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Introduction

The algebraic theory of quadratic forms, i.e., the study of quadratic forms
over arbitrary fields, really began with the pioneering work of Witt. In his paper
[139], Witt considered the totality of nondegenerate symmetric bilinear forms over
an arbitrary field F of characteristic different from 2. Under this assumption, the
theory of symmetric bilinear forms and the theory of quadratic forms are essentially
the same. His work allowed him to form a ring W (F ), now called the Witt ring,
arising from the isometry classes of such forms. This work set the stage for further
study. From the viewpoint of ring theory, Witt gave a presentation of this ring as a
quotient of the integral group ring where the group consists of the nonzero square
classes of the field F . Three methods of study arise: ring theoretic, field theoretic,
i.e., the relationship of W (F ) and W (K) where K is a field extension of F , and
algebraic geometric. In this book, we will develop all three methods. Historically,
the powerful approach using algebraic geometry has been the last to be developed.
This volume attempts to show its usefulness.

The theory of quadratic forms lay dormant until the work of Cassels and then
of Pfister in the 1960’s when it was still under the assumption of the field being of
characteristic different from 2. Pfister employed the first two methods, ring theo-
retic and field theoretic, as well as a nascent algebraic geometric approach. In his
postdoctoral thesis [110] Pfister determined many properties of the Witt ring. His
study bifurcated into two cases: formally real fields, i.e., fields in which −1 is not a
sum of squares and nonformally real fields. In particular, the Krull dimension of the
Witt ring is one in the formally real case and zero otherwise. This makes the study
of the interaction of bilinear forms and orderings an imperative, hence the impor-
tance of looking at real closures of the base field resulting in extensions of Sylvester’s
work and Artin-Schreier theory. Pfister determined the radical, zero-divisors, and
spectrum of the Witt ring. Even earlier, in [108], he discovered remarkable forms,
now called Pfister forms. These are forms that are tensor products of binary forms
that represent one. Pfister showed that scalar multiples of these were precisely the
forms that become hyperbolic over their function field. In addition, the nonzero
value set of a Pfister form is a group and in fact the group of similarity factors
of the form. As an example, this applies to the quadratic form that is a sum of
2n squares. Pfister also used it to show that in a nonformally real field, the least
number s(F ) so that −1 is a sum of s(F ) squares is always a power of 2 (cf. [109]).
Interest in and problems about other arithmetic field invariants have also played a
role in the development of the theory.

The nondegenerate even-dimensional symmetric bilinear forms determine an
ideal I(F ) in the Witt ring of F , called the fundamental ideal. Its powers In(F ) :=(
I(F )

)n, each generated by appropriate Pfister forms, give an important filtration
of W (F ). The problem then arises: What ring theoretic properties respect this
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2 INTRODUCTION

filtration? From W (F ) one also forms the graded ring GW (F ) associated to I(F )
and asks the same question.

Using Matsumoto’s presentation of K2(F ) of a field (cf. [98]), Milnor gave an
ad hoc definition of a graded ring K∗(F ) :=

⊕
n≥0 Kn(F ) of a field in [106]. From

the viewpoint of Galois cohomology, this was of great interest as there is a natural
map, called the norm residue map, from Kn(F ) to the Galois cohomology group
Hn(ΓF , µ⊗n

m ) where ΓF is the absolute Galois group of F and m is relatively prime
to the characteristic of F . For the case m = 2, Milnor conjectured this map to be
an epimorphism with kernel 2Kn(F ) for all n. Voevodsky proved this conjecture in
[136]. Milnor also related his algebraic K-ring of a field to quadratic form theory
by asking if GW (F ) and K∗(F )/2K∗(F ) are isomorphic. This was solved in the
affirmative by Orlov, Vishik, and Voevodsky in [107]. Assuming these results, one
can answer some of the questions that have arisen about the filtration of W (F )
induced by the fundamental ideal.

In this book, we do not restrict ourselves to fields of characteristic different from
2. Historically the cases of fields of characteristic different from 2 and 2 have been
studied separately. Usually the case of characteristic different from 2 is investigated
first. In this book, we shall give characteristic free proofs whenever possible. This
means that the study of symmetric bilinear forms and the study of quadratic forms
must be done separately, then interrelated. We not only present the classical theory
characteristic free but we also include many results not proven in any text as well
as some previously unpublished results to bring the classical theory up to date.

We shall also take a more algebraic geometric viewpoint than has historically
been done. Indeed, the final two parts of the book will be based on such a viewpoint.
In our characteristic free approach, this means a firmer focus on quadratic forms
which have nice geometric objects attached to them rather than on bilinear forms.
We do this for a variety of reasons.

First, one can associate to a quadratic form a number of algebraic varieties:
the quadric of isotropic lines in a projective space and, more generally, for an
integer i > 0, the variety of isotropic subspaces of dimension i. More importantly,
basic properties of quadratic forms can be reformulated in terms of the associated
varieties: a quadratic form is isotropic if and only if the corresponding quadric has
a rational point. A nondegenerate quadratic form is hyperbolic if and only if the
variety of maximal totally isotropic subspaces has a rational point.

Not only are the associated varieties important but also the morphisms between
them. Indeed, if ϕ is a quadratic form over F and L/F a finitely generated field
extension, then there is a variety Y over F with function field L, and the form ϕ is
isotropic over L if and only if there is a rational morphism from Y to the quadric
of ϕ.

Working with correspondences rather than just rational morphisms adds fur-
ther depth to our study, where we identify morphisms with their graphs. Working
with these leads to the category of Chow correspondences. This provides greater
flexibility because we can view correspondences as elements of Chow groups and
apply the rich machinery of that theory: pull-back and push-forward homomor-
phisms, Chern classes of vector bundles, and Steenrod operations. For example,
suppose we wish to prove that a property A of quadratic forms implies a property
B. We translate the properties A and B to “geometric” properties A′ and B′ for
the existence of certain cycles on certain varieties. Starting with cycles satisfying
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A′ we can then attempt to apply the operations over the cycles as above to produce
cycles satisfying B′.

All the varieties listed above are projective homogeneous varieties under the
action of the orthogonal group or special orthogonal group of ϕ, i.e., the orthogonal
group acts transitively on the varieties. It is not surprising that the properties of
quadratic forms are reflected in the properties of the special orthogonal groups. For
example, if ϕ is of dimension 2n (with n ≥ 2) or 2n + 1 (with n ≥ 1), then the
special orthogonal group is a semisimple group of type Dn or Bn. The classification
of semisimple groups is characteristic free. This explains why most important
properties of quadratic forms hold in all characteristics.

Unfortunately, bilinear forms are not “geometric”. We can associate varieties
to a bilinear form, but it would be a variety of the associated quadratic form.
Moreover, in characteristic 2 the automorphism group of a bilinear form is not
semisimple.

In this book we sometimes give several proofs of the same results — one is clas-
sical, another is geometric. (This can be the same proof, but written in geometric
language.) For example, this is done for Springer’s theorem and the Separation
Theorem.

The first part of the text will derive classical results under this new setting. It is
self-contained, needing minimal prerequisites except for Chapter VII. In this chap-
ter we shall assume the results of Voevodsky in [136] and Orlov-Vishik-Voevodsky
in [107] for fields of characteristic not 2, and Kato in [78] for fields of characteristic
2 on the solution for the analog of the Milnor Conjecture in algebraic K-theory.
We do give new proofs for the case n = 2.

Prerequisites for the second two parts of the text will be more formidable. A
reasonable background in algebraic geometry will be assumed. For the convenience
of the reader appendices have been included as an aid. Unfortunately, we cannot
give details of [136] or [107] as it would lead us away from the methods at hand.

The first part of this book covers the “classical” theory of quadratic forms, i.e.,
without heavy use of algebraic geometry, bringing it up to date. As the character-
istic of a field is not deemed to be different from 2, this necessitates a bifurcation of
the theory into the theory of symmetric bilinear forms and the theory of quadratic
forms. The introduction of these subjects is given in the first two chapters.

Chapter I investigates the foundations of the theory of symmetric bilinear forms
over a field F . Two major consequences of dealing with arbitrary characteristic are
that such forms may not be diagonalizable and that nondegenerate isotropic planes
need not be hyperbolic. With this taken into account, standard Witt theory, to
the extent possible, is developed. In particular, Witt decomposition still holds,
so that the Witt ring can be constructed in the usual way as well as the classical
group presentation of the Witt ring W (F ). This presentation is generalized to
the fundamental ideal I(F ) of even-dimensional forms in W (F ) and then to the
the second power I2(F ) of I(F ), a theme returned to in Chapter VII. The Stiefel-
Whitney invariants of bilinear forms are introduced along with their relationship
with the invariants ēn : In(F )/In+1(F ) → Kn(F )/2Kn+1(F ) for n = 1, 2. The
theory of bilinear Pfister forms is introduced and some basic properties developed.
Following [32], we introduce chain p-equivalence and linkage of Pfister forms as well
as introducing annihilators of Pfister forms in the Witt ring.
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Chapter II investigates the foundations of the theory of quadratic forms over
a field F . Because of the arbitrary characteristic assumption on the field F , the
definition of nondegenerate must be made more carefully, and quadratic forms are
far from having orthogonal bases in general. Much of Witt theory, however, goes
through as the Witt Extension Theorem holds for quadratic forms under fairly weak
assumptions, hence Witt Decomposition. The Witt group Iq(F ) of nondegenerate
even-dimensional quadratic forms is defined and shown to be a W (F )-module. The
theory of quadratic Pfister forms is introduced and some results analogous to that
of the bilinear case are introduced. Moreover, cohomological invariants of qua-
dratic Pfister forms are introduced and some preliminary results about them and
their extension to the appropriate filtrant of the Witt group of quadratic forms are
discussed. In addition, the classical quadratic form invariants, discriminant and
Clifford invariant, are defined.

Chapter III begins the utilization of function field techniques in the study of
quadratic forms, all done without restriction of characteristic. The classical Cassels-
Pfister theorem is established. Values of anisotropic quadratic and bilinear forms
over a polynomial ring are investigated, special cases being the representation of
one form as a subform of another and various norm principles due to Knebusch
(cf. [82]). To investigate norm principles of similarity factors due to Scharlau (cf.
[119]), quadratic forms over valuation rings and transfer maps are introduced.

Chapter IV introduces algebraic geometric methods, i.e., looking at the theory
under the base extension of the function field of a fixed quadratic form. In par-
ticular, the notion of domination of one form by another is introduced where an
anisotropic quadratic form ϕ is said to dominate an anisotropic quadratic form ψ
(both of dimension of at least two) if ϕF (ψ) is isotropic. The geometric proper-
ties of Pfister forms are developed, leading to the Arason-Pfister Hauptsatz that
nonzero anisotropic quadratic (respectively, symmetric bilinear) forms in In

q (F )
(respectively, In(F )) are of dimension at least 2n and its application to linkage
of Pfister forms. Knebusch’s generic tower of an anisotropic quadratic form is in-
troduced and the W (F )-submodules Jn(F ) of Iq(F ) are defined by the notion of
degree. These submodules turn out to be precisely the corresponding In

q (F ) (to
be shown in Chapter VII). Hoffmann’s Separation Theorem that if ϕ and ψ are
two anisotropic quadratic forms over F with dim ϕ ≤ 2n < dim ψ for some n ≥ 0,
then ϕF (ψ) is anisotropic is proven as well as Fitzgerald’s theorem characterizing
quadratic Pfister forms. In addition, excellent forms and extensions are discussed.
In particular, Arason’s result that the extension of a field by the function field of
a nondegenerate 3-dimensional quadratic form is excellent is proven. The chapter
ends with a discussion of central simple algebras over the function field of a quadric.

Chapter V studies symmetric bilinear and quadratic forms under field exten-
sions. The chapter begins with the study of the structure of the Witt ring of a
field F based on the work of Pfister. After dispensing with the nonformally real F ,
we turn to the study over a formally real field utilizing the theory of pythagorean
fields and the pythagorean closure of a field, leading to the Local-Global Theorem of
Pfister and its consequences for structure of the Witt ring over a formally real field.
The total signature map from the Witt ring to the ring of continuous functions from
the order space of a field to the integers is then carefully studied, in particular, the
approximation of elements in this ring of functions by quadratic forms. The be-
havior of quadratic and bilinear forms under quadratic extensions (both separable
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and inseparable) is then investigated. The special case of the torsion of the Witt
ring under such extensions is studied. A detailed investigation of torsion Pfister
forms is begun, leading to the theorem of Krüskemper which implies that if K/F
is a quadratic field extension with In(K) = 0, then In(F ) is torsion-free.

Chapter VI studies u-invariants, their behavior under field extensions, and
values that they can take. Special attention is given to the case of formally real
fields.

Chapter VII establishes consequences of the result of Orlov-Vishik-Voevodsky
in [107] which we assume in this chapter. In particular, answers and generalizations
of results from the previous chapters are established. For fields of characteristic not
2, the ideals In(F ) and Jn(F ) are shown to be identical. The annihilators of Pfister
forms in the Witt ring are shown to filter through the In(F ), i.e., the intersection
of such annihilators and In(F ) are generated by Pfister forms in the intersection.
A consequence is that torsion in In(F ) is generated by torsion n-fold Pfister forms,
solving a conjecture of Lam. A presentation for the group structure of the In(F )’s
is determined, generalizing that given for I2(F ) in Chapter I. Finally, it is shown
that if K/F is a finitely generated field extension of transcendence degree m, then
In(K) torsion-free implies the same for In−m(F ).

