ISOTROPY OF 6-DIMENSIONAL QUADRATIC FORMS OVER FUNCTION FIELDS OF QUADRICS

OLEG T. IZHBOLDIN AND NIKITA A. KARPENKO

Abstract

Let F be a field of characteristic different from 2 and ϕ be an anisotropic 6 -dimensional quadratic form over F. We study the last open cases in the problem of describing the quadratic forms ψ such that ϕ becomes isotropic over the function field $F(\psi)$.

Contents

0. Introduction 1
1. Terminology, notation, and backgrounds 3
2. The group $H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F\right)$ 4
3. The Grothendieck group of a quadric 7
4. The Grothendieck group of a product of quadrics 10
5. CH^{2} of a product of quadrics 11
6. The group $I^{3}(F(\rho, \psi) / F)$ 16
7. The case of index 1 17
8. Main theorem 20
9. The case of index 2 23
References 24

0. Introduction

Let F be a field of characteristic different from 2 and let ϕ and ψ be two anisotropic quadratic forms over F. An important problem in the algebraic theory of quadratic forms is to find conditions on ϕ and ψ so that $\phi_{F(\psi)}$ is isotropic.

More precisely, one studies the question whether the isotropy of ϕ over $F(\psi)$ is standard in a sense. In this paper we will use the following definition of "standard isotropy":
Definition. Let ϕ and ψ be anisotropic quadratic forms such that $\phi_{F(\psi)}$ is isotropic. We say that the isotropy of $\phi_{F(\psi)}$ is standard, if at least one of the following conditions holds:

- ψ is similar to a subform in ϕ;
- there exists a subform $\phi_{0} \subset \phi$ with the following two properties:
- the form ϕ_{0} is a Pfister neighbor,
- the form $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic.

Otherwise, we say that the isotropy is non-standard.
In the case when $\operatorname{dim} \phi \leq 5$, the isotropy of $\phi_{F(\psi)}$ is always standard ([24], [3]). For 6-dimensional quadratic forms, the problem was studied by A. S. Merkurjev ([15]), D. Leep ([13]), D. W. Hoffmann ([4]), A. Laghribi ([10], [11]), and the authors ([5]). It was proved that the isotropy of a 6 -dimensional quadratic form ϕ over the function field of a quadratic form ψ is always standard except (possibly) for the following case (see [10], [5]):

- $\operatorname{dim} \psi=4, d_{ \pm} \psi \neq 1, d_{ \pm} \phi \neq 1$, and ind $C_{0}(\phi)=2$.

In the present paper we study the isotropy of $\phi_{F(\psi)}$ for quadratic forms ϕ and ψ satisfying these conditions (with $\operatorname{dim} \phi=6$).

Note that the condition ind $C_{0}(\phi)=2$ implies that there exist $a, b, c, d \in F^{*}$ such that ϕ is similar to the form $\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$. Since ϕ can be replaced by a similar form, we can assume that $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$. Note that in this case $\left[C_{0}(\phi)\right]=\left[(a, b)_{F(\sqrt{d})}\right]=\left[C_{0}(\rho)\right]$, where ρ is defined as follows: $\rho=\langle-a,-b, a b, d\rangle$.

Since $\operatorname{dim} \psi=4$, there exist $u, v, \delta \in F^{*}$ such that ψ is similar to the quadratic form $\langle-u,-v, u v, \delta\rangle$. Since $d_{ \pm} \psi \neq 1$, we have $\delta \notin F^{* 2}$. Thus our main problem is reduced to the following
Question. Let $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$ and $\psi=\langle-u,-v, u v, \delta\rangle$ be anisotropic quadratic forms over F with $d, \delta \notin F^{* 2}$. Suppose that $\phi_{F(\psi)}$ is isotropic. Is the isotropy standard?

This question naturally splits into the following four cases:
(1) $d=\delta$ as elements of $F^{*} / F^{* 2}$,
(2) $d \neq \delta$ and ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=1$,
(3) $d \neq \delta$ and ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=2$,
(4) $d \neq \delta$ and ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=4$.

We prove that in the cases (1), (2), and (4) the isotropy of $\phi_{F(\psi)}$ is always standard (see Theorem 8.5, Propositions 8.6 and 8.7). This statement gives rise to the following one (which is Theorem 8.8):
Theorem. Let ϕ be an anisotropic quadratic form of dimension ≤ 6 and ψ be such that $\phi_{F(\psi)}$ is isotropic. Then isotropy is standard except (possibly) the following case: $\operatorname{dim} \phi=6, \operatorname{dim} \psi=4,1 \neq d_{ \pm} \phi \neq d_{ \pm} \psi \neq 1$, and ind $C_{0}(\phi)=$ $2=\operatorname{ind} C_{0}(\phi) \otimes_{F} C_{0}(\psi)$.

The proof of this theorem is based on a computation of the second Chow group for certain homogeneous varieties. Namely, we show that the question on the standard isotropy can be reduced to a question on the group Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)$, where $\rho=\langle-a,-b, a b, d\rangle$ and X_{ψ} and X_{ρ} are the projective quadrics corresponding to ψ and ρ. In the cases (1), (2) and (4), we compute the group Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)$ completely (see Theorems 5.7, 5.1, 5.8, and Lemma 7.7):
Theorem. Let ψ and ρ be 4 -dimensional quadratic forms. Then the group Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)$ is zero or isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. Moreover,

- if $\operatorname{det} \psi=\operatorname{det} \rho$ or if ind $C_{0}(\psi) \otimes_{F} C_{0}(\rho)=4$, then the group $\operatorname{Tors~}^{\mathrm{CH}^{2}}\left(X_{\psi} \times\right.$ X_{ρ}) is trivial;
- in the case ind $C_{0}(\psi) \otimes_{F} C_{0}(\rho)=1$, the group Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)$ is trivial if and only if ρ and ψ contain similar 3-dimensional subforms.

In the case (3) where $d \neq \delta$ and ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=2$, we show that our main question is equivalent to the following one (see §9): is the group Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)$ trivial for any 4-dimensional quadratic forms ψ and ρ such that $1 \neq \operatorname{det} \psi \neq \operatorname{det} \delta \neq 1$ and ind $C_{0}(\psi) \otimes C_{0}(\rho)=2$? As shown in [6], the answer to this qiestion is negative, i.e. a counterexample exists.
Acknowledgments. The authors would like to thank the Universität Bielefeld and the Université de Franche-Comté for their hospitality and support.

1. Terminology, notation, and backgrounds

Quadratic forms. By $\phi \perp \psi, \phi \simeq \psi$, and [ϕ] we denote respectively orthogonal sum of forms, isometry of forms, and the class of ϕ in the Witt ring $W(F)$ of the field F. To simplify notation, we write $\phi_{1}+\phi_{2}$ instead of $\left[\phi_{1}\right]+\left[\phi_{2}\right]$. For a quadratic form ϕ of dimension n, we set $d_{ \pm} \phi=(-1)^{n(n-1) / 2} \operatorname{det} \phi \in$ $F^{*} / F^{* 2}$. The maximal ideal of $W(F)$ generated by the classes of the evendimensional forms is denoted by $I(F)$. The anisotropic part of ϕ is denoted by ϕ an. We denote by $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ the n-fold Pfister form

$$
\left\langle 1,-a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1,-a_{n}\right\rangle
$$

and by $P_{n}(F)$ the set of all n-fold Pfister forms. The set of all forms similar to an n-fold Pfister form we denote by $G P_{n}(F)$. For any field extension L / F, we put $\phi_{L}=\phi \otimes_{F} L, W(L / F)=\operatorname{ker}(W(F) \rightarrow W(L))$, and $I^{n}(L / F)=$ $\operatorname{ker}\left(I^{n}(F) \rightarrow I^{n}(L)\right)$.

For a quadratic form ϕ and a field extension L / F, we denote by $D_{L}(\phi)$ the set of the non-zero values of the quadratic form ϕ_{L}.

For a quadratic form ϕ of dimension ≥ 3, we denote by X_{ϕ} the projective variety given by the equation $\phi=0$. We set $F(\phi)=F\left(X_{\phi}\right)$ and $F(\phi, \psi)=$ $F\left(X_{\phi} \times X_{\psi}\right)$ for quadratic forms ϕ and ψ of dimensions ≥ 3.

Algebras. We consider only finite-dimensional F-algebras.
For a simple F-algebra A, by $\operatorname{ind}(A)$ we denote the Schur index of A. For an algebra B of the form $B=A \times \cdots \times A$ with simple A, we set ind $B=\operatorname{ind} A$.

Let ϕ be a quadratic form. We denote by $C(\phi)$ the Clifford algebra of ϕ. By $C_{0}(\phi)$ we denote the even part of $C(\phi)$. For any collection $\rho_{1}, \ldots, \rho_{m}$ of quadratic forms, the algebra $C_{0}\left(\rho_{1}\right) \otimes_{F} \cdots \otimes_{F} C_{0}\left(\rho_{m}\right)$ is of the form $A \times \cdots \times A$ with simple A. Therefore, we get a well-defined positive integer ind $C_{0}\left(\rho_{1}\right) \otimes_{F}$ $\cdots \otimes_{F} C_{0}\left(\rho_{m}\right)$.

If $\phi \in I^{2}(F)$ then $C(\phi)$ is a central simple algebra. Hence we get a welldefined element $[C(\phi)]$ in the 2-part $\operatorname{Br}_{2}(F)$ of the Brauer group $\operatorname{Br}(F)$ which we denote by $c(\phi)$.

Cohomology groups. By $H^{*}(F)$ we denote the graded ring of Galois cohomology $H^{*}(F, \mathbb{Z} / 2 \mathbb{Z}) \stackrel{\text { def }}{=} H^{*}\left(\operatorname{Gal}\left(F_{\text {sep }} / F\right), \mathbb{Z} / 2 \mathbb{Z}\right)$. For any field extension L / F, we set $H^{*}(L / F)=\operatorname{ker}\left(H^{*}(F) \rightarrow H^{*}(L)\right)$.

We use the standard canonical isomorphisms $H^{0}(F)=\mathbb{Z} / 2 \mathbb{Z}, H^{1}(F)=$ $F^{*} / F^{* 2}$, and $H^{2}(F)=\operatorname{Br}_{2}(F)$. So any element $a \in F^{*}$ gives rise to an element of $H^{1}(F)$ which we denote by (a). The cup product $\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right)$ we denote by $\left(a_{1}, \ldots, a_{n}\right)$.

For $n=0,1,2$, there is a homomorphism $e^{n}: I^{n}(F) \rightarrow H^{n}(F)$ defined as follows: $e^{0}(\phi)=\operatorname{dim} \phi(\bmod 2), e^{1}(\phi)=d_{ \pm} \phi$, and $e^{2}(\phi)=c(\phi)$. Moreover there exists a homomorphism $e^{3}: I^{3}(F) \rightarrow H^{3}(F)$ which is uniquely determined by the condition $e^{3}\left(\left\langle\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right\rangle\right)=\left(a_{1}, a_{2}, a_{3}\right)$ (see [1]). The homomorphism e^{n} is surjective and ker $e^{n}=I^{n+1}(F)$ for $n=0,1,2,3$ (see [14], [17], and [22]).

We also work with the cohomology groups $H^{n}(F, \mathbb{Q} / \mathbb{Z}(i))$, $(i=0,1,2)$, defined by B. Kahn (see [7]). For any field extension L / F, we set

$$
H^{*}(L / F, \mathbb{Q} / \mathbb{Z}(i))=\operatorname{ker}\left(H^{*}(F, \mathbb{Q} / \mathbb{Z}(i)) \rightarrow H^{*}(L, \mathbb{Q} / \mathbb{Z}(i))\right)
$$

For $n=1,2,3$, the group $H^{n}(F)$ is naturally identified with the 2-part of $H^{n}(F, \mathbb{Q} / \mathbb{Z}(n-1))$.
K-theory and Chow groups. For a smooth algebraic F-variety X, its Grothendieck ring is denoted by $K(X)$. This ring is supplied with the filtration by codimension of support (which respects the multiplication). For a ring (or a group) with filtration A, we denote by $\mathrm{G}^{*} A$ the adjoint graded ring (resp., the adjoint graded group). There is a canonical surjective homomorphism of the graded Chow ring $\mathrm{CH}^{*}(X)$ onto $\mathrm{G}^{*} K(X)$, its kernel consists only of torsion elements and is trivial in the 0 -th, 1 -st, and 2 -nd graded components $([25, \S 9])$.

2. The group $H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F\right)$

The main result of this section (in view of our further purposes) is Corollary 2.13 .

By a homogeneous variety we always mean a projective homogeneous variety.
Proposition 2.1 ([20]). For any homogeneous F-variety X, there is a natural (in X and in F) epimorphism

$$
\tau_{X}: H^{3}(F(X) / F, \mathbb{Q} / \mathbb{Z}(2)) \rightarrow \operatorname{Tors}^{C^{2}}(X)
$$

Proposition 2.2. For any homogeneous varieties X_{1}, \ldots, X_{m} over F, the quotient

$$
\frac{H^{3}\left(F\left(X_{1} \times \cdots \times X_{m}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)}{H^{3}\left(F\left(X_{1}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)+\cdots+H^{3}\left(F\left(X_{m}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)}
$$

is canonically isomorphic to
where $p r_{1}^{*}, \ldots, p r_{m}^{*}$ are the pull-backs with respect to the projections $p r_{1}, \ldots, p r_{m}$ of the product $X_{1} \times \cdots \times X_{m}$ on X_{1}, \ldots, X_{m}.

