
ISOTROPY OF 6-DIMENSIONAL QUADRATIC FORMS
OVER FUNCTION FIELDS OF QUADRICS

OLEG T. IZHBOLDIN AND NIKITA A. KARPENKO

Abstract. Let F be a field of characteristic different from 2 and ϕ be
an anisotropic 6-dimensional quadratic form over F . We study the last
open cases in the problem of describing the quadratic forms ψ such that ϕ
becomes isotropic over the function field F (ψ).
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0. Introduction

Let F be a field of characteristic different from 2 and let ϕ and ψ be two
anisotropic quadratic forms over F . An important problem in the algebraic
theory of quadratic forms is to find conditions on ϕ and ψ so that ϕF (ψ) is
isotropic.

More precisely, one studies the question whether the isotropy of ϕ over F (ψ)
is standard in a sense. In this paper we will use the following definition of
“standard isotropy”:

Definition. Let ϕ and ψ be anisotropic quadratic forms such that ϕF (ψ) is
isotropic. We say that the isotropy of ϕF (ψ) is standard, if at least one of the
following conditions holds:

• ψ is similar to a subform in ϕ;
• there exists a subform ϕ0 ⊂ ϕ with the following two properties:

– the form ϕ0 is a Pfister neighbor,
– the form (ϕ0)F (ψ) is isotropic.
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Otherwise, we say that the isotropy is non-standard.

In the case when dimϕ ≤ 5, the isotropy of ϕF (ψ) is always standard ([24],
[3]). For 6-dimensional quadratic forms, the problem was studied by A. S.
Merkurjev ([15]), D. Leep ([13]), D. W. Hoffmann ([4]), A. Laghribi ([10],
[11]), and the authors ([5]). It was proved that the isotropy of a 6-dimensional
quadratic form ϕ over the function field of a quadratic form ψ is always stan-
dard except (possibly) for the following case (see [10], [5]):

• dimψ = 4, d± ψ ̸= 1, d± ϕ ̸= 1, and indC0(ϕ) = 2.

In the present paper we study the isotropy of ϕF (ψ) for quadratic forms ϕ and
ψ satisfying these conditions (with dimϕ = 6).

Note that the condition indC0(ϕ) = 2 implies that there exist a, b, c, d ∈ F ∗

such that ϕ is similar to the form ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩. Since ϕ can be replaced
by a similar form, we can assume that ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩. Note that
in this case [C0(ϕ)] = [(a, b)F (

√
d)] = [C0(ρ)], where ρ is defined as follows:

ρ = ⟨−a,−b, ab, d⟩.
Since dimψ = 4, there exist u, v, δ ∈ F ∗ such that ψ is similar to the

quadratic form ⟨−u,−v, uv, δ⟩. Since d± ψ ̸= 1, we have δ /∈ F ∗2. Thus our
main problem is reduced to the following

Question. Let ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ and ψ = ⟨−u,−v, uv, δ⟩ be anisotropic
quadratic forms over F with d, δ /∈ F ∗2. Suppose that ϕF (ψ) is isotropic. Is the
isotropy standard?

This question naturally splits into the following four cases:

(1) d = δ as elements of F ∗/F ∗2,
(2) d ̸= δ and indC0(ϕ)⊗F C0(ψ) = 1,
(3) d ̸= δ and indC0(ϕ)⊗F C0(ψ) = 2,
(4) d ̸= δ and indC0(ϕ)⊗F C0(ψ) = 4.

We prove that in the cases (1), (2), and (4) the isotropy of ϕF (ψ) is always
standard (see Theorem 8.5, Propositions 8.6 and 8.7). This statement gives
rise to the following one (which is Theorem 8.8):

Theorem. Let ϕ be an anisotropic quadratic form of dimension ≤ 6 and ψ
be such that ϕF (ψ) is isotropic. Then isotropy is standard except (possibly) the
following case: dimϕ = 6, dimψ = 4, 1 ̸= d± ϕ ̸= d± ψ ̸= 1, and indC0(ϕ) =
2 = indC0(ϕ)⊗F C0(ψ).

The proof of this theorem is based on a computation of the second Chow
group for certain homogeneous varieties. Namely, we show that the ques-
tion on the standard isotropy can be reduced to a question on the group
TorsCH2(Xψ×Xρ), where ρ = ⟨−a,−b, ab, d⟩ and Xψ and Xρ are the pro-
jective quadrics corresponding to ψ and ρ. In the cases (1), (2) and (4), we
compute the group TorsCH2(Xψ×Xρ) completely (see Theorems 5.7, 5.1, 5.8,
and Lemma 7.7):

Theorem. Let ψ and ρ be 4-dimensional quadratic forms. Then the group
TorsCH2(Xψ ×Xρ) is zero or isomorphic to Z/2Z. Moreover,
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• if detψ = det ρ or if indC0(ψ)⊗FC0(ρ) = 4, then the group TorsCH2(Xψ×
Xρ) is trivial;

• in the case indC0(ψ)⊗FC0(ρ) = 1, the group TorsCH2(Xψ×Xρ) is trivial
if and only if ρ and ψ contain similar 3-dimensional subforms.

In the case (3) where d ̸= δ and indC0(ϕ) ⊗F C0(ψ) = 2, we show that
our main question is equivalent to the following one (see §9): is the group
TorsCH2(Xψ × Xρ) trivial for any 4-dimensional quadratic forms ψ and ρ
such that 1 ̸= detψ ̸= det δ ̸= 1 and indC0(ψ)⊗C0(ρ) = 2? As shown in [6],
the answer to this qiestion is negative, i.e. a counterexample exists.

Acknowledgments. The authors would like to thank the Universität Biele-
feld and the Université de Franche-Comté for their hospitality and support.

1. Terminology, notation, and backgrounds

Quadratic forms. By ϕ ⊥ ψ, ϕ ≃ ψ, and [ϕ] we denote respectively
orthogonal sum of forms, isometry of forms, and the class of ϕ in the Witt ring
W (F ) of the field F . To simplify notation, we write ϕ1+ϕ2 instead of [ϕ1]+[ϕ2].
For a quadratic form ϕ of dimension n, we set d± ϕ = (−1)n(n−1)/2 detϕ ∈
F ∗/F ∗2. The maximal ideal of W (F ) generated by the classes of the even-
dimensional forms is denoted by I(F ). The anisotropic part of ϕ is denoted
by ϕan. We denote by ⟨⟨a1, . . . , an⟩⟩ the n-fold Pfister form

⟨1,−a1⟩ ⊗ · · · ⊗ ⟨1,−an⟩

and by Pn(F ) the set of all n-fold Pfister forms. The set of all forms similar
to an n-fold Pfister form we denote by GPn(F ). For any field extension L/F ,
we put ϕL = ϕ ⊗F L, W (L/F ) = ker(W (F ) → W (L)), and In(L/F ) =
ker(In(F ) → In(L)).

For a quadratic form ϕ and a field extension L/F , we denote by DL(ϕ) the
set of the non-zero values of the quadratic form ϕL.

For a quadratic form ϕ of dimension ≥ 3, we denote by Xϕ the projective
variety given by the equation ϕ = 0. We set F (ϕ) = F (Xϕ) and F (ϕ, ψ) =
F (Xϕ ×Xψ) for quadratic forms ϕ and ψ of dimensions ≥ 3.

Algebras. We consider only finite-dimensional F -algebras.
For a simple F -algebra A, by ind(A) we denote the Schur index of A. For

an algebra B of the form B = A×· · ·×A with simple A, we set indB = indA.
Let ϕ be a quadratic form. We denote by C(ϕ) the Clifford algebra of ϕ.

By C0(ϕ) we denote the even part of C(ϕ). For any collection ρ1, . . . , ρm of
quadratic forms, the algebra C0(ρ1)⊗F · · ·⊗F C0(ρm) is of the form A×· · ·×A
with simple A. Therefore, we get a well-defined positive integer indC0(ρ1)⊗F

· · · ⊗F C0(ρm).
If ϕ ∈ I2(F ) then C(ϕ) is a central simple algebra. Hence we get a well-

defined element [C(ϕ)] in the 2-part Br2(F ) of the Brauer group Br(F ) which
we denote by c(ϕ).
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Cohomology groups. By H∗(F ) we denote the graded ring of Galois

cohomology H∗(F,Z/2Z) def
= H∗(Gal(Fsep/F ),Z/2Z). For any field extension

L/F , we set H∗(L/F ) = ker
(
H∗(F ) → H∗(L)

)
.

We use the standard canonical isomorphisms H0(F ) = Z/2Z, H1(F ) =
F ∗/F ∗2, and H2(F ) = Br2(F ). So any element a ∈ F ∗ gives rise to an element
of H1(F ) which we denote by (a). The cup product (a1)∪ · · ·∪ (an) we denote
by (a1, . . . , an).

For n = 0, 1, 2, there is a homomorphism en : In(F ) → Hn(F ) defined as fol-
lows: e0(ϕ) = dimϕ (mod 2), e1(ϕ) = d± ϕ, and e

2(ϕ) = c(ϕ). Moreover there
exists a homomorphism e3 : I3(F ) → H3(F ) which is uniquely determined by
the condition e3(⟨⟨a1, a2, a3⟩⟩) = (a1, a2, a3) (see [1]). The homomorphism en is
surjective and ker en = In+1(F ) for n = 0, 1, 2, 3 (see [14], [17], and [22]).

We also work with the cohomology groups Hn(F,Q/Z(i)), (i = 0, 1, 2),
defined by B. Kahn (see [7]). For any field extension L/F , we set

H∗(L/F,Q/Z(i)) = ker
(
H∗(F,Q/Z(i)) → H∗(L,Q/Z(i))

)
.

For n = 1, 2, 3, the group Hn(F ) is naturally identified with the 2-part of
Hn(F,Q/Z(n− 1)).
K-theory and Chow groups. For a smooth algebraic F -variety X, its

Grothendieck ring is denoted byK(X). This ring is supplied with the filtration
by codimension of support (which respects the multiplication). For a ring (or a
group) with filtration A, we denote by G∗A the adjoint graded ring (resp., the
adjoint graded group). There is a canonical surjective homomorphism of the
graded Chow ring CH∗(X) onto G∗K(X), its kernel consists only of torsion
elements and is trivial in the 0-th, 1-st, and 2-nd graded components ([25, §9]).