In Chapter VIII, we give a new elementary proof of the theorem in [100] that
the second cohomological invariant is an isomorphism in the case that the charac-
teristic of the field is different from 2 (the case of characteristic 2 having been done
in Chapter II). This is equivalent to the degree two case of the Milnor Conjecture
in [106] stating that the norm residue homomorphism

hn
F : Kn(F )/2Kn(F ) → Hn(F,Z/2Z)

is an isomorphism for every integer n. The Milnor Conjecture was proven in full by
V. Voevodsky in [136]. Unfortunately, the scope of this book does not allow us to
prove this beautiful result as the proof requires motivic cohomology and Steenrod
operations developed by Voevodsky. In Chapter VIII, we give an “elementary”
proof of the degree two case of the Milnor Conjecture that does not rely either on
a specialization argument or on higher K-theory as did the original proof of this
case in [100].

In the second part of the book, we develop the needed tools in algebraic geom-
etry that will be applied in the third part. The main object studied in Part Two
is the Chow group of algebraic cycles modulo rational equivalence on an algebraic
scheme. Using algebraic cycles, we introduce the category of correspondences.

In Chapter IX (following the approach of [117] given by Rost), we develop the
K-homology and K-cohomology theories of schemes over a field. This generalizes
the Chow groups. We establish functorial properties of these theories (pull-back,
push-forward, deformation and Gysin homomorphisms), introduce Euler and Chern
classes of vector bundles, and prove basic results such as the Homotopy Invariance
and Projective Bundle Theorems. We apply these results to Chow groups in the
next chapter.

Chapter XI is devoted to the study of Steenrod operations on Chow groups
modulo 2 over fields of characteristic not 2. Steenrod operations for motivic co-
homology modulo a prime integer p of a scheme X were originally constructed by
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Voevodsky in [137]. The reduced power operations (but not the Bockstein op-
eration) restrict to the Chow groups of X. An “elementary” construction of the
reduced power operations modulo p on Chow groups (requiring equivariant Chow
groups) was given by Brosnan in [20].

In Chapter XII, we introduce the notion of a Chow motive that is due to
Grothendieck. Many (co)homology theories defined on the category of smooth
complete varieties, such as Chow groups and more generally the K-(co)homology
groups, take values in the category of abelian groups. But the category of smooth
complete varieties itself does not have the structure of an additive category as we
cannot add morphisms of varieties. The category of Chow motives, however, is
an additive tensor category. This additional structure gives more flexibility when
working with regular and rational morphisms.

In the third part of the book we apply algebraic geometric methods to the
further study of quadratic forms. In Chapter XIII, we prove preliminary facts about
algebraic cycles on quadrics and their powers. We also introduce shell triangles and
diagrams of cycles, the basic combinatorial objects associated to a quadratic form.
The corresponding pictures of these shell triangles simplify visualization of algebraic
cycles and operations over the cycles.

In Chapter XIV, we study the Izhboldin dimension of smooth projective quad-
rics. It is defined as the integer

dimIzh(X) := dim X − i1(X) + 1,

where i1(X) is the first Witt index of the quadric X. The Izhboldin dimension
behaves better than the classical dimension with respect to splitting properties.
For example, if X and Y are anisotropic smooth projective quadrics and Y is
isotropic over the function field F (X), then dimIzh X ≤ dimIzh Y but dim X may
be bigger than dim Y .

Chapter XV is devoted to applications of the Steenrod operations. The follow-
ing problems are solved:

(1) All possible values of the first Witt index of quadratic forms are deter-
mined.

(2) All possible values of dimensions of anisotropic quadratic forms in In(F )
are determined.

(3) It is shown that excellent forms have the smallest height among all qua-
dratic forms of a given dimension.

In Chapter XVI, we study the variety of maximal isotropic subspaces of a
quadratic forms. A discrete invariant J(ϕ) of a quadratic form ϕ is introduced.
We also introduce the notion of canonical dimension and compute it for projective
quadrics and varieties of totally isotropic subspaces.

In the last chapter we study motives of smooth projective quadrics in the
category of correspondences and motives.

This book could not have been written without the help and encouragement of
many of our friends, collaborators, and students nor the many researchers whose
work was essential to producing this volume. These are too numerous to be listed
here individually. We do wish to mention those who gave us valuable advice in the
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preparation and writing of this tome and those who helped proofread the manu-
script: Jón Arason, Ricardo Baeza, Alex Boisvert, Detlev Hoffmann, Bryant Math-
ews, Claus Schubert, Jean-Pierre Tignol, Alexander Vishik, Maksim Zhykhovich.
In addition, we would like to thank the referees who made valuable suggestions to
improve the manuscript and Sergei Gelfand and the American Mathematical Society
for its encouragement. It also gives us great pleasure to thank the National Science
Foundation (grant DMS 0652316), as well as the Collaborative Research Centre 701
of the Bielefeld University, École Polytechnique Fédérale de Lausanne, Institute for
Advanced Study in Princeton (The James D. Wolfensohn Fund and The Ellentuck
Fund), Institut des Hautes Études Scientifiques, Institut Universitaire de France,
and Max-Planck-Institut für Mathematik in Bonn, for their generous support. Fi-
nally, we wish to thank our families who put up with us through the long process
of bringing this volume to fruition.





Part 1

Classical theory of symmetric
bilinear forms and quadratic forms





CHAPTER I

Bilinear Forms

1. Foundations

The study of (n × n)-matrices over a field F leads to various classification
problems. Of special interest is to classify alternating and symmetric matrices. If
A and B are two such matrices, we say that they are congruent if A = P tBP for
some invertible matrix P . For example, it is well-known that symmetric matrices
are diagonalizable if the characteristic of F is different from 2. So the problem of
classifying matrices up to congruence reduces to the study of a congruence class
of a matrix in this case. The study of alternating and symmetric bilinear forms
over an arbitrary field is the study of this problem in a coordinate-free approach.
Moreover, we shall, whenever possible, give proofs independent of characteristic. In
this section, we introduce the definitions and notation needed throughout the text
and prove that we have a Witt Decomposition Theorem (cf. Theorem 1.27 below)
for such forms. As we make no assumption on the characteristic of the underlying
field, this makes the form of this theorem more delicate.

Definition 1.1. Let V be a finite dimensional vector space over a field F . A
bilinear form on V is a map b : V × V → F satisfying for all v, v′, w, w′ ∈ V and
c ∈ F ,

b(v + v′, w) = b(v, w) + b(v′, w),

b(v, w + w′) = b(v, w) + b(v, w′),

b(cv, w) = cb(v, w) = b(v, cw).

The bilinear form is called symmetric if b(v, w) = b(w, v) for all v, w ∈ V and is
called alternating if b(v, v) = 0 for all v ∈ V . If b is an alternating form, expanding
b(v + w, v + w) shows that b is skew symmetric, i.e., that b(v, w) = −b(w, v) for all
v, w ∈ V . In particular, every alternating form is symmetric if charF = 2. We call
dim V the dimension of the bilinear form and also write it as dim b. We write b is
a bilinear form over F if b is a bilinear form on a finite dimensional vector space
over F and denote the underlying space by Vb.

Let V ∗ := HomF (V, F ) denote the dual space of V . A bilinear form b on V
is called nondegenerate if l : V → V ∗ defined by v 7→ lv : w 7→ b(v, w) is an
isomorphism. An isometry f : b1 → b2 between two bilinear forms bi, i = 1, 2,
is a linear isomorphism f : Vb1 → Vb2 such that b1(v, w) = b2

(
f(v), f(w)

)
for all

v, w ∈ Vb1 . If such an isometry exists, we write b1 ' b2 and say that b1 and b2 are
isometric.

Let b be a bilinear form on V . Let {v1, . . . , vn} be a basis for V . Then b is
determined by the matrix

(
b(vi, vj)

)
and the form is nondegenerate if and only if(

b(vi, vj)
)

is invertible. Conversely, any matrix B in the n× n matrix ring Mn(F )

11



12 I. BILINEAR FORMS

determines a bilinear form based on V . If b is symmetric (respectively, alternating),
then the associated matrix is symmetric (respectively, alternating where a square
matrix (aij) is called alternating if aij = −aji and aii = 0 for all i, j). Let b and b′

be two bilinear forms with matrices B and B′ relative to some bases. Then b ' b′

if and only if B′ = AtBA for some invertible matrix A, i.e., the matrices B′ and
B are congruent. As det B′ = det B · (det A)2 and det A 6= 0, the determinant of
B′ coincides with the determinant of B up to squares. We define the determinant
of a nondegenerate bilinear form b by det b := detB · F×2 in F×/F×2, where B
is a matrix representation of b and F× is the multiplicative group of F (and more
generally, R× denotes the unit group of a ring R). So the det is an invariant of the
isometry class of a nondegenerate bilinear form.

The set Bil(V ) of bilinear forms on V is a vector space over F . The space
Bil(V ) contains the subspaces Alt(V ) of alternating forms on V and Sym(V ) of
symmetric bilinear forms on V . The correspondence of bilinear forms and matrices
given above defines a linear isomorphism Bil(V ) →Mdim V (F ). If b ∈ Bil(V ), then
b− bt is alternating where the bilinear form bt is defined by bt(v, w) = b(w, v) for
all v, w ∈ V . Since every alternating n× n matrix is of the form B − Bt for some
B, the linear map Bil(V ) → Alt(V ) given by b 7→ b − bt is surjective. Therefore,
we have an exact sequence of vector spaces

(1.2) 0 → Sym(V ) → Bil(V ) → Alt(V ) → 0.

Exercise 1.3. Construct natural isomorphisms

Bil(V ) ' (V ⊗F V )∗ ' V ∗ ⊗F V ∗, Sym(V ) ' S2(V )∗,

Alt(V ) ' Λ2(V )∗ ' Λ2(V ∗)
and show that the exact sequence (1.2) is dual to the standard exact sequence

0 → Λ2(V ) → V ⊗F V → S2(V ) → 0

where Λ2(V ) is the exterior square of V and S2(V ) is the symmetric square of V .

If b, c ∈ Bil(V ), we say the two bilinear forms b and c are similar if b ' ac for
some a ∈ F×.

Let V be a finite dimensional vector space over F and let λ = ±1. Define the
hyperbolic λ-bilinear form of V to be the form Hλ(V ) = bHλ

on V ⊕ V ∗ defined by

bHλ
(v1 + f1, v2 + f2) := f1(v2) + λf2(v1)

for all v1, v2 ∈ V and f1, f2 ∈ V ∗. If λ = 1, the form Hλ(V ) is a symmetric bilinear
form and if λ = −1, it is an alternating bilinear form. A bilinear form b is called
a hyperbolic bilinear form if b ' Hλ(W ) for some finite dimensional F -vector space
W and some λ = ±1. The hyperbolic form Hλ(F ) is called the hyperbolic plane
and denoted Hλ. It has the matrix representation(

0 1
λ 0

)

in the appropriate basis. If b ' Hλ, then b has the above matrix representation
in some basis {e, f} of Vb. We call e, f a hyperbolic pair. Hyperbolic forms are
nondegenerate.

Let b be a bilinear form on V and W ⊂ V a subspace. The restriction of b to
W is a bilinear form on W and is called a subform of b. We denote this form by
b|W .
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1.A. Structure theorems for bilinear forms. Let b be a symmetric or
alternating bilinear form on V . We say v, w ∈ V are orthogonal if b(v, w) = 0. Let
W,U ⊂ V be subspaces. Define the orthogonal complement of W by

W⊥ := {v ∈ V | b(v, w) = 0 for all w ∈ W}.
This is a subspace of V . We say W is orthogonal to U if W ⊂ U⊥, equivalently
U ⊂ W⊥. If V = W ⊕ U is a direct sum of subspaces with W ⊂ U⊥, we write b =
b|W ⊥ b|U and say b is the (internal) orthogonal sum of b|W and b|U . The subspace
V ⊥ is called the radical of b and denoted by rad b. The form b is nondegenerate if
and only if rad b = 0.

If K/F is a field extension, let VK := K⊗F V , a vector space over K. We have
the standard embedding V → VK by v 7→ 1⊗ v. Let bK denote the extension of b
to VK , so bK(a⊗ v, c⊗w) = acb(v, w) for all a, c ∈ K and v, w ∈ V . The form bK

is of the same type as b. Moreover, rad bK = (rad b)K , hence b is nondegenerate if
and only if bK is nondegenerate.

Let : V → V := V/ rad b be the canonical epimorphism. Define b to be the
bilinear form on V determined by b(v1, v2) := b(v1, v2) for all v1, v2 ∈ V . Then b is
a nondegenerate bilinear form of the same type as b. Note also that if f : b1 → b2

is an isometry of symmetric or alternative bilinear forms, then f(rad b1) = rad b2.
We have:

Lemma 1.4. Let b be a symmetric or alternating bilinear form on V . Let W be
any subspace of V such that V = rad b⊕W . Then b|W is nondegenerate and

b = b|rad b ⊥ b|W = 0|rad b ⊥ b|W
with b|W ' b, the form induced on V/ rad b. In particular, b|W is unique up to
isometry.

