle\!\rangle) = (a_1, a_2, a_3)$ (see [1]). The homomorphism e^n is surjective and ker $e^n = I^{n+1}(F)$ for n = 0, 1, 2, 3 (see [14], [17], and [22]).

We also work with the cohomology groups $H^n(F, \mathbb{Q}/\mathbb{Z}(i))$, (i = 0, 1, 2), defined by B. Kahn (see [7]). For any field extension L/F, we set

$$H^*(L/F, \mathbb{Q}/\mathbb{Z}(i)) = \ker \left(H^*(F, \mathbb{Q}/\mathbb{Z}(i)) \to H^*(L, \mathbb{Q}/\mathbb{Z}(i)) \right) \,.$$

For n = 1, 2, 3, the group $H^n(F)$ is naturally identified with the 2-part of $H^n(F, \mathbb{Q}/\mathbb{Z}(n-1))$.

K-theory and Chow groups. For a smooth algebraic F-variety X, its Grothendieck ring is denoted by K(X). This ring is supplied with the filtration by codimension of support (which respects the multiplication). For a ring (or a group) with filtration A, we denote by G^*A the adjoint graded ring (resp., the adjoint graded group). There is a canonical surjective homomorphism of the graded Chow ring $CH^*(X)$ onto $G^*K(X)$, its kernel consists only of torsion elements and is trivial in the 0-th, 1-st, and 2-nd graded components ([25, §9]).

2. The group $H^3(F(\rho_1, \rho_2)/F)$

The main result of this section (in view of our further purposes) is Corollary 2.13.

By a *homogeneous variety* we always mean a *projective* homogeneous variety.

Proposition 2.1 ([20]). For any homogeneous F-variety X, there is a natural (in X and in F) epimorphism

$$\tau_X : H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) \to \operatorname{Tors} \operatorname{CH}^2(X)$$
.

Proposition 2.2. For any homogeneous varieties X_1, \ldots, X_m over F, the quotient

$$\frac{H^3\big(F(X_1 \times \cdots \times X_m)/F, \mathbb{Q}/\mathbb{Z}(2)\big)}{H^3\big(F(X_1)/F, \mathbb{Q}/\mathbb{Z}(2)\big) + \cdots + H^3\big(F(X_m)/F, \mathbb{Q}/\mathbb{Z}(2)\big)}$$

is canonically isomorphic to

$$\frac{\operatorname{Tors} \operatorname{CH}^2(X_1 \times \cdots \times X_m)}{pr_1^* \operatorname{Tors} \operatorname{CH}^2(X_1) + \cdots + pr_m^* \operatorname{Tors} \operatorname{CH}^2(X_m)}$$

where pr_1^*, \ldots, pr_m^* are the pull-backs with respect to the projections pr_1, \ldots, pr_m of the product $X_1 \times \cdots \times X_m$ on X_1, \ldots, X_m .

Proof. Set $X = X_1 \times \cdots \times X_m$. The homomorphism τ_X of Proposition 2.1 induces an epimorphism

$$f: \frac{H^3(F(X_1 \times \cdots \times X_m)/F, \mathbb{Q}/\mathbb{Z}(2))}{H^3(F(X_1)/F, \mathbb{Q}/\mathbb{Z}(2)) + \cdots + H^3(F(X_m)/F, \mathbb{Q}/\mathbb{Z}(2))} \twoheadrightarrow \frac{\operatorname{Tors} \operatorname{CH}^2(X_1 \times \cdots \times X_m)}{pr_1^* \operatorname{Tors} \operatorname{CH}^2(X_1) + \cdots + pr_m^* \operatorname{Tors} \operatorname{CH}^2(X_m)}$$

with the kernel ker $f = \ker \tau_X / (\ker \tau_{X_1} + \dots + \ker \tau_{X_m}).$

The kernel of τ_X is computed (for any homogeneous X) in [16]: let A be the separable F-algebra associated with X ([16, §2]) and denote by E the center of A; then ker $\tau_X = \{N_{E/F}(\bar{x} \cup [A]) \mid \text{with } x \in E^*\}$ where [A] is the class of A in the Brauer group Br(E) = $H^2(E, \mathbb{Q}/\mathbb{Z}(1)), \bar{x}$ is the class of $x \in E^*$ in $H^1(E, \mathbb{Q}/\mathbb{Z}(1)), \bar{x} \cup [A] \in H^3(E, \mathbb{Q}/\mathbb{Z}(2))$ is the cup-product and $N_{E/F}$ is the norm map.

Denote by A_1, \ldots, A_m the separable algebras associated with X_1, \ldots, X_m respectively. Then $A = A_1 \times \cdots \times A_m$ and $E = E_1 \times \cdots \times E_m$. Thus for any $x \in E^*$

$$N_{E/F}(\bar{x} \cup [A]) = N_{E_1/F}(\bar{x}_1 \cup [A_1]) + \dots + N_{E_m/F}(\bar{x}_m \cup [A_m]) ,$$

where x_i is the E_i -component of x, which proves that ker f = 0.

Corollary 2.3. Let X_1, \ldots, X_m and X'_1, \ldots, X'_m be homogeneous varieties such that X_i is stably birationally equivalent to X'_i for $i = 1, \ldots, m$. The quotient

$$\frac{\operatorname{Tors} \operatorname{CH}^2(X_1 \times \cdots \times X_m)}{pr_1^* \operatorname{Tors} \operatorname{CH}^2(X_1) + \cdots + pr_m^* \operatorname{Tors} \operatorname{CH}^2(X_m)}$$

is isomorphic to the quotient

$$\frac{\operatorname{Tors} \operatorname{CH}^2(X'_1 \times \dots \times X'_m)}{pr_1^* \operatorname{Tors} \operatorname{CH}^2(X'_1) + \dots + pr_m^* \operatorname{Tors} \operatorname{CH}^2(X'_m)} .$$

Lemma 2.4. For any homogeneous variety X of dimension ≤ 2 , the group $CH^2(X)$ is torsion-free.

Proof. Since X is a homogeneous variety, K(X) is a torsion-free group ([18]). Since dim $X \leq 2$, the term $K(X)^{(3)}$ of the topological filtration is trivial. Hence $K(X)^{(2/3)}$ is a torsion-free group. By [25, §9], $\operatorname{CH}^2(X) \simeq K(X)^{(2/3)}$. Hence $\operatorname{Tors} \operatorname{CH}^2(X) = 0$.

Corollary 2.5. Under the conditions of Corollary 2.3 suppose additionally that the varieties $X_1, \ldots, X_m; X'_1, \ldots, X'_m$ have the dimensions ≤ 2 . Then there is an isomorphism

$$\operatorname{Tors} \operatorname{CH}^2(X_1 \times \cdots \times X_m) \simeq \operatorname{Tors} \operatorname{CH}^2(X'_1 \times \cdots \times X'_m).$$

Proof. Obvious in view of Corollary 2.3 and Lemma 2.4.

Lemma 2.6. Let X_1 and X_2 be homogeneous varieties. If the variety $(X_2)_{F(X_1)}$ has a rational point, then $H^3(F(X_1 \times X_2)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^3(F(X_1)/F, \mathbb{Q}/\mathbb{Z}(2))$.

Proof. Since the homogeneous variety $(X_2)_{F(X_1)}$ has a rational point, it is rational, i.e. the field extension $F(X_1 \times X_2)/F(X_1)$ is purely transcendental. \Box

Corollary 2.7. Let X_1 and X_2 be projective quadrics of the dimensions ≤ 2 . If the quadric $(X_2)_{F(X_1)}$ is isotropic (e.g., if X_2 is isotropic or if $X_1 \simeq X_2$) then Tors $CH^2(X_1 \times X_2) = 0$.

Proof. Follows from Lemma 2.6, Proposition 2.2 and Lemma 2.4.

Lemma 2.8. For any quadratic form ρ of dimension ≥ 3 , we have

$$2H^3(F(\rho)/F, \mathbb{Q}/\mathbb{Z}(2)) = 0.$$

In other words, $H^3(F(\rho)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^3(F(\rho)/F)$.

Proof. Let $u \in H^3(F(\rho)/F, \mathbb{Q}/\mathbb{Z}(2))$. There exists a field extension L/F such that ρ_L is isotropic and $[L:F] \leq 2$. Since ρ_L is isotropic, $u_L = 0$. Using the transfer homomorphism, we have $[L:F] \cdot u = 0$. Hence 2u = 0.

Corollary 2.9. For any quadratic form ρ of dimension ≥ 3 the homomorphism $H^3(F(\rho)/F) \to \text{Tors } \text{CH}^2(X_{\rho})$, induced by the epimorphism of Proposition 2.1, is surjective. In particular, $2 \text{ Tors } \text{CH}^2(X_{\rho}) = 0$.

Lemma 2.10. Let ρ_1 and ρ_2 be quadratic form of dimension ≥ 3 . Then

$$2H^{3}(F(\rho_{1},\rho_{2})/F,\mathbb{Q}/\mathbb{Z}(2))=0.$$

In other words, $H^{3}(F(\rho_{1},\rho_{2})/F,\mathbb{Q}/\mathbb{Z}(2)) = H^{3}(F(\rho_{1},\rho_{2})/F).$

Proof. Let ρ'_1 and ρ'_2 be 3-dimensional subforms in ρ_1 and ρ_2 respectively. Clearly $H^3(F(\rho_1, \rho_2)/F, \mathbb{Q}/\mathbb{Z}(2)) \subset H^3(F(\rho'_1, \rho'_2)/F, \mathbb{Q}/\mathbb{Z}(2))$. Thus, replacing ρ_1 by ρ'_1 and ρ_2 by ρ'_2 , one can reduce the proof to the case dim $\rho_1 =$ dim $\rho_2 = 3$. In this case, dim $X_{\rho_1} \times X_{\rho_2} = 2$; therefore Tors $\operatorname{CH}^2(X_{\rho_1} \times X_{\rho_2}) = 0$ (Lemma 2.4). For i = 1, 2, the conic X_{ρ_i} is isomorphic to the Severi-Brauer variety of the algebra $C_i \stackrel{\text{def}}{=} C_0(\rho_i)$. Applying [19, Thm. 4.1], we obtain an epimorphism

$$F^* \otimes U \twoheadrightarrow H^3(F(\rho_1, \rho_2)/F, \mathbb{Q}/\mathbb{Z}(2))$$

where U is the subgroup of Br(F) generated by $[C_1]$ and $[C_2]$. Since $2[C_1] = 2[C_2] = 0$, it follows that $2H^3(F(\rho_1, \rho_2)/F, \mathbb{Q}/\mathbb{Z}(2)) = 0$.

Corollary 2.11. Let ρ_1 and ρ_2 be quadratic forms of dimension ≥ 3 . Then the homomorphism

$$H^3(F(\rho_1,\rho_2)/F) \to \operatorname{Tors} \operatorname{CH}^2(X_{\rho_1} \times X_{\rho_2})$$

induced by the epimorphism of Proposition 2.1, is surjective. In particular, $2 \operatorname{Tors} \operatorname{CH}^2(X_{\rho_1} \times X_{\rho_2}) = 0.$

Corollary 2.12. For any quadratic forms ρ_1 and ρ_2 of dimension ≥ 3 , there is a natural isomorphism

$$\frac{H^3(F(\rho_1,\rho_2)/F)}{H^3(F(\rho_1)/F) + H^3(F(\rho_2)/F)} \simeq \frac{\text{Tors } \operatorname{CH}^2(X_{\rho_1} \times X_{\rho_2})}{pr_1^* \operatorname{Tors } \operatorname{CH}^2(X_{\rho_1}) + pr_2^* \operatorname{Tors } \operatorname{CH}^2(X_{\rho_2})} .$$

Proof. Follows from Proposition 2.2 and Lemmas 2.8 and 2.10.