2. The group H3(F (ρ1, ρ2)/F )

The main result of this section (in view of our further purposes) is Corollary
2.13.

By a homogeneous variety we always mean a projective homogeneous variety.

Proposition 2.1 ([20]). For any homogeneous F -variety X, there is a natural
(in X and in F ) epimorphism

τX : H3
(
F (X)/F,Q/Z(2)

)
� TorsCH2(X) .

Proposition 2.2. For any homogeneous varieties X1, . . . , Xm over F , the
quotient

H3
(
F (X1 × · · · ×Xm)/F,Q/Z(2)

)
H3

(
F (X1)/F,Q/Z(2)

)
+ · · ·+H3

(
F (Xm)/F,Q/Z(2)

)
is canonically isomorphic to

TorsCH2(X1 × · · · ×Xm)

pr∗1TorsCH
2(X1) + · · ·+ pr∗mTorsCH2(Xm)

where pr∗1, . . . , pr
∗
m are the pull-backs with respect to the projections pr1, . . . , prm

of the product X1 × · · · ×Xm on X1, . . . , Xm.
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Proof. Set X = X1 × · · · × Xm. The homomorphism τX of Proposition 2.1
induces an epimorphism

f :
H3

(
F (X1 × · · · ×Xm)/F,Q/Z(2)

)
H3

(
F (X1)/F,Q/Z(2)

)
+ · · ·+H3

(
F (Xm)/F,Q/Z(2)

) �

� TorsCH2(X1 × · · · ×Xm)

pr∗1TorsCH
2(X1) + · · ·+ pr∗mTorsCH2(Xm)

with the kernel ker f = ker τX/(ker τX1 + · · ·+ ker τXm).
The kernel of τX is computed (for any homogeneous X) in [16]: let A be the

separable F -algebra associated with X ([16, §2]) and denote by E the center
of A; then ker τX = {NE/F (x̄ ∪ [A]) | with x ∈ E∗} where [A] is the class of
A in the Brauer group Br(E) = H2(E,Q/Z(1)), x̄ is the class of x ∈ E∗ in
H1(E,Q/Z(1)), x̄ ∪ [A] ∈ H3(E,Q/Z(2)) is the cup-product and NE/F is the
norm map.

Denote by A1, . . . , Am the separable algebras associated with X1, . . . , Xm

respectively. Then A = A1 × · · · × Am and E = E1 × · · · × Em. Thus for any
x ∈ E∗

NE/F (x̄ ∪ [A]) = NE1/F (x̄1 ∪ [A1]) + · · ·+NEm/F (x̄m ∪ [Am]) ,

where xi is the Ei-component of x, which proves that ker f = 0.

Corollary 2.3. Let X1, . . . , Xm and X ′
1, . . . , X

′
m be homogeneous varieties such

that Xi is stably birationally equivalent to X ′
i for i = 1, . . . ,m. The quotient

TorsCH2(X1 × · · · ×Xm)

pr∗1TorsCH
2(X1) + · · ·+ pr∗mTorsCH2(Xm)

is isomorphic to the quotient

TorsCH2(X ′
1 × · · · ×X ′

m)

pr∗1 TorsCH
2(X ′

1) + · · ·+ pr∗mTorsCH2(X ′
m)

.

Lemma 2.4. For any homogeneous variety X of dimension ≤ 2, the group
CH2(X) is torsion-free.

Proof. Since X is a homogeneous variety, K(X) is a torsion-free group ([18]).
Since dimX ≤ 2, the term K(X)(3) of the topological filtration is trivial.
Hence K(X)(2/3) is a torsion-free group. By [25, §9], CH2(X) ≃ K(X)(2/3).
Hence TorsCH2(X) = 0.

Corollary 2.5. Under the conditions of Corollary 2.3 suppose additionally
that the varieties X1, . . . , Xm;X

′
1, . . . , X

′
m have the dimensions ≤ 2. Then

there is an isomorphism

TorsCH2(X1 × · · · ×Xm) ≃ TorsCH2(X ′
1 × · · · ×X ′

m).

Proof. Obvious in view of Corollary 2.3 and Lemma 2.4.
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Lemma 2.6. Let X1 and X2 be homogeneous varieties. If the variety (X2)F (X1)

has a rational point, then H3(F (X1×X2)/F,Q/Z(2)) = H3(F (X1)/F,Q/Z(2)).

Proof. Since the homogeneous variety (X2)F (X1) has a rational point, it is ra-
tional, i.e. the field extension F (X1×X2)/F (X1) is purely transcendental.

Corollary 2.7. Let X1 and X2 be projective quadrics of the dimensions ≤ 2.
If the quadric (X2)F (X1) is isotropic (e.g., if X2 is isotropic or if X1 ≃ X2)

then TorsCH2(X1 ×X2) = 0.

Proof. Follows from Lemma 2.6, Proposition 2.2 and Lemma 2.4.

Lemma 2.8. For any quadratic form ρ of dimension ≥ 3, we have

2H3(F (ρ)/F,Q/Z(2)) = 0.

In other words, H3(F (ρ)/F,Q/Z(2)) = H3(F (ρ)/F ).

Proof. Let u ∈ H3(F (ρ)/F,Q/Z(2)). There exists a field extension L/F such
that ρL is isotropic and [L : F ] ≤ 2. Since ρL is isotropic, uL = 0. Using the
transfer homomorphism, we have [L : F ] · u = 0. Hence 2u = 0.

Corollary 2.9. For any quadratic form ρ of dimension ≥ 3 the homomor-
phism H3(F (ρ)/F ) → TorsCH2(Xρ), induced by the epimorphism of Proposi-
tion 2.1, is surjective. In particular, 2TorsCH2(Xρ) = 0.

Lemma 2.10. Let ρ1 and ρ2 be quadratic form of dimension ≥ 3. Then

2H3(F (ρ1, ρ2)/F,Q/Z(2)) = 0.

In other words, H3(F (ρ1, ρ2)/F,Q/Z(2)) = H3(F (ρ1, ρ2)/F ).

Proof. Let ρ′1 and ρ′2 be 3-dimensional subforms in ρ1 and ρ2 respectively.
Clearly H3(F (ρ1, ρ2)/F,Q/Z(2)) ⊂ H3(F (ρ′1, ρ

′
2)/F,Q/Z(2)). Thus, replac-

ing ρ1 by ρ′1 and ρ2 by ρ′2, one can reduce the proof to the case dim ρ1 =
dim ρ2 = 3. In this case, dimXρ1×Xρ2 = 2; therefore TorsCH2(Xρ1×Xρ2) = 0
(Lemma 2.4). For i = 1, 2, the conic Xρi is isomorphic to the Severi-Brauer

variety of the algebra Ci
def
= C0(ρi). Applying [19, Thm. 4.1], we obtain an

epimorphism

F ∗ ⊗ U � H3(F (ρ1, ρ2)/F,Q/Z(2))
where U is the subgroup of Br(F ) generated by [C1] and [C2]. Since 2[C1] =
2[C2] = 0, it follows that 2H3(F (ρ1, ρ2)/F,Q/Z(2)) = 0.

Corollary 2.11. Let ρ1 and ρ2 be quadratic forms of dimension ≥ 3. Then
the homomorphism

H3(F (ρ1, ρ2)/F ) → TorsCH2(Xρ1×Xρ2)

induced by the epimorphism of Proposition 2.1, is surjective. In particular,
2TorsCH2(Xρ1×Xρ2) = 0.
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Corollary 2.12. For any quadratic forms ρ1 and ρ2 of dimension ≥ 3, there
is a natural isomorphism

H3(F (ρ1, ρ2)/F )

H3(F (ρ1)/F ) +H3(F (ρ2)/F )
≃ TorsCH2(Xρ1 ×Xρ2)

pr∗1TorsCH
2(Xρ1) + pr∗2TorsCH

2(Xρ2)
.

Proof. Follows from Proposition 2.2 and Lemmas 2.8 and 2.10.

Corollary 2.13. For any quadratic forms ρ1 and ρ2 with 3 ≤ dim ρi ≤ 4
(i = 1, 2), there is a natural isomorphism

H3(F (ρ1, ρ2)/F )

H3(F (ρ1)/F ) +H3(F (ρ2)/F )
≃ TorsCH2(Xρ1 ×Xρ2).

Proof. Follows from Corollary 2.12 and Lemma 2.4.

3. The Grothendieck group of a quadric

In this section, ρ is an (n + 2)-dimensional quadratic form over F (where
n ≥ 1), V is the vector space of definition of ρ, P is the projective space of
the vector space dual to V , and X = Xρ ⊂ P is the n-dimensional projective
quadric determined by ρ.

We are mainly interested in the case when n = 2, i.e. when X is a surface.
The even Clifford algebra C0(ρ) of the form ρ is denoted in this section by

C. Let U be the Swan’s sheaf on X [26, §6]. It is an (C⊗F OX)-module locally
free as OX-module (note that the algebra C is canonically self-opposite; thus
it is not necessary to distinguish between left and right action of C).

We denote by h the class of a general hyperplane section of X, i.e. the
pull-back of the class of a hyperplane with respect to the imbedding X ↪→ P.
The subring of K(X) generated by h is denoted by H; it coincides with the
image of the pull-back homomorphism K(P) → K(X). Some further evident
assertions on H are collected in

Lemma 3.1. The abelian group H is freely generated by 1, h, . . . , hn. The
topological filtration on K(X) induces on H the filtration by powers of h, i.e.
for every 0 ≤ r ≤ n, the term H(r) is generated by all hj with r ≤ j ≤ n. In
particular, the adjoint graded group G∗H is torsion-free.

In the case when X splits (i.e. when ρ is hyperbolic) and n = 2, a line
class (resp., point class) refers to the class in K(X) of a line (resp., of a closed
rational point) lying on X.

Lemma 3.2 ([8]). Suppose that X splits and dimX = 2.

1. For any two different lines in X, their classes in K(X) coincide if and
only if the lines have no intersection. There are exactly two different line
classes in K(X).