Proof. Set $X=X_{1} \times \cdots \times X_{m}$. The homomorphism τ_{X} of Proposition 2.1 induces an epimorphism

$$
\begin{aligned}
f: \frac{H^{3}\left(F\left(X_{1} \times \cdots \times X_{m}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)}{H^{3}\left(F\left(X_{1}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)+\cdots+H^{3}\left(F\left(X_{m}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)} \rightarrow \\
\rightarrow \frac{\operatorname{Tors~CH}^{2}\left(X_{1} \times \cdots \times X_{m}\right)}{p r_{1}^{*}{\operatorname{Tors~} \mathrm{CH}^{2}\left(X_{1}\right)+\cdots+p r_{m}^{*} \operatorname{Tors~}^{2}\left(X_{m}\right)}^{l}}
\end{aligned}
$$

with the kernel $\operatorname{ker} f=\operatorname{ker} \tau_{X} /\left(\operatorname{ker} \tau_{X_{1}}+\cdots+\operatorname{ker} \tau_{X_{m}}\right)$.
The kernel of τ_{X} is computed (for any homogeneous X) in [16]: let A be the separable F-algebra associated with $X([16, \S 2])$ and denote by E the center of A; then $\operatorname{ker} \tau_{X}=\left\{N_{E / F}(\bar{x} \cup[A]) \mid\right.$ with $\left.x \in E^{*}\right\}$ where $[A]$ is the class of A in the Brauer group $\operatorname{Br}(E)=H^{2}(E, \mathbb{Q} / \mathbb{Z}(1)), \bar{x}$ is the class of $x \in E^{*}$ in $H^{1}(E, \mathbb{Q} / \mathbb{Z}(1)), \bar{x} \cup[A] \in H^{3}(E, \mathbb{Q} / \mathbb{Z}(2))$ is the cup-product and $N_{E / F}$ is the norm map.

Denote by A_{1}, \ldots, A_{m} the separable algebras associated with X_{1}, \ldots, X_{m} respectively. Then $A=A_{1} \times \cdots \times A_{m}$ and $E=E_{1} \times \cdots \times E_{m}$. Thus for any $x \in E^{*}$

$$
N_{E / F}(\bar{x} \cup[A])=N_{E_{1} / F}\left(\bar{x}_{1} \cup\left[A_{1}\right]\right)+\cdots+N_{E_{m} / F}\left(\bar{x}_{m} \cup\left[A_{m}\right]\right),
$$

where x_{i} is the E_{i}-component of x, which proves that $\operatorname{ker} f=0$.
Corollary 2.3. Let X_{1}, \ldots, X_{m} and $X_{1}^{\prime}, \ldots, X_{m}^{\prime}$ be homogeneous varieties such that X_{i} is stably birationally equivalent to X_{i}^{\prime} for $i=1, \ldots, m$. The quotient

$$
\frac{\operatorname{Tors~}^{\mathrm{CH}^{2}}\left(X_{1} \times \cdots \times X_{m}\right)}{p r_{1}^{*} \text { Tors } \mathrm{CH}^{2}\left(X_{1}\right)+\cdots+p r_{m}^{*} \text { Tors } \mathrm{CH}^{2}\left(X_{m}\right)}
$$

is isomorphic to the quotient

$$
\frac{\operatorname{Tors~}^{\mathrm{CH}^{2}}\left(X_{1}^{\prime} \times \cdots \times X_{m}^{\prime}\right)}{p r_{1}^{*} \text { Tors } \mathrm{CH}^{2}\left(X_{1}^{\prime}\right)+\cdots+p r_{m}^{*} \operatorname{Tors} \mathrm{CH}^{2}\left(X_{m}^{\prime}\right)} .
$$

Lemma 2.4. For any homogeneous variety X of dimension ≤ 2, the group $\mathrm{CH}^{2}(X)$ is torsion-free.

Proof. Since X is a homogeneous variety, $K(X)$ is a torsion-free group ([18]). Since $\operatorname{dim} X \leq 2$, the term $K(X)^{(3)}$ of the topological filtration is trivial. Hence $K(X)^{(2 / 3)}$ is a torsion-free group. By $[25, \S 9], \mathrm{CH}^{2}(X) \simeq K(X)^{(2 / 3)}$. Hence Tors $\mathrm{CH}^{2}(X)=0$.

Corollary 2.5. Under the conditions of Corollary 2.3 suppose additionally that the varieties $X_{1}, \ldots, X_{m} ; X_{1}^{\prime}, \ldots, X_{m}^{\prime}$ have the dimensions ≤ 2. Then there is an isomorphism

$$
\text { Tors } \mathrm{CH}^{2}\left(X_{1} \times \cdots \times X_{m}\right) \simeq \operatorname{Tors} \mathrm{CH}^{2}\left(X_{1}^{\prime} \times \cdots \times X_{m}^{\prime}\right)
$$

Proof. Obvious in view of Corollary 2.3 and Lemma 2.4.

Lemma 2.6. Let X_{1} and X_{2} be homogeneous varieties. If the variety $\left(X_{2}\right)_{F\left(X_{1}\right)}$ has a rational point, then $H^{3}\left(F\left(X_{1} \times X_{2}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)=H^{3}\left(F\left(X_{1}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)$.

Proof. Since the homogeneous variety $\left(X_{2}\right)_{F\left(X_{1}\right)}$ has a rational point, it is rational, i.e. the field extension $F\left(X_{1} \times X_{2}\right) / F\left(X_{1}\right)$ is purely transcendental.
Corollary 2.7. Let X_{1} and X_{2} be projective quadrics of the dimensions ≤ 2. If the quadric $\left(X_{2}\right)_{F\left(X_{1}\right)}$ is isotropic (e.g., if X_{2} is isotropic or if $X_{1} \simeq X_{2}$) then Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)=0$.

Proof. Follows from Lemma 2.6, Proposition 2.2 and Lemma 2.4.
Lemma 2.8. For any quadratic form ρ of dimension ≥ 3, we have

$$
2 H^{3}(F(\rho) / F, \mathbb{Q} / \mathbb{Z}(2))=0 .
$$

In other words, $H^{3}(F(\rho) / F, \mathbb{Q} / \mathbb{Z}(2))=H^{3}(F(\rho) / F)$.
Proof. Let $u \in H^{3}(F(\rho) / F, \mathbb{Q} / \mathbb{Z}(2))$. There exists a field extension L / F such that ρ_{L} is isotropic and $[L: F] \leq 2$. Since ρ_{L} is isotropic, $u_{L}=0$. Using the transfer homomorphism, we have $[L: F] \cdot u=0$. Hence $2 u=0$.

Corollary 2.9. For any quadratic form ρ of dimension ≥ 3 the homomorphism $H^{3}(F(\rho) / F) \rightarrow$ Tors $\mathrm{CH}^{2}\left(X_{\rho}\right)$, induced by the epimorphism of Proposition 2.1, is surjective. In particular, $2 \operatorname{Tors~}^{\mathrm{CH}^{2}}\left(X_{\rho}\right)=0$.

Lemma 2.10. Let ρ_{1} and ρ_{2} be quadratic form of dimension ≥ 3. Then

$$
2 H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)=0
$$

In other words, $H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)=H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F\right)$.
Proof. Let ρ_{1}^{\prime} and ρ_{2}^{\prime} be 3-dimensional subforms in ρ_{1} and ρ_{2} respectively. Clearly $H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right) \subset H^{3}\left(F\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)$. Thus, replacing ρ_{1} by ρ_{1}^{\prime} and ρ_{2} by ρ_{2}^{\prime}, one can reduce the proof to the case $\operatorname{dim} \rho_{1}=$ $\operatorname{dim} \rho_{2}=3$. In this case, $\operatorname{dim} X_{\rho_{1}} \times X_{\rho_{2}}=2$; therefore Tors $\mathrm{CH}^{2}\left(X_{\rho_{1}} \times X_{\rho_{2}}\right)=0$ (Lemma 2.4). For $i=1,2$, the conic $X_{\rho_{i}}$ is isomorphic to the Severi-Brauer variety of the algebra $C_{i} \stackrel{\text { def }}{=} C_{0}\left(\rho_{i}\right)$. Applying [19, Thm. 4.1], we obtain an epimorphism

$$
F^{*} \otimes U \rightarrow H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)
$$

where U is the subgroup of $\operatorname{Br}(F)$ generated by $\left[C_{1}\right]$ and $\left[C_{2}\right]$. Since $2\left[C_{1}\right]=$ $2\left[C_{2}\right]=0$, it follows that $2 H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F, \mathbb{Q} / \mathbb{Z}(2)\right)=0$.
Corollary 2.11. Let ρ_{1} and ρ_{2} be quadratic forms of dimension ≥ 3. Then the homomorphism

$$
H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F\right) \rightarrow \operatorname{Tors} \mathrm{CH}^{2}\left(X_{\rho_{1}} \times X_{\rho_{2}}\right)
$$

induced by the epimorphism of Proposition 2.1, is surjective. In particular, 2 Tors $\mathrm{CH}^{2}\left(X_{\rho_{1}} \times X_{\rho_{2}}\right)=0$.

Corollary 2.12. For any quadratic forms ρ_{1} and ρ_{2} of dimension ≥ 3, there is a natural isomorphism

$$
\frac{H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F\right)}{H^{3}\left(F\left(\rho_{1}\right) / F\right)+H^{3}\left(F\left(\rho_{2}\right) / F\right)} \simeq \frac{\operatorname{Tors} \mathrm{CH}^{2}\left(X_{\rho_{1}} \times X_{\rho_{2}}\right)}{p r_{1}^{*} \operatorname{Tors~}_{\mathrm{CH}^{2}\left(X_{\rho_{1}}\right)+p r_{2}^{*} \operatorname{Tors} \mathrm{CH}^{2}\left(X_{\rho_{2}}\right)} ~}
$$

Proof. Follows from Proposition 2.2 and Lemmas 2.8 and 2.10.
Corollary 2.13. For any quadratic forms ρ_{1} and ρ_{2} with $3 \leq \operatorname{dim} \rho_{i} \leq 4$ $(i=1,2)$, there is a natural isomorphism

$$
\frac{H^{3}\left(F\left(\rho_{1}, \rho_{2}\right) / F\right)}{H^{3}\left(F\left(\rho_{1}\right) / F\right)+H^{3}\left(F\left(\rho_{2}\right) / F\right)} \simeq \operatorname{Tors} \mathrm{CH}^{2}\left(X_{\rho_{1}} \times X_{\rho_{2}}\right) .
$$

Proof. Follows from Corollary 2.12 and Lemma 2.4.

3. The Grothendieck group of a quadric

In this section, ρ is an $(n+2)$-dimensional quadratic form over F (where $n \geq 1$), V is the vector space of definition of ρ, \mathbb{P} is the projective space of the vector space dual to V, and $X=X_{\rho} \subset \mathbb{P}$ is the n-dimensional projective quadric determined by ρ.

We are mainly interested in the case when $n=2$, i.e. when X is a surface.
The even Clifford algebra $C_{0}(\rho)$ of the form ρ is denoted in this section by C. Let \mathcal{U} be the Swan's sheaf on $X[26, \S 6]$. It is an $\left(C \otimes_{F} \mathcal{O}_{X}\right)$-module locally free as \mathcal{O}_{X}-module (note that the algebra C is canonically self-opposite; thus it is not necessary to distinguish between left and right action of C).

We denote by h the class of a general hyperplane section of X, i.e. the pull-back of the class of a hyperplane with respect to the imbedding $X \hookrightarrow \mathbb{P}$. The subring of $K(X)$ generated by h is denoted by H; it coincides with the image of the pull-back homomorphism $K(\mathbb{P}) \rightarrow K(X)$. Some further evident assertions on H are collected in

Lemma 3.1. The abelian group H is freely generated by $1, h, \ldots, h^{n}$. The topological filtration on $K(X)$ induces on H the filtration by powers of h, i.e. for every $0 \leq r \leq n$, the term $H^{(r)}$ is generated by all h^{j} with $r \leq j \leq n$. In particular, the adjoint graded group $G^{*} H$ is torsion-free.

In the case when X splits (i.e. when ρ is hyperbolic) and $n=2$, a line class (resp., point class) refers to the class in $K(X)$ of a line (resp., of a closed rational point) lying on X.

Lemma 3.2 ([8]). Suppose that X splits and $\operatorname{dim} X=2$.

1. For any two different lines in X, their classes in $K(X)$ coincide if and only if the lines have no intersection. There are exactly two different line classes in $K(X)$.
2. The classes in $K(X)$ of any two closed rational points of X coincide, i.e. there is only one point class in $K(X)$.
3. Denote by l and l^{\prime} the different line classes and by p the point class in $K(X)$. The abelian group $K(X)$ is freely generated by the elements $1, l, l^{\prime}, p$.
4. The second term $K(X)^{(2)}$ of the topological filtration on $K(X)$ is generated by p; the term $K(X)^{(1)}$ is generated by l, l^{\prime}, p.
5. The multiplication in $K(X)$ is determined by the formulas $l^{2}=0=\left(l^{\prime}\right)^{2}$ and $l \cdot l^{\prime}=p$.
6. $h=l+l^{\prime}-p$.

In the case when the quadric X is arbitrary (not necessary of dimension 2, not necessary split), we dispose of the following information on $K(X)$:

Lemma 3.3. 1. The group $K(X)$ is torsion-free and, for any field extension E / F, the restriction homomorphism $K(X) \rightarrow K\left(X_{E}\right)$ is injective.
2. The class $[\mathcal{U}(n)] \in K(X)$ of the n times twisted Swan's sheaf equals

$$
2^{n}+2^{n-1} h+\cdots+2 h^{n-1}+h^{n}
$$

3. The homomorphism $\mathfrak{u}: K(C) \rightarrow K(X)$ given by the functor of taking tensor product $\mathcal{U}(n) \otimes_{C}(-)$ induces an epimorphism $K(C) \rightarrow K(X) / H$.
4. If C is a skewfield, then $K(X)=H$.
5. For any autoisometry ξ of the quadratic form ρ, the diagram

commutes, where the vertical maps are induced by the automorphisms of C and of X given by ξ.