Corollary 2.13. For any quadratic forms ρ_1 and ρ_2 with $3 \leq \dim \rho_i \leq 4$ (i = 1, 2), there is a natural isomorphism

$$\frac{H^3(F(\rho_1, \rho_2)/F)}{H^3(F(\rho_1)/F) + H^3(F(\rho_2)/F)} \simeq \text{Tors}\,\text{CH}^2(X_{\rho_1} \times X_{\rho_2}).$$

Proof. Follows from Corollary 2.12 and Lemma 2.4.

3. The Grothendieck group of a quadric

In this section, ρ is an (n + 2)-dimensional quadratic form over F (where $n \geq 1$), V is the vector space of definition of ρ , \mathbb{P} is the projective space of the vector space dual to V, and $X = X_{\rho} \subset \mathbb{P}$ is the *n*-dimensional projective quadric determined by ρ .

We are mainly interested in the case when n = 2, i.e. when X is a surface.

The even Clifford algebra $C_0(\rho)$ of the form ρ is denoted in this section by C. Let \mathcal{U} be the Swan's sheaf on X [26, §6]. It is an $(C \otimes_F \mathcal{O}_X)$ -module locally free as \mathcal{O}_X -module (note that the algebra C is canonically self-opposite; thus it is not necessary to distinguish between left and right action of C).

We denote by h the class of a general hyperplane section of X, i.e. the pull-back of the class of a hyperplane with respect to the imbedding $X \hookrightarrow \mathbb{P}$. The subring of K(X) generated by h is denoted by H; it coincides with the image of the pull-back homomorphism $K(\mathbb{P}) \to K(X)$. Some further evident assertions on H are collected in

Lemma 3.1. The abelian group H is freely generated by $1, h, \ldots, h^n$. The topological filtration on K(X) induces on H the filtration by powers of h, i.e. for every $0 \le r \le n$, the term $H^{(r)}$ is generated by all h^j with $r \le j \le n$. In particular, the adjoint graded group G^*H is torsion-free.

In the case when X splits (i.e. when ρ is hyperbolic) and n = 2, a *line* class (resp., point class) refers to the class in K(X) of a line (resp., of a closed rational point) lying on X.

Lemma 3.2 ([8]). Suppose that X splits and dim X = 2.

- 1. For any two different lines in X, their classes in K(X) coincide if and only if the lines have no intersection. There are exactly two different line classes in K(X).
- 2. The classes in K(X) of any two closed rational points of X coincide, i.e. there is only one point class in K(X).

- 3. Denote by l and l' the different line classes and by p the point class in K(X). The abelian group K(X) is freely generated by the elements 1, l, l', p.
- 4. The second term $K(X)^{(2)}$ of the topological filtration on K(X) is generated by p; the term $K(X)^{(1)}$ is generated by l, l', p.
- 5. The multiplication in K(X) is determined by the formulas $l^2 = 0 = (l')^2$ and $l \cdot l' = p$.

6.
$$h = l + l' - p$$
.

In the case when the quadric X is arbitrary (not necessary of dimension 2, not necessary split), we dispose of the following information on K(X):

Lemma 3.3. 1. The group K(X) is torsion-free and, for any field extension E/F, the restriction homomorphism $K(X) \to K(X_E)$ is injective.

2. The class $[\mathcal{U}(n)] \in K(X)$ of the n times twisted Swan's sheaf equals

$$2^n + 2^{n-1}h + \dots + 2h^{n-1} + h^n$$

- 3. The homomorphism $\mathfrak{u} : K(C) \to K(X)$ given by the functor of taking tensor product $\mathcal{U}(n) \otimes_C (-)$ induces an epimorphism $K(C) \twoheadrightarrow K(X)/H$.
- 4. If C is a skewfield, then K(X) = H.
- 5. For any autoisometry ξ of the quadratic form ρ , the diagram

commutes, where the vertical maps are induced by the automorphisms of C and of X given by ξ .

Proof. 1. Follows from [26, Theorem 9.1].

2. See [9, Lemma 3.6].

3. According to [26, Theorem 9.1], the functor $\mathcal{U} \otimes_C (-)$ induces an epimorphism $K(C) \to K(X)/H$. Since for any $r \in \mathbb{Z}$ (and in particular for r = n) the twisting by r gives an automorphism of K(X)/H, the functor $\mathcal{U}(n) \otimes_C (-)$ induces an epimorphism as well.

4. If C is a skewfield, then the image of this epimorphism is generated by $[\mathcal{U}(n)]$. Since $[\mathcal{U}(n)] \in H$ by Item 2, it follows that K(X) = H.

5. It is evident in view of the way the sheaf \mathcal{U} is constructed (see [26, §6]). \Box

Lemma 3.4 ([12]). The *F*-algebra $C = C_0(\rho)$ has the dimension $2^{n+1} = 2^{\dim \rho - 1}$ over *F*. Its isomorphism class depends only on the similarity class of ρ . Moreover,

- *if* n *is odd, then* C *is a central simple* F-algebra;
- if n is even, then $C \simeq C_0(\rho') \otimes_F F(\sqrt{d_{\pm}\rho})$ where ρ' is an arbitrary 1-codimensional subform of ρ .

In particular, if ρ is an even-dimensional form of trivial discriminant, the algebra C is the direct product of two isomorphic central simple algebras; any automorphism of C should either interchange or stabilize the factors.

Lemma 3.5. Suppose that dim ρ is even and $d_{\pm}\rho$ is trivial. Let ξ be an autoisometry of the quadratic space (V, ρ) having the determinant -1. Then the automorphism of C induced by ξ interchanges the simple components of C.

Proof. Since $d_{\pm} \rho$ is trivial, there exists a basis v_0, \ldots, v_{n+1} of V such that

$$(v_0 \cdots v_{n+1})^2 = 1 \in C$$
.

Since $\xi(v_0) \cdots \xi(v_{n+1}) = (\det \xi) \cdot (v_0 \cdots v_{n+1}) = -v_0 \cdots v_{n+1}$, the automorphism of *C* induced by ξ interchanges the elements

$$e = (1 + v_0 \cdots v_{n+1})/2$$
 and $e' = (1 - v_0 \cdots v_{n+1})/2$

Since e and e' are orthogonal idempotents, they lie in different simple components of C. Therefore, the components of C are interchanged.

Comparing Lemma 3.2 with Lemma 3.3 in the situation of a split quadric surface X, we get the following computation (note that here C is isomorphic to $M_2(F) \times M_2(F)$ and thus there exist exactly two, up to isomorphisms, simple C-modules; their classes are free generators of K(C)):

Lemma 3.6. Suppose that X splits and dim X = 2. There exist simple C-modules M and M' such that u = 1 + l and u' = 1 + l' where

$$u \stackrel{\text{def}}{=} \mathfrak{u}([M]) = [\mathcal{U}(2) \otimes_C M], \quad u' \stackrel{\text{def}}{=} \mathfrak{u}([M']) = [\mathcal{U}(2) \otimes_C M'] \in K(X).$$

Proof. Take as M an arbitrary simple C-module and denote by M' a (determined uniquely up to an isomorphism) simple C-module non-isomorphic to M. Since by Lemma 3.2 the elements 1, l, l', p generate K(X), we have

$$u = a + bl + b'l' + cp$$

for certain $a, b, b', c \in \mathbb{Z}$. Now we are going to show that

$$u' = a + b'l + bl' + cp .$$

Let ξ be an autoisometry of the quadratic space (V, ρ) having determinant -1. By Lemma 3.5, the induced by ξ automorphism of K(C) interchanges [M] and [M']. Thus, by Item 5 of Lemma 3.3, the induced by ξ automorphism of K(X) interchanges u and u'.

Since ρ splits, there exist 2-dimensional totally isotropic subspaces W and W' of V with 1-dimensional intersection and an autoisometry ξ of (V, ρ) having the determinant -1 interchanging W and W'. The line classes in K(X) determined by W and W' are different (Item 1 of Lemma 3.2); therefore they coincide with l and l' (or vice versa: with l' and l).

Thus, we have found an automorphism of K(X) interchanging u with u' and l with l' while leaving untouched 1 (of course) and p (since all the point classes coincide). Thereby, u' = a + b'l + bl' + cp.

Since $2([M] + [M']) = [C] \in K(C)$, we have: $2(u + u') = [\mathcal{U}(2)]$, and so, $2(u + u') = 4 + 2h + h^2$ by Item 2 of Lemma 3.3. Since K(X) is torsion-free, the last equality can be divided by 2. Replacing h by l + l' - p and h^2 by $(l + l' - p)^2 = 2p$ (see Lemma 3.2), we obtain that u + u' = 2 + l + l'. From the other hand, u + u' = 2a + (b + b')l + (b' + b)l' + 2c; therefore a = 1, b + b' = 1and c = 0.

We have proved that

$$u = 1 + bl + (1 - b)l'$$
 and $u' = 1 + (1 - b)l + bl'$

for certain $b \in \mathbb{Z}$. It remains to show that b = 1 or b = 0.

It follows from Item 3 of Lemma 3.3 that the elements $u, u', 1, h, h^2$ generate the group K(X). Since $h^2 = 2p$ and h = u + u' - 2 - p, the elements u, u', 1, palso generate K(X). So, the quotient $K(X)/(\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot p)$ which is according to Item 6 of Lemma 3.2 freely generated by l, l' is also generated by u, u'. Thus, the \mathbb{Z} -matrix

$$\begin{pmatrix} b & 1-b \\ 1-b & b \end{pmatrix}$$

is invertible, i.e. its determinant is ± 1 . Hence, b = 1 or b = 0.

4. The Grothendieck group of a product of quadrics

In this and in the next sections, we work with two quadratic forms ρ_1 and ρ_2 of the dimensions ≥ 3 . We use the notation of the previous section amplified by the index 1 or 2. So, for i = 1, 2, we have ρ_i , n_i (we are mainly interested in the case when $n_1 = 2 = n_2$), V_i , \mathbb{P}_i , X_i , C_i , \mathcal{U}_i, h_i , H_i , l_i , l'_i and p_i . We set $n = (n_1, n_2)$, $\mathbb{P} = \mathbb{P}_1 \times \mathbb{P}_2$, $X = X_1 \times X_2$, and $C = C_1 \otimes_F C_2$.

For any $x_1 \in K(X_1)$ and $x_2 \in K(X_2)$, we denote by $x_1 \boxtimes x_2$ the product $pr_1^*(x_1) \cdot pr_2^*(x_2) \in K(X)$ where pr_1 and pr_2 are the projections of $X_1 \times X_2$ on X_1 and X_2 respectively.

Denote by H the image of the pull-back homomorphism $K(\mathbb{P}) \to K(X)$.

Lemma 4.1. One has: $H = H_1 \boxtimes H_2 \subset K(X)$. The abelian group H is freely generated by all $h_1^{j_1} \boxtimes h_2^{j_2}$ with $0 \leq j_1 \leq n_1$ and $0 \leq j_2 \leq n_2$. Moreover, the filtration on H induced by the topological filtration on K(X) looks as follows: for any $0 \leq r \leq n_1 + n_2$, the term $H^{(r)}$ is generated by all $h_1^{j_1} \boxtimes h_2^{j_2}$ with $j_1 + j_2 \geq r$. In particular, the adjoint graded group G^*H is torsion-free. \Box

The following lemma is also evident; together with Lemma 3.2, it gives a complete description of the ring with filtration K(X) in the split situation.