2. The classes in K(X) of any two closed rational points of X coincide, i.e.
there is only one point class in K(X).
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3. Denote by l and l′ the different line classes and by p the point class
in K(X). The abelian group K(X) is freely generated by the elements
1, l, l′, p.

4. The second term K(X)(2) of the topological filtration on K(X) is gener-
ated by p; the term K(X)(1) is generated by l, l′, p.

5. The multiplication in K(X) is determined by the formulas l2 = 0 = (l′)2

and l · l′ = p.
6. h = l + l′ − p.

In the case when the quadric X is arbitrary (not necessary of dimension 2,
not necessary split), we dispose of the following information on K(X):

Lemma 3.3. 1. The group K(X) is torsion-free and, for any field extension
E/F , the restriction homomorphism K(X) → K(XE) is injective.

2. The class [U(n)] ∈ K(X) of the n times twisted Swan’s sheaf equals

2n + 2n−1h+ · · ·+ 2hn−1 + hn .

3. The homomorphism u : K(C) → K(X) given by the functor of taking
tensor product U(n)⊗C (−) induces an epimorphism K(C) � K(X)/H.

4. If C is a skewfield, then K(X) = H.
5. For any autoisometry ξ of the quadratic form ρ, the diagram

K(C)
u−−−→ K(X)x x

K(C)
u−−−→ K(X)

commutes, where the vertical maps are induced by the automorphisms of
C and of X given by ξ.

Proof. 1. Follows from [26, Theorem 9.1].
2. See [9, Lemma 3.6].
3. According to [26, Theorem 9.1], the functor U ⊗C (−) induces an epimor-
phism K(C) → K(X)/H. Since for any r ∈ Z (and in particular for r = n)
the twisting by r gives an automorphism of K(X)/H, the functor U(n)⊗C (−)
induces an epimorphism as well.
4. If C is a skewfield, then the image of this epimorphism is generated by
[U(n)]. Since [U(n)] ∈ H by Item 2, it follows that K(X) = H.
5. It is evident in view of the way the sheaf U is constructed (see [26, §6]).

Lemma 3.4 ([12]). The F -algebra C = C0(ρ) has the dimension 2n+1 =
2dim ρ−1 over F . Its isomorphism class depends only on the similarity class
of ρ. Moreover,

• if n is odd, then C is a central simple F -algebra;
• if n is even, then C ≃ C0(ρ

′) ⊗F F (
√
d± ρ) where ρ′ is an arbitrary 1-

codimensional subform of ρ.
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In particular, if ρ is an even-dimensional form of trivial discriminant, the
algebra C is the direct product of two isomorphic central simple algebras; any
automorphism of C should either interchange or stabilize the factors.

Lemma 3.5. Suppose that dim ρ is even and d± ρ is trivial. Let ξ be an au-
toisometry of the quadratic space (V, ρ) having the determinant −1. Then the
automorphism of C induced by ξ interchanges the simple components of C.

Proof. Since d± ρ is trivial, there exists a basis v0, . . . , vn+1 of V such that

(v0 · · · vn+1)
2 = 1 ∈ C .

Since ξ(v0) · · · ξ(vn+1) = (det ξ)·(v0 · · · vn+1) = −v0 · · · vn+1, the automorphism
of C induced by ξ interchanges the elements

e = (1 + v0 · · · vn+1)/2 and e′ = (1− v0 · · · vn+1)/2 .

Since e and e′ are orthogonal idempotents, they lie in different simple compo-
nents of C. Therefore, the components of C are interchanged.

Comparing Lemma 3.2 with Lemma 3.3 in the situation of a split quadric
surface X, we get the following computation (note that here C is isomorphic to
M2(F )×M2(F ) and thus there exist exactly two, up to isomorphisms, simple
C-modules; their classes are free generators of K(C)):

Lemma 3.6. Suppose that X splits and dimX = 2. There exist simple C-
modules M and M ′ such that u = 1 + l and u′ = 1 + l′ where

u
def
= u([M ]) = [U(2)⊗C M ], u′

def
= u([M ′]) = [U(2)⊗C M

′] ∈ K(X) .

Proof. Take as M an arbitrary simple C-module and denote by M ′ a (deter-
mined uniquely up to an isomorphism) simple C-module non-isomorphic to
M . Since by Lemma 3.2 the elements 1, l, l′, p generate K(X), we have

u = a+ bl + b′l′ + cp

for certain a, b, b′, c ∈ Z. Now we are going to show that

u′ = a+ b′l + bl′ + cp .

Let ξ be an autoisometry of the quadratic space (V, ρ) having determinant
−1. By Lemma 3.5, the induced by ξ automorphism of K(C) interchanges
[M ] and [M ′]. Thus, by Item 5 of Lemma 3.3, the induced by ξ automorphism
of K(X) interchanges u and u′.

Since ρ splits, there exist 2-dimensional totally isotropic subspaces W and
W ′ of V with 1-dimensional intersection and an autoisometry ξ of (V, ρ) hav-
ing the determinant −1 interchanging W and W ′. The line classes in K(X)
determined by W and W ′ are different (Item 1 of Lemma 3.2); therefore they
coincide with l and l′ (or vice versa: with l′ and l).

Thus, we have found an automorphism of K(X) interchanging u with u′ and
l with l′ while leaving untouched 1 (of course) and p (since all the point classes
coincide). Thereby, u′ = a+ b′l + bl′ + cp.
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Since 2([M ] + [M ′]) = [C] ∈ K(C), we have: 2(u + u′) = [U(2)], and so,
2(u + u′) = 4 + 2h + h2 by Item 2 of Lemma 3.3. Since K(X) is torsion-free,
the last equality can be divided by 2. Replacing h by l + l′ − p and h2 by
(l+ l′− p)2 = 2p (see Lemma 3.2), we obtain that u+u′ = 2+ l+ l′. From the
other hand, u+ u′ = 2a+ (b+ b′)l + (b′ + b)l′ + 2c; therefore a = 1, b+ b′ = 1
and c = 0.

We have proved that

u = 1 + bl + (1− b)l′ and u′ = 1 + (1− b)l + bl′

for certain b ∈ Z. It remains to show that b = 1 or b = 0.
It follows from Item 3 of Lemma 3.3 that the elements u, u′, 1, h, h2 generate

the group K(X). Since h2 = 2p and h = u+ u′ − 2− p, the elements u, u′, 1, p
also generate K(X). So, the quotient K(X)/(Z ·1+Z ·p) which is according to
Item 6 of Lemma 3.2 freely generated by l, l′ is also generated by u, u′. Thus,
the Z-matrix (

b 1− b
1− b b

)
is invertible, i.e. its determinant is ±1. Hence, b = 1 or b = 0.

4. The Grothendieck group of a product of quadrics

In this and in the next sections, we work with two quadratic forms ρ1 and ρ2
of the dimensions ≥ 3. We use the notation of the previous section amplified
by the index 1 or 2. So, for i = 1, 2, we have ρi, ni (we are mainly interested
in the case when n1 = 2 = n2), Vi, Pi, Xi, Ci, Ui,hi, Hi, li, l

′
i and pi. We set

n = (n1, n2), P = P1 × P2, X = X1 ×X2, and C = C1 ⊗F C2.
For any x1 ∈ K(X1) and x2 ∈ K(X2), we denote by x1 � x2 the product

pr∗1(x1) · pr∗2(x2) ∈ K(X) where pr1 and pr2 are the projections of X1 ×X2 on
X1 and X2 respectively.

Denote by H the image of the pull-back homomorphism K(P) → K(X).

Lemma 4.1. One has: H = H1 �H2 ⊂ K(X). The abelian group H is freely
generated by all hj11 � hj22 with 0 ≤ j1 ≤ n1 and 0 ≤ j2 ≤ n2. Moreover, the
filtration on H induced by the topological filtration on K(X) looks as follows:
for any 0 ≤ r ≤ n1 + n2, the term H(r) is generated by all hj11 � hj22 with
j1 + j2 ≥ r. In particular, the adjoint graded group G∗H is torsion-free.

The following lemma is also evident; together with Lemma 3.2, it gives a
complete description of the ring with filtration K(X) in the split situation.

Lemma 4.2. If X1 and X2 split then the map K(X1) ⊗ K(X2) → K(X),
x1 ⊗ x2 7→ x1 � x2 is an isomorphism of rings with filtrations.

For an OX1-module F1 and an OX2-module F2, we denote by F1 � F2 the
tensor product pr∗1(F1)⊗OX

pr∗2(F2). The sheaf U = U1�U2 has for i = 1, 2 the
structures of a Ci-module commuting with each other. Thus, it is a C-module.
Set U(n) = U1(n1)� U2(n2). It is also a C-module. The functor of taking the
tensor product U(n)⊗C (−) determines a homomorphism u : K(C) → K(X).
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Lemma 4.3. 1. The group K(X) is torsion-free and, for any field extension
E/F , the restriction homomorphism K(X) → K(XE) is injective.

2. The homomorphism u : K(C) → K(X), defined right above, induces an
epimorphism K(C) � K(X)/

(
K(X1)�K(X2)

)
.

3. If C is a skewfield, then K(X) = H.

Proof. 1. This statement is valid for any homogeneous variety X ([18]).
2. The isomorphism K∗(X1) ≃ K∗(F )

⊕n1 ⊕ K∗(C1) of [26, Theorem 9.1] re-
mains bijective after changing the base F to any field extension, i.e. for any
field extension E/F , the homomorphism K∗(SpecE×X1) → K∗(SpecE)

⊕n1⊕
K∗(SpecE,C1) is bijective. Therefore, for any F -variety Y , the defined in
the similar way homomorphism K∗(Y × X1) → K∗(Y )⊕n1 ⊕ K∗(Y,C1) is bi-
jective (compare to the proof of Proposition 4.1 of [21, §7]). In particular,
K(X) ≃ K(X2)

⊕n1 ⊕K(X2, C1) . Computing K(X2) and K(X2, C1) using [26,
Theorem 9.1] once again, one gets

K(X) ≃ K(F )⊕n1n2 ⊕K(C1)
⊕n2 ⊕K(C2)

⊕n1 ⊕K(C) .