Proof. 1. Follows from [26, Theorem 9.1].
2. See [9, Lemma 3.6].
3. According to [26, Theorem 9.1], the functor $\mathcal{U} \otimes_{C}(-)$ induces an epimorphism $K(C) \rightarrow K(X) / H$. Since for any $r \in \mathbb{Z}$ (and in particular for $r=n$) the twisting by r gives an automorphism of $K(X) / H$, the functor $\mathcal{U}(n) \otimes_{C}(-)$ induces an epimorphism as well.
4. If C is a skewfield, then the image of this epimorphism is generated by $[\mathcal{U}(n)]$. Since $[\mathcal{U}(n)] \in H$ by Item 2, it follows that $K(X)=H$.
5. It is evident in view of the way the sheaf \mathcal{U} is constructed (see $[26, \S 6]$).

Lemma 3.4 ([12]). The F-algebra $C=C_{0}(\rho)$ has the dimension $2^{n+1}=$ $2^{\operatorname{dim} \rho-1}$ over F. Its isomorphism class depends only on the similarity class of ρ. Moreover,

- if n is odd, then C is a central simple F-algebra;
- if n is even, then $C \simeq C_{0}\left(\rho^{\prime}\right) \otimes_{F} F\left(\sqrt{d_{ \pm} \rho}\right)$ where ρ^{\prime} is an arbitrary 1codimensional subform of ρ.

In particular, if ρ is an even-dimensional form of trivial discriminant, the algebra C is the direct product of two isomorphic central simple algebras; any automorphism of C should either interchange or stabilize the factors.

Lemma 3.5. Suppose that $\operatorname{dim} \rho$ is even and $d_{ \pm} \rho$ is trivial. Let ξ be an autoisometry of the quadratic space (V, ρ) having the determinant -1 . Then the automorphism of C induced by ξ interchanges the simple components of C.

Proof. Since $d_{ \pm} \rho$ is trivial, there exists a basis v_{0}, \ldots, v_{n+1} of V such that

$$
\left(v_{0} \cdots v_{n+1}\right)^{2}=1 \in C .
$$

Since $\xi\left(v_{0}\right) \cdots \xi\left(v_{n+1}\right)=(\operatorname{det} \xi) \cdot\left(v_{0} \cdots v_{n+1}\right)=-v_{0} \cdots v_{n+1}$, the automorphism of C induced by ξ interchanges the elements

$$
e=\left(1+v_{0} \cdots v_{n+1}\right) / 2 \quad \text { and } \quad e^{\prime}=\left(1-v_{0} \cdots v_{n+1}\right) / 2 .
$$

Since e and e^{\prime} are orthogonal idempotents, they lie in different simple components of C. Therefore, the components of C are interchanged.

Comparing Lemma 3.2 with Lemma 3.3 in the situation of a split quadric surface X, we get the following computation (note that here C is isomorphic to $M_{2}(F) \times M_{2}(F)$ and thus there exist exactly two, up to isomorphisms, simple C-modules; their classes are free generators of $K(C))$:

Lemma 3.6. Suppose that X splits and $\operatorname{dim} X=2$. There exist simple C modules M and M^{\prime} such that $u=1+l$ and $u^{\prime}=1+l^{\prime}$ where

$$
u \stackrel{\text { def }}{=} \mathfrak{u}([M])=\left[\mathcal{U}(2) \otimes_{C} M\right], \quad u^{\prime} \stackrel{\text { def }}{=} \mathfrak{u}\left(\left[M^{\prime}\right]\right)=\left[\mathcal{U}(2) \otimes_{C} M^{\prime}\right] \in K(X) .
$$

Proof. Take as M an arbitrary simple C-module and denote by M^{\prime} a (determined uniquely up to an isomorphism) simple C-module non-isomorphic to M. Since by Lemma 3.2 the elements $1, l, l^{\prime}, p$ generate $K(X)$, we have

$$
u=a+b l+b^{\prime} l^{\prime}+c p
$$

for certain $a, b, b^{\prime}, c \in \mathbb{Z}$. Now we are going to show that

$$
u^{\prime}=a+b^{\prime} l+b l^{\prime}+c p .
$$

Let ξ be an autoisometry of the quadratic space (V, ρ) having determinant -1 . By Lemma 3.5, the induced by ξ automorphism of $K(C)$ interchanges $[M]$ and $\left[M^{\prime}\right]$. Thus, by Item 5 of Lemma 3.3, the induced by ξ automorphism of $K(X)$ interchanges u and u^{\prime}.

Since ρ splits, there exist 2-dimensional totally isotropic subspaces W and W^{\prime} of V with 1-dimensional intersection and an autoisometry ξ of (V, ρ) having the determinant -1 interchanging W and W^{\prime}. The line classes in $K(X)$ determined by W and W^{\prime} are different (Item 1 of Lemma 3.2); therefore they coincide with l and l^{\prime} (or vice versa: with l^{\prime} and l).

Thus, we have found an automorphism of $K(X)$ interchanging u with u^{\prime} and l with l^{\prime} while leaving untouched 1 (of course) and p (since all the point classes coincide). Thereby, $u^{\prime}=a+b^{\prime} l+b l^{\prime}+c p$.

Since $2\left([M]+\left[M^{\prime}\right]\right)=[C] \in K(C)$, we have: $2\left(u+u^{\prime}\right)=[\mathcal{U}(2)]$, and so, $2\left(u+u^{\prime}\right)=4+2 h+h^{2}$ by Item 2 of Lemma 3.3. Since $K(X)$ is torsion-free, the last equality can be divided by 2 . Replacing h by $l+l^{\prime}-p$ and h^{2} by $\left(l+l^{\prime}-p\right)^{2}=2 p$ (see Lemma 3.2), we obtain that $u+u^{\prime}=2+l+l^{\prime}$. From the other hand, $u+u^{\prime}=2 a+\left(b+b^{\prime}\right) l+\left(b^{\prime}+b\right) l^{\prime}+2 c$; therefore $a=1, b+b^{\prime}=1$ and $c=0$.

We have proved that

$$
u=1+b l+(1-b) l^{\prime} \quad \text { and } \quad u^{\prime}=1+(1-b) l+b l^{\prime}
$$

for certain $b \in \mathbb{Z}$. It remains to show that $b=1$ or $b=0$.
It follows from Item 3 of Lemma 3.3 that the elements $u, u^{\prime}, 1, h, h^{2}$ generate the group $K(X)$. Since $h^{2}=2 p$ and $h=u+u^{\prime}-2-p$, the elements $u, u^{\prime}, 1, p$ also generate $K(X)$. So, the quotient $K(X) /(\mathbb{Z} \cdot 1+\mathbb{Z} \cdot p)$ which is according to Item 6 of Lemma 3.2 freely generated by l, l^{\prime} is also generated by u, u^{\prime}. Thus, the \mathbb{Z}-matrix

$$
\left(\begin{array}{cc}
b & 1-b \\
1-b & b
\end{array}\right)
$$

is invertible, i.e. its determinant is ± 1. Hence, $b=1$ or $b=0$.

4. The Grothendieck group of a product of quadrics

In this and in the next sections, we work with two quadratic forms ρ_{1} and ρ_{2} of the dimensions ≥ 3. We use the notation of the previous section amplified by the index 1 or 2 . So, for $i=1,2$, we have ρ_{i}, n_{i} (we are mainly interested in the case when $\left.n_{1}=2=n_{2}\right), V_{i}, \mathbb{P}_{i}, X_{i}, C_{i}, \mathcal{U}_{i}, h_{i}, H_{i}, l_{i}, l_{i}^{\prime}$ and p_{i}. We set $n=\left(n_{1}, n_{2}\right), \mathbb{P}=\mathbb{P}_{1} \times \mathbb{P}_{2}, X=X_{1} \times X_{2}$, and $C=C_{1} \otimes_{F} C_{2}$.

For any $x_{1} \in K\left(X_{1}\right)$ and $x_{2} \in K\left(X_{2}\right)$, we denote by $x_{1} \boxtimes x_{2}$ the product $p r_{1}^{*}\left(x_{1}\right) \cdot p r_{2}^{*}\left(x_{2}\right) \in K(X)$ where $p r_{1}$ and $p r_{2}$ are the projections of $X_{1} \times X_{2}$ on X_{1} and X_{2} respectively.

Denote by H the image of the pull-back homomorphism $K(\mathbb{P}) \rightarrow K(X)$.
Lemma 4.1. One has: $H=H_{1} \boxtimes H_{2} \subset K(X)$. The abelian group H is freely generated by all $h_{1}^{j_{1}} \boxtimes h_{2}^{j_{2}}$ with $0 \leq j_{1} \leq n_{1}$ and $0 \leq j_{2} \leq n_{2}$. Moreover, the filtration on H induced by the topological filtration on $K(X)$ looks as follows: for any $0 \leq r \leq n_{1}+n_{2}$, the term $H^{(r)}$ is generated by all $h_{1}^{j_{1}} \boxtimes h_{2}^{j_{2}}$ with $j_{1}+j_{2} \geq r$. In particular, the adjoint graded group $\mathrm{G}^{*} H$ is torsion-free.

The following lemma is also evident; together with Lemma 3.2, it gives a complete description of the ring with filtration $K(X)$ in the split situation.

Lemma 4.2. If X_{1} and X_{2} split then the map $K\left(X_{1}\right) \otimes K\left(X_{2}\right) \rightarrow K(X)$, $x_{1} \otimes x_{2} \mapsto x_{1} \boxtimes x_{2}$ is an isomorphism of rings with filtrations.

For an $\mathcal{O}_{X_{1}}$-module \mathcal{F}_{1} and an $\mathcal{O}_{X_{2}}$-module \mathcal{F}_{2}, we denote by $\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}$ the tensor product $\operatorname{pr}_{1}^{*}\left(\mathcal{F}_{1}\right) \otimes_{\mathcal{O}_{X}} p r_{2}^{*}\left(\mathcal{F}_{2}\right)$. The sheaf $\mathcal{U}=\mathcal{U}_{1} \boxtimes \mathcal{U}_{2}$ has for $i=1,2$ the structures of a C_{i}-module commuting with each other. Thus, it is a C-module. Set $\mathcal{U}(n)=\mathcal{U}_{1}\left(n_{1}\right) \boxtimes \mathcal{U}_{2}\left(n_{2}\right)$. It is also a C-module. The functor of taking the tensor product $\mathcal{U}(n) \otimes_{C}(-)$ determines a homomorphism $\mathfrak{u}: K(C) \rightarrow K(X)$.

Lemma 4.3. 1. The group $K(X)$ is torsion-free and, for any field extension E / F, the restriction homomorphism $K(X) \rightarrow K\left(X_{E}\right)$ is injective.
2. The homomorphism $\mathfrak{u}: K(C) \rightarrow K(X)$, defined right above, induces an epimorphism $K(C) \rightarrow K(X) /\left(K\left(X_{1}\right) \boxtimes K\left(X_{2}\right)\right)$.
3. If C is a skewfield, then $K(X)=H$.

Proof. 1. This statement is valid for any homogeneous variety X ([18]).
2. The isomorphism $K_{*}\left(X_{1}\right) \simeq K_{*}(F)^{\oplus n_{1}} \oplus K_{*}\left(C_{1}\right)$ of [26, Theorem 9.1] remains bijective after changing the base F to any field extension, i.e. for any field extension E / F, the homomorphism $K_{*}\left(\operatorname{Spec} E \times X_{1}\right) \rightarrow K_{*}(\operatorname{Spec} E)^{\oplus n_{1}} \oplus$ $K_{*}\left(\operatorname{Spec} E, C_{1}\right)$ is bijective. Therefore, for any F-variety Y, the defined in the similar way homomorphism $K_{*}\left(Y \times X_{1}\right) \rightarrow K_{*}(Y)^{\oplus n_{1}} \oplus K_{*}\left(Y, C_{1}\right)$ is bijective (compare to the proof of Proposition 4.1 of [21, §7]). In particular, $K(X) \simeq K\left(X_{2}\right)^{\oplus n_{1}} \oplus K\left(X_{2}, C_{1}\right)$. Computing $K\left(X_{2}\right)$ and $K\left(X_{2}, C_{1}\right)$ using [26, Theorem 9.1] once again, one gets

$$
K(X) \simeq K(F)^{\oplus n_{1} n_{2}} \oplus K\left(C_{1}\right)^{\oplus n_{2}} \oplus K\left(C_{2}\right)^{\oplus n_{1}} \oplus K(C)
$$

The image of $K(F)^{\oplus n_{1} n_{2}} \oplus K\left(C_{1}\right)^{\oplus n_{2}} \oplus K\left(C_{2}\right)^{\oplus n_{1}}$ in $K(X)$ is contained in $K\left(X_{1}\right) \boxtimes K\left(X_{2}\right)$ and the homomorphism $K(C) \rightarrow K(X)$ is induced by the functor of taking tensor product $\mathcal{U} \otimes_{C}(-)$. Thus $\mathfrak{u}: K(C) \rightarrow K(X)$ is modulo $K\left(X_{1}\right) \boxtimes K\left(X_{2}\right)$ an epimorphism.
3. If the algebra C is a skewfield then the image of \mathfrak{u} is contained in H; moreover, the algebras C_{1} and C_{2} are skewfields as well and thus $K\left(X_{i}\right)=H_{i}$ for $i=1,2$.

Corollary 4.4. If C is a skewfield, then $\mathrm{G}^{*} K(X)$ is torsion-free. In particular, Tors $\mathrm{CH}^{2}(X)=0$.

Proof. If C is a skewfield, then $K(X)=H$ by Item 3 of Lemma 4.3. Consequently, Tors $\mathrm{G}^{*} K(X)=$ Tors $\mathrm{G}^{*} H=0$ (see Lemma 4.1).