Lemma 4.2. If X_1 and X_2 split then the map $K(X_1) \otimes K(X_2) \rightarrow K(X)$, $x_1 \otimes x_2 \mapsto x_1 \boxtimes x_2$ is an isomorphism of rings with filtrations.

For an \mathcal{O}_{X_1} -module \mathcal{F}_1 and an \mathcal{O}_{X_2} -module \mathcal{F}_2 , we denote by $\mathcal{F}_1 \boxtimes \mathcal{F}_2$ the tensor product $pr_1^*(\mathcal{F}_1) \otimes_{\mathcal{O}_X} pr_2^*(\mathcal{F}_2)$. The sheaf $\mathcal{U} = \mathcal{U}_1 \boxtimes \mathcal{U}_2$ has for i = 1, 2 the structures of a C_i -module commuting with each other. Thus, it is a C-module. Set $\mathcal{U}(n) = \mathcal{U}_1(n_1) \boxtimes \mathcal{U}_2(n_2)$. It is also a C-module. The functor of taking the tensor product $\mathcal{U}(n) \otimes_C (-)$ determines a homomorphism $\mathfrak{u}: K(C) \to K(X)$.

- **Lemma 4.3.** 1. The group K(X) is torsion-free and, for any field extension E/F, the restriction homomorphism $K(X) \to K(X_E)$ is injective.
 - 2. The homomorphism $\mathfrak{u} \colon K(C) \to K(X)$, defined right above, induces an epimorphism $K(C) \twoheadrightarrow K(X)/(K(X_1) \boxtimes K(X_2))$.
 - 3. If C is a skewfield, then K(X) = H.

Proof. 1. This statement is valid for any homogeneous variety X ([18]). 2. The isomorphism $K_*(X_1) \simeq K_*(F)^{\oplus n_1} \oplus K_*(C_1)$ of [26, Theorem 9.1] remains bijective after changing the base F to any field extension, i.e. for any field extension E/F, the homomorphism $K_*(\operatorname{Spec} E \times X_1) \to K_*(\operatorname{Spec} E)^{\oplus n_1} \oplus K_*(\operatorname{Spec} E, C_1)$ is bijective. Therefore, for any F-variety Y, the defined in the similar way homomorphism $K_*(Y \times X_1) \to K_*(Y)^{\oplus n_1} \oplus K_*(Y, C_1)$ is bijective (compare to the proof of Proposition 4.1 of [21, §7]). In particular, $K(X) \simeq K(X_2)^{\oplus n_1} \oplus K(X_2, C_1)$. Computing $K(X_2)$ and $K(X_2, C_1)$ using [26, Theorem 9.1] once again, one gets

$$K(X) \simeq K(F)^{\oplus n_1 n_2} \oplus K(C_1)^{\oplus n_2} \oplus K(C_2)^{\oplus n_1} \oplus K(C) .$$

The image of $K(F)^{\oplus n_1n_2} \oplus K(C_1)^{\oplus n_2} \oplus K(C_2)^{\oplus n_1}$ in K(X) is contained in $K(X_1) \boxtimes K(X_2)$ and the homomorphism $K(C) \to K(X)$ is induced by the functor of taking tensor product $\mathcal{U} \otimes_C (-)$. Thus $\mathfrak{u}: K(C) \to K(X)$ is modulo $K(X_1) \boxtimes K(X_2)$ an epimorphism.

3. If the algebra C is a skewfield then the image of \mathfrak{u} is contained in H; moreover, the algebras C_1 and C_2 are skewfields as well and thus $K(X_i) = H_i$ for i = 1, 2.

Corollary 4.4. If C is a skewfield, then $G^*K(X)$ is torsion-free. In particular, $\operatorname{Tors} \operatorname{CH}^2(X) = 0$.

Proof. If C is a skewfield, then K(X) = H by Item 3 of Lemma 4.3. Consequently, Tors $G^*K(X) = \text{Tors } G^*H = 0$ (see Lemma 4.1).

5. CH^2 of a product of quadrics

The notation used in this section is introduced in the beginning of the previous one. However, each of the quadratic forms ρ_1 and ρ_2 is now supposed to have the dimension 3 or 4. So, each of X_i is either a quadric surface or a conic. We are mainly interested in the case when X_1 and X_2 are surfaces.

Theorem 5.1. Suppose that dim $\rho_1 = 4 = \dim \rho_2$, *i.e.* that X_1 and X_2 are surfaces. If det $\rho_1 = \det \rho_2$, then Tors $CH^2(X_1 \times X_2) = 0$.

Proof. If one of the quadratic forms is isotropic, then $\text{Tors } \text{CH}^2(X_1 \times X_2) = 0$ by Corollary 2.7. In the rest of the proof we assume that ρ_1 and ρ_2 are anisotropic. As a next step, we are going to consider the case when $\det \rho_1 = \det \rho_2 = 1$.

Lemma 5.2. Any projective quadric surface defined by a quadratic form of determinant 1 is stably birationally equivalent to a conic.

Proof. Suppose that we are given a quadric determined by a 4-dimensional quadratic form ρ with det $\rho = 1$. Take the conic determined by an arbitrary 3-dimensional subform $\rho' \subset \rho$. Since ρ' becomes isotropic over $F(\rho)$ and vice versa, ρ becomes isotropic over $F(\rho')$, the quadrics given by ρ' and ρ are stably birationally equivalent.

Suppose that det $\rho_1 = \det \rho_2 = 1$ and choose some conics X'_1 and X'_2 stably birationally equivalent to X_1 and X_2 respectively. Applying Corollary 2.5, we get an isomorphism of Tors $\operatorname{CH}^2(X_1 \times X_2)$ onto the group Tors $\operatorname{CH}^2(X'_1 \times X'_2)$ which is trivial by Lemma 2.4.

Therefore, we may assume that $d \neq 1$ where $d = \det \rho_1 = \det \rho_2$.

As a next step of the proof of Theorem, we consider the case when the *F*-algebras $C_1 \stackrel{\text{def}}{=} C_0(\rho_1)$ and $C_2 \stackrel{\text{def}}{=} C_0(\rho_2)$ are isomorphic. In this case, the forms ρ_1 and ρ_2 becomes similar over the field $F(\sqrt{d})$. Thus by a theorem of Wadsworth ([27, Theorem 7]), they are already similar over *F*. Therefore the quadrics X_1 and X_2 are isomorphic and consequently $\text{Tors } \text{CH}^2(X) = 0$ by Corollary 2.7.

It remains only to consider the situation when the forms ρ_1 and ρ_2 are anisotropic, $d \neq 1$ and $C_1 \not\simeq C_2$. Set c = ind C. We have: c = 2 or c = 4.

Fix a separable closure \overline{F} of the field F. For the algebra $C_{\overline{F}}$, the variety $X_{\overline{F}}$, etc. we shall use the notation \overline{C} , \overline{X} , etc.

For i = 1, 2, denote by M_i and M'_i the (determined uniquely up to an isomorphism and up to the order) non-isomorphic simple \bar{C}_i -modules. There are exactly 4 different isomorphism classes of simple *C*-modules; they are represented by $M_1 \boxtimes M_2$ ($M_1 \boxtimes M_2$ is by definition the tensor product $M_1 \otimes M_2$ considered as \bar{C} -module in the natural way), $M_1 \boxtimes M'_2$, $M'_1 \boxtimes M_2$, and $M'_1 \boxtimes M'_2$. Denote by m_i the class of M_i and by m'_i the class of M'_i in $K(\bar{C}_i)$. The abelian group $K(\bar{C})$ is freely generated by $m_1 \boxtimes m_2$ ($m_1 \boxtimes m_2$ is defined as follows: for i = 1, 2, one takes the image of $m_i \in K(C_i)$ with respect to the map $K(C_i) \to K(C)$ and than takes the product of the images in the ring K(C)), $m_1 \boxtimes m'_2$, $m'_1 \boxtimes m_2$, and $m'_1 \boxtimes m'_2$. We identify K(C) with a subgroup in $K(\bar{C})$ via the restriction map $K(C) \hookrightarrow K(\bar{C})$.

Lemma 5.3. The subgroup $K(C) \subset K(\overline{C})$ is generated by

$$c \cdot (m_1 \boxtimes m_2 + m_1' \boxtimes m_2')$$
 and $c \cdot (m_1 \boxtimes m_2' + m_1' \boxtimes m_2)$.

Proof. Denote by L the quadratic extension $F(\sqrt{d})$ of the field F, where $d = \det \rho_1 = \det \rho_2$. The algebra C_L is the direct product of 4 copies of a central simple L-algebra of index c. Evidently, the subgroup $K(C_L)$ of $K(\bar{C})$ is freely generated by $c \cdot m_1 \boxtimes m_2, c \cdot m_1 \boxtimes m'_2, c \cdot m'_1 \boxtimes m_2$, and $c \cdot m'_1 \boxtimes m'_2$.

Now we are going to determine K(C) as a subgroup in $K(C_L)$. Computing the norm $N_{L/F}: K(C_L) \to K(C)$, we get:

$$x \stackrel{\text{def}}{=} N_{L/F}(c \cdot m_1 \boxtimes m_2) = c \cdot (m_1 \boxtimes m_2 + m'_1 \boxtimes m'_2);$$
$$x' \stackrel{\text{def}}{=} N_{L/F}(c \cdot m_1 \boxtimes m'_2) = c \cdot (m_1 \boxtimes m'_2 + m'_1 \boxtimes m_2).$$

Thus, the elements x and x' are in K(C). Note that:

- x and x' can be included in a system of free generators of the free abelian group $K(C_L)$ (e.g. $x, x', c \cdot m_1 \boxtimes m_2$, and $c \cdot m_1 \boxtimes m'_2$);
- K(C) is a free abelian group of rank 2 (because the algebra C is the direct product of two copies of a simple algebra, since for i = 1, 2 one has: $C_i = C'_i \otimes_F L$ for a central simple F-algebra C'_i ;
- K(C) is a subgroup of $K(C_L)$ containing x and x'.

Consequently, K(C) is generated by x and x'.

We identify K(X) with a subgroup in $K(\bar{X})$ via the restriction map $K(X) \hookrightarrow K(\bar{X})$ (which is injective by Item 1 of Lemma 4.3). For i = 1, 2, let l_i, l'_i be the different line classes and p_i the point class in $K(\bar{X}_i)$ (see Lemma 3.2).

Corollary 5.4. The group K(X) is generated modulo H by $c \cdot (l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2)$ and $c \cdot p_1 \boxtimes p_2$.

Proof. According to Item 2 of Lemma 4.3, the map $\mathfrak{u}: K(C) \to K(X)/H$ is surjective. By Lemma 5.3, the group K(C) is generated by

$$c \cdot (m_1 \boxtimes m_2 + m_1' \boxtimes m_2')$$
 and $c \cdot (m_1 \boxtimes m_2' + m_1' \boxtimes m_2)$.