The lemma above shows that it is sufficient to classify nondegenerate bilinear
forms. In general, if b is a symmetric or alternating bilinear form on V and W ⊂ V
is a subspace, then we have an exact sequence of vector spaces

0 → W⊥ → V
lW−−→ W ∗,

where lW is defined by v 7→ lv|W : x 7→ b(v, x). Hence dim W⊥ ≥ dim V − dim W .
It is easy to determine when this is an equality.

Proposition 1.5. Let b be a symmetric or alternating bilinear form on V . Let W
be any subspace of V . Then the following are equivalent:

(1) W ∩ rad b = 0.
(2) lW : V → W ∗ is surjective.
(3) dim W⊥ = dim V − dim W .

Proof. (1) holds if and only if the map l∗W : W → V ∗ is injective, if and only
if the map lW : V → W ∗ is surjective, and if and only if (3) holds. ¤

Note that the conditions (1)-(3) hold if either b or b|W is nondegenerate.
A key observation is:

Proposition 1.6. Let b be a symmetric or alternating bilinear form on V . Let
W be a subspace such that b|W is nondegenerate. Then b = b|W ⊥ b|W⊥ . In
particular, if b is also nondegenerate, then so is b|W⊥ .
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Proof. By Proposition 1.5, dim W⊥ = dim V − dim W , hence V = W ⊕W⊥.
The result follows. ¤

Corollary 1.7. Let b be a symmetric bilinear form on V . Let v ∈ V satisfy
b(v, v) 6= 0. Then b = b|Fv ⊥ b(Fv)⊥ .

Let b1 and b2 be two symmetric or alternating bilinear forms on V1 and V2

respectively. Then their external orthogonal sum, denoted by b1 ⊥ b2, is the form
on V1 ⊕ V2 given by

(b1 ⊥ b2)
(
(v1, v2), (w1, w2)

)
:= b1(v1, w1) + b2(v2, w2)

for all vi, wi ∈ Vi, i = 1, 2.
If n is a nonnegative integer and b is a symmetric or alternating bilinear form

over F , abusing notation, we let

nb := b ⊥ · · · ⊥ b︸ ︷︷ ︸
n

.

In particular, if n is a nonnegative integer, we do not interpret nb with n viewed
in the field.

For example, Hλ(V ) ' nHλ for any n-dimensional vector space V over F .
It is now easy to complete the classification of alternating forms.

Proposition 1.8. Let b be a nondegenerate alternating form on V . Then dim V =
2n for some n and b ' nH−1, i.e., b is hyperbolic.

Proof. Let 0 6= v ∈ V . Then there exists w ∈ V such that b(v, w) = a 6= 0.
Replacing w by a−1w, we see that v, w is a hyperbolic pair in the space W = Fv⊕
Fw, so b|W is a hyperbolic subform of b, in particular, nondegenerate. Therefore,
b = b|W ⊥ b|W⊥ by Proposition 1.6. The result follows by induction on dim b. ¤

The proof shows that every nondegenerate alternating form b on V has a
symplectic basis, i.e., a basis {v1, . . . , v2n} for V satisfying b(vi, vn+i) = 1 for all
i ∈ [1, n] := {i ∈ Z | 1 ≤ i ≤ n} and b(vi, vj) = 0 if i ≤ j and j 6= n + i.

We turn to the classification of the isometry type of symmetric bilinear forms.
By Lemma 1.4, Corollary 1.7, and induction, we therefore have the following:

Corollary 1.9. Let b be a symmetric bilinear form on V . Then

b = b|rad b ⊥ b|V1 ⊥ · · · ⊥ b|Vn ⊥ b|W
with Vi a 1-dimensional subspace of V and b|Vi nondegenerate for all i ∈ [1, n] and
b|W a nondegenerate alternating subform on a subspace W of V .

If charF 6= 2, then, in the corollary, b|W is symmetric and alternating hence
W = {0}. In particular, every symmetric bilinear form b has an orthogonal basis,
i.e., a basis {v1, . . . , vn} for Vb satisfying b(vi, vj) = 0 if i 6= j. The form is
nondegenerate if and only if b(vi, vi) 6= 0 for all i.

If charF = 2, by Proposition 1.8, the alternating form b|W in the corollary
above has a symplectic basis and satisfies b|W ' nH1 for some n.

Let a ∈ F . Denote the bilinear form on F given by b(v, w) = avw for all
v, w ∈ F by 〈a〉b or simply 〈a〉. In particular, 〈a〉 ' 〈b〉 if and only if a = b = 0 or
aF×2 = bF×2 in F×/F×2. Denote

〈a1〉 ⊥ · · · ⊥ 〈an〉 by 〈a1, . . . , an〉b or simply by 〈a1, . . . , an〉.
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We call such a form a diagonal form. A symmetric bilinear form b isometric to a
diagonal form is called diagonalizable. Consequently, b is diagonalizable if and only
if b has an orthogonal basis. Note that det〈a1, . . . , an〉 = a1 · · · anF×2 if ai ∈ F×

for all i. Corollary 1.9 says that every bilinear form b on V satisfies

b ' r〈0〉 ⊥ 〈a1, . . . , an〉 ⊥ b′

with r = dim(rad b) and b′ an alternating form and ai ∈ F× for all i. In particular,
if charF 6= 2, then every symmetric bilinear form is diagonalizable.

Example 1.10. Let a, b ∈ F×. Then 〈1, a〉 ' 〈1, b〉 if and only if aF×2 =
det〈1, a〉 = det〈1, b〉 = bF×2.

1.B. Values and similarities of bilinear forms. We study the values that
a bilinear form can take as well as the similarity factors. We begin with some
notation.

Definition 1.11. Let b be a bilinear form on V over F . Let

D(b) := {b(v, v) | v ∈ V with b(v, v) 6= 0},
the set on nonzero values of b and

G(b) := {a ∈ F× | ab ' b},
a group called the group of similarity factors of b. Also set

D̃(b) := D(b) ∪ {0}.
We say that elements in D̃(b) are represented by b.

For example, G(H1) = F×. A symmetric bilinear form is called round if G(b) =
D(b). In particular, if b is round, then D(b) is a group.

Remark 1.12. If b is a symmetric bilinear form and a ∈ D(b), then b ' 〈a〉 ⊥ c
for some symmetric bilinear form c by Corollary 1.7.

Lemma 1.13. Let b be a bilinear form. Then

D(b) ·G(b) ⊂ D(b).

In particular, if 1 ∈ D(b), then G(b) ⊂ D(b).

Proof. Let a ∈ G(b) and b ∈ D(b). Let λ : b → ab be an isometry and v ∈ Vb

satisfy b = b(v, v). Then b
(
λ(v), λ(v)

)
= ab(v, v) = ab. ¤

Example 1.14. Let K = F [t]/(t2 − a) with a ∈ F , where F [t] is the polynomial
ring over F . So K = F ⊕ Fθ as a vector space over F where θ denotes the class
of t in K. If z = x + yθ with x, y ∈ F , write z = x − yθ. Let s : K → F be the
F -linear functional defined by s(x+ yθ) = x. Then b defined by b(z1, z2) = s(z1z2)
is a binary symmetric bilinear form on K. Let N(z) = zz for z ∈ K. Then
D(b) = {N(z) 6= 0 | z ∈ K} = {N(z) | z ∈ K×}. If z ∈ K, then λz : K → K given
by w → zw is an F -linear isomorphism if and only if N(z) 6= 0. Suppose that λz is
an F -isomorphism. As

b(λzz1, λzz2) = b(zz1, zz2) = N(z)s(z1z2) = N(z)b(z1, z2),

we have an isometry N(z)b ' b for all z ∈ K×. In particular, b is round. Comput-
ing b on the orthogonal basis {1, θ} for K shows that b is isometric to the bilinear
form 〈1,−a〉. If a ∈ F×, then b ' 〈1,−a〉 is nondegenerate.
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Remark 1.15. (1) Let b be a binary symmetric bilinear form on V . Suppose there
exists a basis {v, w} for V satisfying b(v, v) = 0, b(v, w) = 1, and b(w, w) = a 6= 0.
Then b is nondegenerate as the matrix corresponding to b in this basis, is invertible.
Moreover, {w,−av + w} is an orthogonal basis for V and, using this basis, we see
that b ' 〈a,−a〉.

(2) Suppose that charF 6= 2. Let b = 〈a,−a〉 with a ∈ F× and {e, g} an
orthogonal basis for Vb satisfying a = b(e, e) = −b(f, f). Evaluating on the basis
{e + f, 1

2a (e − f)} shows that b ' H1. In particular, 〈a,−a〉 ' H1 for all a ∈ F×.
Moreover, 〈a,−a〉 ' H1 is round and universal, where a nondegenerate symmetric
bilinear form b is called universal if D(b) = F×.

(3) Suppose that charF = 2. As H1 = H−1 is alternating while 〈a, a〉 is
not, 〈a, a〉 6' H1 for any a ∈ F×. Moreover, H1 is not round since D(H1) = ∅.
As D

(〈a, a〉) = D
(〈a〉) = aF×2, we have G

(〈a, a〉) = F×2 by Lemma 1.13. In
particular, 〈a, a〉 is round if and only if a ∈ F×2, and 〈a, a〉 ' 〈b, b〉 if and only if
aF×2 ' bF×2.

(4) Witt Cancellation holds if charF 6= 2, i.e., if there exists an isometry of
symmetric bilinear forms b ⊥ b′ ' b ⊥ b′′ over F with b nondegenerate, then
b′ ' b′′. (Cf. Theorem 8.4 below.) If charF = 2, this is false in general. For
example,

〈1, 1,−1〉 ' 〈1〉 ⊥ H1

over any field. Indeed if b is 3-dimensional on V and V has an orthogonal basis
{e, f, g} with b(e, e) = 1 = b(f, f) and b(g, g) = −1, then the right hand side arises
from the basis {e + f + g, e + g,−f − g}. But by (3), 〈1,−1〉 6' H1 if char F = 2.
Multiplying the equation above by any a ∈ F×, we also have

(1.16) 〈a, a,−a〉 ' 〈a〉 ⊥ H1.

Proposition 1.17. Let b be a symmetric bilinear form. If D(b) 6= ∅, then b is
diagonalizable. In particular, a nonzero symmetric bilinear form is diagonalizable
if and only if it is not alternating.

Proof. If a ∈ D(b), then

b ' 〈a〉 ⊥ b1 ' 〈a〉 ⊥ rad b1 ⊥ c1 ⊥ c2

with b1 a symmetric bilinear form by Corollary 1.7, and c1 a nondegenerate diagonal
form, and c2 a nondegenerate alternating form by Corollary 1.9. By the remarks
following Corollary 1.9, we have c2 = 0 if charF 6= 2 and c2 = mH1 for some integer
m if char F = 2. By (1.16), we conclude that b is diagonalizable in either case.

If b is not alternating, then D(b) 6= ∅, hence b is diagonalizable. Conversely, if
b is diagonalizable, it cannot be alternating as it is not the zero form. ¤
Corollary 1.18. Let b be a symmetric bilinear form over F . Then b ⊥ 〈1〉 is
diagonalizable.

Let b be a symmetric bilinear form on V . A vector v ∈ V is called anisotropic
if b(v, v) 6= 0 and isotropic if v 6= 0 and b(v, v) = 0. We call b anisotropic if there
are no isotropic vectors in V and isotropic otherwise.

Corollary 1.19. Every anisotropic bilinear form is diagonalizable.

Note that an anisotropic symmetric bilinear form is nondegenerate as its radical
is trivial.
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Example 1.20. Let F be a quadratically closed field, i.e., every element in F is a
square. Then, up to isometry, 0 and 〈1〉 are the only anisotropic forms over F . In
particular, this applies if F is algebraically closed.

An anisotropic form may not be anisotropic under base extension. However,
we do have:

Lemma 1.21. Let b be an anisotropic bilinear form over F . If K/F is purely
transcendental, then bK is anisotropic.

Proof. First suppose that K = F (t), the field of rational functions over F in
the variable t. Suppose that bF (t) is isotropic. Then there exist a vector 0 6= v ∈
VbF (t) such that bF (t)(v, v) = 0. Multiplying by an appropriate nonzero polynomial,
we may assume that v ∈ F [t] ⊗F V . Write v = v0 + t ⊗ v1 + · · · + tn ⊗ vn with
v1, . . . , vn ∈ V and vn 6= 0. As the t2n coefficient b(vn, vn) of b(v, v) must vanish,
vn is an isotropic vector of b, a contradiction.

If K/F is finitely generated, then the result follows by induction on the tran-
scendence degree of K over F . In the general case, if bK is isotropic there exists a
finitely generated purely transcendental extension K0 of F in K with bK0 isotropic,
a contradiction. ¤

1.C. Metabolic bilinear forms. Let b be a symmetric bilinear form on V .
A subspace W ⊂ V is called a totally isotropic subspace of b if b|W = 0, i.e.,
if W ⊂ W⊥. If b is isotropic, then it has a nonzero totally isotropic subspace.
Suppose that b is nondegenerate and W is a totally isotropic subspace. Then
dim W + dim W⊥ = dim V by Proposition 1.5, hence dimW ≤ 1

2 dim V . We say
that W is a lagrangian for b if we have an equality dim W = 1

2 dim V , equivalently
W⊥ = W . A nondegenerate symmetric bilinear form is called metabolic if it has
a lagrangian. In particular, every metabolic form is even-dimensional. Clearly, an
orthogonal sum of metabolic forms is metabolic.