5. CH^{2} OF A PRODUCT OF QUADRICS

The notation used in this section is introduced in the beginning of the previous one. However, each of the quadratic forms ρ_{1} and ρ_{2} is now supposed to have the dimension 3 or 4 . So, each of X_{i} is either a quadric surface or a conic. We are mainly interested in the case when X_{1} and X_{2} are surfaces.

Theorem 5.1. Suppose that $\operatorname{dim} \rho_{1}=4=\operatorname{dim} \rho_{2}$, i.e. that X_{1} and X_{2} are surfaces. If $\operatorname{det} \rho_{1}=\operatorname{det} \rho_{2}$, then Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)=0$.

Proof. If one of the quadratic forms is isotropic, then Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)=0$ by Corollary 2.7. In the rest of the proof we assume that ρ_{1} and ρ_{2} are anisotropic.

As a next step, we are going to consider the case when $\operatorname{det} \rho_{1}=\operatorname{det} \rho_{2}=1$.
Lemma 5.2. Any projective quadric surface defined by a quadratic form of determinant 1 is stably birationally equivalent to a conic.

Proof. Suppose that we are given a quadric determined by a 4 -dimensional quadratic form ρ with $\operatorname{det} \rho=1$. Take the conic determined by an arbitrary 3-dimensional subform $\rho^{\prime} \subset \rho$. Since ρ^{\prime} becomes isotropic over $F(\rho)$ and vice versa, ρ becomes isotropic over $F\left(\rho^{\prime}\right)$, the quadrics given by ρ^{\prime} and ρ are stably birationally equivalent.

Suppose that $\operatorname{det} \rho_{1}=\operatorname{det} \rho_{2}=1$ and choose some conics X_{1}^{\prime} and X_{2}^{\prime} stably birationally equivalent to X_{1} and X_{2} respectively. Applying Corollary 2.5, we get an isomorphism of Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)$ onto the group Tors $\mathrm{CH}^{2}\left(X_{1}^{\prime} \times X_{2}^{\prime}\right)$ which is trivial by Lemma 2.4.

Therefore, we may assume that $d \neq 1$ where $d=\operatorname{det} \rho_{1}=\operatorname{det} \rho_{2}$.
As a next step of the proof of Theorem, we consider the case when the F-algebras $C_{1} \stackrel{\text { def }}{=} C_{0}\left(\rho_{1}\right)$ and $C_{2} \stackrel{\text { def }}{=} C_{0}\left(\rho_{2}\right)$ are isomorphic. In this case, the forms ρ_{1} and ρ_{2} becomes similar over the field $F(\sqrt{d})$. Thus by a theorem of Wadsworth ([27, Theorem 7]), they are already similar over F. Therefore the quadrics X_{1} and X_{2} are isomorphic and consequently $\operatorname{Tors} \mathrm{CH}^{2}(X)=0$ by Corollary 2.7.

It remains only to consider the situation when the forms ρ_{1} and ρ_{2} are anisotropic, $d \neq 1$ and $C_{1} \not \not C_{2}$. Set $c=\operatorname{ind} C$. We have: $c=2$ or $c=4$.

Fix a separable closure \bar{F} of the field F. For the algebra $C_{\bar{F}}$, the variety $X_{\bar{F}}$, etc. we shall use the notation \bar{C}, \bar{X}, etc.

For $i=1,2$, denote by M_{i} and M_{i}^{\prime} the (determined uniquely up to an isomorphism and up to the order) non-isomorphic simple \bar{C}_{i}-modules. There are exactly 4 different isomorphism classes of simple C-modules; they are represented by $M_{1} \boxtimes M_{2}\left(M_{1} \boxtimes M_{2}\right.$ is by definition the tensor product $M_{1} \otimes M_{2}$ considered as \bar{C}-module in the natural way), $M_{1} \boxtimes M_{2}^{\prime}, M_{1}^{\prime} \boxtimes M_{2}$, and $M_{1}^{\prime} \boxtimes M_{2}^{\prime}$. Denote by m_{i} the class of M_{i} and by m_{i}^{\prime} the class of M_{i}^{\prime} in $K\left(\bar{C}_{i}\right)$. The abelian group $K(\bar{C})$ is freely generated by $m_{1} \boxtimes m_{2}\left(m_{1} \boxtimes m_{2}\right.$ is defined as follows: for $i=1,2$, one takes the image of $m_{i} \in K\left(C_{i}\right)$ with respect to the map $K\left(C_{i}\right) \rightarrow K(C)$ and than takes the product of the images in the ring $\left.K(C)\right)$, $m_{1} \boxtimes m_{2}^{\prime}, m_{1}^{\prime} \boxtimes m_{2}$, and $m_{1}^{\prime} \boxtimes m_{2}^{\prime}$. We identify $K(C)$ with a subgroup in $K(\bar{C})$ via the restriction map $K(C) \hookrightarrow K(\bar{C})$.
Lemma 5.3. The subgroup $K(C) \subset K(\bar{C})$ is generated by

$$
c \cdot\left(m_{1} \boxtimes m_{2}+m_{1}^{\prime} \boxtimes m_{2}^{\prime}\right) \quad \text { and } \quad c \cdot\left(m_{1} \boxtimes m_{2}^{\prime}+m_{1}^{\prime} \boxtimes m_{2}\right) .
$$

Proof. Denote by L the quadratic extension $F(\sqrt{d})$ of the field F, where $d=$ $\operatorname{det} \rho_{1}=\operatorname{det} \rho_{2}$. The algebra C_{L} is the direct product of 4 copies of a central simple L-algebra of index c. Evidently, the subgroup $K\left(C_{L}\right)$ of $K(\bar{C})$ is freely generated by $c \cdot m_{1} \boxtimes m_{2}, c \cdot m_{1} \boxtimes m_{2}^{\prime}, c \cdot m_{1}^{\prime} \boxtimes m_{2}$, and $c \cdot m_{1}^{\prime} \boxtimes m_{2}^{\prime}$.

Now we are going to determine $K(C)$ as a subgroup in $K\left(C_{L}\right)$. Computing the norm $N_{L / F}: K\left(C_{L}\right) \rightarrow K(C)$, we get:

$$
\begin{aligned}
& x \stackrel{\text { def }}{=} N_{L / F}\left(c \cdot m_{1} \boxtimes m_{2}\right)=c \cdot\left(m_{1} \boxtimes m_{2}+m_{1}^{\prime} \boxtimes m_{2}^{\prime}\right) ; \\
& x^{\prime} \stackrel{\text { def }}{=} N_{L / F}\left(c \cdot m_{1} \boxtimes m_{2}^{\prime}\right)=c \cdot\left(m_{1} \boxtimes m_{2}^{\prime}+m_{1}^{\prime} \boxtimes m_{2}\right) \text {. }
\end{aligned}
$$

Thus, the elements x and x^{\prime} are in $K(C)$. Note that:

- x and x^{\prime} can be included in a system of free generators of the free abelian group $K\left(C_{L}\right)$ (e.g. $x, x^{\prime}, c \cdot m_{1} \boxtimes m_{2}$, and $c \cdot m_{1} \boxtimes m_{2}^{\prime}$);
- $K(C)$ is a free abelian group of rank 2 (because the algebra C is the direct product of two copies of a simple algebra, since for $i=1,2$ one has: $C_{i}=C_{i}^{\prime} \otimes_{F} L$ for a central simple F-algebra $\left.C_{i}^{\prime}\right)$;
- $K(C)$ is a subgroup of $K\left(C_{L}\right)$ containing x and x^{\prime}.

Consequently, $K(C)$ is generated by x and x^{\prime}.
We identify $K(X)$ with a subgroup in $K(\bar{X})$ via the restriction map $K(X) \hookrightarrow$ $K(\bar{X})$ (which is injective by Item 1 of Lemma 4.3). For $i=1,2$, let l_{i}, l_{i}^{\prime} be the different line classes and p_{i} the point class in $K\left(\bar{X}_{i}\right)$ (see Lemma 3.2).

Corollary 5.4. The group $K(X)$ is generated modulo H by $c \cdot\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right)$ and $c \cdot p_{1} \boxtimes p_{2}$.
Proof. According to Item 2 of Lemma 4.3, the map $\mathfrak{u}: K(C) \rightarrow K(X) / H$ is surjective. By Lemma 5.3 , the group $K(C)$ is generated by

$$
c \cdot\left(m_{1} \boxtimes m_{2}+m_{1}^{\prime} \boxtimes m_{2}^{\prime}\right) \quad \text { and } \quad c \cdot\left(m_{1} \boxtimes m_{2}^{\prime}+m_{1}^{\prime} \boxtimes m_{2}\right) .
$$

Applying Lemma 3.6, we can compute the images of these generators in $K(X)$: up to the order, they are

$$
\begin{aligned}
& c \cdot\left(\left(1+l_{1}\right) \boxtimes\left(1+l_{2}\right)+\left(1+l_{1}^{\prime}\right) \boxtimes\left(1+l_{2}^{\prime}\right)\right) \quad \text { and } \\
& c \cdot\left(\left(1+l_{1}\right) \boxtimes\left(1+l_{2}^{\prime}\right)+\left(1+l_{1}^{\prime}\right) \boxtimes\left(1+l_{2}\right)\right) .
\end{aligned}
$$

One can modify the first expression as follows (the formulas of Lemma 3.2 are in use):

$$
\begin{aligned}
& c \cdot\left(\left(1+l_{1}\right) \boxtimes\left(1+l_{2}\right)+\left(1+l_{1}^{\prime}\right) \boxtimes\left(1+l_{2}^{\prime}\right)\right)= \\
& \quad=c \cdot\left(2+\left(l_{1}+l_{1}^{\prime}\right) \boxtimes 1+1 \boxtimes\left(l_{2}+l_{2}^{\prime}\right)+l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right)= \\
& =c \cdot\left(2+\left(h_{1}+h_{1}^{2} / 2\right) \boxtimes 1+1 \boxtimes\left(h_{2}+h_{2}^{2} / 2\right)+l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right) \equiv \\
& \quad \equiv c \cdot\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right) \quad(\bmod H)
\end{aligned}
$$

(note that c is divisible by 2). The analogous modification can be made for the second expression as well. Thus, the group $K(X)$ is generated modulo H by $c \cdot\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right)$ and $c \cdot\left(l_{1} \boxtimes l_{2}^{\prime}+l_{1}^{\prime} \boxtimes l_{2}\right)$. Taking the sum of these generators, we get:

$$
\begin{aligned}
& c \cdot\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right)+c \cdot\left(l_{1} \boxtimes l_{2}^{\prime}+l_{1}^{\prime} \boxtimes l_{2}\right)= \\
& =c \cdot\left(l_{1}+l_{1}^{\prime}\right) \boxtimes\left(l_{2}+l_{2}^{\prime}\right)=c \cdot\left(h_{1}+h_{1}^{2} / 2\right) \boxtimes\left(h_{2}+h_{2}^{2} / 2\right) \equiv \\
& \quad \equiv c \cdot\left(h_{1}^{2} / 2\right) \boxtimes\left(h_{2}^{2} / 2\right)=c \cdot p_{1} \boxtimes p_{2}
\end{aligned}
$$

(where the congruence is modulo H).
Lemma 5.5. \quad 1. $c \cdot\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right) \in K(X)^{(2)}$;
2. $c \cdot p_{1} \boxtimes p_{2} \in K(X)^{(3)}$;
3. for any $0 \neq r \in \mathbb{Z}$, the set $r \cdot c\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right)+H$ has no intersection with $K(X)^{(3)}$.
Proof. 1. It is evident that $c\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right) \in K(\bar{X})^{(2)}$. Since $K(X)^{(2)}=$ $K(\bar{X})^{(2)} \cap K(X)$ (see e.g. [23, Lemme 6.3, (i)]), we are done.
2. If we multiply the element $c\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right) \in K(X)^{(2)}$ by the element $h_{1} \boxtimes 1 \in K(X)^{(1)}$, we get:

$$
\begin{aligned}
& K(X)^{(3)} \ni c\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right) \cdot\left(h_{1} \boxtimes 1\right)= \\
&=c\left(p_{1} \boxtimes l_{2}+p_{1} \boxtimes l_{2}^{\prime}\right)=c \cdot p_{1} \boxtimes\left(h_{2}+p_{2}\right)= \\
&=c \cdot p_{1} \boxtimes h_{2}+c \cdot p_{1} \boxtimes p_{2} .
\end{aligned}
$$

Since $c \cdot p_{1} \boxtimes h_{2} \in H^{(3)} \in K(X)^{(3)}$, it follows that $c \cdot p_{1} \boxtimes p_{2} \in K(X)^{(3)}$.
3. By Lemmas 3.2 and 4.2 , the abelian group $K(\bar{X})$ is freely generated by the products $x_{1} \boxtimes x_{2}$ where x_{i} is one of the elements $1, l_{i}, l_{i}^{\prime}, p_{i}$; moreover, the term $K(\bar{X})^{(3)}$ of the filtration is generated by $l_{1} \boxtimes p_{2}, l_{1}^{\prime} \boxtimes p_{2}, p_{1} \boxtimes l_{2}, p_{1} \boxtimes l_{2}^{\prime}$ and $p_{1} \boxtimes p_{2}$. In particular, $4 K(\bar{X})^{(3)} \subset H$.

Suppose that, for certain $0 \neq r \in \mathbb{Z}$, the intersection of $r \cdot c\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right)+H$ with $K(X)^{(3)}$ is non-empty. Then $4 r \cdot c\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right) \in H$, a contradiction.

Corollary 5.6. Let us supply the quotient $K(X) / H$ with the filtration induced from $K(X)$. Then Tors $\mathrm{G}^{2}(K(X) / H)=0$.
Proof. By Corollary 5.4 and Lemma $5.5, \mathrm{G}^{2}(K(X) / H)$ is an infinite cyclic group (generated by the residue of $c\left(l_{1} \boxtimes l_{2}+l_{1}^{\prime} \boxtimes l_{2}^{\prime}\right)$).