Applying Lemma 3.6, we can compute the images of these generators in K(X): up to the order, they are

$$c \cdot \left((1+l_1) \boxtimes (1+l_2) + (1+l_1') \boxtimes (1+l_2') \right) \text{ and } \\ c \cdot \left((1+l_1) \boxtimes (1+l_2') + (1+l_1') \boxtimes (1+l_2) \right).$$

One can modify the first expression as follows (the formulas of Lemma 3.2 are in use):

$$c \cdot \left((1+l_1) \boxtimes (1+l_2) + (1+l'_1) \boxtimes (1+l'_2) \right) =$$

= $c \cdot \left(2 + (l_1+l'_1) \boxtimes 1 + 1 \boxtimes (l_2+l'_2) + l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2 \right) =$
= $c \cdot \left(2 + (h_1+h_1^2/2) \boxtimes 1 + 1 \boxtimes (h_2+h_2^2/2) + l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2 \right) \equiv$
 $\equiv c \cdot (l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) \pmod{H}$

(note that c is divisible by 2). The analogous modification can be made for the second expression as well. Thus, the group K(X) is generated modulo H by $c \cdot (l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2)$ and $c \cdot (l_1 \boxtimes l'_2 + l'_1 \boxtimes l_2)$. Taking the sum of these generators, we get:

$$c \cdot (l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) + c \cdot (l_1 \boxtimes l'_2 + l'_1 \boxtimes l_2) =$$

= $c \cdot (l_1 + l'_1) \boxtimes (l_2 + l'_2) = c \cdot (h_1 + h_1^2/2) \boxtimes (h_2 + h_2^2/2) \equiv$
 $\equiv c \cdot (h_1^2/2) \boxtimes (h_2^2/2) = c \cdot p_1 \boxtimes p_2$

(where the congruence is modulo H).

Lemma 5.5. 1. $c \cdot (l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) \in K(X)^{(2)};$ 2. $c \cdot p_1 \boxtimes p_2 \in K(X)^{(3)};$ 3. for any $0 \neq r \in \mathbb{Z}$, the set $r \cdot c(l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) + H$ has no intersection with $K(X)^{(3)}$.

Proof. 1. It is evident that $c(l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) \in K(\bar{X})^{(2)}$. Since $K(X)^{(2)} = K(\bar{X})^{(2)} \cap K(X)$ (see e.g. [23, Lemme 6.3, (i)]), we are done.

2. If we multiply the element $c(l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) \in K(X)^{(2)}$ by the element $h_1 \boxtimes 1 \in K(X)^{(1)}$, we get:

$$K(X)^{(3)} \ni c(l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) \cdot (h_1 \boxtimes 1) =$$

= $c(p_1 \boxtimes l_2 + p_1 \boxtimes l'_2) = c \cdot p_1 \boxtimes (h_2 + p_2) =$
= $c \cdot p_1 \boxtimes h_2 + c \cdot p_1 \boxtimes p_2$.

Since $c \cdot p_1 \boxtimes h_2 \in H^{(3)} \in K(X)^{(3)}$, it follows that $c \cdot p_1 \boxtimes p_2 \in K(X)^{(3)}$. 3. By Lemmas 3.2 and 4.2, the abelian group $K(\bar{X})$ is freely generated by the products $x_1 \boxtimes x_2$ where x_i is one of the elements $1, l_i, l'_i, p_i$; moreover, the term $K(\bar{X})^{(3)}$ of the filtration is generated by $l_1 \boxtimes p_2, l'_1 \boxtimes p_2, p_1 \boxtimes l_2, p_1 \boxtimes l'_2$ and $p_1 \boxtimes p_2$. In particular, $4K(\bar{X})^{(3)} \subset H$.

Suppose that, for certain $0 \neq r \in \mathbb{Z}$, the intersection of $r \cdot c(l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) + H$ with $K(X)^{(3)}$ is non-empty. Then $4r \cdot c(l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2) \in H$, a contradiction. \Box

Corollary 5.6. Let us supply the quotient K(X)/H with the filtration induced from K(X). Then $\text{Tors } G^2(K(X)/H) = 0$.

Proof. By Corollary 5.4 and Lemma 5.5, $G^2(K(X)/H)$ is an infinite cyclic group (generated by the residue of $c(l_1 \boxtimes l_2 + l'_1 \boxtimes l'_2))$.

To finish the proof of Theorem 5.1, consider the exact sequence

 $0 \rightarrow \mathrm{G}^2 H \rightarrow \mathrm{G}^2 K(X) \rightarrow \mathrm{G}^2(K(X)/H) \rightarrow 0$.

The left-hand side term is torsion-free by Lemma 4.1 while the right-hand side term is torsion-free by Corollary 5.6. Consequently, the middle term is a torsion-free group as well. $\hfill \Box$

Theorem 5.7. The order of the group $\operatorname{Tors} \operatorname{CH}^2(X_1 \times X_2)$ is at most 2.

Proof. Since $2 \operatorname{Tors} \operatorname{CH}^2(X_1 \times X_2) = 0$ by Corollary 2.11, it suffices to show that the torsion in $\operatorname{CH}^2(X_1 \times X_2)$ is a cyclic group.

By Corollary 2.7, it suffices to consider only the case when the both quadratic forms ρ_1 and ρ_2 are anisotropic.

Set as usual $X = X_1 \times X_2$, $C_i = C_0(\rho_i)$ and $C = C_1 \otimes_F C_2$. Suppose that the algebra C is simple. Then K(C) is a cyclic group and therefore, by Item 2 of Lemma 4.3, the quotient K(X)/H is cyclic as well. Moreover, C_1 and C_2 are division algebras (since they are simple and the quadratic forms are anisotropic) and therefore $K(X_i) = H_i$ for i = 1, 2 by Item 4 of Lemma 3.3. Supplying K(X)/H with the filtration induced from K(X), we get an exact sequence of the adjoint graded groups

$$0 \to \mathrm{G}^*H \to \mathrm{G}^*K(X) \to \mathrm{G}^*(K(X)/H) \to 0$$
.

Take any $r \geq 0$. Since $G^r H$ is torsion-free (Lemma 4.1), Tors $G^r K(X)$ is mapped injectively into $G^r(K(X)/H)$. Since K(X)/H is cyclic, $G^r(K(X)/H)$ is cyclic as well and thus so is also Tors $G^r K(X)$. In particular, the group Tors $\operatorname{CH}^2(X) \simeq \operatorname{Tors} G^2 K(X)$ is cyclic.

Now suppose that C is *not* simple. Then

either: dim $X_1 = 2 = \dim X_2$ and det $X_1 = \det X_2$,

or: for i = 1 or for i = 2, one has: dim $X_i = 2$ and det $X_i = 1$.

In the first case, the torsion in $CH^2(X)$ is 0 by Theorem 5.1. In the second case, we replace the surface X_i by a stably birationally equivalent conic (see Lemma 5.2 and Corollary 2.5).

Theorem 5.8. If ind $C_0(\rho_1) \otimes_F C_0(\rho_2) = 4$, then Tors $CH^2(X_1 \times X_2) = 0$.

Proof. We set $C = C_0(\rho_1) \otimes_F C_0(\rho_2)$ and suppose that ind C = 4.

If C is a simple algebra, then it is a skewfield and we are done by Corollary 4.4.

If C is *not* simple, then

either: dim $X_1 = 2 = \dim X_2$ and det $\rho_1 = \det \rho_2$,

or: for i = 1 or for i = 2, one has: dim $X_i = 2$ and det $X_i = 1$.

In the first case, the torsion in $\operatorname{CH}^2(X_1 \times X_2)$ is 0 by Theorem 5.1. In the second case, we replace the surface X_i by a stably birationally equivalent conic (see Lemma 5.2 and Corollary 2.5).

Theorem 5.9. Suppose that dim $\rho_1 = 4$, det $\rho_1 \neq 1$ and that for a certain 3-dimensional subform ρ'_1 of ρ_1 one has:

ind
$$C_0(\rho_1) \otimes_F C_0(\rho_2) = \operatorname{ind} C_0(\rho'_1) \otimes_F C_0(\rho_2)$$
.

Then Tors $\operatorname{CH}^2(X_1 \times X_2) = 0.$

Proof. Applying the same arguments as above, we may assume that

- the forms ρ_1 and ρ_2 are anisotropic and
- one of the following alternative conditions holds:
 - the dimension of ρ_2 equals 3 or
 - the dimension of ρ_2 is 4 and det $\rho_1 \neq \det \rho_2 \neq 1$.

We are going to show that, under the assumptions made, $\operatorname{Tors} G^2 K(X_1 \times X_2) = 0$.

The algebra C is now simple; it has the index 1, 2, or 4. Set c = ind C. The group K(C) is generated by $(c/4) \cdot [C]$ where $[C] \in K(C)$ is the class of C.

Consider the case when dim $\rho_2 = 4$.

It follows from Item 2 of Lemma 4.3 that K(X) is generated modulo H by the element $(c/4)[\mathcal{U}(2,2)]$. Applying Item 2 of Lemma 3.3, one computes that $[\mathcal{U}(2,2)] = (4+2h_1+h_1^2) \boxtimes (4+2h_2+h_2^2) \in K(X)$. Thus, K(X) is generated modulo H also by $x \stackrel{\text{def}}{=} (c/4)(2 \cdot h_1 \boxtimes h_2^2 + 2 \cdot h_1^2 \boxtimes h_2 + h_1^2 \boxtimes h_2^2)$. Since we have the exact sequence

$$0 \to \mathcal{G}^*H \to \mathcal{G}^*K(X) \to \mathcal{G}^*(K(X)/H) \to 0$$

with torsion-free G^*H , it would suffice to show that $x \in K(X)^{(3)}$.

Consider the conic X'_1 determined by ρ'_1 and denote by \mathcal{U}'_1 the Swan's sheaf on X'_1 . The product $\mathcal{U}'_1(1) \boxtimes \mathcal{U}_2(2)$ of the twisted Swan's sheaves has a structure of module over $C' \stackrel{\text{def}}{=} C'_1 \otimes C_2$; its class in K(X'), where $X' \stackrel{\text{def}}{=} X'_1 \times X_2$ is equal to $(2 + h'_1) \boxtimes (4 + 2h_2 + h^2_2)$ where h'_1 is the class in $K(X'_1)$ of a hyperplane section of X'_1 . Since ind C' = ind C = c, the latter product can be divided by (4/c) in K(X'), i.e.

$$K(X') \ni x' \stackrel{\text{def}}{=} (c/4)(2 \cdot 1 \boxtimes h_2^2 + 2 \cdot h_1' \boxtimes h_2 + h_1' \boxtimes h_2^2) .$$

Since $4x' \in K(X')^{(2)}$ and the group $G^1K(X') = CH^1(X')$ is torsion-free (see e.g. [23, Lemme 6.3, (i)]), it follows that $x' \in K(X')^{(2)}$. Since the image of x' with respect to the push-forward given by the closed imbedding $X' \hookrightarrow X$ coincides with x and $\operatorname{codim}_X X' = 1$, the element x is in $K(X)^{(3)}$.

Now suppose that dim $\rho_2 = 3$.

If c = 1, then the quadric $(X_2)_{F(X_1)}$ is isotropic and therefore Tors $CH^2(X) = 0$ by Corollary 2.7. Thus we may assume that c is divisible by 2.

The group K(X) is now generated modulo H by $(c/4)[\mathcal{U}(2,1)]$ and $[\mathcal{U}(2,1)] = (4+2h_1+h_1^2) \boxtimes (2+h_2) \in K(X)$. Thus, K(X) is generated modulo H also by $x \stackrel{\text{def}}{=} (c/4)(h_1^2 \boxtimes h_2)$ and it suffices to show that $x \in K(X)^{(3)}$.