The image of K(F )⊕n1n2 ⊕ K(C1)
⊕n2 ⊕ K(C2)

⊕n1 in K(X) is contained in
K(X1) � K(X2) and the homomorphism K(C) → K(X) is induced by the
functor of taking tensor product U ⊗C (−). Thus u : K(C) → K(X) is modulo
K(X1)�K(X2) an epimorphism.
3. If the algebra C is a skewfield then the image of u is contained in H;
moreover, the algebras C1 and C2 are skewfields as well and thus K(Xi) = Hi

for i = 1, 2.

Corollary 4.4. If C is a skewfield, then G∗K(X) is torsion-free. In particu-
lar, TorsCH2(X) = 0.

Proof. If C is a skewfield, then K(X) = H by Item 3 of Lemma 4.3. Conse-
quently, TorsG∗K(X) = TorsG∗H = 0 (see Lemma 4.1).

5. CH2 of a product of quadrics

The notation used in this section is introduced in the beginning of the pre-
vious one. However, each of the quadratic forms ρ1 and ρ2 is now supposed
to have the dimension 3 or 4. So, each of Xi is either a quadric surface or a
conic. We are mainly interested in the case when X1 and X2 are surfaces.

Theorem 5.1. Suppose that dim ρ1 = 4 = dim ρ2, i.e. that X1 and X2 are
surfaces. If det ρ1 = det ρ2, then TorsCH2(X1 ×X2) = 0.

Proof. If one of the quadratic forms is isotropic, then TorsCH2(X1×X2) = 0 by
Corollary 2.7. In the rest of the proof we assume that ρ1 and ρ2 are anisotropic.

As a next step, we are going to consider the case when det ρ1 = det ρ2 = 1.

Lemma 5.2. Any projective quadric surface defined by a quadratic form of
determinant 1 is stably birationally equivalent to a conic.
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Proof. Suppose that we are given a quadric determined by a 4-dimensional
quadratic form ρ with det ρ = 1. Take the conic determined by an arbitrary
3-dimensional subform ρ′ ⊂ ρ. Since ρ′ becomes isotropic over F (ρ) and vice
versa, ρ becomes isotropic over F (ρ′), the quadrics given by ρ′ and ρ are stably
birationally equivalent.

Suppose that det ρ1 = det ρ2 = 1 and choose some conics X ′
1 and X ′

2 stably
birationally equivalent to X1 and X2 respectively. Applying Corollary 2.5, we
get an isomorphism of TorsCH2(X1 ×X2) onto the group TorsCH2(X ′

1 ×X ′
2)

which is trivial by Lemma 2.4.
Therefore, we may assume that d ̸= 1 where d = det ρ1 = det ρ2.
As a next step of the proof of Theorem, we consider the case when the

F -algebras C1
def
= C0(ρ1) and C2

def
= C0(ρ2) are isomorphic. In this case, the

forms ρ1 and ρ2 becomes similar over the field F (
√
d). Thus by a theorem

of Wadsworth ([27, Theorem 7]), they are already similar over F . Therefore
the quadrics X1 and X2 are isomorphic and consequently TorsCH2(X) = 0 by
Corollary 2.7.

It remains only to consider the situation when the forms ρ1 and ρ2 are
anisotropic, d ̸= 1 and C1 ̸≃ C2. Set c = indC. We have: c = 2 or c = 4.

Fix a separable closure F̄ of the field F . For the algebra CF̄ , the variety
XF̄ , etc. we shall use the notation C̄, X̄, etc.

For i = 1, 2, denote by Mi and M
′
i the (determined uniquely up to an iso-

morphism and up to the order) non-isomorphic simple C̄i-modules. There are
exactly 4 different isomorphism classes of simple C-modules; they are repre-
sented by M1 �M2 (M1 �M2 is by definition the tensor product M1 ⊗M2

considered as C̄-module in the natural way),M1�M ′
2,M

′
1�M2, andM

′
1�M ′

2.
Denote by mi the class of Mi and by m′

i the class of M
′
i in K(C̄i). The abelian

group K(C̄) is freely generated by m1 � m2 (m1 � m2 is defined as follows:
for i = 1, 2, one takes the image of mi ∈ K(Ci) with respect to the map
K(Ci) → K(C) and than takes the product of the images in the ring K(C)),
m1�m′

2, m
′
1�m2, and m

′
1�m′

2. We identify K(C) with a subgroup in K(C̄)
via the restriction map K(C) ↪→ K(C̄).

Lemma 5.3. The subgroup K(C) ⊂ K(C̄) is generated by

c · (m1 �m2 +m′
1 �m′

2) and c · (m1 �m′
2 +m′

1 �m2) .

Proof. Denote by L the quadratic extension F (
√
d) of the field F , where d =

det ρ1 = det ρ2. The algebra CL is the direct product of 4 copies of a central
simple L-algebra of index c. Evidently, the subgroup K(CL) of K(C̄) is freely
generated by c ·m1 �m2, c ·m1 �m′

2, c ·m′
1 �m2, and c ·m′

1 �m′
2.

Now we are going to determine K(C) as a subgroup in K(CL). Computing
the norm NL/F : K(CL) → K(C), we get:

x
def
= NL/F (c ·m1 �m2) = c · (m1 �m2 +m′

1 �m′
2) ;

x′
def
= NL/F (c ·m1 �m′

2) = c · (m1 �m′
2 +m′

1 �m2) .
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Thus, the elements x and x′ are in K(C). Note that:

• x and x′ can be included in a system of free generators of the free abelian
group K(CL) (e.g. x, x

′, c ·m1 �m2, and c ·m1 �m′
2);

• K(C) is a free abelian group of rank 2 (because the algebra C is the
direct product of two copies of a simple algebra, since for i = 1, 2 one
has: Ci = C ′

i ⊗F L for a central simple F -algebra C ′
i);

• K(C) is a subgroup of K(CL) containing x and x′.

Consequently, K(C) is generated by x and x′.

We identifyK(X) with a subgroup inK(X̄) via the restriction mapK(X) ↪→
K(X̄) (which is injective by Item 1 of Lemma 4.3). For i = 1, 2, let li, l

′
i be

the different line classes and pi the point class in K(X̄i) (see Lemma 3.2).

Corollary 5.4. The group K(X) is generated modulo H by c · (l1� l2+ l′1� l′2)
and c · p1 � p2.

Proof. According to Item 2 of Lemma 4.3, the map u : K(C) → K(X)/H is
surjective. By Lemma 5.3, the group K(C) is generated by

c · (m1 �m2 +m′
1 �m′

2) and c · (m1 �m′
2 +m′

1 �m2) .

Applying Lemma 3.6, we can compute the images of these generators in K(X):
up to the order, they are

c ·
(
(1 + l1)� (1 + l2) + (1 + l′1)� (1 + l′2)

)
and

c ·
(
(1 + l1)� (1 + l′2) + (1 + l′1)� (1 + l2)

)
.

One can modify the first expression as follows (the formulas of Lemma 3.2 are
in use):

c ·
(
(1 + l1)� (1 + l2) + (1 + l′1)� (1 + l′2)

)
=

= c ·
(
2 + (l1 + l′1)� 1 + 1� (l2 + l′2) + l1 � l2 + l′1 � l′2

)
=

= c ·
(
2 + (h1 + h21/2)� 1 + 1� (h2 + h22/2) + l1 � l2 + l′1 � l′2

)
≡

≡ c · (l1 � l2 + l′1 � l′2) (mod H)

(note that c is divisible by 2). The analogous modification can be made for the
second expression as well. Thus, the group K(X) is generated modulo H by
c · (l1� l2+ l′1� l′2) and c · (l1� l′2+ l′1� l2). Taking the sum of these generators,
we get:

c · (l1 � l2 + l′1 � l′2) + c · (l1 � l′2 + l′1 � l2) =

= c · (l1 + l′1)� (l2 + l′2) = c · (h1 + h21/2)� (h2 + h22/2) ≡
≡ c · (h21/2)� (h22/2) = c · p1 � p2

(where the congruence is modulo H).

Lemma 5.5. 1. c · (l1 � l2 + l′1 � l′2) ∈ K(X)(2);
2. c · p1 � p2 ∈ K(X)(3);
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3. for any 0 ̸= r ∈ Z, the set r · c(l1 � l2 + l′1 � l′2) +H has no intersection
with K(X)(3).

Proof. 1. It is evident that c(l1 � l2 + l′1 � l′2) ∈ K(X̄)(2). Since K(X)(2) =
K(X̄)(2) ∩K(X) (see e.g. [23, Lemme 6.3, (i)]), we are done.
2. If we multiply the element c(l1 � l2 + l′1 � l′2) ∈ K(X)(2) by the element
h1 � 1 ∈ K(X)(1), we get:

K(X)(3) ∋ c(l1 � l2 + l′1 � l′2) · (h1 � 1) =

= c(p1 � l2 + p1 � l′2) = c · p1 � (h2 + p2) =

= c · p1 � h2 + c · p1 � p2 .

Since c · p1 � h2 ∈ H(3) ∈ K(X)(3), it follows that c · p1 � p2 ∈ K(X)(3).
3. By Lemmas 3.2 and 4.2, the abelian group K(X̄) is freely generated by the
products x1 � x2 where xi is one of the elements 1, li, l

′
i, pi; moreover, the term

K(X̄)(3) of the filtration is generated by l1 � p2, l
′
1 � p2, p1 � l2, p1 � l′2 and

p1 � p2. In particular, 4K(X̄)(3) ⊂ H.
Suppose that, for certain 0 ̸= r ∈ Z, the intersection of r·c(l1�l2+l′1�l′2)+H

withK(X)(3) is non-empty. Then 4r·c(l1�l2+l′1�l′2) ∈ H, a contradiction.

Corollary 5.6. Let us supply the quotient K(X)/H with the filtration induced
from K(X). Then TorsG2(K(X)/H) = 0.

Proof. By Corollary 5.4 and Lemma 5.5, G2(K(X)/H) is an infinite cyclic
group (generated by the residue of c(l1 � l2 + l′1 � l′2)).