To finish the proof of Theorem 5.1, consider the exact sequence

$$
0 \rightarrow \mathrm{G}^{2} H \rightarrow \mathrm{G}^{2} K(X) \rightarrow \mathrm{G}^{2}(K(X) / H) \rightarrow 0 .
$$

The left-hand side term is torsion-free by Lemma 4.1 while the right-hand side term is torsion-free by Corollary 5.6. Consequently, the middle term is a torsion-free group as well.

Theorem 5.7. The order of the group Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)$ is at most 2.
Proof. Since 2 Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)=0$ by Corollary 2.11, it suffices to show that the torsion in $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)$ is a cyclic group.

By Corollary 2.7, it suffices to consider only the case when the both quadratic forms ρ_{1} and ρ_{2} are anisotropic.

Set as usual $X=X_{1} \times X_{2}, C_{i}=C_{0}\left(\rho_{i}\right)$ and $C=C_{1} \otimes_{F} C_{2}$. Suppose that the algebra C is simple. Then $K(C)$ is a cyclic group and therefore, by Item 2 of Lemma 4.3, the quotient $K(X) / H$ is cyclic as well. Moreover, C_{1} and C_{2} are division algebras (since they are simple and the quadratic forms are anisotropic) and therefore $K\left(X_{i}\right)=H_{i}$ for $i=1,2$ by Item 4 of Lemma 3.3. Supplying $K(X) / H$ with the filtration induced from $K(X)$, we get an exact sequence of the adjoint graded groups

$$
0 \rightarrow \mathrm{G}^{*} H \rightarrow \mathrm{G}^{*} K(X) \rightarrow \mathrm{G}^{*}(K(X) / H) \rightarrow 0
$$

Take any $r \geq 0$. Since $\mathrm{G}^{r} H$ is torsion-free (Lemma 4.1), Tors $\mathrm{G}^{r} K(X)$ is mapped injectively into $G^{r}(K(X) / H)$. Since $K(X) / H$ is cyclic, $G^{r}(K(X) / H)$ is cyclic as well and thus so is also Tors $\mathrm{G}^{r} K(X)$. In particular, the group Tors $\mathrm{CH}^{2}(X) \simeq$ Tors $\mathrm{G}^{2} K(X)$ is cyclic.

Now suppose that C is not simple. Then
either: $\operatorname{dim} X_{1}=2=\operatorname{dim} X_{2}$ and $\operatorname{det} X_{1}=\operatorname{det} X_{2}$,
or: for $i=1$ or for $i=2$, one has: $\operatorname{dim} X_{i}=2$ and $\operatorname{det} X_{i}=1$.
In the first case, the torsion in $\mathrm{CH}^{2}(X)$ is 0 by Theorem 5.1. In the second case, we replace the surface X_{i} by a stably birationally equivalent conic (see Lemma 5.2 and Corollary 2.5).
Theorem 5.8. If ind $C_{0}\left(\rho_{1}\right) \otimes_{F} C_{0}\left(\rho_{2}\right)=4$, then Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)=0$.
Proof. We set $C=C_{0}\left(\rho_{1}\right) \otimes_{F} C_{0}\left(\rho_{2}\right)$ and suppose that ind $C=4$.
If C is a simple algebra, then it is a skewfield and we are done by Corollary 4.4.

If C is not simple, then
either: $\operatorname{dim} X_{1}=2=\operatorname{dim} X_{2}$ and $\operatorname{det} \rho_{1}=\operatorname{det} \rho_{2}$,
or: for $i=1$ or for $i=2$, one has: $\operatorname{dim} X_{i}=2$ and $\operatorname{det} X_{i}=1$.
In the first case, the torsion in $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)$ is 0 by Theorem 5.1. In the second case, we replace the surface X_{i} by a stably birationally equivalent conic (see Lemma 5.2 and Corollary 2.5).

Theorem 5.9. Suppose that $\operatorname{dim} \rho_{1}=4$, $\operatorname{det} \rho_{1} \neq 1$ and that for a certain 3-dimensional subform ρ_{1}^{\prime} of ρ_{1} one has:

$$
\operatorname{ind} C_{0}\left(\rho_{1}\right) \otimes_{F} C_{0}\left(\rho_{2}\right)=\operatorname{ind} C_{0}\left(\rho_{1}^{\prime}\right) \otimes_{F} C_{0}\left(\rho_{2}\right) .
$$

Then Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)=0$.
Proof. Applying the same arguments as above, we may assume that

- the forms ρ_{1} and ρ_{2} are anisotropic and
- one of the following alternative conditions holds:
- the dimension of ρ_{2} equals 3 or
- the dimension of ρ_{2} is 4 and $\operatorname{det} \rho_{1} \neq \operatorname{det} \rho_{2} \neq 1$.

We are going to show that, under the assumptions made, Tors $\mathrm{G}^{2} K\left(X_{1} \times X_{2}\right)=$ 0.

The algebra C is now simple; it has the index 1,2 , or 4 . Set $c=\operatorname{ind} C$. The group $K(C)$ is generated by $(c / 4) \cdot[C]$ where $[C] \in K(C)$ is the class of C.

Consider the case when $\operatorname{dim} \rho_{2}=4$.
It follows from Item 2 of Lemma 4.3 that $K(X)$ is generated modulo H by the element $(c / 4)[\mathcal{U}(2,2)]$. Applying Item 2 of Lemma 3.3, one computes that $[\mathcal{U}(2,2)]=\left(4+2 h_{1}+h_{1}^{2}\right) \boxtimes\left(4+2 h_{2}+h_{2}^{2}\right) \in K(X)$. Thus, $K(X)$ is generated modulo H also by $x \stackrel{\text { def }}{=}(c / 4)\left(2 \cdot h_{1} \boxtimes h_{2}^{2}+2 \cdot h_{1}^{2} \boxtimes h_{2}+h_{1}^{2} \boxtimes h_{2}^{2}\right)$. Since we have the exact sequence

$$
0 \rightarrow \mathrm{G}^{*} H \rightarrow \mathrm{G}^{*} K(X) \rightarrow \mathrm{G}^{*}(K(X) / H) \rightarrow 0
$$

with torsion-free $\mathrm{G}^{*} H$, it would suffice to show that $x \in K(X)^{(3)}$.
Consider the conic X_{1}^{\prime} determined by ρ_{1}^{\prime} and denote by \mathcal{U}_{1}^{\prime} the Swan's sheaf on X_{1}^{\prime}. The product $\mathcal{U}_{1}^{\prime}(1) \boxtimes \mathcal{U}_{2}(2)$ of the twisted Swan's sheaves has a structure of module over $C^{\prime} \stackrel{\text { def }}{=} C_{1}^{\prime} \otimes C_{2}$; its class in $K\left(X^{\prime}\right)$, where $X^{\prime} \stackrel{\text { def }}{=} X_{1}^{\prime} \times X_{2}$ is equal to $\left(2+h_{1}^{\prime}\right) \boxtimes\left(4+2 h_{2}+h_{2}^{2}\right)$ where h_{1}^{\prime} is the class in $K\left(X_{1}^{\prime}\right)$ of a hyperplane section of X_{1}^{\prime}. Since ind $C^{\prime}=\operatorname{ind} C=c$, the latter product can be divided by $(4 / c)$ in $K\left(X^{\prime}\right)$, i.e.

$$
K\left(X^{\prime}\right) \ni x^{\prime} \stackrel{\text { def }}{=}(c / 4)\left(2 \cdot 1 \boxtimes h_{2}^{2}+2 \cdot h_{1}^{\prime} \boxtimes h_{2}+h_{1}^{\prime} \boxtimes h_{2}^{2}\right) .
$$

Since $4 x^{\prime} \in K\left(X^{\prime}\right)^{(2)}$ and the group $\mathrm{G}^{1} K\left(X^{\prime}\right)=\mathrm{CH}^{1}\left(X^{\prime}\right)$ is torsion-free (see e.g. [23, Lemme 6.3, (i)]), it follows that $x^{\prime} \in K\left(X^{\prime}\right)^{(2)}$. Since the image of x^{\prime} with respect to the push-forward given by the closed imbedding $X^{\prime} \hookrightarrow X$ coincides with x and $\operatorname{codim}_{X} X^{\prime}=1$, the element x is in $K(X)^{(3)}$.

Now suppose that $\operatorname{dim} \rho_{2}=3$.
If $c=1$, then the quadric $\left(X_{2}\right)_{F\left(X_{1}\right)}$ is isotropic and therefore $\operatorname{Tors}^{2} \mathrm{CH}^{2}(X)=$ 0 by Corollary 2.7. Thus we may assume that c is divisible by 2 .

The group $K(X)$ is now generated modulo H by $(c / 4)[\mathcal{U}(2,1)]$ and $[\mathcal{U}(2,1)]=$ $\left(4+2 h_{1}+h_{1}^{2}\right) \boxtimes\left(2+h_{2}\right) \in K(X)$. Thus, $K(X)$ is generated modulo H also by $x \stackrel{\text { def }}{=}(c / 4)\left(h_{1}^{2} \boxtimes h_{2}\right)$ and it suffices to show that $x \in K(X)^{(3)}$.

The class in $K\left(X^{\prime}\right)$ of the product $\mathcal{U}_{1}^{\prime}(1) \boxtimes \mathcal{U}_{2}(1)$ of the twisted Swan's sheaves is equal this time to $\left(2+h_{1}^{\prime}\right) \boxtimes\left(2+h_{2}\right)$ and can be divided by $(4 / c)$ in $K\left(X^{\prime}\right)$, i.e.

$$
K\left(X^{\prime}\right) \ni x^{\prime} \stackrel{\text { def }}{=}(c / 4)\left(h_{1}^{\prime} \boxtimes h_{2}\right)
$$

Since $x^{\prime} \in K\left(X^{\prime}\right)^{(2)}$ and the image of x^{\prime} with respect to the push-forward given by the closed imbedding $X^{\prime} \hookrightarrow X$ coincides with x, the element x is in $K(X)^{(3)}$.
Corollary 5.10. If ρ_{1} and ρ_{2} contain similar 3-dimensional subforms, then Tors $\mathrm{CH}^{2}\left(X_{1} \times X_{2}\right)=0$.
Proof. If $\operatorname{dim} \rho_{1}=3$ or if $\operatorname{det} \rho_{1}=1$, then the quadric $\left(X_{2}\right)_{F\left(X_{1}\right)}$ is isotropic and so we are done by Corollary 2.7.

Therefore, we may assume that $\operatorname{dim} \rho_{1}=4$ and $\operatorname{det} \rho_{1} \neq 1$. These are the first two conditions of Theorem 5.9. We state that also the last condition of Theorem 5.9 is satisfied. Indeed, denote by $\rho_{1}^{\prime} \subset \rho_{1}$ and $\rho_{2}^{\prime} \subset \rho_{2}$ the similar 3 -dimensional subforms. According to Lemma 3.4, the F-algebras $C_{0}\left(\rho_{1}^{\prime}\right)$ and $C_{0}\left(\rho_{2}^{\prime}\right)$ are isomorphic and $C_{0}\left(\rho_{i}\right)=C_{0}\left(\rho_{i}^{\prime}\right)_{F\left(\sqrt{\operatorname{det} \rho_{i}}\right)}$ for $i=1,2$. Therefore, ind $C_{0}\left(\rho_{1}\right) \otimes_{F} C_{0}\left(\rho_{2}\right)=1=\operatorname{ind} C_{0}\left(\rho_{1}^{\prime}\right) \otimes_{F} C_{0}\left(\rho_{2}\right)$.

6. The group $I^{3}(F(\rho, \psi) / F)$

The following assertion is obvious:
Lemma 6.1. Let $\rho=\langle-a,-b, a b, d\rangle$ be a quadratic form over F. For any $k \in F^{*}$ the following conditions are equivalent.
(1) $k \in D_{F}(\langle\langle d\rangle\rangle)$;
(2) $\langle\langle a, b, k\rangle\rangle=\rho\langle\langle k\rangle\rangle$;
(3) $\rho\langle\langle k\rangle\rangle \in P_{3}(F)$.

Lemma 6.2. Let $\rho=\langle-a,-b, a b, d\rangle$ be a quadratic form over F. Then

1. $P_{3}(F(\rho) / F)=\left\{\langle\langle a, b, k\rangle\rangle \mid k \in D_{F}(\langle\langle d\rangle\rangle)\right\}$,
2. $H^{3}(F(\rho) / F)=\left\{(a, b, k) \mid k \in D_{F}(\langle\langle d\rangle\rangle)\right\}$.

Proof. 1. See [3, Lemma 3.1].
2. Let $\rho_{0}=\langle-a,-b, a b\rangle$. Clearly $H^{3}(F(\rho) / F) \subset H^{3}\left(F\left(\rho_{0}\right) / F\right)$. It follows from [1, Beweis vom Satz 5.6] that $H^{3}\left(F\left(\rho_{0}\right) / F\right)=(a, b) \cup H^{1}(F)$. Hence any element $u \in H^{3}(F(\rho) / F)$ has the form (a, b, x) where $x \in F^{*}$. Since $(a, b, x) \in$ $H^{3}(F(\rho) / F)$, the Pfister form $\langle\langle a, b, x\rangle\rangle_{F(\rho)}$ is hyperbolic. It follows from the first assertion that there exists $k \in D_{F}(\langle\langle d\rangle\rangle)$ such that $\langle\langle a, b, x\rangle\rangle=\langle\langle a, b, k\rangle\rangle$. Hence $u=(a, b, x)=(a, b, k)$.