Example 1.22. (1) Symmetric hyperbolic forms are metabolic.
(2) The form b ⊥ (−b) is metabolic if b is any nondegenerate symmetric bilinear

form.
(3) A 2-dimensional metabolic space is nothing but a nondegenerate isotropic

plane. A metabolic plane is therefore either isomorphic to 〈a,−a〉 for some a ∈ F×

or to the hyperbolic plane H1 by Remark 1.15. In particular, the determinant of a
metabolic plane is −F×2. If charF 6= 2, then 〈a,−a〉 ' H1 by Remark 1.15, so in
this case, every metabolic plane is hyperbolic.

Lemma 1.23. Let b be an isotropic nondegenerate symmetric bilinear form over
V . Then every isotropic vector belongs to a 2-dimensional metabolic subform.

Proof. Suppose that b(v, v) = 0 with v 6= 0. As b is nondegenerate, there
exists a u ∈ V such that b(u, v) 6= 0. Then b|Fv⊕Fu is metabolic. ¤
Corollary 1.24. Every metabolic form is an orthogonal sum of metabolic planes.
In particular, if b is a metabolic form over F , then det b = (−1)

dim b
2 F×2.

Proof. We induct on the dimension of a metabolic form b. Let W ⊂ V = Vb

be a lagrangian. By Lemma 1.23, a nonzero vector v ∈ W belongs to a metabolic
plane P ⊂ V . It follows from Proposition 1.6 that b = b|P ⊥ b|P⊥ and by dimension
count that W ∩P⊥ is a lagrangian of b|P⊥ as W cannot lie in P⊥. By the induction
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hypothesis, b|P⊥ is an orthogonal sum of metabolic planes. The second statement
follows from Example 1.22(3). ¤
Corollary 1.25. If charF 6= 2, the classes of metabolic and hyperbolic forms co-
incide. In particular, every isotropic nondegenerate symmetric bilinear form is
universal.

Proof. This follows from Remark 1.15(2) and Lemma 1.23. ¤
Lemma 1.26. Let b and b′ be two symmetric bilinear forms. If b ⊥ b′ and b′ are
both metabolic, then so is b.

Proof. By Corollary 1.24, we may assume that b′ is 2-dimensional. Let W
be a lagrangian for b ⊥ b′. Let p : W → Vb′ be the projection and W0 = Ker(p) =
W ∩ Vb. Suppose that p is not surjective. Then dimW0 ≥ dim W − 1, hence W0 is
a lagrangian of b and b is metabolic.

So we may assume that p is surjective. Then dim W0 = dim W − 2. As b′

is metabolic, it is isotropic. Choose an isotropic vector v′ ∈ Vb′ and a vector
w ∈ W such that p(w) = v′, i.e., w = v + v′ for some v ∈ Vb. In particular,
b(v, v) = (b ⊥ b′)(w,w) − b′(v′, v′) = 0. Since W0 ⊂ Vb, we have v′ is orthogonal
to W0, hence v is also orthogonal to W0. If we show that v′ 6∈ W , then v /∈ W0 and
W0 ⊕ Fv is a lagrangian of b and b is metabolic.

So suppose v′ ∈ W . There exists v′′ ∈ Vb′ such that b′(v′, v′′) 6= 0 as b′ is
nondegenerate. Since p is surjective, there exists w′′ ∈ W with w′′ = u′′ + v′′ for
some u′′ ∈ Vb. As W is totally isotropic,

0 = (b ⊥ b′)(v′, w′′) = (b ⊥ b′)(v′, u′′ + v′′) = b′(v′, v′′),

a contradiction. ¤
1.D. Witt Theory. We have the following form of the classical Witt Decom-

position Theorem (cf. [139]) for symmetric bilinear forms over a field of arbitrary
characteristic.

Theorem 1.27 (Bilinear Witt Decomposition Theorem). Let b be a nondegene-
rate symmetric bilinear form on V . Then there exist subspaces V1 and V2 of V
such that b = b|V1 ⊥ b|V2 with b|V1 anisotropic and b|V2 metabolic. Moreover, b|V1

is unique up to isometry.

Proof. We prove existence of the decomposition by induction on dim b. If b
is isotropic, there is a metabolic plane P ⊂ V by Lemma 1.23. As b = b|P ⊥ b|P⊥ ,
the proof of existence follows by applying the induction hypothesis to b|P⊥ .

To prove uniqueness, assume that b1 ⊥ b2 ' b′1 ⊥ b′2 with b1 and b′1 both
anisotropic and b2 and b′2 both metabolic. We show that b1 ' b′1. The form

b1 ⊥ (−b′1) ⊥ b2 ' b′1 ⊥ (−b′1) ⊥ b′2
is metabolic, hence b1 ⊥ (−b′1) is metabolic by Lemma 1.26. Let W be a lagrangian
of b1 ⊥ (−b′1). Since b1 is anisotropic, the intersection W ∩Vb1 is trivial. Therefore,
the projection W → Vb′1 is injective and dim W ≤ dim b′1. Similarly, dim W ≤
dim b1. Consequently, dim b1 = dim W = dim b′1 and the projections p : W → Vb1

and p′ : W → Vb′1 are isomorphisms. Let w = v + v′ ∈ W , where v ∈ Vb1 and
v′ ∈ Vb′1 . As

0 =
(
b1 ⊥ (−b′1)

)
(w, w) = b1(v, v)− b′1(v

′, v′),
the isomorphism p′ ◦ p−1 : Vb1 → Vb′1 is an isometry between b1 and b′1. ¤
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Let b = b|V1 ⊥ b|V2 be the decomposition of the nondegenerate symmetric
bilinear form b on V in the theorem. The anisotropic form b|V1 , unique up to
isometry, will be denoted by ban and called the anisotropic part of b. Note that the
metabolic form b|V2 in Theorem 1.27 is not unique in general by Remark 1.15(4).
However, its dimension is unique and even. Define the Witt index of b to be
i(b) := (dim V2)/2 .

Remark 1.15(4) also showed that the Witt Cancellation Theorem does not hold
for nondegenerate symmetric bilinear forms in characteristic 2. The obstruction is
the metabolic forms. We have, however, the following:

Corollary 1.28 (Witt Cancellation). Let b, b1, b2 be nondegenerate symmetric
bilinear forms satisfying b1 ⊥ b ' b2 ⊥ b. If b1 and b2 are anisotropic, then
b1 ' b2.

Proof. We have b1 ⊥ b ⊥ (−b) ' b2 ⊥ b ⊥ (−b) with b ⊥ (−b) metabolic.
By Theorem 1.27, b1 ' b2. ¤

2. The Witt and Witt-Grothendieck rings of symmetric bilinear forms

In this section, we construct the Witt ring. The orthogonal sum induces an
additive structure on the isometry classes of symmetric bilinear forms. Defining
the tensor product of symmetric bilinear forms (corresponding to the classical Kro-
necker product of matrices) turns this set of isometry classes into a semi-ring. The
Witt Decomposition Theorem leads to a nice description of the Grothendieck ring
in terms of isometry classes of anisotropic symmetric bilinear forms. The Witt ring
W (F ) is the quotient of this ring by the ideal generated by the hyperbolic plane.

Let b1 and b2 be symmetric bilinear forms over F . The tensor product of b1

and b2 is defined to be the symmetric bilinear form b := b1 ⊗ b2 with underlying
space Vb1 ⊗F Vb2 with the form b defined by

b(v1 ⊗ v2, w1 ⊗ w2) = b1(v1, w1) · b2(v2, w2)

for all v1, w1 ∈ Vb1 and v2, w2 ∈ Vb2 . For example, if a ∈ F , then 〈a〉 ⊗ b1 ' ab1.

Lemma 2.1. Let b1 and b2 be two nondegenerate bilinear forms over F . Then
(1) b1 ⊥ b2 is nondegenerate.
(2) b1 ⊗ b2 is nondegenerate.
(3) H1(V )⊗ b1 is hyperbolic for all finite dimensional vector spaces V .

Proof. (1), (2): Let Vi = Vbi for i = 1, 2. The bi induce isomorphisms
li : Vi → V ∗

i for i = 1, 2, hence b1 ⊥ b2 and b1 ⊗ b2 induce isomorphisms l1 ⊕ l2 :
V1 ⊕ V2 → (V1 ⊕ V2)∗ and l1 ⊗ l2 : V1 ⊗F V2 → (V1 ⊗F V2)∗ respectively.

(3): Let {e, f} be a hyperbolic pair for H1. Then the linear map (F ⊕ F ∗)⊗F

V1 → V1⊕V ∗
1 induced by e⊗v 7→ v and f⊗v 7→ lv : w 7→ b(w, v) is an isomorphism

and induces the isometry H1 ⊗ b → H1(V ). ¤
It follows that the isometry classes of nondegenerate symmetric bilinear forms

over F is a semi-ring under orthogonal sum and tensor product. The Grothendieck
ring of this semi-ring is called the Witt-Grothendieck ring of F and denoted by
Ŵ (F ). (Cf. Scharlau [121] or Lang [90] for the definition and construction of the
Grothendieck group and ring.) In particular, every element in Ŵ (F ) is a difference
of two isometry classes of nondegenerate symmetric bilinear forms over F . If b is a
nondegenerate symmetric bilinear form over F , we shall also write b for the class
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in Ŵ (F ). Thus, if α ∈ Ŵ (F ), there exist nondegenerate symmetric bilinear forms
b1 and b2 over F such that α = b1 − b2 in Ŵ (F ). By definition, we have

b1 − b2 = b′1 − b′2 in Ŵ (F )

if and only if there exists a nondegenerate symmetric bilinear form b′′ over F such
that

(2.2) b1 ⊥ b′2 ⊥ b′′ ' b′1 ⊥ b2 ⊥ b′′.

As any hyperbolic form H1(V ) is isometric to (dim V )H1 over F , the ideal con-
sisting of the hyperbolic forms over F in Ŵ (F ) is the principal ideal H1 by Lemma
2.1(3). The quotient W (F ) := Ŵ (F )/(H1) is called the Witt ring of nondegener-
ate symmetric bilinear forms over F . Elements in W (F ) are called Witt classes.
Abusing notation, we shall also write b ∈ W (F ) for the Witt class of b and often
call it just the class of b. The operations in W (F ) (and Ŵ (F )) shall be denoted
by + and ·.

By (1.16), we have
〈a,−a〉 = 0 in W (F )

for all a ∈ F× and in all characteristics. In particular, 〈−1〉 = −〈1〉 = −1 in W (F ),
hence the additive inverse of the Witt class of any nondegenerate symmetric bilinear
form b in W (F ) is represented by the form −b. It follows that if α ∈ W (F ) then
there exists a nondegenerate bilinear form b such that α = b in W (F ).

Exercise 2.3 (cf. Scharlau [121], p. 22). Let b be a metabolic symmetric bilinear
form and V a lagrangian of b. Show that

b ⊥ (−b) ' H(V ) ⊥ (−b).

In particular, b = H(V ) in Ŵ (F ). Use this to give another proof that c + (−c) = 0
in W (F ) for every nondegenerate form c.

The Witt Cancellation Theorem 1.28 allows us to conclude the following.

Proposition 2.4. Let b1 and b2 be anisotropic symmetric bilinear forms. Then
the following are equivalent:

(1) b1 ' b2.
(2) b1 = b2 in Ŵ (F ).
(3) b1 = b2 in W (F ).

Proof. The implications (1) ⇒ (2) ⇒ (3) are easy.
(3) ⇒ (1): By definition of the Witt ring, b1 + nH = b2 + mH in Ŵ (F ) for

some n,m ≥ 0. It follows from the definition of the Grothendieck-Witt ring that

b1 ⊥ nH ⊥ b ' b2 ⊥ mH ⊥ b

for some nondegenerate form b. Thus b1 ⊥ nH ⊥ b ⊥ (−b) ' b2 ⊥ mH ⊥ b ⊥ (−b)
and b1 ' b2 by Corollary 1.28. ¤

We also have:

Corollary 2.5. b = 0 in W (F ) if and only if b is metabolic.
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It follows from Proposition 2.4 that every Witt class in W (F ) contains (up to
isometry) a unique anisotropic form. As every anisotropic bilinear form is diago-
nalizable by Corollary 1.19, we have a ring epimorphism

(2.6) Z[F×/F×2] → W (F ) given by
∑

i

ni

(
aiF

×2
) 7→

∑

i

ni〈ai〉.

Proposition 2.7. A homomorphism of fields F → K induces ring homomorphisms

rK/F : Ŵ (F ) → Ŵ (K) and rK/F : W (F ) → W (K).
If K/F is purely transcendental, then these maps are injective.

Proof. Let b be symmetric bilinear form over F . Define rK/F (b) on K ⊗F Vb

by
rK/F (b)(x⊗ v, y ⊗ w) = xyb(v, w)

for all x, y ∈ K and for all v, w ∈ Vb. This construction is compatible with orthog-
onal sums and tensor products of symmetric bilinear forms.

As rK/F (b) is hyperbolic if b is, it follows that b 7→ rK/F (b) induces the desired
maps. These are ring homomorphisms.

The last statement follows by Lemma 1.21. ¤

If K/F is a field extension, the ring homomorphisms rK/F defined above are
called restriction homomorphisms. Of course, the maps rK/F are the unique ho-
momorphisms such that rK/F (b) = bK .