To finish the proof of Theorem 5.1, consider the exact sequence

0 → G2H → G2K(X) → G2(K(X)/H) → 0 .

The left-hand side term is torsion-free by Lemma 4.1 while the right-hand
side term is torsion-free by Corollary 5.6. Consequently, the middle term is a
torsion-free group as well.

Theorem 5.7. The order of the group TorsCH2(X1 ×X2) is at most 2.

Proof. Since 2TorsCH2(X1 × X2) = 0 by Corollary 2.11, it suffices to show
that the torsion in CH2(X1 ×X2) is a cyclic group.

By Corollary 2.7, it suffices to consider only the case when the both quadratic
forms ρ1 and ρ2 are anisotropic.

Set as usual X = X1 ×X2, Ci = C0(ρi) and C = C1 ⊗F C2. Suppose that
the algebra C is simple. Then K(C) is a cyclic group and therefore, by Item
2 of Lemma 4.3, the quotient K(X)/H is cyclic as well. Moreover, C1 and
C2 are division algebras (since they are simple and the quadratic forms are
anisotropic) and therefore K(Xi) = Hi for i = 1, 2 by Item 4 of Lemma 3.3.
Supplying K(X)/H with the filtration induced from K(X), we get an exact
sequence of the adjoint graded groups

0 → G∗H → G∗K(X) → G∗(K(X)/H) → 0 .
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Take any r ≥ 0. Since GrH is torsion-free (Lemma 4.1), TorsGrK(X) is
mapped injectively into Gr(K(X)/H). Since K(X)/H is cyclic, Gr(K(X)/H)
is cyclic as well and thus so is also TorsGrK(X). In particular, the group
TorsCH2(X) ≃ TorsG2K(X) is cyclic.

Now suppose that C is not simple. Then

either: dimX1 = 2 = dimX2 and detX1 = detX2,
or: for i = 1 or for i = 2, one has: dimXi = 2 and detXi = 1.

In the first case, the torsion in CH2(X) is 0 by Theorem 5.1. In the second
case, we replace the surface Xi by a stably birationally equivalent conic (see
Lemma 5.2 and Corollary 2.5).

Theorem 5.8. If indC0(ρ1)⊗F C0(ρ2) = 4, then TorsCH2(X1 ×X2) = 0.

Proof. We set C = C0(ρ1)⊗F C0(ρ2) and suppose that indC = 4.
If C is a simple algebra, then it is a skewfield and we are done by Corollary

4.4.
If C is not simple, then

either: dimX1 = 2 = dimX2 and det ρ1 = det ρ2,
or: for i = 1 or for i = 2, one has: dimXi = 2 and detXi = 1.

In the first case, the torsion in CH2(X1 × X2) is 0 by Theorem 5.1. In the
second case, we replace the surface Xi by a stably birationally equivalent conic
(see Lemma 5.2 and Corollary 2.5).

Theorem 5.9. Suppose that dim ρ1 = 4, det ρ1 ̸= 1 and that for a certain
3-dimensional subform ρ′1 of ρ1 one has:

indC0(ρ1)⊗F C0(ρ2) = indC0(ρ
′
1)⊗F C0(ρ2) .

Then TorsCH2(X1 ×X2) = 0.

Proof. Applying the same arguments as above, we may assume that

• the forms ρ1 and ρ2 are anisotropic and
• one of the following alternative conditions holds:

– the dimension of ρ2 equals 3 or
– the dimension of ρ2 is 4 and det ρ1 ̸= det ρ2 ̸= 1.

We are going to show that, under the assumptions made, TorsG2K(X1×X2) =
0.

The algebra C is now simple; it has the index 1, 2, or 4. Set c = indC. The
group K(C) is generated by (c/4) · [C] where [C] ∈ K(C) is the class of C.

Consider the case when dim ρ2 = 4.
It follows from Item 2 of Lemma 4.3 that K(X) is generated modulo H by

the element (c/4)[U(2, 2)]. Applying Item 2 of Lemma 3.3, one computes that
[U(2, 2)] = (4 + 2h1 + h21)� (4 + 2h2 + h22) ∈ K(X). Thus, K(X) is generated

modulo H also by x
def
= (c/4)(2 · h1 � h22 +2 · h21 � h2 + h21 � h22). Since we have

the exact sequence

0 → G∗H → G∗K(X) → G∗(K(X)/H) → 0
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with torsion-free G∗H, it would suffice to show that x ∈ K(X)(3).
Consider the conic X ′

1 determined by ρ′1 and denote by U ′
1 the Swan’s sheaf

on X ′
1. The product U ′

1(1)�U2(2) of the twisted Swan’s sheaves has a structure

of module over C ′ def
= C ′

1⊗C2; its class in K(X ′), where X ′ def
= X ′

1×X2 is equal
to (2 + h′1) � (4 + 2h2 + h22) where h′1 is the class in K(X ′

1) of a hyperplane
section of X ′

1. Since indC ′ = indC = c, the latter product can be divided by
(4/c) in K(X ′), i.e.

K(X ′) ∋ x′
def
= (c/4)(2 · 1� h22 + 2 · h′1 � h2 + h′1 � h22) .

Since 4x′ ∈ K(X ′)(2) and the group G1K(X ′) = CH1(X ′) is torsion-free (see
e.g. [23, Lemme 6.3, (i)]), it follows that x′ ∈ K(X ′)(2). Since the image of
x′ with respect to the push-forward given by the closed imbedding X ′ ↪→ X
coincides with x and codimX X

′ = 1, the element x is in K(X)(3).
Now suppose that dim ρ2 = 3.
If c = 1, then the quadric (X2)F (X1) is isotropic and therefore TorsCH2(X) =

0 by Corollary 2.7. Thus we may assume that c is divisible by 2.
The groupK(X) is now generated moduloH by (c/4)[U(2, 1)] and [U(2, 1)] =

(4 + 2h1 + h21) � (2 + h2) ∈ K(X). Thus, K(X) is generated modulo H also

by x
def
= (c/4)(h21 � h2) and it suffices to show that x ∈ K(X)(3).

The class inK(X ′) of the product U ′
1(1)�U2(1) of the twisted Swan’s sheaves

is equal this time to (2+ h′1)� (2+ h2) and can be divided by (4/c) in K(X ′),
i.e.

K(X ′) ∋ x′
def
= (c/4)(h′1 � h2) .

Since x′ ∈ K(X ′)(2) and the image of x′ with respect to the push-forward
given by the closed imbedding X ′ ↪→ X coincides with x, the element x is in
K(X)(3).

Corollary 5.10. If ρ1 and ρ2 contain similar 3-dimensional subforms, then
TorsCH2(X1 ×X2) = 0.

Proof. If dim ρ1 = 3 or if det ρ1 = 1, then the quadric (X2)F (X1) is isotropic
and so we are done by Corollary 2.7.

Therefore, we may assume that dim ρ1 = 4 and det ρ1 ̸= 1. These are the
first two conditions of Theorem 5.9. We state that also the last condition of
Theorem 5.9 is satisfied. Indeed, denote by ρ′1 ⊂ ρ1 and ρ′2 ⊂ ρ2 the similar
3-dimensional subforms. According to Lemma 3.4, the F -algebras C0(ρ

′
1) and

C0(ρ
′
2) are isomorphic and C0(ρi) = C0(ρ

′
i)F (

√
det ρi) for i = 1, 2. Therefore,

indC0(ρ1)⊗F C0(ρ2) = 1 = indC0(ρ
′
1)⊗F C0(ρ2) .

6. The group I3(F (ρ, ψ)/F )

The following assertion is obvious:

Lemma 6.1. Let ρ = ⟨−a,−b, ab, d⟩ be a quadratic form over F . For any
k ∈ F ∗ the following conditions are equivalent.

(1) k ∈ DF (⟨⟨d⟩⟩);
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(2) ⟨⟨a, b, k⟩⟩ = ρ ⟨⟨k⟩⟩;
(3) ρ ⟨⟨k⟩⟩ ∈ P3(F ).

Lemma 6.2. Let ρ = ⟨−a,−b, ab, d⟩ be a quadratic form over F . Then

1. P3(F (ρ)/F ) = {⟨⟨a, b, k⟩⟩ | k ∈ DF (⟨⟨d⟩⟩)},
2. H3(F (ρ)/F ) = {(a, b, k) | k ∈ DF (⟨⟨d⟩⟩)}.

Proof. 1. See [3, Lemma 3.1].
2. Let ρ0 = ⟨−a,−b, ab⟩. Clearly H3(F (ρ)/F ) ⊂ H3(F (ρ0)/F ). It follows
from [1, Beweis vom Satz 5.6] that H3(F (ρ0)/F ) = (a, b)∪H1(F ). Hence any
element u ∈ H3(F (ρ)/F ) has the form (a, b, x) where x ∈ F ∗. Since (a, b, x) ∈
H3(F (ρ)/F ), the Pfister form ⟨⟨a, b, x⟩⟩F (ρ) is hyperbolic. It follows from the

first assertion that there exists k ∈ DF (⟨⟨d⟩⟩) such that ⟨⟨a, b, x⟩⟩ = ⟨⟨a, b, k⟩⟩.
Hence u = (a, b, x) = (a, b, k).

Corollary 6.3. Let ρ1, . . . , ρm be 4-dimensional quadratic forms over F . Then
for a quadratic form ϕ the following conditions are equivalent:

(1) ϕ ∈ I3(F (ρ1)/F ) + · · ·+ I3(F (ρm)/F ) + I4(F );
(2) ϕ ∈ P3(F (ρ1)/F ) + · · ·+ P3(F (ρm)/F ) + I4(F );
(3) ϕ ∈ I3(F ) and e3(ϕ) ∈ H3(F (ρ1)/F ) + · · ·+H3(F (ρm)/F ).

Proof. (2)⇒(1)⇒(3). Obvious.
(3)⇒(2). Follows from Lemma 6.2.

Corollary 6.4. Let ρ1, . . . , ρm be 4-dimensional quadratic forms such that
H3(F (ρ1, . . . , ρm)/F ) = H3(F (ρ1)/F ) + · · ·+H3(F (ρm)/F ). Then

I3(F (ρ1, . . . , ρm)/F ) ⊂ I3(F (ρ1)/F ) + · · ·+ I3(F (ρm)/F ) + I4(F ).