Corollary 6.3. Let $\rho_{1}, \ldots, \rho_{m}$ be 4-dimensional quadratic forms over F. Then for a quadratic form ϕ the following conditions are equivalent:
(1) $\phi \in I^{3}\left(F\left(\rho_{1}\right) / F\right)+\cdots+I^{3}\left(F\left(\rho_{m}\right) / F\right)+I^{4}(F)$;
(2) $\phi \in P_{3}\left(F\left(\rho_{1}\right) / F\right)+\cdots+P_{3}\left(F\left(\rho_{m}\right) / F\right)+I^{4}(F)$;
(3) $\phi \in I^{3}(F)$ and $e^{3}(\phi) \in H^{3}\left(F\left(\rho_{1}\right) / F\right)+\cdots+H^{3}\left(F\left(\rho_{m}\right) / F\right)$.

Proof. (2) $\Rightarrow(1) \Rightarrow(3)$. Obvious.
$(3) \Rightarrow(2)$. Follows from Lemma 6.2.
Corollary 6.4. Let $\rho_{1}, \ldots, \rho_{m}$ be 4 -dimensional quadratic forms such that $H^{3}\left(F\left(\rho_{1}, \ldots, \rho_{m}\right) / F\right)=H^{3}\left(F\left(\rho_{1}\right) / F\right)+\cdots+H^{3}\left(F\left(\rho_{m}\right) / F\right)$. Then

$$
I^{3}\left(F\left(\rho_{1}, \ldots, \rho_{m}\right) / F\right) \subset I^{3}\left(F\left(\rho_{1}\right) / F\right)+\cdots+I^{3}\left(F\left(\rho_{m}\right) / F\right)+I^{4}(F)
$$

Corollary 6.5. Let $\rho=\langle-a,-b, a b, d\rangle$ and $\psi=\langle-u,-v, u v, \delta\rangle$ be quadratic forms over F. Then for any $\pi \in I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$ there exist $k_{1}, k_{2} \in F^{*}$ with the following properties:

1) $\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle=\rho\left\langle\left\langle k_{1}\right\rangle\right\rangle$ and $\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle=\psi\left\langle\left\langle k_{2}\right\rangle\right\rangle$;
2) $\pi \equiv\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle+\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle\left(\bmod I^{4}(F)\right)$.

Proof. By Corollary 6.3, we have $\pi \in P_{3}(F(\rho) / F)+P_{3}(F(\psi) / F)+I^{4}(F)$. Hence there exist $\pi_{1} \in P_{3}(F(\rho) / F)$ and $\pi_{2} \in P_{3}(F(\psi) / F)$ such that

$$
\pi \equiv \pi_{1}+\pi_{2} \quad\left(\bmod I^{4}(F)\right)
$$

By Lemma 6.2, there exist $k_{1}, k_{2} \in F^{*}$ such that $\pi_{1}=\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle$ and $\pi_{2}=$ $\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle$. Finally, Lemma 6.1 shows that $\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle=\rho\left\langle\left\langle k_{1}\right\rangle\right\rangle,\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle=$ $\psi\left\langle\left\langle k_{2}\right\rangle\right\rangle$.

7. The case of index 1

In this section, we study the group $H^{3}(F(\rho, \psi) / F)$ in the case where ρ, ψ are 4 -dimensional quadratic forms with non-trivial discriminants and ind $C_{0}(\rho) \otimes_{F}$ $C_{0}(\psi)=1$. In the case $d_{ \pm} \rho=d_{ \pm} \psi$ we obviously have $C_{0}(\rho) \simeq C_{0}(\psi)$. Hence
ρ is similar to ψ (see $\left[27\right.$, Theorem 7]) and hence the group $H^{3}(F(\rho, \psi) / F)$ coincides with $H^{3}(F(\rho) / F)$. So it is sufficient to study only the case where $d_{ \pm} \rho \neq d_{ \pm} \psi$.

Replacing ρ and ψ by similar forms, we can rewrite our conditions as follows:

1) $\rho=\langle-a,-b, a b, d\rangle$ and $\psi=\langle-u,-v, u v, \delta\rangle$ with $a, b, d, u, v, \delta \in F^{*}$;
2) d, δ, and $d \delta$ are not squares in F^{*};
3) ind $\left((a, b) \otimes_{F}(u, v)\right)_{F(\sqrt{d}, \sqrt{\delta})}=1$.

During this section we will suppose that the conditions 1)-3) hold.
We define the set $\Gamma(\rho, \psi)$ as

$$
\left\{\gamma \in I^{3}(F) \mid \text { there exist } l_{1}, l_{2} \in F^{*} \text { such that } \gamma=l_{1} \rho+l_{2} \psi+\langle\langle d \delta\rangle\rangle\right\} .
$$

Lemma 7.1. The set $\Gamma(\rho, \psi)$ is not empty.
Proof. Since $\operatorname{ind}\left((a, b) \otimes_{F}(u, v)\right)_{F(\sqrt{d}, \sqrt{\delta})}=1$, there exist $s, r \in F^{*}$ such that $(a, b) \otimes(u, v)=(d, s) \otimes(\delta, r)$. Set $l_{1}=\delta s, l_{2}=-\delta r$. It is sufficient to verify that $\gamma \stackrel{\text { def }}{=} l_{1} \rho+l_{2} \psi+\langle\langle d \delta\rangle\rangle \in I^{3}(F)$. We have

$$
\begin{aligned}
\gamma & =\delta s \rho-\delta r \psi+\langle 1,-d \delta\rangle=\delta(s \rho-r \psi+\langle\delta,-d\rangle)= \\
& =\delta(s(\langle\langle a, b\rangle\rangle-\langle\langle d\rangle\rangle)-r(\langle\langle u, v\rangle\rangle-\langle\langle\delta\rangle\rangle)+(\langle\langle d\rangle\rangle-\langle\langle\delta\rangle\rangle))= \\
& =\delta(s\langle\langle a, b\rangle\rangle-r\langle\langle u, v\rangle\rangle+\langle\langle d, s\rangle\rangle-\langle\langle\delta, r\rangle\rangle) .
\end{aligned}
$$

Therefore $\gamma \in I^{2}(F)$ and $c(\gamma)=(a, b)+(u, v)+(d, s)+(\delta, r)=0$. Hence $\gamma \in I^{3}(F)$.
Lemma 7.2. $\Gamma(\rho, \psi) \subset I^{3}(F(\rho, \psi) / F)$.
Proof. Let $\gamma=l_{1} \rho+l_{2} \psi+\langle\langle d \delta\rangle\rangle \in \Gamma(\rho, \psi)$. We have $\operatorname{dim}\left(\gamma_{F(\psi, \rho)}\right)_{a n} \leq$ $\operatorname{dim}\left(\rho_{F(\rho)}\right)_{a n}+\operatorname{dim}\left(\psi_{F(\psi)}\right)_{a n}+\operatorname{dim}\langle\langle\delta d\rangle\rangle \leq 2+2+2=6<8$. Since $\gamma \in I^{3}(F)$, the Arason-Pfister Hauptsatz shows that $\gamma_{F(\psi, \rho)}$ is hyperbolic.
Corollary 7.3. For any $\gamma \in \Gamma(\rho, \psi)$, we have $e^{3}(\gamma) \in H^{3}(F(\rho, \psi) / F)$.
Lemma 7.4. Let $l, k \in F^{*}$ and let τ be a quadratic form such that $\tau\langle\langle k\rangle\rangle \in$ $I^{3}(F)$. Then $l \tau-\langle\langle k\rangle\rangle \tau \equiv l k \tau\left(\bmod I^{4}(F)\right)$.
Proof. $l \tau-\langle\langle k\rangle\rangle \tau-l k \tau=-\langle\langle l\rangle\rangle\langle\langle k\rangle\rangle \tau \in\langle\langle l\rangle\rangle I^{3}(F) \subset I^{4}(F)$.
Lemma 7.5. Let $\gamma \in \Gamma(\rho, \psi), \pi_{1} \in P_{3}(F(\rho) / F)$ and $\pi_{2} \in P_{3}(F(\psi) / F)$. Then there exists $\gamma^{\prime} \in \Gamma(\rho, \psi)$ such that $\gamma-\pi_{1}-\pi_{2} \equiv \gamma^{\prime}\left(\bmod I^{4}(F)\right)$. Moreover, $\gamma+\pi_{1}+\pi_{2} \equiv \gamma^{\prime}\left(\bmod I^{4}(F)\right)$.
Proof. Let $l_{1}, l_{2} \in F^{*}$ be such that $\gamma=l_{1} \rho+l_{2} \psi+\langle\langle d \delta\rangle\rangle$. By Lemmas 6.1 and 6.2, there exist $k_{1}, k_{2} \in F^{*}$ such that $\pi_{1}=\rho\left\langle\left\langle k_{1}\right\rangle\right\rangle, \pi_{2}=\psi\left\langle\left\langle k_{2}\right\rangle\right\rangle$. By Lemma 7.4, we have

$$
\begin{aligned}
& l_{1} \rho-\pi_{1}=l_{1} \rho-\left\langle\left\langle k_{1}\right\rangle\right\rangle \rho \equiv l_{1} k_{1} \rho \quad\left(\bmod I^{4}(F)\right) \\
& l_{2} \psi-\pi_{2}=l_{2} \psi-\left\langle\left\langle k_{2}\right\rangle\right\rangle \psi \equiv l_{2} k_{2} \psi \quad\left(\bmod I^{4}(F)\right)
\end{aligned}
$$

Hence $\gamma-\pi_{1}-\pi_{2} \equiv l_{1} k_{1} \rho+l_{2} k_{2} \psi+\langle\langle d \delta\rangle\rangle\left(\bmod I^{4}(F)\right)$. Setting $\gamma^{\prime}=l_{1} k_{1} \rho+$ $l_{2} k_{2} \psi+\langle\langle d \delta\rangle\rangle$, we get the required equation $\gamma-\pi_{1}-\pi_{2} \equiv \gamma^{\prime}\left(\bmod I^{4}(F)\right)$.

The second equation $\gamma+\pi_{1}+\pi_{2} \equiv \gamma^{\prime}\left(\bmod I^{4}(F)\right)$ is obvious in view of the congruence $\pi_{i} \equiv-\pi_{i}\left(\bmod I^{4}(F)\right)($ for $i=1,2)$.

Corollary 7.6. $\Gamma(\rho, \psi)+I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)=\Gamma(\rho, \psi)+I^{4}(F)$.
Proof. It is an obvious consequence of Corollary 6.3 and Lemma 7.5
Lemma 7.7. The following conditions are equivalent:
(1) $I^{3}(F(\rho, \psi) / F) \subset I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$;
(2) $\Gamma(\rho, \psi) \subset I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$;
(3) there exists $\gamma \in \Gamma(\rho, \psi)$ such that $\gamma \in I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$;
(4) $\Gamma(\rho, \psi)$ contains a hyperbolic form, i.e. $0 \in \Gamma(\rho, \psi)$;
(5) the quadratic forms ψ and ρ contain similar 3-dimensional subforms;
(6) Tors $\mathrm{CH}^{2}\left(X_{\rho} \times X_{\psi}\right)=0$;
(7) $H^{3}(F(\rho, \psi) / F)=H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)$.

Proof. $(1) \Rightarrow(2)$. Obvious in view of Lemma 7.2.
$(2) \Rightarrow(3)$. Obvious in view of Lemma 7.1.
$(3) \Rightarrow(4)$. Let γ be such as in (3). By Corollary 6.3, there exist $\pi_{1} \in P_{3}(F(\rho) / F)$ and $\pi_{2} \in P_{3}(F(\psi) / F)$ such that $\gamma \in \pi_{1}+\pi_{2}+I^{4}(F)$. Hence $\gamma-\pi_{1}-\pi_{2} \in I^{4}(F)$. By Lemma 7.5 , there exists $\gamma^{\prime} \in \Gamma(\rho, \psi)$ such that $\gamma-\pi_{1}-\pi_{2} \equiv \gamma^{\prime}\left(\bmod I^{4}(F)\right)$. Since $\gamma-\pi_{1}-\pi_{2} \in I^{4}(F)$, we have $\gamma^{\prime} \in I^{4}(F)$. By definition of $\Gamma(\rho, \psi)$, $\operatorname{dim}\left(\gamma^{\prime}\right)_{a n} \leq 4+4+2=10<16$. Since $\gamma^{\prime} \in I^{4}(F)$, the Arason-Pfister Hauptsatz shows that $\gamma^{\prime}=0$.
$(4) \Rightarrow(5)$. Since $0 \in \Gamma(\rho, \psi)$, there exist $l_{1}, l_{2} \in F^{*}$ such that $0=l_{1} \rho+l_{2} \psi+$ $\langle\langle d \delta\rangle\rangle$. Thus $l_{1} \rho+l_{2} \psi=-\langle\langle d \delta\rangle\rangle$. Hence $l_{1} \rho$ and $l_{2} \psi$ contain a common subform of the dimension $(\operatorname{dim}(\rho)+\operatorname{dim}(\psi)-\operatorname{dim}\langle\langle d \delta\rangle\rangle) / 2=(4+4-2) / 2=3$.
$(5) \Rightarrow(6)$. See Corollary 5.10 .
$(6) \Rightarrow(7)$. See Corollary 2.13 .
$(7) \Rightarrow(1)$. It is a particular case of Corollary 6.4.
Proposition 7.8. For an arbitrary element $\gamma \in \Gamma(\rho, \psi)$, one has

$$
H^{3}(F(\rho, \psi) / F)=H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)+e^{3}(\gamma) H^{0}(F)
$$

Proof. By Corollary 7.3, the element $e^{3}(\gamma)$ belongs to $H^{3}(F(\rho, \psi) / F)$. If Tors $\mathrm{CH}^{2}\left(X_{\rho} \times X_{\psi}\right)=0$ then by Corollary 2.13 , we have $H^{3}(F(\rho, \psi) / F)=$ $H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)$ and the proof is complete. If Tors $\mathrm{CH}^{2}\left(X_{\rho} \times X_{\psi}\right) \neq$ 0 , Lemma 7.7 shows that $\gamma \notin I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$. Hence, by Corollary 6.3, $e^{3}(\gamma) \notin H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)$. To complete the proof it is sufficient to apply Corollary 2.13 and Theorem 5.7.