3. Chain equivalence

Two nondegenerate diagonal symmetric bilinear forms a = 〈a1, a2, . . . , an〉 and
b = 〈b1, b2, . . . , bn〉, are called simply chain equivalent if either n = 1 and a1F

×2 =
b1F

×2 or n ≥ 2 and 〈ai, aj〉 ' 〈bi, bj〉 for some indices i 6= j and ak = bk for every
k 6= i, j. Two nondegenerate diagonal forms a and b are called chain equivalent (we
write a ≈ b) if there is a chain of forms b1 = a, b2, . . . , bm = b such that bi and
bi+1 are simply chain equivalent for all i ∈ [1, m− 1]. Clearly, a ≈ b implies a ' b.

Note that as the symmetric group Sn is generated by transpositions, we have

〈a1, a2, . . . , an〉 ≈ 〈aσ(1), aσ(2), . . . , aσ(n)〉
for every σ ∈ Sn.

Lemma 3.1. Every nondegenerate diagonal form is chain equivalent to an orthog-
onal sum of an anisotropic diagonal form and metabolic binary diagonal forms
〈a,−a〉, a ∈ F×.

Proof. By induction, it is sufficient to prove that any isotropic diagonal form
b is chain equivalent to 〈a,−a〉 ⊥ b′ for some diagonal form b′ and a ∈ F×. Let
{v1, . . . , vn} be the orthogonal basis of b and set b(vi, vi) = ai. Choose an isotropic
vector v with the smallest number k of nonzero coordinates. Changing the order
of the vi if necessary, we may assume that v =

∑k
i=1 civi for nonzero ci ∈ F and

k ≥ 2. We prove the statement by induction on k. If k = 2, the restriction of b to
the plane Fv1 ⊕ Fv2 is metabolic and therefore is isomorphic to 〈a,−a〉 for some
a ∈ F× by Example 1.22(3), hence b ≈ 〈a,−a〉 ⊥ 〈a3, . . . , an〉.

If k > 2, the vector v′1 = c1v1+c2v2 is anisotropic. Complete v′1 to an orthogonal
basis {v′1, v′2} of Fv1 ⊕ Fv2 by Corollary 1.7 and set a′i = b(v′i, v

′
i), i = 1, 2. Then
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〈a1, a2〉 ' 〈a′1, a′2〉 and b ≈ 〈a′1, a′2, a3, . . . , an〉. The vector v has k − 1 nonzero
coordinates in the orthogonal basis {v′1, v′2, v3, . . . , vn}. Applying the induction
hypothesis to the diagonal form 〈a′1, a′2, a3, . . . , an〉 completes the proof. ¤

Lemma 3.2 (Witt Chain Equivalence). Two anisotropic diagonal forms are chain
equivalent if and only if they are isometric.

Proof. Let {v1, . . . , vn} and {u1, . . . , un} be two orthogonal bases of the bilin-
ear form b with b(vi, vi) = ai and b(ui, ui) = bi. We must show that 〈a1, . . . , an〉 ≈
〈b1, . . . , bn〉. We do this by double induction on n and the number k of nonzero
coefficients of u1 in the basis {vi}. Changing the order of the vi if necessary, we
may assume that u1 =

∑k
i=1 civi for some nonzero ci ∈ F .

If k = 1, i.e., u1 = c1v1, the two (n − 1)-dimensional subspaces generated
by the vi’s and ui’s respectively, with i ≥ 2, coincide. By the induction hy-
pothesis and Witt Cancellation (Corollary 1.28), 〈a2, . . . , an〉 ≈ 〈b2, . . . , bn〉, hence
〈a1, a2, . . . , an〉 ≈ 〈a1, b2, . . . , bn〉 ≈ 〈b1, b2, . . . , bn〉.

If k ≥ 2, set v′1 = c1v1 + c2v2. As b is anisotropic, a′1 = b(v′1, v
′
1) is nonzero.

Choose an orthogonal basis {v′1, v′2} of Fv1 ⊕ Fv2 and set a′2 = b(v′2, v
′
2). We

have 〈a1, a2〉 ' 〈a′1, a′2〉. The vector u1 has k − 1 nonzero coordinates in the basis
{v′1, v′2, v3, . . . , vn}. By the induction hypothesis

〈a1, a2, a3, . . . , an〉 ≈ 〈a′1, a′2, a3, . . . , an〉 ≈ 〈b1, b2, b3, . . . , bn〉. ¤

Exercise 3.3. Prove that a diagonalizable metabolic form b is isometric to 〈1,−1〉⊗
b′ for some diagonalizable bilinear form b′.

4. Structure of the Witt ring

In this section, we give a presentation of the Witt-Grothendieck and Witt rings.
The classes of even-dimensional anisotropic symmetric bilinear forms generate an
ideal I(F ) in the Witt ring. We also derive a presentation for it and its square,
I(F )2.

4.A. The presentation of Ŵ (F ) and W (F ). We turn to determining pre-
sentations of Ŵ (F ) and W (F ). The generators will be the isometry classes of non-
degenerate 1-dimensional symmetric bilinear forms. The defining relations arise
from the following:

Lemma 4.1. Let a, b ∈ F× and z ∈ D
(〈a, b〉). Then 〈a, b〉 ' 〈z, abz〉. In particu-

lar, if a + b 6= 0, then

(4.2) 〈a, b〉 ' 〈a + b, ab(a + b)〉.
Proof. By Corollary 1.7, we have 〈a, b〉 ' 〈z, d〉 for some d ∈ F×. Comparing

determinants, we must have abF×2 = dzF×2 so dF×2 = abzF×2. ¤

The isometry (4.2) is often called the Witt relation.
Define an abelian group W ′(F ) by generators and relations. Generators are

isometry classes of nondegenerate 1-dimensional symmetric bilinear forms. For any
a ∈ F× we write [a] for the generator — the isometry class of the form 〈a〉. Note
that [ax2] = [a] for every a, x ∈ F×. The relations are

(4.3) [a] + [b] = [a + b] + [ab(a + b)]

for all a, b ∈ F× such that a + b 6= 0.
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Lemma 4.4. If 〈a, b〉 ' 〈c, d〉, then [a] + [b] = [c] + [d] in W ′(F ).

Proof. As 〈a, b〉 ' 〈c, d〉, we have abF×2 = det〈a, b〉 = det〈c, d〉 = cdF×2 and
d = abcz2 for some z ∈ F×. Since c ∈ D

(〈a, b〉), there exist x, y ∈ F satisfying
c = ax2 + by2. If x = 0 or y = 0, the statement is obvious, so we may assume that
x, y ∈ F×. It follows from (4.3) that

[a] + [b] = [ax2] + [by2] = [c] + [ax2by2c] = [c] + [d]. ¤

Lemma 4.5. We have [a] + [−a] = [b] + [−b] in W ′(F ) for all a, b ∈ F×.

Proof. We may assume that a + b 6= 0. From (4.3), we have

[−a] + [a + b] = [b] + [−ab(a + b)], [−b] + [a + b] = [a] + [−ab(a + b)].

The result follows. ¤

If charF 6= 2, the forms 〈a,−a〉 and 〈b,−b〉 are isometric by Remark 1.15(2).
Therefore, in this case Lemma 4.5 follows from Lemma 4.4.

Lemma 4.6. If 〈a1, . . . , an〉 ≈ 〈b1, . . . , bn〉, then [a1] + · · ·+ [an] = [b1] + · · ·+ [bn]
in W ′(F ).

Proof. We may assume that the forms are simply chain equivalent. In this
case the statement follows from Lemma 4.4. ¤

Theorem 4.7. The Grothendieck-Witt group Ŵ (F ) is generated by the isometry
classes of 1-dimensional symmetric bilinear forms that are subject to the defining
relations 〈a〉+ 〈b〉 = 〈a + b〉+ 〈ab(a + b)〉 for all a, b ∈ F× such that a + b 6= 0.

Proof. It suffices to prove that the homomorphism W ′(F ) → Ŵ (F ) taking
[a] to 〈a〉 is an isomorphism. As b ⊥ 〈1〉 is diagonalizable for any nondegenerate
symmetric bilinear form b by Corollary 1.18, the map is surjective. An element
in the kernel is given by the difference of two diagonal forms b = 〈a1, . . . , an〉
and b′ = 〈a′1, . . . , a′n〉 such that b = b′ in Ŵ (F ). By the definition of Ŵ (F )
and Corollary 1.18, there is a diagonal form b′′ such that b ⊥ b′′ ' b′ ⊥ b′′.
Replacing b and b′ by b ⊥ b′′ and b′ ⊥ b′′ respectively, we may assume that b ' b′.
It follows from Lemma 3.1 that b ≈ b1 ⊥ b2 and b′ ≈ b′1 ⊥ b′2, where b1, b

′
1

are anisotropic diagonal forms and b2, b
′
2 are orthogonal sums of metabolic planes

〈a,−a〉 for various a ∈ F×. It follows from the Corollary 1.28 that b1 ' b′1, and
therefore, b1 ≈ b′1 by Lemma 3.2. Note that the dimension of b2 and b′2 are equal.
By Lemmas 4.5 and 4.6, we conclude that [a1] + · · · + [an] = [a′1] + · · · + [a′n] in
W ′(F ). ¤

Since the Witt class in W (F ) of the hyperbolic plane H1 is equal to 〈1,−1〉 by
Remark 1.15(4), Theorem 4.7 yields:

Theorem 4.8. The Witt group W (F ) is generated by the isometry classes of 1-
dimensional symmetric bilinear forms that are subject to the following defining re-
lations:

(1) 〈1〉+ 〈−1〉 = 0.
(2) 〈a〉+ 〈b〉 = 〈a + b〉+ 〈ab(a + b)〉 for all a, b ∈ F× such that a + b 6= 0.

If charF 6= 2, the above is the well-known presentation of the Witt-Grothen-
dieck and Witt groups first demonstrated by Witt in [139].
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4.B. The presentation of I(F ). The Witt-Grothendieck and Witt rings
have a natural filtration that we now describe. Define the dimension map

dim : Ŵ (F ) → Z given by dimx = dim b1 − dim b2 if x = b1 − b2.

This is a well-defined map by (2.2).
We let Î(F ) denote the kernel of this map. As

〈a〉 − 〈b〉 =
(〈1〉 − 〈b〉)− (〈1〉 − 〈a〉) in Ŵ (F )

for all a, b ∈ F×, the elements 〈1〉 − 〈a〉 with a ∈ F× generate Î(F ) as an abelian
group.

It follows that Ŵ (F ) is generated by the elements 〈1〉 and 〈1〉−〈x〉 with x ∈ F×.
Let I(F ) denote the image of Î(F ) in W (F ). If a ∈ F×, write 〈〈a〉〉b or simply 〈〈a〉〉
for the binary symmetric bilinear form 〈1,−a〉b. As Î(F ) ∩ (H1) = 0, we have
I(F ) ' Î(F )/

(
Î(F ) ∩ (H1)

) ' Î(F ). Then the map Ŵ (F ) → W (F ) induces an
isomorphism

Î(F ) → I(F ) given by 〈1〉 − 〈x〉 7→ 〈〈x〉〉.
In particular, I(F ) is the ideal in W (F ) consisting of the Witt classes of even-
dimensional forms. It is called the fundamental ideal of W (F ) and is generated by
the classes 〈〈a〉〉 with a ∈ F×. Note that if F → K is a homomorphism of fields,
then rK/F

(
Î(F )

) ⊂ Î(K) and rK/F

(
I(F )

) ⊂ I(K).
The relations in Theorem 4.8 can be rewritten as

〈〈a〉〉+ 〈〈b〉〉 = 〈〈a + b〉〉+ 〈〈ab(a + b)〉〉
for a, b ∈ F× with a + b 6= 0. We conclude:

Corollary 4.9. The group I(F ) is generated by the isometry classes of dimension
2 symmetric bilinear forms 〈〈a〉〉 with a ∈ F× subject to the defining relations:

(1) 〈〈1〉〉 = 0.
(2) 〈〈a〉〉+ 〈〈b〉〉 = 〈〈a + b〉〉+ 〈〈ab(a + b)〉〉 for all a, b ∈ F× such that a + b 6= 0.

Let În(F ) := Î(F )n be the nth power of Î(F ). Then În(F ) maps isomorphically
onto In(F ) := I(F )n, the nth power of I(F ) in W (F ). It defines the filtration

W (F ) ⊃ I(F ) ⊃ I2(F ) ⊃ · · · ⊃ In(F ) ⊃ · · ·
in which we shall be interested.

For convenience, we let Î0(F ) = Ŵ (F ) and I0(F ) = W (F ).

We denote the tensor product 〈〈a1〉〉 ⊗ 〈〈a2〉〉 ⊗ · · · ⊗ 〈〈an〉〉 by

〈〈a1, a2, . . . , an〉〉b or simply by 〈〈a1, a2, . . . , an〉〉
and call a form isometric to such a tensor product a bilinear n-fold Pfister form.
(We call any form isometric to 〈1〉 a 0-fold Pfister form.) For n ≥ 1, the isometry
classes of bilinear n-fold Pfister forms generate In(F ) as an abelian group.

We shall be interested in relations between isometry classes of Pfister forms in
W (F ). We begin with a study of 1- and 2-fold Pfister forms.

Example 4.10. We have 〈〈a〉〉 + 〈〈b〉〉 = 〈〈ab〉〉 + 〈〈a, b〉〉 in W (F ). In particular,
〈〈a〉〉+ 〈〈b〉〉 ≡ 〈〈ab〉〉 mod I2(F ).
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As the hyperbolic plane is 2-dimensional, the dimension invariant induces a
map

e0 : W (F ) → Z/2Z defined by e0(b) = dim b mod 2.