Corollary 6.5. Let ρ = ⟨−a,−b, ab, d⟩ and ψ = ⟨−u,−v, uv, δ⟩ be quadratic
forms over F . Then for any π ∈ I3(F (ρ)/F )+I3(F (ψ)/F )+I4(F ) there exist
k1, k2 ∈ F ∗ with the following properties:

1) ⟨⟨a, b, k1⟩⟩ = ρ ⟨⟨k1⟩⟩ and ⟨⟨u, v, k2⟩⟩ = ψ ⟨⟨k2⟩⟩;
2) π ≡ ⟨⟨a, b, k1⟩⟩+ ⟨⟨u, v, k2⟩⟩ (mod I4(F )).

Proof. By Corollary 6.3, we have π ∈ P3(F (ρ)/F ) + P3(F (ψ)/F ) + I4(F ).
Hence there exist π1 ∈ P3(F (ρ)/F ) and π2 ∈ P3(F (ψ)/F ) such that

π ≡ π1 + π2 (mod I4(F )) .

By Lemma 6.2, there exist k1, k2 ∈ F ∗ such that π1 = ⟨⟨a, b, k1⟩⟩ and π2 =
⟨⟨u, v, k2⟩⟩. Finally, Lemma 6.1 shows that ⟨⟨a, b, k1⟩⟩ = ρ ⟨⟨k1⟩⟩, ⟨⟨u, v, k2⟩⟩ =
ψ ⟨⟨k2⟩⟩.

7. The case of index 1

In this section, we study the group H3(F (ρ, ψ)/F ) in the case where ρ, ψ are
4-dimensional quadratic forms with non-trivial discriminants and indC0(ρ)⊗F

C0(ψ) = 1. In the case d± ρ = d± ψ we obviously have C0(ρ) ≃ C0(ψ). Hence
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ρ is similar to ψ (see [27, Theorem 7]) and hence the group H3(F (ρ, ψ)/F )
coincides with H3(F (ρ)/F ). So it is sufficient to study only the case where

d± ρ ̸= d± ψ.
Replacing ρ and ψ by similar forms, we can rewrite our conditions as follows:

1) ρ = ⟨−a,−b, ab, d⟩ and ψ = ⟨−u,−v, uv, δ⟩ with a, b, d, u, v, δ ∈ F ∗;
2) d, δ, and dδ are not squares in F ∗;
3) ind((a, b)⊗F (u, v))F (

√
d,
√
δ) = 1.

During this section we will suppose that the conditions 1)–3) hold.
We define the set Γ(ρ, ψ) as

{γ ∈ I3(F ) | there exist l1, l2 ∈ F ∗ such that γ = l1ρ+ l2ψ + ⟨⟨dδ⟩⟩}.

Lemma 7.1. The set Γ(ρ, ψ) is not empty.

Proof. Since ind((a, b) ⊗F (u, v))F (
√
d,
√
δ) = 1, there exist s, r ∈ F ∗ such that

(a, b) ⊗ (u, v) = (d, s) ⊗ (δ, r). Set l1 = δs, l2 = −δr. It is sufficient to verify

that γ
def
= l1ρ+ l2ψ + ⟨⟨dδ⟩⟩ ∈ I3(F ). We have

γ = δsρ− δrψ + ⟨1,−dδ⟩ = δ(sρ− rψ + ⟨δ,−d⟩) =
= δ(s(⟨⟨a, b⟩⟩ − ⟨⟨d⟩⟩)− r(⟨⟨u, v⟩⟩ − ⟨⟨δ⟩⟩) + (⟨⟨d⟩⟩ − ⟨⟨δ⟩⟩)) =
= δ(s ⟨⟨a, b⟩⟩ − r ⟨⟨u, v⟩⟩+ ⟨⟨d, s⟩⟩ − ⟨⟨δ, r⟩⟩) .

Therefore γ ∈ I2(F ) and c(γ) = (a, b) + (u, v) + (d, s) + (δ, r) = 0. Hence
γ ∈ I3(F ).

Lemma 7.2. Γ(ρ, ψ) ⊂ I3(F (ρ, ψ)/F ).

Proof. Let γ = l1ρ + l2ψ + ⟨⟨dδ⟩⟩ ∈ Γ(ρ, ψ). We have dim(γF (ψ,ρ))an ≤
dim(ρF (ρ))an+dim(ψF (ψ))an+dim ⟨⟨δd⟩⟩ ≤ 2+2+2 = 6 < 8. Since γ ∈ I3(F ),
the Arason-Pfister Hauptsatz shows that γF (ψ,ρ) is hyperbolic.

Corollary 7.3. For any γ ∈ Γ(ρ, ψ), we have e3(γ) ∈ H3(F (ρ, ψ)/F ).

Lemma 7.4. Let l, k ∈ F ∗ and let τ be a quadratic form such that τ ⟨⟨k⟩⟩ ∈
I3(F ). Then lτ − ⟨⟨k⟩⟩ τ ≡ lkτ (mod I4(F )).

Proof. lτ − ⟨⟨k⟩⟩ τ − lkτ = −⟨⟨l⟩⟩ ⟨⟨k⟩⟩ τ ∈ ⟨⟨l⟩⟩ I3(F ) ⊂ I4(F ).

Lemma 7.5. Let γ ∈ Γ(ρ, ψ), π1 ∈ P3(F (ρ)/F ) and π2 ∈ P3(F (ψ)/F ). Then
there exists γ′ ∈ Γ(ρ, ψ) such that γ − π1 − π2 ≡ γ′ (mod I4(F )). Moreover,
γ + π1 + π2 ≡ γ′ (mod I4(F )).

Proof. Let l1, l2 ∈ F ∗ be such that γ = l1ρ+ l2ψ + ⟨⟨dδ⟩⟩. By Lemmas 6.1 and
6.2, there exist k1, k2 ∈ F ∗ such that π1 = ρ ⟨⟨k1⟩⟩, π2 = ψ ⟨⟨k2⟩⟩. By Lemma
7.4, we have

l1ρ− π1 = l1ρ− ⟨⟨k1⟩⟩ ρ ≡ l1k1ρ (mod I4(F )),

l2ψ − π2 = l2ψ − ⟨⟨k2⟩⟩ψ ≡ l2k2ψ (mod I4(F )).

Hence γ − π1 − π2 ≡ l1k1ρ+ l2k2ψ + ⟨⟨dδ⟩⟩ (mod I4(F )). Setting γ′ = l1k1ρ+
l2k2ψ + ⟨⟨dδ⟩⟩, we get the required equation γ − π1 − π2 ≡ γ′ (mod I4(F )).
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The second equation γ + π1 + π2 ≡ γ′ (mod I4(F )) is obvious in view of the
congruence πi ≡ −πi (mod I4(F )) (for i = 1, 2).

Corollary 7.6. Γ(ρ, ψ)+I3(F (ρ)/F )+I3(F (ψ)/F )+I4(F ) = Γ(ρ, ψ)+I4(F ).

Proof. It is an obvious consequence of Corollary 6.3 and Lemma 7.5

Lemma 7.7. The following conditions are equivalent:

(1) I3(F (ρ, ψ)/F ) ⊂ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F );
(2) Γ(ρ, ψ) ⊂ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F );
(3) there exists γ ∈ Γ(ρ, ψ) such that γ ∈ I3(F (ρ)/F )+ I3(F (ψ)/F )+ I4(F );
(4) Γ(ρ, ψ) contains a hyperbolic form, i.e. 0 ∈ Γ(ρ, ψ);
(5) the quadratic forms ψ and ρ contain similar 3-dimensional subforms;
(6) TorsCH2(Xρ ×Xψ) = 0;
(7) H3(F (ρ, ψ)/F ) = H3(F (ρ)/F ) +H3(F (ψ)/F ).

Proof. (1)⇒(2). Obvious in view of Lemma 7.2.
(2)⇒(3). Obvious in view of Lemma 7.1.
(3)⇒(4). Let γ be such as in (3). By Corollary 6.3, there exist π1 ∈ P3(F (ρ)/F )
and π2 ∈ P3(F (ψ)/F ) such that γ ∈ π1+π2+I

4(F ). Hence γ−π1−π2 ∈ I4(F ).
By Lemma 7.5, there exists γ′ ∈ Γ(ρ, ψ) such that γ−π1−π2 ≡ γ′ (mod I4(F )).
Since γ − π1 − π2 ∈ I4(F ), we have γ′ ∈ I4(F ). By definition of Γ(ρ, ψ),
dim(γ′)an ≤ 4 + 4 + 2 = 10 < 16. Since γ′ ∈ I4(F ), the Arason-Pfister
Hauptsatz shows that γ′ = 0.
(4)⇒(5). Since 0 ∈ Γ(ρ, ψ), there exist l1, l2 ∈ F ∗ such that 0 = l1ρ + l2ψ +
⟨⟨dδ⟩⟩. Thus l1ρ+ l2ψ = −⟨⟨dδ⟩⟩. Hence l1ρ and l2ψ contain a common subform
of the dimension (dim(ρ) + dim(ψ)− dim ⟨⟨dδ⟩⟩)/2 = (4 + 4− 2)/2 = 3.
(5)⇒(6). See Corollary 5.10.
(6)⇒(7). See Corollary 2.13.
(7)⇒(1). It is a particular case of Corollary 6.4.

Proposition 7.8. For an arbitrary element γ ∈ Γ(ρ, ψ), one has

H3(F (ρ, ψ)/F ) = H3(F (ρ)/F ) +H3(F (ψ)/F ) + e3(γ)H0(F ) .

Proof. By Corollary 7.3, the element e3(γ) belongs to H3(F (ρ, ψ)/F ). If
TorsCH2(Xρ × Xψ) = 0 then by Corollary 2.13, we have H3(F (ρ, ψ)/F ) =
H3(F (ρ)/F )+H3(F (ψ)/F ) and the proof is complete. If TorsCH2(Xρ×Xψ) ̸=
0, Lemma 7.7 shows that γ /∈ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F ). Hence, by
Corollary 6.3, e3(γ) /∈ H3(F (ρ)/F ) +H3(F (ψ)/F ). To complete the proof it
is sufficient to apply Corollary 2.13 and Theorem 5.7.