Corollary 7.9. $I^{3}(F(\rho, \psi) / F) \subset I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+\{\Gamma(\rho, \psi), 0\}+$ $I^{4}(F)$.

Proof. Let $\tau \in I^{3}(F(\rho, \psi) / F)$. Choose an element $\gamma \in \Gamma(\rho, \psi)$. By Proposition 7.8, either $e^{3}(\tau) \in H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)$ or $e^{3}(\tau-\gamma) \in H^{3}(F(\rho) / F)+$ $H^{3}(F(\psi) / F)$. It remains to apply Corollary 6.3.

Proposition 7.10. Let $\pi \in I^{3}(F(\rho, \psi) / F)$. Then at least one of the following conditions holds

1) $\pi \in I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$;
2) $\pi \in \Gamma(\rho, \psi)+I^{4}(F)$.

Proof. Obvious in view of Corollaries 7.9 and 7.6.

8. Main theorem

Proposition 8.1. Let $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$ be an anisotropic quadratic form. Let $\psi=\langle-u,-v, u v, \delta\rangle$ and $\rho=\langle-a,-b, a b, d\rangle$. Then:

1. The following two conditions are equivalent:
(i) $\langle\langle a, b, c\rangle\rangle \in I^{3}(F(\rho, \psi) / F)$,
(ii) $\phi_{F(\psi)}$ is isotropic.
2. The following two conditions are equivalent:
(i) $\langle\langle a, b, c\rangle\rangle \in I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$,
(ii) there exits a 5-dimensional Pfister neighbor ϕ_{0} such that $\phi_{0} \subset \phi$ and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic.
Proof. Note that $\langle\langle a, b, c\rangle\rangle=\phi-c \rho=\rho-c \phi$.
$(1 i) \Rightarrow(1 \mathrm{ii})$. Let $E=F(\psi)$. If the Pfister form $\langle\langle a, b, c\rangle\rangle_{E}$ is isotropic, its neighbor $(\langle\langle a, b\rangle\rangle \perp\langle-c\rangle)_{E}$ is isotropic too. Since $\langle\langle a, b\rangle\rangle \perp\langle-c\rangle \subset \phi$, the form ϕ_{E} is isotropic. Thus we can suppose that $\langle\langle a, b, c\rangle\rangle_{E}$ is anisotropic. By the assumption, $\langle\langle a, b, c\rangle\rangle \in I^{3}(F(\rho, \psi) / F)=I^{3}(E(\rho) / F)$. Hence the anisotropic Pfister form $\langle\langle a, b, c\rangle\rangle_{E}$ becomes isotropic over the function field of ρ_{E}. By the Arason-Pfister subform theorem, we have $k \rho_{E} \subset\langle\langle a, b, c\rangle\rangle_{E}$ where k is an arbitrary element of $D_{E}(\rho) \cdot D_{E}(\langle\langle a, b, c\rangle\rangle)$. Since $(a b)^{-1} \in D_{E}(\rho)$ and $-a b c \in$ $D_{E}(\langle\langle a, b, c\rangle\rangle)$ we can take $k=(a b)^{-1} \cdot(-a b c)=-c$. Thus $-c \rho_{E} \subset\langle\langle a, b, c\rangle\rangle_{E}$. Hence $\operatorname{dim}\left((\langle\langle a, b, c\rangle\rangle \perp c \rho)_{E}\right)_{a n} \leq 8-4=4$. Since $\langle\langle a, b, c\rangle\rangle+c \rho=\phi$, it follows that $\operatorname{dim}\left(\phi_{E}\right)_{a n} \leq 4$. Hence $\phi_{F(\psi)}=\phi_{E}$ is isotropic.
$(1 i i) \Rightarrow(1 i)$. Since $\phi_{F(\psi)}$ and $\rho_{F(\rho)}$ are isotropic, we have $\operatorname{dim}\left(\phi_{F(\psi)}\right)_{a n} \leq 4$ and $\operatorname{dim}\left(\rho_{F(\rho)}\right)_{a n} \leq 2$. Therefore $\operatorname{dim}\left(\langle\langle a, b, c\rangle\rangle_{F(\rho, \psi)}\right)_{a n}=\operatorname{dim}\left((\phi-c \rho)_{F(\rho, \psi)}\right)_{a n} \leq$ $4+2=6$. By the Arason-Pfister theorem, $\langle\langle a, b, c\rangle\rangle_{F(\rho, \psi)}$ is hyperbolic. Hence $\langle\langle a, b, c\rangle\rangle \in I^{3}(F(\rho, \psi) / F)$.
$(2 \mathrm{i}) \Rightarrow(2 \mathrm{ii})$. By Corollary 6.5 , there exist $k_{1}, k_{2} \in F^{*}$ such that $\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle=$ $\rho\left\langle\left\langle k_{1}\right\rangle\right\rangle,\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle=\psi\left\langle\left\langle k_{2}\right\rangle\right\rangle$, and

$$
\langle\langle a, b, c\rangle\rangle \equiv\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle+\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle \quad\left(\bmod I^{4}(F)\right) .
$$

It follows from [2, Theorem 4.8] that the Pfister forms $\langle\langle a, b, c\rangle\rangle,\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle$, and $\left\langle\left\langle u, v, k_{2}\right\rangle\right.$ are linked. Hence there exists $s \in F^{*}$ such that $s\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle=$ $\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle-\langle\langle a, b, c\rangle\rangle$. Since $\left\langle\left\langle a, b, k_{1}\right\rangle\right\rangle=\rho\left\langle\left\langle k_{1}\right\rangle\right\rangle$ and $\langle\langle a, b, c\rangle\rangle=\rho-c \phi$, we have $s\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle=\rho\left\langle\left\langle k_{1}\right\rangle\right\rangle-(\rho-c \phi)=c \phi-k_{1} \rho$. Therefore $\phi-c s\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle=c k_{1} \rho$. Hence ϕ and cs $\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle$ contain a common subform of the dimension

$$
\frac{1}{2}\left(\operatorname{dim} \phi+\operatorname{dim}\left(s c\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle\right)-\operatorname{dim}\left(c k_{1} \rho\right)\right)=\frac{1}{2}(6+8-4)=5 .
$$

Let us denote such a form by ϕ_{0}. By the definition, we have $\phi_{0} \subset \phi$. Since $\phi_{0} \subset s c\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle$, it follows that ϕ_{0} is a Pfister neighbor. Since $\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle=$ $\psi\left\langle\left\langle k_{2}\right\rangle\right\rangle$, it follows that $\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle_{F(\psi)}$ is isotropic. Hence the Pfister neighbor $\left(\phi_{0}\right)_{F(\psi)}$ of $\left\langle\left\langle u, v, k_{2}\right\rangle\right\rangle_{F(\psi)}$ is isotropic as well.
$(2 \mathrm{ii}) \Rightarrow(2 \mathrm{i})$. Let ϕ_{0} be a 5 -dimensional Pfister neighbor such that $\phi_{0} \subset \phi$ and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic. Let us write ϕ in the form $\phi=\phi_{0} \perp\left\langle s_{0}\right\rangle$. Since ϕ_{0} is a Pfister neighbor, there exists $\pi \in G P_{3}(F)$ such that $\phi_{0} \subset \pi$. We can write π in the form $\pi=\phi_{0} \perp-\left\langle s_{1}, s_{2}, s_{3}\right\rangle$. Set $\gamma=\left\langle s_{0}, s_{1}, s_{2}, s_{3}\right\rangle$. We have

$$
\gamma=\phi-\pi \equiv \phi=\langle\langle a, b, c\rangle\rangle+c \rho \equiv c \rho \quad\left(\bmod I^{3}(F)\right) .
$$

Since $\operatorname{dim} \gamma=\operatorname{dim} c \rho=4$ it follows from the Wadsworth's theorem ([27, Theorem 7]) that γ is similar to $c \rho$. Hence there exists $k \in F^{*}$ such that $\gamma=c k \rho$. We have

$$
\langle\langle a, b, c\rangle\rangle=\rho-c \phi=\rho-c(\gamma+\pi)=\rho-c(c k \rho+\pi)=\langle\langle k\rangle\rangle \rho-c \pi .
$$

Now it is sufficient to verify that $\langle\langle k\rangle\rangle \rho \in I^{3}(F(\rho) / F)$ and $\pi \in I^{3}(F(\psi) / F)$. We have $\langle\langle k\rangle\rangle \rho=\langle\langle a, b, c\rangle\rangle+c \pi \in I^{3}(F)$. Since $\operatorname{dim}\left(\langle\langle k\rangle\rangle \rho_{F(\rho)}\right)_{a n}<8$, the Arason-Pfister Hauptsatz shows that $\langle\langle k\rangle\rangle \rho_{F(\rho)}$ is hyperbolic. Thus $\langle\langle k\rangle\rangle \rho \in$ $I^{3}(F(\rho) / F)$. Since $\phi_{0} \subset \pi$ and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic, $\pi_{F(\psi)}$ is isotropic as well. Since $\pi \in G P_{3}(F)$, it follows that $\pi_{F(\psi)}$ is hyperbolic. Hence $\pi \in I^{3}(F(\psi) / F)$.

Corollary 8.2. Let $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$ be an anisotropic quadratic form. Let $\psi=\langle-u,-v, u v, \delta\rangle$ and $\rho=\langle-a,-b, a b, d\rangle$. Suppose that the group $\mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)$ is torsion-free. Then the following conditions are equivalent:
(1) $\phi_{F(\psi)}$ is isotropic;
(2) there exits a 5-dimensional Pfister neighbor ϕ_{0} such that $\phi_{0} \subset \phi$ and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic

Proof. (1) $\Rightarrow(2)$. By Item 1 of Proposition 8.1, we know that $\langle\langle a, b, c\rangle\rangle \in$ $I^{3}(F(\rho, \psi) / F)$. Since Tors $\mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)=0$, Corollary 2.13 implies that

$$
\left.H^{3}(F(\rho, \psi) / F)=H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)\right]
$$

By Corollary 6.4, $I^{3}(F(\rho, \psi) / F) \subset I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$. Applying Proposition 8.1 once again, we are done.
$(2) \Rightarrow(1)$. Obvious.
Lemma 8.3. Let ϕ be a 6-dimensional form and ψ be a 4-dimensional form. Suppose that ψ is similar to a subform in ϕ. Then ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=1$.

Proof. We can suppose that $\psi \subset \phi$. Hence there exists a 2-dimensional form μ such that $\psi \perp \mu=\phi$. Let E be a field extension of F generated by $\sqrt{d_{ \pm} \phi}$ and $\sqrt{d_{ \pm} \psi}$. Obviously $\phi_{E}, \psi_{E} \in I^{2}(F)$ and ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=\operatorname{ind} C_{0}\left(\phi_{E}\right) \otimes_{E}$ $C_{0}\left(\psi_{E}\right)$. Thus we can reduce our problem to the case where $\phi, \psi \in I^{2}(F)$. Then $\mu \in I^{2}(F)$. Since $\operatorname{dim} \mu=2$, the form μ is hyperbolic. Hence $\phi=\psi \perp \mathbb{H}$. Therefore $C_{0}(\phi)=C_{0}(\psi) \otimes_{F} M_{2}(F)$. Hence ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=1$.

Corollary 8.4. Let $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$ be an anisotropic quadratic form. Let $\psi=\langle-u,-v, u v, \delta\rangle$ and $\rho=\langle-a,-b, a b, d\rangle$. Suppose that ind $C_{0}(\phi) \otimes_{F}$ $C_{0}(\psi) \neq 1$. Then the following conditions are equivalent:
(1) $\phi_{F(\psi)}$ is isotropic and the isotropy is standard;
(2) there exits a 5-dimensional Pfister neighbor ϕ_{0} such that $\phi_{0} \subset \phi$ and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic;
(3) $\langle\langle a, b, c\rangle\rangle \in I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$;
(4) $(a, b, c) \in H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)$.

Proof. (1) $\Rightarrow(2)$. Let ϕ and ψ be such as in (1). Let us suppose that the condition (2) is not satisfied. Then by the definition of standard isotropy, ψ is similar to a subform of ϕ. By Lemma 8.3, we have ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=1$. This contradicts to our assumption.
$(2) \Rightarrow(1)$. Obvious.
$(3) \Longleftrightarrow(4) \Longleftrightarrow(1)$. Follows from Proposition 8.1 and Corollary 6.3.
Theorem 8.5. Let ϕ be an anisotropic 6 -dimensional quadratic form and ψ be a 4-dimensional quadratic form with $d_{ \pm} \psi=d_{ \pm} \phi \neq 1$. Suppose that $\phi_{F(\psi)}$ is isotropic. Then there exits a 5-dimensional Pfister neighbor ϕ_{0} such that $\phi_{0} \subset \phi$ and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic.
Proof. If ind $C_{0}(\phi)=1$ then ϕ is a Pfister neighbor. In this case we can take ϕ_{0} to be equal to an arbitrary 5 -dimensional subform in ϕ. In the case ind $C_{0}(\phi)=4$, it follows from [5] that $\phi_{F(\psi)}$ is anisotropic and we have a contradiction. Thus we can assume that ind $C_{0}(\phi)=2$. Then ϕ is similar to a form of the kind $\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$. Since $d_{ \pm} \psi=d_{ \pm} \phi$, there exist $u, v \in F^{*}$ such that ψ is similar to the form $\langle-u,-v, u v, d\rangle$. Replacing ϕ and ψ by similar forms, we can suppose that

$$
\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle \text { and } \psi=\langle-u,-v, u v, d\rangle .
$$

Let $\rho=\langle-a,-b, a b, d\rangle$. It follows from Theorem 5.1 that $\operatorname{Tors} \mathrm{CH}^{2}\left(X_{\psi} \times X_{\rho}\right)=$ 0 . Now the result required follows immediately from Corollary 8.2.
Proposition 8.6. Let $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle$ and $\psi=\langle-u,-v, u v, \delta\rangle$ be anisotropic quadratic forms. Suppose that ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=4$. Then the following conditions are equivalent:
(1) $\phi_{F(\psi)}$ is isotropic;
(2) There is a 5-dimensional subform $\phi_{0} \subset \phi$ which is a Pfister neighbor and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic.
Proof. Let $\rho=\langle-a,-b, a b, d\rangle$. Clearly $C_{0}(\phi)=M_{2}(F) \otimes_{F} C_{0}(\rho)$. Hence ind $C_{0}(\rho) \otimes_{F} C_{0}(\psi)=4$. It follows from Theorem 5.8 that Tors $\mathrm{CH}^{2}\left(X_{\rho} \times X_{\psi}\right)=$ 0 . By Corollary 8.2, we are done.
Proposition 8.7. Let $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$ and $\psi=\langle-u,-v, u v, \delta\rangle$ be anisotropic quadratic forms with $\delta \notin F^{* 2}$. Suppose that ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=$ 1. Then the following conditions are equivalent:
(1) $\phi_{F(\psi)}$ is isotropic;
(2) Either ψ is similar to a subform in ϕ or there exists a 5-dimensional subform $\phi_{0} \subset \phi$ which is a Pfister neighbor and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic.