Clearly, this is a homomorphism with kernel the fundamental ideal I(F ), so it
induces an isomorphism

(4.11) ē0 : W (F )/I(F ) → Z/2Z.

By Corollary 1.24, we have a map

e1 : I(F ) → F×/F×2 defined by e1(b) = (−1)
dim b

2 det b

called the signed determinant.
The map e1 is a homomorphism as det(b ⊥ b′) = det b ·det b′ and surjective as

e1(〈〈a〉〉) = aF×2. Clearly, e1

(〈〈a, b〉〉) = F×2, so e1 induces an epimorphism

(4.12) ē1 : I(F )/I2(F ) → F×/F×2.

We have

Proposition 4.13. The kernel of e1 is I2(F ) and the map ē1 : I(F )/I2(F ) →
F×/F×2 is an isomorphism.

Proof. Let f1 : F×/F×2 → I(F )/I2(F ) be given by aF×2 7→ 〈〈a〉〉 + I2(F ).
This is a homomorphism by Example 4.10 inverse to ē1, since I(F ) is generated by
〈〈a〉〉, a ∈ F×. ¤

For fields of characteristic different than 2 this is Pfister’s characterization of
I2(F ) (cf. [110, Satz 13, Kor.]).

4.C. The presentation of I2(F ). We turn to I2(F ).

Lemma 4.14. Let a, b ∈ F×. Then 〈〈a, b〉〉 = 0 in W (F ) if and only if either
a ∈ F×2 or b ∈ D

(〈〈a〉〉). In particular, 〈〈a, 1 − a〉〉 = 0 in W (F ) for any a 6= 1 in
F×.

Proof. Suppose that 〈〈a〉〉 is anisotropic. Then 〈〈a, b〉〉 = 0 in W (F ) if and
only if b〈〈a〉〉 ' 〈〈a〉〉 by Proposition 2.4 if and only if b ∈ G

(〈〈a〉〉) = D
(〈〈a〉〉) by

Example 1.14. ¤
Isometries of bilinear 2-fold Pfister forms are easily established using isometries

of binary forms. For example, we have

Lemma 4.15. Let a, b ∈ F× and x, y ∈ F . Let z = ax2 + by2 6= 0. Then:

(1) 〈〈a, b〉〉 ' 〈〈a, b(y2 − ax2)〉〉 if y2 − ax2 6= 0.
(2) 〈〈a, b〉〉 ' 〈〈z,−ab〉〉.
(3) 〈〈a, b〉〉 ' 〈〈z, abz〉〉.
(4) If z is a square in F , then 〈〈a, b〉〉 is metabolic. In particular, if charF 6= 2,

then 〈〈a, b〉〉 ' 2H1.

Proof. (1): Let w = y2 − ax2. We have

〈〈a, b〉〉 ' 〈1,−a,−b, ab〉 ' 〈1,−a,−by2, abx2〉 ' 〈1,−a,−bw, abw〉 ' 〈〈a, bw〉〉.
(2): We have

〈〈a, b〉〉 ' 〈1,−a,−b, ab〉 ' 〈1,−ax2,−by2, ab〉 ' 〈1,−z,−zab, ab〉 ' 〈〈z,−ab〉〉.
(3) follows from (1)and (2) while (4) follows from (2) and Remark 1.15(2). ¤
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Explicit examples of such isometries are:

Example 4.16. Let a, b ∈ F×, then:
(1) 〈〈a, 1〉〉 is metabolic.
(2) 〈〈a,−a〉〉 is metabolic.
(3) 〈〈a, a〉〉 ' 〈〈a,−1〉〉.
(4) 〈〈a, b〉〉+ 〈〈a,−b〉〉 = 〈〈a,−1〉〉 in W (F ).

We turn to a presentation of I2(F ) first done for fields of characteristic not 2
in [30] and rediscovered by Suslin (cf. [129]). It is different from that for I(F ) as
we need a new generating relation. Indeed, the analogue of the Witt relation will
be a consequence of our new relation and a metabolic relation.

Let I2(F ) be the abelian group generated by all the isometry classes [b] of
bilinear 2-fold Pfister forms b subject to the generating relations:

(1)
[〈〈1, 1〉〉] = 0.

(2)
[〈〈ab, c〉〉] +

[〈〈a, b〉〉] =
[〈〈a, bc〉〉] +

[〈〈b, c〉〉] for all a, b, c ∈ F×.
We call the second relation the cocycle relation.

Remark 4.17. The cocycle relation holds in I2(F ): Let a, b, c ∈ F×. Then

〈〈ab, c〉〉+ 〈〈a, b〉〉 = 〈1,−ab,−c, abc〉+ 〈1,−a,−b, ab〉
= 〈1, 1,−c, abc,−a,−b〉
= 〈1,−a,−bc, abc〉+ 〈1,−b,−c, bc〉
= 〈〈a, bc〉〉+ 〈〈b, c〉〉

in I2(F ).

We begin by showing that the analogue of the Witt relation is a consequence
of the other two relations.

Lemma 4.18. The relations
(1)

[〈〈a, 1〉〉] = 0 ,

(2)
[〈〈a, c〉〉] +

[〈〈b, c〉〉] =
[〈〈(a + b), c〉〉] +

[〈〈(a + b)ab, c〉〉]

hold in I2(F ) for all a, b, c ∈ F× if a + b 6= 0.

Proof. Applying the cocycle relation to a, a, 1 shows that
[〈〈1, 1〉〉] +

[〈〈a, a〉〉] =
[〈〈a, a〉〉] +

[〈〈a, 1〉〉].
The first relation now follows. Applying Lemma 4.15 and the cocycle relation to
a, c, c shows that

(4.19)

[〈〈−a, c〉〉] +
[〈〈a, c〉〉] =

[〈〈ac, c〉〉] +
[〈〈a, c〉〉]

=
[〈〈−a, c〉〉] +

[〈〈a, c〉〉] =
[〈〈−1, c〉〉]

for all c ∈ F×.
Applying the cocycle relation to a(a + b), a, c yields

(4.20)
[〈〈a + b, c〉〉] +

[〈〈a(a + b), a〉〉] =
[〈〈a(a + b), ac〉〉] +

[〈〈a, c〉〉]

and to a(a + b), b, c yields

(4.21)
[〈〈ab(a + b), c〉〉] +

[〈〈a(a + b), b〉〉] =
[〈〈a(a + b), bc〉〉] +

[〈〈b, c〉〉].
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Adding the equations (4.20) and (4.21) and then using the isometries

〈〈a(a + b), a〉〉 ' 〈〈a(a + b),−b〉〉 and 〈〈a(a + b), ac〉〉 ' 〈〈a(a + b),−bc〉〉
derived from Lemma 4.15, followed by using equation (4.19) yields

[〈〈a, c〉〉] +
[〈〈b, c〉〉]− [〈〈(a + b), c〉〉]− [〈〈a + b)ab, c〉〉]

=
[〈〈a(a + b), a〉〉] +

[〈〈a(a + b), b〉〉]− [〈〈a(a + b), ac〉〉]− [〈〈a(a + b), bc〉〉]

=
[〈〈a(a + b),−b〉〉] +

[〈〈a(a + b), b〉〉]− [〈〈a(a + b),−bc〉〉]− [〈〈a(a + b), bc〉〉]

=
[〈〈a(a + b),−1〉〉]− [〈〈a(a + b),−1〉〉] = 0. ¤

Theorem 4.22. The ideal I2(F ) is generated as an abelian group by the isome-
try classes 〈〈a, b〉〉 of bilinear 2-fold Pfister forms for all a, b ∈ F× subject to the
generating relations:

(1) 〈〈1, 1〉〉 = 0.
(2) 〈〈ab, c〉〉+ 〈〈a, b〉〉 = 〈〈a, bc〉〉+ 〈〈b, c〉〉 for all a, b, c ∈ F×.

Proof. Clearly, we have well-defined homomorphisms

g : I2(F ) → I2(F ) induced by [b] 7→ b

and
j : I2(F ) → I(F ) induced by

[〈〈a, b〉〉] 7→ 〈〈a〉〉+ 〈〈b〉〉 − 〈〈ab〉〉,
the latter being the composition with the inclusion I2(F ) ⊂ I(F ) using Example
4.10.

We show that the map g : I2(F ) → I2(F ) is an isomorphism. Define

γ : F×/F×2 × F×/F×2 → I2(F ) by (aF×2, bF×2) 7→ [〈〈a, b〉〉].
This is clearly well-defined. For convenience, write (a) for aF×2. Using (2), we see
that

γ
(
(b), (c)

)− γ
(
(ab), (c)

)
+ γ

(
(a), (bc)

)− γ
(
(a), (b)

)

=
[〈〈b, c〉〉]− [〈〈ab, c〉〉] +

[〈〈a, bc〉〉]− [〈〈a, b〉〉] = 0,

so γ is a 2-cocycle. By Lemma 4.18, we have
[〈〈1, a〉〉] = 0 in I2(F ), so γ is a

normalized 2-cocycle. The map γ defines an extension N = (F×/F×2)× I2(F ) of
I2(F ) by F×/F×2 with

(
(a), α

)
+

(
(b), β

)
=

(
(ab), α + β + [〈〈a, b〉〉]).

As γ is symmetric, N is abelian. Let

h : N → I(F ) be defined by
(
(a), α

) 7→ 〈〈a〉〉+ j(α).

We see that the map h is a homomorphism:

h
(
((a), α) + ((b), β)

)
= h

(
(ab), α + β + [〈〈a, b〉〉])

= 〈〈ab〉〉+ j(α) + j(β) + j
(
[〈〈a, b〉〉])

= 〈〈a〉〉+ 〈〈b〉〉+ j(α) + j(β)

= h
(
(a), α

)
+ h

(
(b), β

)
.

Thus we have a commutative diagram
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0 −−−−→ I2(F ) −−−−→ N −−−−→ F×/F×2 −−−−→ 0

g

y h

y f1

y
0 −−−−→ I2(F ) −−−−→ I(F ) −−−−→ I(F )/I2(F ) −−−−→ 0

where f1 is the isomorphism inverse of ē1 in Proposition 4.13.
Let

k : I(F ) → N be induced by 〈〈a〉〉 7→ (
(a), 0

)
.

Using Lemma 4.15 and Corollary 4.9, we see that k is well-defined as(
(a), 0

)
+

(
(b), 0

)
=

(
(ab), [〈〈a, b〉〉]) =

(
(ab), [〈〈a + b, ab(a + b)〉〉])

=
(
(a + b), 0

)
+

(
(ab(a + b), 0

)

if a + b 6= 0. As

k
(〈〈a, b〉〉) = k

(〈〈a〉〉+ 〈〈b〉〉 − 〈〈ab〉〉) =
(
(a), 0

)
+

(
(b), 0

)− (
(ab), 0

)

=
(
(ab), [〈〈a, b〉〉])−(

(ab), 0
)

=
(
(ab), 0

)
+

(
1, [〈〈, a, b〉〉])−(

(ab), 0
)

=
(
1, [〈〈, a, b〉〉]),

we have
(k ◦ h)

(
(c), [〈〈a, b〉〉]) = k

(〈〈c〉〉+ 〈〈a, b〉〉) =
(
(c), [〈〈a, b〉〉])).

Hence k ◦ h is the identity on N . As (h ◦ k)
(〈〈a〉〉) = 〈〈a〉〉, the composition h ◦ k is

the identity on I(F ). Thus h is an isomorphism, hence so is g. ¤

5. The Stiefel-Whitney map

In this section, we investigate Stiefel-Whitney maps. In the case of fields of
characteristic different from 2, this was first defined by Milnor. We shall use facts
about Milnor K-theory (cf. §100). We write

k∗(F ) :=
∐

n≥0

kn(F )

for the graded ring K∗(F )/2K∗(F ). Abusing notation, if {a1, . . . , an} is a symbol
in Kn(F ), we shall also write it for its coset {a1, . . . , an}+ 2Kn(F ).

The associated graded ring

GW∗(F ) =
∐

n≥0

In(F )/In+1(F )

of W (F ) with respect to the fundamental ideal I(F ) is called the graded Witt ring
of symmetric bilinear forms. Note that since 2 · In(F ) = 〈1, 1〉 · In(F ) ⊂ In+1(F )
we have 2 ·GW∗(F ) = 0.

By Example 4.10, the map F× → I(F )/I2(F ) defined by a 7→ 〈〈a〉〉+ I2(F ) is
a homomorphism. By the definition of the Milnor ring and Lemma 4.14, this map
gives rise to a graded ring homomorphism

(5.1) f∗ : k∗(F ) → GW∗(F )

taking the symbol {a1, a2, . . . , an} to 〈〈a1, a2, . . . , an〉〉+ In+1(F ). Since the graded
ring GW∗(F ) is generated by the degree one component I(F )/I2(F ), the map f∗
is surjective.

Note that the map f0 : k0(F ) → W (F )/I(F ) is the inverse of the map ē0 and
the map f1 : k1(F ) → I(F )/I2(F ) is the inverse of the map ē1 (cf. Proposition
4.13).
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Lemma 5.2. Let 〈〈a, b〉〉 and 〈〈c, d〉〉 be isometric bilinear 2-fold Pfister forms. Then
{a, b} = {c, d} in k2(F ).