Corollary 7.9. I3(F (ρ, ψ)/F ) ⊂ I3(F (ρ)/F ) + I3(F (ψ)/F ) + {Γ(ρ, ψ), 0} +
I4(F ).

Proof. Let τ ∈ I3(F (ρ, ψ)/F ). Choose an element γ ∈ Γ(ρ, ψ). By Proposition
7.8, either e3(τ) ∈ H3(F (ρ)/F ) +H3(F (ψ)/F ) or e3(τ − γ) ∈ H3(F (ρ)/F ) +
H3(F (ψ)/F ). It remains to apply Corollary 6.3.
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Proposition 7.10. Let π ∈ I3(F (ρ, ψ)/F ). Then at least one of the following
conditions holds

1) π ∈ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F );
2) π ∈ Γ(ρ, ψ) + I4(F ).

Proof. Obvious in view of Corollaries 7.9 and 7.6.

8. Main theorem

Proposition 8.1. Let ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ be an anisotropic quadratic form.
Let ψ = ⟨−u,−v, uv, δ⟩ and ρ = ⟨−a,−b, ab, d⟩. Then:
1. The following two conditions are equivalent:

(i) ⟨⟨a, b, c⟩⟩ ∈ I3(F (ρ, ψ)/F ),
(ii) ϕF (ψ) is isotropic.

2. The following two conditions are equivalent:
(i) ⟨⟨a, b, c⟩⟩ ∈ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F ),
(ii) there exits a 5-dimensional Pfister neighbor ϕ0 such that ϕ0 ⊂ ϕ and

(ϕ0)F (ψ) is isotropic.

Proof. Note that ⟨⟨a, b, c⟩⟩ = ϕ− cρ = ρ− cϕ.
(1i)⇒(1ii). Let E = F (ψ). If the Pfister form ⟨⟨a, b, c⟩⟩E is isotropic, its
neighbor (⟨⟨a, b⟩⟩ ⊥ ⟨−c⟩)E is isotropic too. Since ⟨⟨a, b⟩⟩ ⊥ ⟨−c⟩ ⊂ ϕ, the form
ϕE is isotropic. Thus we can suppose that ⟨⟨a, b, c⟩⟩E is anisotropic. By the
assumption, ⟨⟨a, b, c⟩⟩ ∈ I3(F (ρ, ψ)/F ) = I3(E(ρ)/F ). Hence the anisotropic
Pfister form ⟨⟨a, b, c⟩⟩E becomes isotropic over the function field of ρE. By
the Arason-Pfister subform theorem, we have kρE ⊂ ⟨⟨a, b, c⟩⟩E where k is an
arbitrary element of DE(ρ) ·DE(⟨⟨a, b, c⟩⟩). Since (ab)−1 ∈ DE(ρ) and −abc ∈
DE(⟨⟨a, b, c⟩⟩) we can take k = (ab)−1 · (−abc) = −c. Thus −cρE ⊂ ⟨⟨a, b, c⟩⟩E.
Hence dim((⟨⟨a, b, c⟩⟩ ⊥ cρ)E)an ≤ 8−4 = 4. Since ⟨⟨a, b, c⟩⟩+cρ = ϕ, it follows
that dim(ϕE)an ≤ 4. Hence ϕF (ψ) = ϕE is isotropic.
(1ii)⇒(1i). Since ϕF (ψ) and ρF (ρ) are isotropic, we have dim(ϕF (ψ))an ≤ 4 and
dim(ρF (ρ))an ≤ 2. Therefore dim(⟨⟨a, b, c⟩⟩F (ρ,ψ))an = dim((ϕ − cρ)F (ρ,ψ))an ≤
4 + 2 = 6. By the Arason-Pfister theorem, ⟨⟨a, b, c⟩⟩F (ρ,ψ) is hyperbolic. Hence

⟨⟨a, b, c⟩⟩ ∈ I3(F (ρ, ψ)/F ).
(2i)⇒(2ii). By Corollary 6.5, there exist k1, k2 ∈ F ∗ such that ⟨⟨a, b, k1⟩⟩ =
ρ ⟨⟨k1⟩⟩, ⟨⟨u, v, k2⟩⟩ = ψ ⟨⟨k2⟩⟩, and

⟨⟨a, b, c⟩⟩ ≡ ⟨⟨a, b, k1⟩⟩+ ⟨⟨u, v, k2⟩⟩ (mod I4(F )) .

It follows from [2, Theorem 4.8] that the Pfister forms ⟨⟨a, b, c⟩⟩, ⟨⟨a, b, k1⟩⟩,
and ⟨⟨u, v, k2⟩⟩ are linked. Hence there exists s ∈ F ∗ such that s ⟨⟨u, v, k2⟩⟩ =
⟨⟨a, b, k1⟩⟩− ⟨⟨a, b, c⟩⟩. Since ⟨⟨a, b, k1⟩⟩ = ρ ⟨⟨k1⟩⟩ and ⟨⟨a, b, c⟩⟩ = ρ− cϕ, we have
s ⟨⟨u, v, k2⟩⟩ = ρ ⟨⟨k1⟩⟩− (ρ− cϕ) = cϕ−k1ρ. Therefore ϕ− cs ⟨⟨u, v, k2⟩⟩ = ck1ρ.
Hence ϕ and cs ⟨⟨u, v, k2⟩⟩ contain a common subform of the dimension

1

2
(dimϕ+ dim(sc ⟨⟨u, v, k2⟩⟩)− dim(ck1ρ)) =

1

2
(6 + 8− 4) = 5.
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Let us denote such a form by ϕ0. By the definition, we have ϕ0 ⊂ ϕ. Since
ϕ0 ⊂ sc ⟨⟨u, v, k2⟩⟩, it follows that ϕ0 is a Pfister neighbor. Since ⟨⟨u, v, k2⟩⟩ =
ψ ⟨⟨k2⟩⟩, it follows that ⟨⟨u, v, k2⟩⟩F (ψ) is isotropic. Hence the Pfister neighbor

(ϕ0)F (ψ) of ⟨⟨u, v, k2⟩⟩F (ψ) is isotropic as well.

(2ii)⇒(2i). Let ϕ0 be a 5-dimensional Pfister neighbor such that ϕ0 ⊂ ϕ and
(ϕ0)F (ψ) is isotropic. Let us write ϕ in the form ϕ = ϕ0 ⊥ ⟨s0⟩. Since ϕ0 is a
Pfister neighbor, there exists π ∈ GP3(F ) such that ϕ0 ⊂ π. We can write π
in the form π = ϕ0 ⊥ −⟨s1, s2, s3⟩. Set γ = ⟨s0, s1, s2, s3⟩. We have

γ = ϕ− π ≡ ϕ = ⟨⟨a, b, c⟩⟩+ cρ ≡ cρ (mod I3(F )).

Since dim γ = dim cρ = 4 it follows from the Wadsworth’s theorem ([27,
Theorem 7]) that γ is similar to cρ. Hence there exists k ∈ F ∗ such that
γ = ckρ. We have

⟨⟨a, b, c⟩⟩ = ρ− cϕ = ρ− c(γ + π) = ρ− c(ckρ+ π) = ⟨⟨k⟩⟩ ρ− cπ.

Now it is sufficient to verify that ⟨⟨k⟩⟩ ρ ∈ I3(F (ρ)/F ) and π ∈ I3(F (ψ)/F ).
We have ⟨⟨k⟩⟩ ρ = ⟨⟨a, b, c⟩⟩ + cπ ∈ I3(F ). Since dim(⟨⟨k⟩⟩ ρF (ρ))an < 8, the
Arason-Pfister Hauptsatz shows that ⟨⟨k⟩⟩ ρF (ρ) is hyperbolic. Thus ⟨⟨k⟩⟩ ρ ∈
I3(F (ρ)/F ). Since ϕ0 ⊂ π and (ϕ0)F (ψ) is isotropic, πF (ψ) is isotropic as well.
Since π ∈ GP3(F ), it follows that πF (ψ) is hyperbolic. Hence π ∈ I3(F (ψ)/F ).

Corollary 8.2. Let ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ be an anisotropic quadratic form.
Let ψ = ⟨−u,−v, uv, δ⟩ and ρ = ⟨−a,−b, ab, d⟩. Suppose that the group
CH2(Xψ×Xρ) is torsion-free. Then the following conditions are equivalent:

(1) ϕF (ψ) is isotropic;
(2) there exits a 5-dimensional Pfister neighbor ϕ0 such that ϕ0 ⊂ ϕ and

(ϕ0)F (ψ) is isotropic

Proof. (1)⇒(2). By Item 1 of Proposition 8.1, we know that ⟨⟨a, b, c⟩⟩ ∈
I3(F (ρ, ψ)/F ). Since TorsCH2(Xψ ×Xρ) = 0, Corollary 2.13 implies that

H3(F (ρ, ψ)/F ) = H3(F (ρ)/F ) +H3(F (ψ)/F )]; .

By Corollary 6.4, I3(F (ρ, ψ)/F ) ⊂ I3(F (ρ)/F )+ I3(F (ψ)/F )+ I4(F ). Apply-
ing Proposition 8.1 once again, we are done.
(2)⇒(1). Obvious.

Lemma 8.3. Let ϕ be a 6-dimensional form and ψ be a 4-dimensional form.
Suppose that ψ is similar to a subform in ϕ. Then indC0(ϕ)⊗F C0(ψ) = 1.