The class in K(X') of the product $\mathcal{U}'_1(1) \boxtimes \mathcal{U}_2(1)$ of the twisted Swan's sheaves is equal this time to $(2 + h'_1) \boxtimes (2 + h_2)$ and can be divided by (4/c) in K(X'), i.e.

$$K(X') \ni x' \stackrel{\text{def}}{=} (c/4)(h'_1 \boxtimes h_2)$$
.

Since $x' \in K(X')^{(2)}$ and the image of x' with respect to the push-forward given by the closed imbedding $X' \hookrightarrow X$ coincides with x, the element x is in $K(X)^{(3)}$.

Corollary 5.10. If ρ_1 and ρ_2 contain similar 3-dimensional subforms, then $\operatorname{Tors} \operatorname{CH}^2(X_1 \times X_2) = 0.$

Proof. If dim $\rho_1 = 3$ or if det $\rho_1 = 1$, then the quadric $(X_2)_{F(X_1)}$ is isotropic and so we are done by Corollary 2.7.

Therefore, we may assume that $\dim \rho_1 = 4$ and $\det \rho_1 \neq 1$. These are the first two conditions of Theorem 5.9. We state that also the last condition of Theorem 5.9 is satisfied. Indeed, denote by $\rho'_1 \subset \rho_1$ and $\rho'_2 \subset \rho_2$ the similar 3-dimensional subforms. According to Lemma 3.4, the *F*-algebras $C_0(\rho'_1)$ and $C_0(\rho'_2)$ are isomorphic and $C_0(\rho_i) = C_0(\rho'_i)_{F(\sqrt{\det \rho_i})}$ for i = 1, 2. Therefore, $\operatorname{ind} C_0(\rho_1) \otimes_F C_0(\rho_2) = 1 = \operatorname{ind} C_0(\rho'_1) \otimes_F C_0(\rho_2)$.

6. The group $I^3(F(\rho,\psi)/F)$

The following assertion is obvious:

Lemma 6.1. Let $\rho = \langle -a, -b, ab, d \rangle$ be a quadratic form over F. For any $k \in F^*$ the following conditions are equivalent. (1) $k \in D_F(\langle\!\langle d \rangle\!\rangle);$

(2)
$$\langle\!\langle a, b, k \rangle\!\rangle = \rho \,\langle\!\langle k \rangle\!\rangle;$$

(3) $\rho \,\langle\!\langle k \rangle\!\rangle \in P_3(F).$

Lemma 6.2. Let $\rho = \langle -a, -b, ab, d \rangle$ be a quadratic form over F. Then

1. $P_3(F(\rho)/F) = \{ \langle \langle a, b, k \rangle \rangle \mid k \in D_F(\langle \langle d \rangle \rangle) \},\$ 2. $H^{3}(F(\rho)/F) = \{(a, b, k) \mid k \in D_{F}(\langle\!\langle d \rangle\!\rangle)\}.$

Proof. 1. See [3, Lemma 3.1].

2. Let $\rho_0 = \langle -a, -b, ab \rangle$. Clearly $H^3(F(\rho)/F) \subset H^3(F(\rho_0)/F)$. It follows from [1, Beweis vom Satz 5.6] that $H^3(F(\rho_0)/F) = (a, b) \cup H^1(F)$. Hence any element $u \in H^3(F(\rho)/F)$ has the form (a, b, x) where $x \in F^*$. Since $(a, b, x) \in$ $H^3(F(\rho)/F)$, the Pfister form $\langle\!\langle a, b, x \rangle\!\rangle_{F(\rho)}$ is hyperbolic. It follows from the first assertion that there exists $k \in D_F(\langle \langle d \rangle \rangle)$ such that $\langle \langle a, b, x \rangle \rangle = \langle \langle a, b, k \rangle \rangle$. Hence u = (a, b, x) = (a, b, k).

Corollary 6.3. Let ρ_1, \ldots, ρ_m be 4-dimensional quadratic forms over F. Then for a quadratic form ϕ the following conditions are equivalent:

- (1) $\phi \in I^3(F(\rho_1)/F) + \dots + I^3(F(\rho_m)/F) + I^4(F);$
- (2) $\phi \in P_3(F(\rho_1)/F) + \dots + P_3(F(\rho_m)/F) + I^4(F);$
- (3) $\phi \in I^3(F)$ and $e^3(\phi) \in H^3(F(\rho_1)/F) + \dots + H^3(F(\rho_m)/F)$.

Proof. $(2) \Rightarrow (1) \Rightarrow (3)$. Obvious. $(3) \Rightarrow (2)$. Follows from Lemma 6.2.

Corollary 6.4. Let ρ_1, \ldots, ρ_m be 4-dimensional quadratic forms such that $H^{3}(F(\rho_{1},\ldots,\rho_{m})/F) = H^{3}(F(\rho_{1})/F) + \cdots + H^{3}(F(\rho_{m})/F).$ Then

$$I^{3}(F(\rho_{1},\ldots,\rho_{m})/F) \subset I^{3}(F(\rho_{1})/F) + \cdots + I^{3}(F(\rho_{m})/F) + I^{4}(F).$$

Corollary 6.5. Let $\rho = \langle -a, -b, ab, d \rangle$ and $\psi = \langle -u, -v, uv, \delta \rangle$ be quadratic forms over F. Then for any $\pi \in I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F)$ there exist $k_1, k_2 \in F^*$ with the following properties:

- 1) $\langle\!\langle a, b, k_1 \rangle\!\rangle = \rho \langle\!\langle k_1 \rangle\!\rangle$ and $\langle\!\langle u, v, k_2 \rangle\!\rangle = \psi \langle\!\langle k_2 \rangle\!\rangle;$ 2) $\pi \equiv \langle\!\langle a, b, k_1 \rangle\!\rangle + \langle\!\langle u, v, k_2 \rangle\!\rangle \pmod{I^4(F)}.$

Proof. By Corollary 6.3, we have $\pi \in P_3(F(\rho)/F) + P_3(F(\psi)/F) + I^4(F)$. Hence there exist $\pi_1 \in P_3(F(\rho)/F)$ and $\pi_2 \in P_3(F(\psi)/F)$ such that

$$\pi \equiv \pi_1 + \pi_2 \pmod{I^4(F)}.$$

By Lemma 6.2, there exist $k_1, k_2 \in F^*$ such that $\pi_1 = \langle \langle a, b, k_1 \rangle \rangle$ and $\pi_2 =$ $\langle\!\langle u, v, k_2 \rangle\!\rangle$. Finally, Lemma 6.1 shows that $\langle\!\langle a, b, k_1 \rangle\!\rangle = \rho \langle\!\langle k_1 \rangle\!\rangle, \langle\!\langle u, v, k_2 \rangle\!\rangle =$ $\psi \langle\!\langle k_2 \rangle\!\rangle.$

7. The case of index 1

In this section, we study the group $H^3(F(\rho,\psi)/F)$ in the case where ρ, ψ are 4-dimensional quadratic forms with non-trivial discriminants and ind $C_0(\rho) \otimes_F$ $C_0(\psi) = 1$. In the case $d_{\pm} \rho = d_{\pm} \psi$ we obviously have $C_0(\rho) \simeq C_0(\psi)$. Hence

17

 ρ is similar to ψ (see [27, Theorem 7]) and hence the group $H^3(F(\rho, \psi)/F)$ coincides with $H^3(F(\rho)/F)$. So it is sufficient to study only the case where $d_{\pm} \rho \neq d_{\pm} \psi$.

Replacing ρ and ψ by similar forms, we can rewrite our conditions as follows:

1) $\rho = \langle -a, -b, ab, d \rangle$ and $\psi = \langle -u, -v, uv, \delta \rangle$ with $a, b, d, u, v, \delta \in F^*$;

- 2) d, δ , and $d\delta$ are not squares in F^* ;
- 3) $\operatorname{ind}((a, b) \otimes_F (u, v))_{F(\sqrt{d}, \sqrt{\delta})} = 1.$

During this section we will suppose that the conditions 1)–3) hold. We define the set $\Gamma(\rho,\psi)$ as

 $\{\gamma \in I^3(F) \mid \text{there exist } l_1, l_2 \in F^* \text{ such that } \gamma = l_1 \rho + l_2 \psi + \langle \langle d\delta \rangle \rangle \}.$

Lemma 7.1. The set $\Gamma(\rho, \psi)$ is not empty.

Proof. Since $\operatorname{ind}((a, b) \otimes_F (u, v))_{F(\sqrt{d}, \sqrt{\delta})} = 1$, there exist $s, r \in F^*$ such that $(a, b) \otimes (u, v) = (d, s) \otimes (\delta, r)$. Set $l_1 = \delta s$, $l_2 = -\delta r$. It is sufficient to verify that $\gamma \stackrel{\text{def}}{=} l_1 \rho + l_2 \psi + \langle\!\langle d\delta \rangle\!\rangle \in I^3(F)$. We have

$$\begin{split} \gamma &= \delta s \rho - \delta r \psi + \langle 1, -d\delta \rangle = \delta (s \rho - r \psi + \langle \delta, -d \rangle) = \\ &= \delta (s (\langle\!\langle a, b \rangle\!\rangle - \langle\!\langle d \rangle\!\rangle) - r (\langle\!\langle u, v \rangle\!\rangle - \langle\!\langle \delta \rangle\!\rangle) + (\langle\!\langle d \rangle\!\rangle - \langle\!\langle \delta \rangle\!\rangle)) = \\ &= \delta (s \langle\!\langle a, b \rangle\!\rangle - r \langle\!\langle u, v \rangle\!\rangle + \langle\!\langle d, s \rangle\!\rangle - \langle\!\langle \delta, r \rangle\!\rangle) \;. \end{split}$$

Therefore $\gamma \in I^2(F)$ and $c(\gamma) = (a,b) + (u,v) + (d,s) + (\delta,r) = 0$. Hence $\gamma \in I^3(F)$.

Lemma 7.2. $\Gamma(\rho, \psi) \subset I^3(F(\rho, \psi)/F).$

Proof. Let $\gamma = l_1 \rho + l_2 \psi + \langle \langle d\delta \rangle \rangle \in \Gamma(\rho, \psi)$. We have $\dim(\gamma_{F(\psi,\rho)})_{an} \leq \dim(\rho_{F(\rho)})_{an} + \dim(\psi_{F(\psi)})_{an} + \dim\langle \langle \delta d \rangle \rangle \leq 2 + 2 + 2 = 6 < 8$. Since $\gamma \in I^3(F)$, the Arason-Pfister Hauptsatz shows that $\gamma_{F(\psi,\rho)}$ is hyperbolic. \Box

Corollary 7.3. For any $\gamma \in \Gamma(\rho, \psi)$, we have $e^3(\gamma) \in H^3(F(\rho, \psi)/F)$.

Lemma 7.4. Let $l, k \in F^*$ and let τ be a quadratic form such that $\tau \langle\!\langle k \rangle\!\rangle \in I^3(F)$. Then $l\tau - \langle\!\langle k \rangle\!\rangle \tau \equiv lk\tau \pmod{I^4(F)}$.

Proof.
$$l\tau - \langle\!\langle k \rangle\!\rangle \tau - lk\tau = - \langle\!\langle l \rangle\!\rangle \langle\!\langle k \rangle\!\rangle \tau \in \langle\!\langle l \rangle\!\rangle I^3(F) \subset I^4(F).$$

Lemma 7.5. Let $\gamma \in \Gamma(\rho, \psi)$, $\pi_1 \in P_3(F(\rho)/F)$ and $\pi_2 \in P_3(F(\psi)/F)$. Then there exists $\gamma' \in \Gamma(\rho, \psi)$ such that $\gamma - \pi_1 - \pi_2 \equiv \gamma' \pmod{I^4(F)}$. Moreover, $\gamma + \pi_1 + \pi_2 \equiv \gamma' \pmod{I^4(F)}$.