Proof. If the form 〈〈a, b〉〉 is metabolic, then b ∈ D
(〈〈a〉〉) or a ∈ F×2 by

Lemma 4.14. In particular, if 〈〈a, b〉〉 is metabolic, then {a, b} = 0 in k2(F ).
Therefore, we may assume that 〈〈a, b〉〉 is anisotropic. Using Witt Cancellation
1.28, we see that c = ax2 + by2 − abz2 for some x, y, z ∈ F . If c /∈ aF×2, let
w = y2 − az2 6= 0. Then 〈〈a, b〉〉 ' 〈〈a, bw〉〉 ' 〈〈c,−abw〉〉 by Lemma 4.15 and
{a, b} = {a, bw} = {c,−abw} in k2(F ) by Lemma 100.3. Hence we may assume
that a = c. By Witt Cancellation, 〈−b, ab〉 ' 〈−d, ad〉, so bd ∈ D

(〈〈a〉〉), i.e.,
bd = x2 − ay2 in F for some x, y ∈ F . Thus {a, b} = {a, d} by Lemma 100.3. ¤

Proposition 5.3. The homomorphism

e2 : I2(F ) → k2(F ) given by 〈〈a, b〉〉 7→ {a, b}
is a well-defined surjection with Ker(e2) = I3(F ). Moreover, e2 induces an isomor-
phism

ē2 : I2(F )/I3(F ) → k2(F ).

Proof. By Lemma 5.2 and the presentation of I2(F ) in Theorem 4.22, the
map is well-defined. Since

〈〈a, b, c〉〉 = 〈〈a, c〉〉+ 〈〈b, c〉〉 − 〈〈ab, c〉〉,
we have I3(F ) ⊂ Ker(e2). As ē2 and f2 are inverses of each other, the result
follows. ¤

Let F(F ) be the free abelian group on the set of isometry classes of nondegener-
ate 1-dimensional symmetric bilinear forms. Then we have a group homomorphism

w : F(F ) → k∗(F )[[t]]× given by 〈a〉 7→ 1 + {a}t.
If a, b ∈ F× satisfy a + b 6= 0, then by Lemma 100.3, we have

w
(〈a〉+ 〈b〉) = (1 + {a}t)(1 + {b}t)

= 1 +
({a}+ {b})t + {a, b}t2

= 1 + {ab}t + {a, b}t2
= 1 + {ab(a + b)2}t + {a + b, ab(a + b)}t2
= w

(〈a + b〉+ 〈ab(a + b)〉).
In particular, w factors through the relation 〈a〉 + 〈b〉 = 〈a + b〉 + 〈ab(a + b)〉

for all a, b ∈ F× satisfying a + b 6= 0, hence induces a group homomorphism

(5.4) w : Ŵ (F ) → k∗(F )[[t]]×

by Theorem 4.7 called the total Stiefel-Whitney map. If b is a nondegenerate sym-
metric bilinear form and α is its class in Ŵ (F ) define the total Stiefel-Whitney class
w(b) of b to be w(α).

Example 5.5. If b is a metabolic plane, then b = 〈a〉 + 〈−a〉 in Ŵ (F ) for some
a ∈ F×. (Note the hyperbolic plane equals 〈1〉+〈−1〉 in Ŵ (F ) by Example 1.15(4),
so w(b) = 1 + {−1}t as {a,−a} = 1 in k2(F ) for any a ∈ F×.)
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Lemma 5.6. Let α =
(〈1〉 − 〈a1〉

) · · · (〈1〉 − 〈an〉
)

in Ŵ (F ). Let m = 2n−1. Then

w(α) =
(
1 + {a1, . . . , an,−1, . . . ,−1︸ ︷︷ ︸

m−n

}tm)−1
.

Proof. As
α =

∑
ε

sε〈aε1
1 · · · aεn

n 〉,

where the sum runs over all ε = (ε1, . . . , εn) ∈ {0, 1}n and sε = (−1)
∑

i εi , we have

w(α) =
∏
ε

(
1 +

∑

i

εi{ai}t
)sε

.

Let
h = h(t1, . . . , tn) =

∏
ε

(
1 + ε1t1t + · · ·+ εntnt

)−sε

in
(
(Z/2Z)[[t]]

)
[[t1, . . . , tn]], the ring of power series over Z/2Z in variables

t, t1, . . . , tn.

Substituting zero for any ti in h, yields one, so

h = 1 + t1 · · · tng(t1, . . . , tn)tn for some g ∈ (
(Z/2Z)[[t]]

)
[[t1, . . . , tn]].

As {a, a} = {a,−1}, we have

w(α)−1 = 1 + {a1, . . . , an}g
({a1}, . . . , {an}

)
tn

= 1 + {a1, . . . , an}g
({−1}, . . . , {−1})tn.

We have with s a variable,

1 + g(s, . . . , s)tn = h(s, . . . , s) =
∏
ε

(
1 +

∑

i≥1

εist
)−sε = (1 + st)m = 1 + smtm

as
∑

εi = 1 in Z/2Z exactly m times, so g(s, . . . , s) = (st)m−n and the result
follows. ¤

Let w0(α) = 1 and
w(α) = 1 +

∑

i≥1

wi(α)ti

for α ∈ Ŵ (F ). The map wi : Ŵ (F ) → ki(F ) is called the ith Stiefel-Whitney class.
Let α, β ∈ Ŵ (F ). As w(α + β) = w(α)w(β), for every n ≥ 0, we have the Whitney
Sum Formula

(5.7) wn(α + β) =
∑

i+j=n

wi(α)wj(β).

Remark 5.8. Let K/F be a field extension and α ∈ Ŵ (F ). Then

resK/F

(
wi(α)

)
= wi(αK) in ki(F ) for all i.

Corollary 5.9. Let m = 2n−1. Then wj

(
În(F )

)
= 0 for j ∈ [1, m − 1] and

wm : În(F ) → km(F ) is a group homomorphism mapping
(〈1〉−〈a1〉

) · · · (〈1〉−〈an〉
)

to {a1, . . . , an,−1, . . . ,−1︸ ︷︷ ︸
m−n

}.
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Proof. Let α =
(〈1〉−〈a1〉

) · · · (〈1〉−〈an〉
)
. By Lemma 5.6, we have wi(α) = 0

for i ∈ [1, m− 1]. The result follows from the Whitney formula (5.7). ¤

Let j : Î(F ) → I(F ) be the isomorphism sending 〈1〉 − 〈a〉 7→ 〈〈a〉〉. Let w̃m be
the composition

In(F )
j−1

−−→ În(F )
wm|În(F )−−−−−−→ km(F ).

Corollary 5.9 shows that w̃i = ei for i = 1, 2. The map w̃m : In(F ) → km(F ) is a
group homomorphism with In+1(F ) ⊂ Ker(w̃m) so it induces a homomorphism

w̄m : In(F )/In+1(F ) → km(F ).

We have w̄i = ēi for i = 1, 2. The composition w̄m ◦ fn is multiplication by
{−1, . . . ,−1︸ ︷︷ ︸

m−n

}. In particular, w̄1 and w̄2 are isomorphisms, i.e.,

(5.10) I2(F ) = Ker(w̃1) and I3(F ) = Ker(w̃2)

and

(5.11) Î2(F ) = Ker(w1|Î(F )) and Î3(F ) = Ker(w2|Î2(F )).

This gives another proof for Propositions 4.13 and 5.3.

Remark 5.12. Let charF 6= 2 and h2
F : k2(F ) → H2(F ) be the norm-residue

homomorphism defined in §101. If b is a nondegenerate symmetric bilinear form,
then h2 ◦ w2(b) is the classical Hasse-Witt invariant of b. (Cf. [89], Definition
V.3.17, [121], Definition 2.12.7.) More generally, the Stiefel-Whitney classes defined
above are compatible with Stiefel-Whitney classes defined by Delzant w′i in [27],
i.e., hi ◦ wi = w′i for all i ≥ 0.

Example 5.13. Suppose that K is a real-closed field. (Cf. §95.) Then ki(K) =
Z/2Z for all i ≥ 0 and Ŵ (K) = Z ⊕ Zξ with ξ = 〈−1〉 and ξ2 = 1. The Stiefel-
Whitney map w : Ŵ (F ) → k∗(K)[[t]]× is then the map n + mξ 7→ (1 + t)m. In
particular, if b is a nondegenerate form, then w(b) determines the signature of b.
Hence if b and c are two nondegenerate symmetric bilinear forms over K, we have
b ' c if and only if dim b = dim c and w(b) = w(c).

It should be noted that if b = 〈〈a1, . . . , an〉〉 that w(b) is not equal to w(α) =
w̃

(
[b]

)
where α =

(〈1〉 − 〈a1〉
) · · · (〈1〉 − 〈an〉

)
in Ŵ (F ) as the following exercise

shows.

Exercise 5.14. Let m = 2n−1. If b is the bilinear n-fold Pfister form 〈〈a1, . . . , an〉〉,
then

w(b) = 1 +
({−1, . . . ,−1︸ ︷︷ ︸

m

}+ {a1, . . . , an,−1, . . . ,−1︸ ︷︷ ︸
m−n

})tm.

The following fundamental theorem was proved by Orlov-Vishik-Voevodsky
[107] in the case that charF 6= 2 and by Kato [78] in the case that charF = 2.

Fact 5.15. The map f∗ : k∗(F ) → GW∗(F ) is a ring isomorphism.

For i = 0, 1, 2, we have proven that fi is an isomorphism in (4.11), Proposition
4.13 , and Proposition 5.3, respectively.
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6. Bilinear Pfister forms

The isometry classes of tensor products of nondegenerate binary symmetric
bilinear forms representing one are quite interesting. These forms, called Pfister
forms, whose properties over fields of characteristic different from 2 were discovered
by Pfister in [108] and were named after him in [32], generate a filtration of the
Witt ring by the powers of its fundamental ideal I(F ). Properties of these forms
in the case of characteristic 2 were first studied by Baeza in [15]. In this section,
we derive the main elementary properties of these forms.

By Example 1.14, a bilinear 1-fold Pfister form b = 〈〈a〉〉, a ∈ F×, is round,
i.e., D

(〈〈a〉〉) = G
(〈〈a〉〉). Because of this, the next proposition shows that there are

many round forms and, in particular, bilinear Pfister forms are round.

Proposition 6.1. Let b be a round bilinear form and let a ∈ F×. Then:
(1) The form 〈〈a〉〉 ⊗ b is also round.
(2) If 〈〈a〉〉 ⊗ b is isotropic, then either b is isotropic or a ∈ D(b).

Proof. Set c = 〈〈a〉〉 ⊗ b.
(1): Since 1 ∈ D(b), it suffices to prove that D(c) ⊂ G(c). Let c be a nonzero

value of c. Write c = x − ay for some x, y ∈ D̃(b). If y = 0, we have c = x ∈
D(b) = G(b) ⊂ G(c). Similarly, y ∈ G(c) if x = 0, hence c = −ay ∈ G(c) as
−a ∈ G

(〈〈a〉〉) ⊂ G
(
c
)
.

Now suppose that x and y are nonzero. Since b is round, x, y ∈ G(b) and,
therefore,

c = b ⊥ (−ab) ' b ⊥ (−ayx−1)b = 〈〈ayx−1〉〉 ⊗ b.

By Example 1.14, we know that 1 − ayx−1 ∈ G
(〈〈ayx−1〉〉) ⊂ G(c). Since x ∈

G(b) ⊂ G(c), we have c = (1− ayx−1)x ∈ G(c).
(2): Suppose that b is anisotropic. Since c = b ⊥ (−ab) is isotropic, there exist

x, y ∈ D(b) with x − ay = 0. Therefore a = xy−1 ∈ D(b) as D(b) is closed under
multiplication. ¤

Corollary 6.2. Bilinear Pfister forms are round.

Proof. 0-fold Pfister forms are round. ¤

Corollary 6.3. A bilinear Pfister form is either anisotropic or metabolic.

Proof. Suppose that c is an isotropic bilinear Pfister form. We show that c is
metabolic by induction on the dimension of the c. We may assume that c = 〈〈a〉〉⊗b
for a Pfister form b. If b is metabolic, then so is c. By the induction hypothesis,
we may assume that b is anisotropic. By Proposition 6.1 and Corollary 6.2, a ∈
D(b) = G(b). Therefore ab ' b hence the form c ' b ⊥ (−ab) ' b ⊥ (−b) is
metabolic. ¤

Remark 6.4. Note that the only metabolic 1-fold Pfister form is 〈〈1〉〉. If charF 6=
2, there is only one metabolic bilinear n-fold Pfister form for all n ≥ 1, viz., the
hyperbolic one. It is universal by Corollary 1.25. If charF = 2, then there may
exist many metabolic n-fold Pfister forms for n > 1.

Example 6.5. If charF = 2, a bilinear Pfister form 〈〈a1, . . . , an〉〉 is anisotropic if
and only if a1, . . . , an are 2-independent. Indeed,

[
F 2(a1, . . . , an) : F 2

]
< 2n if and

only if 〈〈a1, . . . , an〉〉 is isotropic.
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Corollary 6.6. Let charF 6= 2 and z ∈ F×. Then 2n〈〈z〉〉 = 0 in W (F ) if and
only if z ∈ D

(
2n〈1〉).