Proof. We can suppose that ψ ⊂ ϕ. Hence there exists a 2-dimensional form µ
such that ψ ⊥ µ = ϕ. Let E be a field extension of F generated by

√
d± ϕ and√

d± ψ. Obviously ϕE, ψE ∈ I2(F ) and indC0(ϕ) ⊗F C0(ψ) = indC0(ϕE) ⊗E

C0(ψE). Thus we can reduce our problem to the case where ϕ, ψ ∈ I2(F ). Then
µ ∈ I2(F ). Since dimµ = 2, the form µ is hyperbolic. Hence ϕ = ψ ⊥ H.
Therefore C0(ϕ) = C0(ψ)⊗F M2(F ). Hence indC0(ϕ)⊗F C0(ψ) = 1.
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Corollary 8.4. Let ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ be an anisotropic quadratic form.
Let ψ = ⟨−u,−v, uv, δ⟩ and ρ = ⟨−a,−b, ab, d⟩. Suppose that indC0(ϕ) ⊗F

C0(ψ) ̸= 1. Then the following conditions are equivalent:

(1) ϕF (ψ) is isotropic and the isotropy is standard;
(2) there exits a 5-dimensional Pfister neighbor ϕ0 such that ϕ0 ⊂ ϕ and

(ϕ0)F (ψ) is isotropic;
(3) ⟨⟨a, b, c⟩⟩ ∈ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F );
(4) (a, b, c) ∈ H3(F (ρ)/F ) +H3(F (ψ)/F ).

Proof. (1)⇒(2). Let ϕ and ψ be such as in (1). Let us suppose that the
condition (2) is not satisfied. Then by the definition of standard isotropy, ψ
is similar to a subform of ϕ. By Lemma 8.3, we have indC0(ϕ)⊗F C0(ψ) = 1.
This contradicts to our assumption.
(2)⇒(1). Obvious.
(3)⇐⇒(4)⇐⇒(1). Follows from Proposition 8.1 and Corollary 6.3.

Theorem 8.5. Let ϕ be an anisotropic 6-dimensional quadratic form and ψ
be a 4-dimensional quadratic form with d± ψ = d± ϕ ̸= 1. Suppose that ϕF (ψ)

is isotropic. Then there exits a 5-dimensional Pfister neighbor ϕ0 such that
ϕ0 ⊂ ϕ and (ϕ0)F (ψ) is isotropic.

Proof. If indC0(ϕ) = 1 then ϕ is a Pfister neighbor. In this case we can
take ϕ0 to be equal to an arbitrary 5-dimensional subform in ϕ. In the case
indC0(ϕ) = 4, it follows from [5] that ϕF (ψ) is anisotropic and we have a
contradiction. Thus we can assume that indC0(ϕ) = 2. Then ϕ is similar to
a form of the kind ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩. Since d± ψ = d± ϕ, there exist u, v ∈ F ∗

such that ψ is similar to the form ⟨−u,−v, uv, d⟩. Replacing ϕ and ψ by similar
forms, we can suppose that

ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ and ψ = ⟨−u,−v, uv, d⟩ .
Let ρ = ⟨−a,−b, ab, d⟩. It follows from Theorem 5.1 that TorsCH2(Xψ×Xρ) =
0. Now the result required follows immediately from Corollary 8.2.

Proposition 8.6. Let ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ and ψ = ⟨−u,−v, uv, δ⟩ be
anisotropic quadratic forms. Suppose that indC0(ϕ) ⊗F C0(ψ) = 4. Then
the following conditions are equivalent:

(1) ϕF (ψ) is isotropic;
(2) There is a 5-dimensional subform ϕ0 ⊂ ϕ which is a Pfister neighbor and

(ϕ0)F (ψ) is isotropic.

Proof. Let ρ = ⟨−a,−b, ab, d⟩. Clearly C0(ϕ) = M2(F ) ⊗F C0(ρ). Hence
indC0(ρ)⊗FC0(ψ) = 4. It follows from Theorem 5.8 that TorsCH2(Xρ×Xψ) =
0. By Corollary 8.2, we are done.

Proposition 8.7. Let ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ and ψ = ⟨−u,−v, uv, δ⟩ be
anisotropic quadratic forms with δ /∈ F ∗2. Suppose that indC0(ϕ)⊗F C0(ψ) =
1. Then the following conditions are equivalent:

(1) ϕF (ψ) is isotropic;
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(2) Either ψ is similar to a subform in ϕ or there exists a 5-dimensional
subform ϕ0 ⊂ ϕ which is a Pfister neighbor and (ϕ0)F (ψ) is isotropic.

Proof. (1)⇒(2). Since ϕ is anisotropic, we have d /∈ F ∗2. In view of Theo-
rem 8.5 is is sufficient to consider the case dδ /∈ F ∗2. Let ρ = ⟨−a,−b, ab, d⟩.
Since C0(ϕ) =M2(F )⊗F C0(ρ), we have indC0(ρ)⊗F C0(ψ) = 1. Thus all the
assumptions of §7 hold. Propositions 7.10 and 8.1 show that at least one of
the following conditions holds:

1) ⟨⟨a, b, c⟩⟩ ∈ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F ),
2) ⟨⟨a, b, c⟩⟩ ∈ Γ(ρ, ψ) + I4(F ).

In the first case, Proposition 8.1 asserts that there exists a 5-dimensional sub-
form ϕ0 ⊂ ϕ which is a Pfister neighbor and (ϕ0)F (ψ) is isotropic.

Thus we can suppose that ⟨⟨a, b, c⟩⟩ ∈ Γ(ρ, ψ) + I4(F ). Let γ = l1ρ + l2ψ +
⟨⟨dδ⟩⟩ ∈ Γ(ρ, ψ) be such that ⟨⟨a, b, c⟩⟩ ∈ γ + I4(F ). Since ⟨⟨a, b, c⟩⟩ = ρ − cϕ,
we have

l1ρ− l1cϕ = l1 ⟨⟨a, b, c⟩⟩ ≡ ⟨⟨a, b, c⟩⟩ ≡ γ = l1ρ+ l2ψ + ⟨⟨dδ⟩⟩ (mod I4(F )).

Hence l1cϕ + l2ψ + ⟨⟨dδ⟩⟩ ∈ I4(F ). Since dim(l1cϕ + l2ψ + ⟨⟨dδ⟩⟩)an ≤ 6 + 4 +
2 = 12 < 16, the Arason-Pfister Hauptsatz shows that l1cϕ + l2ψ + ⟨⟨dδ⟩⟩ =
0. Therefore ϕ = −cl1l2ψ − cl1 ⟨⟨dδ⟩⟩. Since dimϕ = 6 = dim(−cl1l2ψ ⊥
−cl1 ⟨⟨dδ⟩⟩), we have ϕ = −cl1l2ψ ⊥ −cl1 ⟨⟨dδ⟩⟩. Hence ψ is similar to a subform
in ϕ.
(2)⇒(1). Obvious.

Together with results described in Introduction, Theorem 8.5, Propositions
8.6 and 8.7 give rise to the following

Theorem 8.8. Let ϕ be an anisotropic quadratic form of dimension ≤ 6 and
ψ be such that ϕF (ψ) is isotropic. If the isotropy is non-standard then

• dimϕ = 6 and dimψ = 4;
• 1 ̸= d± ϕ ̸= d± ψ ̸= 1;
• indC0(ϕ) = 2; and
• indC0(ϕ)⊗F C0(ψ) = 2.

9. The case of index 2

Theorem 8.8 implies that if there exists a quadratic form ϕ of dimension
≤ 6 having a non-standard isotropy over the function field of a quadratic
form ψ, then there are a, b, c, d, u, v, δ ∈ F ∗ such that ϕ ∼ ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩,
ψ ∼ ⟨−u,−v, uv, δ⟩, d, δ, dδ /∈ F ∗2, and ind((a, b)⊗F (u, v))F (

√
d,
√
δ) = 2.

Set ρ = ⟨−a,−b, ab, d⟩. By Corollary 8.2, if TorsCH2(Xψ × Xρ) = 0, then
the isotropy is standard.

In this section we prove the following

Theorem 9.1. Let a, b, u, v, d, δ ∈ F ∗2 be such that d, δ, dδ /∈ F ∗2. Let ρ =
⟨−a,−b, ab, d⟩ and ψ = ⟨−u,−v, uv, δ⟩. Suppose that indC0(ρ)⊗F C0(ψ) = 2.
The following conditions are equivalent:
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(1) TorsCH2(Xρ ×Xψ) ̸= 0;
(2) there exists c ∈ F ∗ such that the quadratic form ϕ = ⟨⟨a, b⟩⟩ ⊥ −c ⟨⟨d⟩⟩ is

isotropic over F (ψ), but the isotropy is not standard.

Proof. (2)⇒(1). Obvious in view of Corollary 8.2.
(1)⇒(2). Since TorsCH2(Xρ × Xψ) ̸= 0, it follows from Corollary 2.13 that
there exists w ∈ H3(F (ρ, ψ)/F ) such that w /∈ H3(F (ρ)/F ) + H3(F (ψ)/F ).
Let ρ0 = ⟨−a,−b, ab⟩. It follows from Theorem 5.9 that indC0(ρ0)⊗F C0(ψ) ̸=
indC0(ρ) ⊗F C0(ψ) = 2. Therefore indC0(ρ0) ⊗F C0(ψ) = 4. By The-
orem 5.8, we have TorsCH2(Xρ0 × Xψ) = 0. By Corollary 2.13, we have
H3(F (ρ0, ψ)/F ) = H3(F (ρ0)/F ) +H3(F (ψ)/F ). Hence

w ∈ H3(F (ρ, ψ)/F ) ⊂ H3(F (ρ0, ψ)/F ) = H3(F (ρ0)/F ) +H3(F (ψ)/F ).

Since H3(F (ρ0)/F ) = (a, b) ∪ H1(F ), there exists c ∈ F ∗ such that w −
(a, b, c) ∈ H3(F (ψ)/F ), i.e. w ≡ (a, b, c) (mod H3(F (ψ)/F )). By the assump-
tion on w, we see that (a, b, c) ∈ H3(F (ρ, ψ)/F ) and (a, b, c) /∈ H3(F (ρ)/F ) +
H3(F (ψ)/F ). Therefore, ⟨⟨a, b, c⟩⟩ ∈ I3(F (ρ, ψ)/F and

⟨⟨a, b, c⟩⟩ /∈ I3(F (ρ)/F ) + I3(F (ψ)/F ) + I4(F ) .

By Proposition 8.1, the quadratic form ϕF (ψ) is isotropic. By Corollary 8.4,
the isotropy is not standard.
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