Proof. Let $l_1, l_2 \in F^*$ be such that $\gamma = l_1 \rho + l_2 \psi + \langle \langle d\delta \rangle \rangle$. By Lemmas 6.1 and 6.2, there exist $k_1, k_2 \in F^*$ such that $\pi_1 = \rho \langle \langle k_1 \rangle \rangle$, $\pi_2 = \psi \langle \langle k_2 \rangle \rangle$. By Lemma 7.4, we have

$$l_1\rho - \pi_1 = l_1\rho - \langle\!\langle k_1\rangle\!\rangle \rho \equiv l_1k_1\rho \pmod{I^4(F)},$$

$$l_2\psi - \pi_2 = l_2\psi - \langle\!\langle k_2\rangle\!\rangle \psi \equiv l_2k_2\psi \pmod{I^4(F)}.$$

Hence $\gamma - \pi_1 - \pi_2 \equiv l_1 k_1 \rho + l_2 k_2 \psi + \langle \langle d\delta \rangle \rangle \pmod{I^4(F)}$. Setting $\gamma' = l_1 k_1 \rho + l_2 k_2 \psi + \langle \langle d\delta \rangle \rangle$, we get the required equation $\gamma - \pi_1 - \pi_2 \equiv \gamma' \pmod{I^4(F)}$.

The second equation $\gamma + \pi_1 + \pi_2 \equiv \gamma' \pmod{I^4(F)}$ is obvious in view of the congruence $\pi_i \equiv -\pi_i \pmod{I^4(F)}$ (for i = 1, 2).

Corollary 7.6.
$$\Gamma(\rho, \psi) + I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F) = \Gamma(\rho, \psi) + I^4(F).$$

Proof. It is an obvious consequence of Corollary 6.3 and Lemma 7.5

Lemma 7.7. The following conditions are equivalent:

- (1) $I^{3}(F(\rho,\psi)/F) \subset I^{3}(F(\rho)/F) + I^{3}(F(\psi)/F) + I^{4}(F);$
- (2) $\Gamma(\rho, \psi) \subset I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F);$
- (3) there exists $\gamma \in \Gamma(\rho, \psi)$ such that $\gamma \in I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F)$;
- (4) $\Gamma(\rho, \psi)$ contains a hyperbolic form, i.e. $0 \in \Gamma(\rho, \psi)$;
- (5) the quadratic forms ψ and ρ contain similar 3-dimensional subforms;
- (6) Tors $\operatorname{CH}^2(X_{\rho} \times X_{\psi}) = 0;$
- (7) $H^{3}(F(\rho,\psi)/F) = H^{3}(F(\rho)/F) + H^{3}(F(\psi)/F).$

Proof. $(1) \Rightarrow (2)$. Obvious in view of Lemma 7.2.

 $(2) \Rightarrow (3)$. Obvious in view of Lemma 7.1.

(3) \Rightarrow (4). Let γ be such as in (3). By Corollary 6.3, there exist $\pi_1 \in P_3(F(\rho)/F)$ and $\pi_2 \in P_3(F(\psi)/F)$ such that $\gamma \in \pi_1 + \pi_2 + I^4(F)$. Hence $\gamma - \pi_1 - \pi_2 \in I^4(F)$. By Lemma 7.5, there exists $\gamma' \in \Gamma(\rho, \psi)$ such that $\gamma - \pi_1 - \pi_2 \equiv \gamma' \pmod{I^4(F)}$. Since $\gamma - \pi_1 - \pi_2 \in I^4(F)$, we have $\gamma' \in I^4(F)$. By definition of $\Gamma(\rho, \psi)$, $\dim(\gamma')_{an} \leq 4 + 4 + 2 = 10 < 16$. Since $\gamma' \in I^4(F)$, the Arason-Pfister Hauptsatz shows that $\gamma' = 0$.

(4) \Rightarrow (5). Since $0 \in \Gamma(\rho, \psi)$, there exist $l_1, l_2 \in F^*$ such that $0 = l_1\rho + l_2\psi + \langle\langle d\delta\rangle\rangle$. Thus $l_1\rho + l_2\psi = -\langle\langle d\delta\rangle\rangle$. Hence $l_1\rho$ and $l_2\psi$ contain a common subform of the dimension $(\dim(\rho) + \dim(\psi) - \dim\langle\langle d\delta\rangle\rangle)/2 = (4 + 4 - 2)/2 = 3$.

 $(5) \Rightarrow (6)$. See Corollary 5.10.

 $(6) \Rightarrow (7)$. See Corollary 2.13.

 $(7) \Rightarrow (1)$. It is a particular case of Corollary 6.4.

Proposition 7.8. For an arbitrary element $\gamma \in \Gamma(\rho, \psi)$, one has

$$H^{3}(F(\rho,\psi)/F) = H^{3}(F(\rho)/F) + H^{3}(F(\psi)/F) + e^{3}(\gamma)H^{0}(F) .$$

Proof. By Corollary 7.3, the element $e^3(\gamma)$ belongs to $H^3(F(\rho,\psi)/F)$. If Tors $\operatorname{CH}^2(X_{\rho} \times X_{\psi}) = 0$ then by Corollary 2.13, we have $H^3(F(\rho,\psi)/F) =$ $H^3(F(\rho)/F) + H^3(F(\psi)/F)$ and the proof is complete. If Tors $\operatorname{CH}^2(X_{\rho} \times X_{\psi}) \neq$ 0, Lemma 7.7 shows that $\gamma \notin I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F)$. Hence, by Corollary 6.3, $e^3(\gamma) \notin H^3(F(\rho)/F) + H^3(F(\psi)/F)$. To complete the proof it is sufficient to apply Corollary 2.13 and Theorem 5.7.

Corollary 7.9. $I^{3}(F(\rho,\psi)/F) \subset I^{3}(F(\rho)/F) + I^{3}(F(\psi)/F) + \{\Gamma(\rho,\psi),0\} + I^{4}(F).$

Proof. Let $\tau \in I^3(F(\rho, \psi)/F)$. Choose an element $\gamma \in \Gamma(\rho, \psi)$. By Proposition 7.8, either $e^3(\tau) \in H^3(F(\rho)/F) + H^3(F(\psi)/F)$ or $e^3(\tau - \gamma) \in H^3(F(\rho)/F) + H^3(F(\psi)/F)$. It remains to apply Corollary 6.3.

Proposition 7.10. Let $\pi \in I^3(F(\rho, \psi)/F)$. Then at least one of the following conditions holds

1) $\pi \in I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F);$ 2) $\pi \in \Gamma(\rho, \psi) + I^4(F).$

Proof. Obvious in view of Corollaries 7.9 and 7.6.

8. Main theorem

Proposition 8.1. Let $\phi = \langle \langle a, b \rangle \rangle \perp -c \langle \langle d \rangle \rangle$ be an anisotropic quadratic form. Let $\psi = \langle -u, -v, uv, \delta \rangle$ and $\rho = \langle -a, -b, ab, d \rangle$. Then:

- 1. The following two conditions are equivalent:
 - (i) $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho, \psi)/F),$
 - (ii) $\phi_{F(\psi)}$ is isotropic.
- 2. The following two conditions are equivalent:
 - (i) $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F),$
 - (ii) there exits a 5-dimensional Pfister neighbor ϕ_0 such that $\phi_0 \subset \phi$ and $(\phi_0)_{F(\psi)}$ is isotropic.

Proof. Note that $\langle\!\langle a, b, c \rangle\!\rangle = \phi - c\rho = \rho - c\phi$.

(1i) \Rightarrow (1ii). Let $E = F(\psi)$. If the Pfister form $\langle\!\langle a, b, c \rangle\!\rangle_E$ is isotropic, its neighbor $(\langle\!\langle a, b \rangle\!\rangle \perp \langle -c \rangle)_E$ is isotropic too. Since $\langle\!\langle a, b \rangle\!\rangle \perp \langle -c \rangle \subset \phi$, the form ϕ_E is isotropic. Thus we can suppose that $\langle\!\langle a, b, c \rangle\!\rangle_E$ is anisotropic. By the assumption, $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho, \psi)/F) = I^3(E(\rho)/F)$. Hence the anisotropic Pfister form $\langle\!\langle a, b, c \rangle\!\rangle_E$ becomes isotropic over the function field of ρ_E . By the Arason-Pfister subform theorem, we have $k\rho_E \subset \langle\!\langle a, b, c \rangle\!\rangle_E$ where k is an arbitrary element of $D_E(\rho) \cdot D_E(\langle\!\langle a, b, c \rangle\!\rangle)$. Since $(ab)^{-1} \in D_E(\rho)$ and $-abc \in$ $D_E(\langle\!\langle a, b, c \rangle\!\rangle)$ we can take $k = (ab)^{-1} \cdot (-abc) = -c$. Thus $-c\rho_E \subset \langle\!\langle a, b, c \rangle\!\rangle_E$. Hence dim $((\langle\!\langle a, b, c \rangle\!\rangle \perp c\rho)_E)_{an} \leq 8 - 4 = 4$. Since $\langle\!\langle a, b, c \rangle\!\rangle + c\rho = \phi$, it follows that dim $(\phi_E)_{an} \leq 4$. Hence $\phi_{F(\psi)} = \phi_E$ is isotropic.

(1ii) \Rightarrow (1i). Since $\phi_{F(\psi)}$ and $\rho_{F(\rho)}$ are isotropic, we have $\dim(\phi_{F(\psi)})_{an} \leq 4$ and $\dim(\rho_{F(\rho)})_{an} \leq 2$. Therefore $\dim(\langle\!\langle a, b, c \rangle\!\rangle_{F(\rho,\psi)})_{an} = \dim((\phi - c\rho)_{F(\rho,\psi)})_{an} \leq 4 + 2 = 6$. By the Arason-Pfister theorem, $\langle\!\langle a, b, c \rangle\!\rangle_{F(\rho,\psi)}$ is hyperbolic. Hence $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho, \psi)/F)$.