Proof. (1) $\Rightarrow(2)$. Since ϕ is anisotropic, we have $d \notin F^{* 2}$. In view of Theorem 8.5 is is sufficient to consider the case $d \delta \notin F^{* 2}$. Let $\rho=\langle-a,-b, a b, d\rangle$. Since $C_{0}(\phi)=M_{2}(F) \otimes_{F} C_{0}(\rho)$, we have ind $C_{0}(\rho) \otimes_{F} C_{0}(\psi)=1$. Thus all the assumptions of $\S 7$ hold. Propositions 7.10 and 8.1 show that at least one of the following conditions holds:

1) $\langle\langle a, b, c\rangle\rangle \in I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F)$,
2) $\langle\langle a, b, c\rangle\rangle \in \Gamma(\rho, \psi)+I^{4}(F)$.

In the first case, Proposition 8.1 asserts that there exists a 5 -dimensional subform $\phi_{0} \subset \phi$ which is a Pfister neighbor and $\left(\phi_{0}\right)_{F(\psi)}$ is isotropic.

Thus we can suppose that $\langle\langle a, b, c\rangle\rangle \in \Gamma(\rho, \psi)+I^{4}(F)$. Let $\gamma=l_{1} \rho+l_{2} \psi+$ $\langle\langle d \delta\rangle\rangle \in \Gamma(\rho, \psi)$ be such that $\langle\langle a, b, c\rangle\rangle \in \gamma+I^{4}(F)$. Since $\langle\langle a, b, c\rangle\rangle=\rho-c \phi$, we have

$$
l_{1} \rho-l_{1} c \phi=l_{1}\langle\langle a, b, c\rangle\rangle \equiv\langle\langle a, b, c\rangle\rangle \equiv \gamma=l_{1} \rho+l_{2} \psi+\langle\langle d \delta\rangle\rangle \quad\left(\bmod I^{4}(F)\right) .
$$

Hence $l_{1} c \phi+l_{2} \psi+\langle\langle d \delta\rangle\rangle \in I^{4}(F)$. Since $\operatorname{dim}\left(l_{1} c \phi+l_{2} \psi+\langle\langle d \delta\rangle\rangle\right)_{a n} \leq 6+4+$ $2=12<16$, the Arason-Pfister Hauptsatz shows that $l_{1} c \phi+l_{2} \psi+\langle\langle d \delta\rangle\rangle=$ 0 . Therefore $\phi=-c l_{1} l_{2} \psi-c l_{1}\langle\langle d \delta\rangle\rangle$. Since $\operatorname{dim} \phi=6=\operatorname{dim}\left(-c l_{1} l_{2} \psi \perp\right.$ $\left.-c l_{1}\langle\langle d \delta\rangle\rangle\right)$, we have $\phi=-c l_{1} l_{2} \psi \perp-c l_{1}\langle\langle d \delta\rangle\rangle$. Hence ψ is similar to a subform in ϕ.
$(2) \Rightarrow(1)$. Obvious.
Together with results described in Introduction, Theorem 8.5, Propositions 8.6 and 8.7 give rise to the following

Theorem 8.8. Let ϕ be an anisotropic quadratic form of dimension ≤ 6 and ψ be such that $\phi_{F(\psi)}$ is isotropic. If the isotropy is non-standard then

- $\operatorname{dim} \phi=6$ and $\operatorname{dim} \psi=4$;
- $1 \neq d_{ \pm} \phi \neq d_{ \pm} \psi \neq 1$;
- ind $C_{0}(\phi)=2$; and
- ind $C_{0}(\phi) \otimes_{F} C_{0}(\psi)=2$.

9. The case of index 2

Theorem 8.8 implies that if there exists a quadratic form ϕ of dimension ≤ 6 having a non-standard isotropy over the function field of a quadratic form ψ, then there are $a, b, c, d, u, v, \delta \in F^{*}$ such that $\phi \sim\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$, $\psi \sim\langle-u,-v, u v, \delta\rangle, d, \delta, d \delta \notin F^{* 2}$, and $\operatorname{ind}\left((a, b) \otimes_{F}(u, v)\right)_{F(\sqrt{d}, \sqrt{\delta})}=2$.

Set $\rho=\langle-a,-b, a b, d\rangle$. By Corollary 8.2, if $\operatorname{Tors~}^{\mathrm{CH}^{2}}\left(X_{\psi} \times X_{\rho}\right)=0$, then the isotropy is standard.

In this section we prove the following
Theorem 9.1. Let $a, b, u, v, d, \delta \in F^{* 2}$ be such that $d, \delta, d \delta \notin F^{* 2}$. Let $\rho=$ $\langle-a,-b, a b, d\rangle$ and $\psi=\langle-u,-v, u v, \delta\rangle$. Suppose that ind $C_{0}(\rho) \otimes_{F} C_{0}(\psi)=2$. The following conditions are equivalent:
(1) $\operatorname{Tors} \mathrm{CH}^{2}\left(X_{\rho} \times X_{\psi}\right) \neq 0$;
(2) there exists $c \in F^{*}$ such that the quadratic form $\phi=\langle\langle a, b\rangle\rangle \perp-c\langle\langle d\rangle\rangle$ is isotropic over $F(\psi)$, but the isotropy is not standard.

Proof. $(2) \Rightarrow(1)$. Obvious in view of Corollary 8.2.
$(1) \Rightarrow(2)$. Since Tors $\mathrm{CH}^{2}\left(X_{\rho} \times X_{\psi}\right) \neq 0$, it follows from Corollary 2.13 that there exists $w \in H^{3}(F(\rho, \psi) / F)$ such that $w \notin H^{3}(F(\rho) / F)+H^{3}(F(\psi) / F)$. Let $\rho_{0}=\langle-a,-b, a b\rangle$. It follows from Theorem 5.9 that ind $C_{0}\left(\rho_{0}\right) \otimes_{F} C_{0}(\psi) \neq$ ind $C_{0}(\rho) \otimes_{F} C_{0}(\psi)=2$. Therefore ind $C_{0}\left(\rho_{0}\right) \otimes_{F} C_{0}(\psi)=4$. By Theorem 5.8, we have $\operatorname{Tors}^{\mathrm{CH}^{2}}\left(X_{\rho_{0}} \times X_{\psi}\right)=0$. By Corollary 2.13, we have $H^{3}\left(F\left(\rho_{0}, \psi\right) / F\right)=H^{3}\left(F\left(\rho_{0}\right) / F\right)+H^{3}(F(\psi) / F)$. Hence

$$
w \in H^{3}(F(\rho, \psi) / F) \subset H^{3}\left(F\left(\rho_{0}, \psi\right) / F\right)=H^{3}\left(F\left(\rho_{0}\right) / F\right)+H^{3}(F(\psi) / F)
$$

Since $H^{3}\left(F\left(\rho_{0}\right) / F\right)=(a, b) \cup H^{1}(F)$, there exists $c \in F^{*}$ such that $w-$ $(a, b, c) \in H^{3}(F(\psi) / F)$, i.e. $w \equiv(a, b, c)\left(\bmod H^{3}(F(\psi) / F)\right)$. By the assumption on w, we see that $(a, b, c) \in H^{3}(F(\rho, \psi) / F)$ and $(a, b, c) \notin H^{3}(F(\rho) / F)+$ $H^{3}(F(\psi) / F)$. Therefore, $\langle\langle a, b, c\rangle\rangle \in I^{3}(F(\rho, \psi) / F$ and

$$
\langle\langle a, b, c\rangle\rangle \notin I^{3}(F(\rho) / F)+I^{3}(F(\psi) / F)+I^{4}(F) .
$$

By Proposition 8.1, the quadratic form $\phi_{F(\psi)}$ is isotropic. By Corollary 8.4, the isotropy is not standard.

References

[1] Arason, J. Kr. Cohomologische Invarianten quadratischer Formen. J. Algebra 36 (1975), 448-491.
[2] Elman, R., Lam, T. Y. Pfister forms and K-theory of fields. J. Algebra 23 (1972), 181-213.
[3] Hoffmann, D. W. Isotropy of 5-dimensional quadratic forms over the function field of a quadric. Proc. Symp. Pure Math. 58.2 (1995), 217-225.
[4] Hoffmann, D. W. On 6-dimensional quadratic forms isotropic over the function field of a quadric. Comm. Algebra 22 (1994), 1999-2014.
[5] Izhboldin O. T., Karpenko N. A. Isotropy of virtual Albert forms over function fields of quadrics. Math. Nachr., to appear.
[6] Izhboldin, O. T., Karpenko, N. A. Some new examples in the theory of quadratic forms. K-Theory Preprint Archives (http://www.math.uiuc.edu/K-theory/), Preprint $\mathrm{N}^{\circ} 234$ (1997).
[7] Kahn, B. Descente galoisienne et K_{2} des corps de nombres. K-Theory 7 (1993), 55-100.
[8] Karpenko, N. A. Chow ring of a projective quadric. Ph. D. theses (in Russian), Leningrad (1990), 80 p.
[9] Karpenko, N. A. Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2 (1991), no. 1, 141-162 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 1, 119-138.
[10] Laghribi, A. Formes quadratiques de dimension 6. Math. Nachr., to appear.
[11] Laghribi, A. Isotropie d'une forme quadratique de dimension ≤ 8 sur le corps des fonctions d'une quadrique. C. R. Acad. Sci. Paris 323 (1996), série I, 495-499.
[12] Lam, T. Y. The Algebraic Theory of Quadratic Forms. Massachusetts: Benjamin 1973 (revised printing: 1980).
[13] Leep, D. Function fields results. Handwritten notes taken by T. Y. Lam (1989).
[14] Merkurjev, A. S. On the norm residue symbol of degree 2. Dokl. Akad. Nauk SSSR 261 (1981), 542-547 (in Russian). Engl. transl.: Soviet Math. Dokl. 24 (1981), 546551.
[15] Merkurjev, A. S. Kaplansky conjecture in the theory of quadratic forms. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 175 (1989), 75-89 (in Russian). Engl. transl.: J. Soviet Math. 57 (1991), no. 6, 3489-3497.
[16] Merkurjev, A. S. The group $H^{1}\left(X, K_{2}\right)$ for projective homogeneous varieties. Algebra i Analiz 7 (1995), no. 3, 136-164 (in Russian). Engl. transl.: St. Petersburg Math. J. 7 (1996), no. 3, 421-444.
[17] Merkurjev, A. S., Suslin, A. A. The group K_{3} for a field. Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no.3, 522-545 (in Russian). Engl. transl.: Math. USSR Izv. 36 (1991), no.3, 541-565.
[18] Panin, I. A. On the algebraic K-theory of twisted flag varieties. K-Theory 8 (1994), no. 6, 541-585.
[19] Peyre, E. Products of Severi-Brauer varieties and Galois cohomology. Proc. Symp. Pure Math. 58.2 (1995), 369-401.
[20] Peyre, E. Corps de fonctions de variétés homogènes et cohomologie galoisienne. C. R. Acad. Sci. Paris 321 (1995), série I, 891-896.
[21] Quillen, D. Higher algebraic K-theory I. Springer Lect. Notes Math. 341 (1973), 85-147.
[22] Rost, M. Hilbert 90 for K_{3} for degree-two extensions. Preprint (1986).
[23] Sansuc, J.-J. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. reine angew. Math. 327 (1981), 12-80.
[24] Shapiro D. B. Similarities, quadratic forms. and Clifford algebra. Doctoral Dissertation, University of California, Berkeley, California (1974).
[25] Suslin, A. A. Algebraic K-theory and the norm residue homomorphism. J. Soviet Math. 30 (1985), 2556-2611.
[26] Swan, R. K-theory of quadric hypersurfaces. Ann. Math. 122 (1985), no. 1, 113-154.
[27] Wadsworth, A. R. Similarity of quadratic forms and isomorphism of their function fields. Trans. Amer. Math. Soc. 208 (1975), 352-358.

Oleg Izhboldin, Department of Mathematics and Mechanics, St.-Petersburg
State University, Petrodvorets, 198904, RUSSIA
E-mail address: oleg@izh.usr.pu.ru
Nikita Karpenko, Université de Franche-Comté, Équipe de Mathematiques de Besançon, 16, Route de Gray, F-25030 BESANÇON CEDEX, FRANCE

E-mail address: karpenko@math.univ-fcomte.fr, karpenk@math.uni-muenster.de