(2i) \Rightarrow (2ii). By Corollary 6.5, there exist $k_1, k_2 \in F^*$ such that $\langle\!\langle a, b, k_1 \rangle\!\rangle = \rho \langle\!\langle k_1 \rangle\!\rangle$, $\langle\!\langle u, v, k_2 \rangle\!\rangle = \psi \langle\!\langle k_2 \rangle\!\rangle$, and

$$\langle\!\langle a, b, c \rangle\!\rangle \equiv \langle\!\langle a, b, k_1 \rangle\!\rangle + \langle\!\langle u, v, k_2 \rangle\!\rangle \pmod{I^4(F)}$$

It follows from [2, Theorem 4.8] that the Pfister forms $\langle\!\langle a, b, c \rangle\!\rangle$, $\langle\!\langle a, b, k_1 \rangle\!\rangle$, and $\langle\!\langle u, v, k_2 \rangle\!\rangle$ are linked. Hence there exists $s \in F^*$ such that $s \langle\!\langle u, v, k_2 \rangle\!\rangle = \langle\!\langle a, b, k_1 \rangle\!\rangle - \langle\!\langle a, b, c \rangle\!\rangle$. Since $\langle\!\langle a, b, k_1 \rangle\!\rangle = \rho \langle\!\langle k_1 \rangle\!\rangle$ and $\langle\!\langle a, b, c \rangle\!\rangle = \rho - c\phi$, we have $s \langle\!\langle u, v, k_2 \rangle\!\rangle = \rho \langle\!\langle k_1 \rangle\!\rangle - (\rho - c\phi) = c\phi - k_1\rho$. Therefore $\phi - cs \langle\!\langle u, v, k_2 \rangle\!\rangle = ck_1\rho$. Hence ϕ and $cs \langle\!\langle u, v, k_2 \rangle\!\rangle$ contain a common subform of the dimension

$$\frac{1}{2}(\dim \phi + \dim(sc\,\langle\!\langle u, v, k_2 \rangle\!\rangle) - \dim(ck_1\rho)) = \frac{1}{2}(6+8-4) = 5.$$

20

Let us denote such a form by ϕ_0 . By the definition, we have $\phi_0 \subset \phi$. Since $\phi_0 \subset sc \langle\!\langle u, v, k_2 \rangle\!\rangle$, it follows that ϕ_0 is a Pfister neighbor. Since $\langle\!\langle u, v, k_2 \rangle\!\rangle = \psi \langle\!\langle k_2 \rangle\!\rangle$, it follows that $\langle\!\langle u, v, k_2 \rangle\!\rangle_{F(\psi)}$ is isotropic. Hence the Pfister neighbor $(\phi_0)_{F(\psi)}$ of $\langle\!\langle u, v, k_2 \rangle\!\rangle_{F(\psi)}$ is isotropic as well.

(2ii) \Rightarrow (2i). Let ϕ_0 be a 5-dimensional Pfister neighbor such that $\phi_0 \subset \phi$ and $(\phi_0)_{F(\psi)}$ is isotropic. Let us write ϕ in the form $\phi = \phi_0 \perp \langle s_0 \rangle$. Since ϕ_0 is a Pfister neighbor, there exists $\pi \in GP_3(F)$ such that $\phi_0 \subset \pi$. We can write π in the form $\pi = \phi_0 \perp - \langle s_1, s_2, s_3 \rangle$. Set $\gamma = \langle s_0, s_1, s_2, s_3 \rangle$. We have

$$\gamma = \phi - \pi \equiv \phi = \langle\!\langle a, b, c
angle\!\rangle + c\rho \equiv c\rho \pmod{I^3(F)}.$$

Since dim $\gamma = \dim c\rho = 4$ it follows from the Wadsworth's theorem ([27, Theorem 7]) that γ is similar to $c\rho$. Hence there exists $k \in F^*$ such that $\gamma = ck\rho$. We have

$$\langle\!\langle a, b, c \rangle\!\rangle = \rho - c\phi = \rho - c(\gamma + \pi) = \rho - c(ck\rho + \pi) = \langle\!\langle k \rangle\!\rangle \rho - c\pi.$$

Now it is sufficient to verify that $\langle\!\langle k \rangle\!\rangle \rho \in I^3(F(\rho)/F)$ and $\pi \in I^3(F(\psi)/F)$. We have $\langle\!\langle k \rangle\!\rangle \rho = \langle\!\langle a, b, c \rangle\!\rangle + c\pi \in I^3(F)$. Since dim $(\langle\!\langle k \rangle\!\rangle \rho_{F(\rho)})_{an} < 8$, the Arason-Pfister Hauptsatz shows that $\langle\!\langle k \rangle\!\rangle \rho_{F(\rho)}$ is hyperbolic. Thus $\langle\!\langle k \rangle\!\rangle \rho \in I^3(F(\rho)/F)$. Since $\phi_0 \subset \pi$ and $(\phi_0)_{F(\psi)}$ is isotropic, $\pi_{F(\psi)}$ is isotropic as well. Since $\pi \in GP_3(F)$, it follows that $\pi_{F(\psi)}$ is hyperbolic. Hence $\pi \in I^3(F(\psi)/F)$.

Corollary 8.2. Let $\phi = \langle \langle a, b \rangle \rangle \perp -c \langle \langle d \rangle \rangle$ be an anisotropic quadratic form. Let $\psi = \langle -u, -v, uv, \delta \rangle$ and $\rho = \langle -a, -b, ab, d \rangle$. Suppose that the group $CH^2(X_{\psi} \times X_{\rho})$ is torsion-free. Then the following conditions are equivalent:

- (1) $\phi_{F(\psi)}$ is isotropic;
- (2) there exits a 5-dimensional Pfister neighbor ϕ_0 such that $\phi_0 \subset \phi$ and $(\phi_0)_{F(\psi)}$ is isotropic

Proof. (1) \Rightarrow (2). By Item 1 of Proposition 8.1, we know that $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho, \psi)/F)$. Since Tors $\operatorname{CH}^2(X_{\psi} \times X_{\rho}) = 0$, Corollary 2.13 implies that

$$H^{3}(F(\rho,\psi)/F) = H^{3}(F(\rho)/F) + H^{3}(F(\psi)/F)];$$

By Corollary 6.4, $I^3(F(\rho, \psi)/F) \subset I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F)$. Applying Proposition 8.1 once again, we are done. (2) \Rightarrow (1). Obvious.

Lemma 8.3. Let ϕ be a 6-dimensional form and ψ be a 4-dimensional form. Suppose that ψ is similar to a subform in ϕ . Then ind $C_0(\phi) \otimes_F C_0(\psi) = 1$.

Proof. We can suppose that $\psi \subset \phi$. Hence there exists a 2-dimensional form μ such that $\psi \perp \mu = \phi$. Let E be a field extension of F generated by $\sqrt{d_{\pm}\phi}$ and $\sqrt{d_{\pm}\psi}$. Obviously $\phi_E, \psi_E \in I^2(F)$ and $\operatorname{ind} C_0(\phi) \otimes_F C_0(\psi) = \operatorname{ind} C_0(\phi_E) \otimes_E C_0(\psi_E)$. Thus we can reduce our problem to the case where $\phi, \psi \in I^2(F)$. Then $\mu \in I^2(F)$. Since dim $\mu = 2$, the form μ is hyperbolic. Hence $\phi = \psi \perp \mathbb{H}$. Therefore $C_0(\phi) = C_0(\psi) \otimes_F M_2(F)$. Hence $\operatorname{ind} C_0(\phi) \otimes_F C_0(\psi) = 1$. **Corollary 8.4.** Let $\phi = \langle \langle a, b \rangle \rangle \perp -c \langle \langle d \rangle \rangle$ be an anisotropic quadratic form. Let $\psi = \langle -u, -v, uv, \delta \rangle$ and $\rho = \langle -a, -b, ab, d \rangle$. Suppose that $\operatorname{ind} C_0(\phi) \otimes_F C_0(\psi) \neq 1$. Then the following conditions are equivalent:

- (1) $\phi_{F(\psi)}$ is isotropic and the isotropy is standard;
- (2) there exits a 5-dimensional Pfister neighbor ϕ_0 such that $\phi_0 \subset \phi$ and $(\phi_0)_{F(\psi)}$ is isotropic;
- (3) $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F);$
- (4) $(a,b,c) \in H^3(F(\rho)/F) + H^3(F(\psi)/F).$

Proof. (1) \Rightarrow (2). Let ϕ and ψ be such as in (1). Let us suppose that the condition (2) is not satisfied. Then by the definition of standard isotropy, ψ is similar to a subform of ϕ . By Lemma 8.3, we have ind $C_0(\phi) \otimes_F C_0(\psi) = 1$. This contradicts to our assumption.

$$(2) \Rightarrow (1)$$
. Obvious.

 $(3) \iff (4) \iff (1)$. Follows from Proposition 8.1 and Corollary 6.3.

Theorem 8.5. Let ϕ be an anisotropic 6-dimensional quadratic form and ψ be a 4-dimensional quadratic form with $d_{\pm}\psi = d_{\pm}\phi \neq 1$. Suppose that $\phi_{F(\psi)}$ is isotropic. Then there exits a 5-dimensional Pfister neighbor ϕ_0 such that $\phi_0 \subset \phi$ and $(\phi_0)_{F(\psi)}$ is isotropic.

Proof. If $\operatorname{ind} C_0(\phi) = 1$ then ϕ is a Pfister neighbor. In this case we can take ϕ_0 to be equal to an arbitrary 5-dimensional subform in ϕ . In the case ind $C_0(\phi) = 4$, it follows from [5] that $\phi_{F(\psi)}$ is anisotropic and we have a contradiction. Thus we can assume that $\operatorname{ind} C_0(\phi) = 2$. Then ϕ is similar to a form of the kind $\langle\!\langle a, b \rangle\!\rangle \perp -c \langle\!\langle d \rangle\!\rangle$. Since $d_{\pm} \psi = d_{\pm} \phi$, there exist $u, v \in F^*$ such that ψ is similar to the form $\langle -u, -v, uv, d \rangle$. Replacing ϕ and ψ by similar forms, we can suppose that

$$\phi = \langle\!\langle a, b \rangle\!\rangle \perp -c \langle\!\langle d \rangle\!\rangle$$
 and $\psi = \langle -u, -v, uv, d \rangle$.

Let $\rho = \langle -a, -b, ab, d \rangle$. It follows from Theorem 5.1 that Tors $CH^2(X_{\psi} \times X_{\rho}) = 0$. Now the result required follows immediately from Corollary 8.2.

Proposition 8.6. Let $\phi = \langle \langle a, b \rangle \rangle \perp -c \langle \langle d \rangle \rangle$ and $\psi = \langle -u, -v, uv, \delta \rangle$ be anisotropic quadratic forms. Suppose that ind $C_0(\phi) \otimes_F C_0(\psi) = 4$. Then the following conditions are equivalent:

- (1) $\phi_{F(\psi)}$ is isotropic;
- (2) There is a 5-dimensional subform $\phi_0 \subset \phi$ which is a Pfister neighbor and $(\phi_0)_{F(\psi)}$ is isotropic.

Proof. Let $\rho = \langle -a, -b, ab, d \rangle$. Clearly $C_0(\phi) = M_2(F) \otimes_F C_0(\rho)$. Hence ind $C_0(\rho) \otimes_F C_0(\psi) = 4$. It follows from Theorem 5.8 that $\operatorname{Tors} \operatorname{CH}^2(X_{\rho} \times X_{\psi}) = 0$. By Corollary 8.2, we are done.

Proposition 8.7. Let $\phi = \langle \langle a, b \rangle \rangle \perp -c \langle \langle d \rangle \rangle$ and $\psi = \langle -u, -v, uv, \delta \rangle$ be anisotropic quadratic forms with $\delta \notin F^{*2}$. Suppose that ind $C_0(\phi) \otimes_F C_0(\psi) =$ 1. Then the following conditions are equivalent:

(1) $\phi_{F(\psi)}$ is isotropic;

(2) Either ψ is similar to a subform in ϕ or there exists a 5-dimensional subform $\phi_0 \subset \phi$ which is a Pfister neighbor and $(\phi_0)_{F(\psi)}$ is isotropic.

Proof. (1) \Rightarrow (2). Since ϕ is anisotropic, we have $d \notin F^{*2}$. In view of Theorem 8.5 is sufficient to consider the case $d\delta \notin F^{*2}$. Let $\rho = \langle -a, -b, ab, d \rangle$. Since $C_0(\phi) = M_2(F) \otimes_F C_0(\rho)$, we have ind $C_0(\rho) \otimes_F C_0(\psi) = 1$. Thus all the assumptions of $\S7$ hold. Propositions 7.10 and 8.1 show that at least one of the following conditions holds:

- 1) $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F),$
- 2) $\langle\!\langle a, b, c \rangle\!\rangle \in \Gamma(\rho, \psi) + I^4(F).$

In the first case, Proposition 8.1 asserts that there exists a 5-dimensional subform $\phi_0 \subset \phi$ which is a Pfister neighbor and $(\phi_0)_{F(\psi)}$ is isotropic.

Thus we can suppose that $\langle\!\langle a, b, c \rangle\!\rangle \in \Gamma(\rho, \psi) + I^4(F)$. Let $\gamma = l_1 \rho + l_2 \psi + l_2 \psi$ $\langle\!\langle d\delta \rangle\!\rangle \in \Gamma(\rho,\psi)$ be such that $\langle\!\langle a,b,c \rangle\!\rangle \in \gamma + I^4(F)$. Since $\langle\!\langle a,b,c \rangle\!\rangle = \rho - c\phi$, we have

$$l_1\rho - l_1c\phi = l_1 \langle\!\langle a, b, c \rangle\!\rangle \equiv \langle\!\langle a, b, c \rangle\!\rangle \equiv \gamma = l_1\rho + l_2\psi + \langle\!\langle d\delta \rangle\!\rangle \pmod{I^4(F)}.$$

Hence $l_1 c\phi + l_2 \psi + \langle\!\langle d\delta \rangle\!\rangle \in I^4(F)$. Since $\dim(l_1 c\phi + l_2 \psi + \langle\!\langle d\delta \rangle\!\rangle)_{an} \le 6 + 4 + 4$ 2 = 12 < 16, the Arason-Pfister Hauptsatz shows that $l_1 c \phi + l_2 \psi + \langle \langle d \delta \rangle \rangle =$ 0. Therefore $\phi = -cl_1l_2\psi - cl_1\langle\langle d\delta\rangle\rangle$. Since dim $\phi = 6 = \dim(-cl_1l_2\psi \perp$ $-cl_1 \langle\!\langle d\delta \rangle\!\rangle$, we have $\phi = -cl_1l_2\psi \perp -cl_1 \langle\!\langle d\delta \rangle\!\rangle$. Hence ψ is similar to a subform in ϕ .

 $(2) \Rightarrow (1)$. Obvious.

Together with results described in Introduction, Theorem 8.5, Propositions 8.6 and 8.7 give rise to the following

Theorem 8.8. Let ϕ be an anisotropic quadratic form of dimension ≤ 6 and ψ be such that $\phi_{F(\psi)}$ is isotropic. If the isotropy is non-standard then

- dim $\phi = 6$ and dim $\psi = 4$;
- $1 \neq d_{\pm} \phi \neq d_{\pm} \psi \neq 1;$
- ind $C_0(\phi) = 2$; and
- ind $C_0(\phi) \otimes_F C_0(\psi) = 2$.

9. The case of index 2

Theorem 8.8 implies that if there exists a quadratic form ϕ of dimension \leq 6 having a non-standard isotropy over the function field of a quadratic form ψ , then there are $a, b, c, d, u, v, \delta \in F^*$ such that $\phi \sim \langle\!\langle a, b \rangle\!\rangle \perp -c \langle\!\langle d \rangle\!\rangle$, $\psi \sim \langle -u, -v, uv, \delta \rangle, d, \delta, d\delta \notin F^{*2}$, and $\operatorname{ind}((a, b) \otimes_F (u, v))_{F(\sqrt{d}, \sqrt{\delta})} = 2.$

Set $\rho = \langle -a, -b, ab, d \rangle$. By Corollary 8.2, if $\operatorname{Tors} \operatorname{CH}^2(X_{\psi} \times X_{\rho}) = 0$, then the isotropy is standard.

In this section we prove the following

Theorem 9.1. Let $a, b, u, v, d, \delta \in F^{*2}$ be such that $d, \delta, d\delta \notin F^{*2}$. Let $\rho =$ $\langle -a, -b, ab, d \rangle$ and $\psi = \langle -u, -v, uv, \delta \rangle$. Suppose that ind $C_0(\rho) \otimes_F C_0(\psi) = 2$. The following conditions are equivalent:

- (1) Tors $\operatorname{CH}^2(X_{\rho} \times X_{\psi}) \neq 0$;
- (2) there exists $c \in F^*$ such that the quadratic form $\phi = \langle\!\langle a, b \rangle\!\rangle \perp -c \langle\!\langle d \rangle\!\rangle$ is isotropic over $F(\psi)$, but the isotropy is not standard.

Proof. $(2) \Rightarrow (1)$. Obvious in view of Corollary 8.2.

(1) \Rightarrow (2). Since Tors $\operatorname{CH}^2(X_{\rho} \times X_{\psi}) \neq 0$, it follows from Corollary 2.13 that there exists $w \in H^3(F(\rho, \psi)/F)$ such that $w \notin H^3(F(\rho)/F) + H^3(F(\psi)/F)$. Let $\rho_0 = \langle -a, -b, ab \rangle$. It follows from Theorem 5.9 that $\operatorname{ind} C_0(\rho_0) \otimes_F C_0(\psi) \neq$ $\operatorname{ind} C_0(\rho) \otimes_F C_0(\psi) = 2$. Therefore $\operatorname{ind} C_0(\rho_0) \otimes_F C_0(\psi) = 4$. By Theorem 5.8, we have $\operatorname{Tors} \operatorname{CH}^2(X_{\rho_0} \times X_{\psi}) = 0$. By Corollary 2.13, we have $H^3(F(\rho_0, \psi)/F) = H^3(F(\rho_0)/F) + H^3(F(\psi)/F)$. Hence

$$w \in H^{3}(F(\rho, \psi)/F) \subset H^{3}(F(\rho_{0}, \psi)/F) = H^{3}(F(\rho_{0})/F) + H^{3}(F(\psi)/F).$$

Since $H^3(F(\rho_0)/F) = (a, b) \cup H^1(F)$, there exists $c \in F^*$ such that $w - (a, b, c) \in H^3(F(\psi)/F)$, i.e. $w \equiv (a, b, c) \pmod{H^3(F(\psi)/F)}$. By the assumption on w, we see that $(a, b, c) \in H^3(F(\rho, \psi)/F)$ and $(a, b, c) \notin H^3(F(\rho)/F) + H^3(F(\psi)/F)$. Therefore, $\langle\!\langle a, b, c \rangle\!\rangle \in I^3(F(\rho, \psi)/F)$ and

$$\langle\!\langle a, b, c \rangle\!\rangle \notin I^3(F(\rho)/F) + I^3(F(\psi)/F) + I^4(F)$$

By Proposition 8.1, the quadratic form $\phi_{F(\psi)}$ is isotropic. By Corollary 8.4, the isotropy is not standard.

References

- Arason, J. Kr. Cohomologische Invarianten quadratischer Formen. J. Algebra 36 (1975), 448–491.
- [2] Elman, R., Lam, T. Y. Pfister forms and K-theory of fields. J. Algebra 23 (1972), 181–213.
- [3] Hoffmann, D. W. Isotropy of 5-dimensional quadratic forms over the function field of a quadric. Proc. Symp. Pure Math. 58.2 (1995), 217-225.
- [4] Hoffmann, D. W. On 6-dimensional quadratic forms isotropic over the function field of a quadric. Comm. Algebra 22 (1994), 1999–2014.
- [5] Izhboldin O. T., Karpenko N. A. Isotropy of virtual Albert forms over function fields of quadrics. Math. Nachr., to appear.
- [6] Izhboldin, O. T., Karpenko, N. A. Some new examples in the theory of quadratic forms. K-Theory Preprint Archives (http://www.math.uiuc.edu/K-theory/), Preprint N°234 (1997).
- [7] Kahn, B. Descente galoisienne et K_2 des corps de nombres. K-Theory 7 (1993), 55–100.
- [8] Karpenko, N. A. Chow ring of a projective quadric. Ph. D. theses (in Russian), Leningrad (1990), 80 p.
- [9] Karpenko, N. A. Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2 (1991), no. 1, 141–162 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 1, 119–138.
- [10] Laghribi, A. Formes quadratiques de dimension 6. Math. Nachr., to appear.
- [11] Laghribi, A. Isotropie d'une forme quadratique de dimension ≤ 8 sur le corps des fonctions d'une quadrique. C. R. Acad. Sci. Paris 323 (1996), série I, 495–499.
- [12] Lam, T. Y. The Algebraic Theory of Quadratic Forms. Massachusetts: Benjamin 1973 (revised printing: 1980).
- [13] Leep, D. Function fields results. Handwritten notes taken by T. Y. Lam (1989).

- [14] Merkurjev, A. S. On the norm residue symbol of degree 2. Dokl. Akad. Nauk SSSR 261 (1981), 542–547 (in Russian). Engl. transl.: Soviet Math. Dokl. 24 (1981), 546– 551.
- [15] Merkurjev, A. S. Kaplansky conjecture in the theory of quadratic forms. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 175 (1989), 75–89 (in Russian). Engl. transl.: J. Soviet Math. 57 (1991), no. 6, 3489–3497.
- [16] Merkurjev, A. S. The group H¹(X, K₂) for projective homogeneous varieties. Algebra i Analiz 7 (1995), no. 3, 136–164 (in Russian). Engl. transl.: St. Petersburg Math. J. 7 (1996), no. 3, 421–444.
- [17] Merkurjev, A. S., Suslin, A. A. The group K₃ for a field. Izv. Akad. Nauk SSSR Ser. Mat. **54** (1990), no.3, 522–545 (in Russian). Engl. transl.: Math. USSR Izv. **36** (1991), no.3, 541–565.
- [18] Panin, I. A. On the algebraic K-theory of twisted flag varieties. K-Theory 8 (1994), no. 6, 541–585.
- [19] Peyre, E. Products of Severi-Brauer varieties and Galois cohomology. Proc. Symp. Pure Math. 58.2 (1995), 369–401.
- [20] Peyre, E. Corps de fonctions de variétés homogènes et cohomologie galoisienne. C. R. Acad. Sci. Paris **321** (1995), série I, 891–896.
- [21] Quillen, D. Higher algebraic K-theory I. Springer Lect. Notes Math. 341 (1973), 85–147.
- [22] Rost, M. Hilbert 90 for K_3 for degree-two extensions. Preprint (1986).
- [23] Sansuc, J.-J. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. reine angew. Math. 327 (1981), 12–80.
- [24] Shapiro D. B. Similarities, quadratic forms. and Clifford algebra. Doctoral Dissertation, University of California, Berkeley, California (1974).
- [25] Suslin, A. A. Algebraic K-theory and the norm residue homomorphism. J. Soviet Math. 30 (1985), 2556–2611.
- [26] Swan, R. K-theory of quadric hypersurfaces. Ann. Math. 122 (1985), no. 1, 113–154.
- [27] Wadsworth, A. R. Similarity of quadratic forms and isomorphism of their function fields. Trans. Amer. Math. Soc. 208 (1975), 352–358.

Oleg Izhboldin, Department of Mathematics and Mechanics, St.-Petersburg State University, Petrodvorets, 198904, RUSSIA

E-mail address: oleg@izh.usr.pu.ru

NIKITA KARPENKO, UNIVERSITÉ DE FRANCHE-COMTÉ, ÉQUIPE DE MATHEMATIQUES DE BESANÇON, 16, ROUTE DE GRAY, F-25030 BESANÇON CEDEX, FRANCE

E-mail address: karpenko@math.univ-fcomte.fr, karpenk@math.uni-muenster.de