Proof. If z ∈ D
(
2n〈1〉), then the Pfister form 2n〈〈z〉〉 is isotropic hence meta-

bolic by Corollary 6.3.
Conversely, suppose that 2n〈〈z〉〉 is metabolic. Then 2n〈1〉 = 2n〈z〉 in W (F ).

If 2n〈1〉 is isotropic, it is universal as charF 6= 2, so z ∈ D
(
2n〈1〉). If 2n〈1〉 is

anisotropic, then 2n〈1〉 ' 2n〈z〉 by Proposition 2.4, so z ∈ G
(
2n〈1〉) = D

(
2n〈1〉)

by Corollary 6.2. ¤
As additional corollaries, we have the following two theorems of Pfister (cf.

[109]). The first generalizes the well-known 2-, 4-, and 8-square theorems arising
from quadratic extensions, quaternion algebras, and Cayley algebras.

Corollary 6.7. D
(
2n〈1〉) is a group for every nonnegative integer n.

The level of a field F is defined to be

s(F ) := min
{
n | the element − 1 is a sum of n squares

}

or infinity if no such integer exists.

Corollary 6.8. The level s(F ) of a field F , if finite, is a power of two.

Proof. Suppose that s(F ) is finite. Then 2n ≤ s(F ) < 2n+1 for some n.
By Proposition 6.1(2), with b = 2n〈1〉 and a = −1, we have −1 ∈ D(b). Hence
s(F ) = 2n. ¤

In [109], Pfister also showed that there exist fields of level 2n for all n ≥ 0.
(Cf. Lemma 31.3 below.)

6.A. Chain p-equivalence of bilinear Pfister forms. Since the isometry
classes of 2-fold Pfister forms are easy to deal with, we use them to study n-
fold Pfister forms. We follow the development in [32] which we extend to all
characteristics. The case of characteristic 2 was also independently done by Arason
and Baeza in [6].

Definition 6.9. Let a1, . . . , an, b1, . . . , bn ∈ F× with n ≥ 1. We say that the forms
〈〈a1, . . . , an〉〉 and 〈〈b1, . . . , bn〉〉 are simply p-equivalent if n = 1 and a1F

×2 = b1F
×2

or n ≥ 2 and there exist i, j ∈ [1, n] such that

〈〈ai, aj〉〉 ' 〈〈bi, bj〉〉 with i 6= j and al = bl for all l 6= i, j.

We say bilinear n-fold Pfister forms b and c are chain p-equivalent if there exist
bilinear n-fold Pfister forms b0, . . . , bm for some m such that b = b0, c = bm and
bi is simply p-equivalent to bi+1 for each i ∈ [0, m− 1].

Chain p-equivalence is clearly an equivalence relation on the set of anisotropic
bilinear forms of the type 〈〈a1, . . . , an〉〉 with a1, . . . , an ∈ F× and is denoted by
≈. As transpositions generate the symmetric group, we have 〈〈a1, . . . , an〉〉 ≈
〈〈aσ(1), . . . , aσ(n)〉〉 for every permutation σ of {1, . . . , n}. We shall show the fol-
lowing result:

Theorem 6.10. Let 〈〈a1, . . . , an〉〉 and 〈〈b1, . . . , bn〉〉 be anisotropic. Then

〈〈a1, . . . , an〉〉 ' 〈〈b1, . . . , bn〉〉
if and only if

〈〈a1, . . . , an〉〉 ≈ 〈〈b1, . . . , bn〉〉.



34 I. BILINEAR FORMS

Of course, we need only show isometric anisotropic bilinear Pfister forms are
chain p-equivalent. We shall do this in a number of steps. If b is an n-fold Pfister
form, then we can write b ' b′ ⊥ 〈1〉. If b is anisotropic, then b′ is unique up to
isometry and we call it the pure subform of b.

Lemma 6.11. Suppose that b = 〈〈a1, . . . , an〉〉 is anisotropic. Let −b ∈ D(b′).
Then there exist b2, . . . , bn ∈ F× such that b ≈ 〈〈b, b2, . . . , bn〉〉.

Proof. We induct on n, the case n = 1 being trivial. Let c = 〈〈a1, . . . , an−1〉〉
so b′ ' c′ ⊥ −anc by Witt Cancellation 1.28. Write

−b = −x + any with − x ∈ D̃(c′), −y ∈ D̃(c).

If y = 0, then x 6= 0 and we finish by induction, so we may assume that 0 6= y =
y1 + z2 with −y1 ∈ D̃(c′) and z ∈ F . If y1 6= 0, then c ≈ 〈〈y1, . . . , yn−1〉〉 for some
yi ∈ F× and, using Lemma 4.15, we get

(6.12) c ≈ 〈〈y1, . . . , yn−1, an〉〉 ≈ 〈〈y1, . . . , yn−1,−any〉〉 ≈ 〈〈a1, . . . , an−1,−any〉〉.
This is also true if y1 = 0. If x = 0, we are done. If not c ≈ 〈〈x, x2, . . . , xn−1〉〉 for
some xi ∈ F× and

b ≈ 〈〈x, x2, . . . , xn−1,−any〉〉 ≈ 〈〈anxy, x2, . . . , xn−1,−any + x〉〉
≈ 〈〈anxy, x2, . . . , xn−1, b〉〉

by Lemma 4.15(2) as needed. ¤

The argument to establish equation (6.12) yields:

Corollary 6.13. Let b = 〈〈x1, . . . , xn〉〉 and y ∈ D(b). Let z ∈ F×. If b ⊗ 〈〈z〉〉 is
anisotropic, then 〈〈x1, . . . , xn, z〉〉 ≈ 〈〈x1, . . . , xn, yz〉〉.

We also have the following generalization of Lemma 4.14:

Corollary 6.14. Let b be an anisotropic bilinear Pfister form over F and let a ∈
F×. Then 〈〈a〉〉 · b = 0 in W (F ) if and only if either a ∈ F×2 or b ' 〈〈b〉〉 ⊗ c
for some b ∈ D

(〈〈a〉〉) and bilinear Pfister form c. In the latter case, 〈〈a, b〉〉 is
metabolic.

Proof. Clearly 〈〈a, b〉〉 = 0 in W (F ) if b ∈ D
(〈〈a〉〉). Conversely, suppose that

〈〈a〉〉 ⊗ b = 0. Hence a ∈ G(b) = D(b) by Corollary 6.2. Write a = x2 − b for
some x ∈ F and −b ∈ D̃(b′). If b = 0, then a ∈ F×2. Otherwise, b ∈ D

(〈〈a〉〉) and
b ' 〈〈b〉〉 ⊗ c for some bilinear Pfister form c by Lemma 6.11. ¤

The following generalization of Lemma 6.11 is very useful in computation and
is the key to proving further relations among Pfister forms.

Proposition 6.15. Let b = 〈〈a1, . . . , am〉〉 and c = 〈〈b1, . . . , bn〉〉 be such that b⊗ c
is anisotropic. Let −c ∈ D(b⊗ c′), then

〈〈a1, . . . , am, b1, . . . , bn〉〉 ≈ 〈〈a1, . . . , am, c1, c2, . . . , cn−1, c〉〉
for some c1, . . . , cn−1 ∈ F×.

Proof. We induct on n. If n = 1, then −c = yb1 for some −y ∈ D(b) and this
case follows by Corollary 6.13, so we assume that n > 1. Let d = 〈〈b1, . . . , bn−1〉〉.
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Then c′ ' bnd ⊥ d′ so bc′ ' bnb ⊗ d ⊥ b ⊗ d′. Write 0 6= −c = bny − z with
−y ∈ D̃(b⊗ c) and −z ∈ D̃(b⊗ c′). If z = 0, then x 6= 0 and

〈〈a1, . . . , am, b1, . . . , bn〉〉 ≈ 〈〈a1, . . . , am, b1, . . . , bn−1,−ybn〉〉
by Corollary 6.13 and we are done. So we may assume that z 6= 0. By induction

〈〈a1, . . . , am, b1, . . . , bn−1〉〉 ≈ 〈〈a1, . . . , am, c1, c2, . . . , cn−2, z〉〉
for some c1, . . . , cn−2 ∈ F×. If y = 0, tensoring this by 〈1,−bn〉 completes the
proof, so we may assume that y 6= 0. Then

〈〈a1, . . . , am, b1, . . . , bn〉〉 ≈ 〈〈a1, . . . , am, b1, . . . , bn−1,−ybn〉〉
≈ 〈〈a1, . . . , am, c1, . . . , cn−2, z,−ybn〉〉 ≈ 〈〈a1, . . . , am, c1, . . . , cn−2, z − ybn, zybn〉〉
≈ 〈〈a1, . . . , am, c1, . . . , cn−2, c, zybn〉〉

by Lemma 4.15(2). This completes the proof. ¤

Corollary 6.16 (Common Slot Property). Let

〈〈a1, . . . , an−1, x〉〉 and 〈〈b1, . . . , bn−1, y〉〉
be isometric anisotropic bilinear forms. Then there exists a z ∈ F× satisfying

〈〈a1, . . . , an−1, z〉〉 = 〈〈a1, . . . , an−1, x〉〉 and 〈〈b1, . . . , bn−1, z〉〉 = 〈〈b1, . . . , bn−1, y〉〉.
Proof. Let b = 〈〈a1, . . . , an−1〉〉 and c = 〈〈b1, . . . , bn−1〉〉. As xb− yc = b′ − c′

in W (F ), the form xb ⊥ −yc is isotropic. Hence there exists a z ∈ D(xb) ∩D(yc).
The result follows by Proposition 6.15. ¤

A nondegenerate symmetric bilinear form b is called a general bilinear n-fold
Pfister form if b ' ac for some a ∈ F× and bilinear n-fold Pfister form c. As Pfister
forms are round, a general Pfister form is a Pfister form if and only if it represents
one.

Corollary 6.17. Let c and b be general anisotropic bilinear Pfister forms. If c is
a subform of b, then b ' c⊗ d for some bilinear Pfister form d.

Proof. If c = cc1 for some Pfister form c1 and c ∈ F×, then c1 is a subform of
cb. In particular, cb represents one, so it is a Pfister form. Replacing b by cb and
c by cc, we may assume both are Pfister forms.

Let c ' 〈〈a1, . . . , an〉〉 with ai ∈ F×. By Witt Cancellation 1.28, we have c′ is
isometric to a subform of b′, hence b ' 〈〈a1〉〉⊗d1 for some Pfister form d1 by Lemma
6.11. By induction, there exists a Pfister form dk satisfying b ' 〈〈a1, . . . , ak〉〉 ⊗ dk.
By Witt Cancellation 1.28, we have 〈〈a1, . . . , ak〉〉 ⊗ 〈〈ak+1, . . . , an〉〉′ is a subform
of 〈〈a1, . . . , ak〉〉 ⊗ d′k so −ak+1 ∈ D

(〈〈a1, . . . , ak〉〉 ⊗ d′k
)
. By Proposition 6.15, we

complete the induction step. ¤

Let b and c be general Pfister forms. We say that c divides b if b ' c ⊗ d for
some Pfister form d. The corollary says that c divides b if and only if it is isometric
to a subform of b.

We now prove Theorem 6.10.

Proof. Let a = 〈〈a1, . . . , an〉〉 and b = 〈〈b1, . . . , bn〉〉 be isometric over F .
Clearly we may assume that n > 1. By Lemma 6.11, we have a ≈ 〈〈b1, a

′
2, . . . , a

′
n〉〉
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for some a′i ∈ F×. Suppose that we have shown a ≈ 〈〈b1, . . . , bm, a′m+1, . . . , a
′
n〉〉 for

some m. By Witt Cancellation 1.28,

〈〈b1, . . . , bm〉〉 ⊗ 〈〈bm+1, . . . , bn〉〉′ ' 〈〈b1, . . . , bm〉〉 ⊗ 〈〈a′m+1, . . . , a
′
n〉〉′,

so −bm+1 ∈ D
(〈〈b1, . . . , bm〉〉 ⊗ 〈〈a′m+1, . . . , a

′
n〉〉′

)
. By Proposition 6.15, we have

a ≈ 〈〈b1, . . . , bm+1, a
′′
m+2, . . . , a

′′
n〉〉

for some a′′i ∈ F×. This completes the induction step. ¤
We need the following theorem of Arason and Pfister (cf. [10]):

Theorem 6.18 (Hauptsatz). Let 0 6= b be an anisotropic form lying in In(F ).
Then dim b ≥ 2n.

We shall prove this theorem in Theorem 23.7 below. Using it we show:

Corollary 6.19. Let b and c be two anisotropic general bilinear n-fold Pfister
forms. If b ≡ c mod In+1(F ), then b ' ac for some a ∈ F×. In addition, if
D(b) ∩D(c) 6= ∅, then b ' c.

Proof. Choose a ∈ F× such that b ⊥ −ac is isotropic. By the Hauptsatz,
this form must be metabolic. By Proposition 2.4, we have b ' ac.

Suppose that x ∈ D(b) ∩ D(c). Then b ⊥ −c is isotropic and one can take
a = 1. ¤
Theorem 6.20. Let a1, . . . , an, b1, . . . , bn ∈ F×. The following are equivalent:

(1) 〈〈a1, . . . , an〉〉 = 〈〈b1, . . . , bn〉〉 in W (F ).
(2) 〈〈a1, . . . , an〉〉 ≡ 〈〈b1, . . . , bn〉〉 mod In+1(F ).
(3) {a1, . . . , an} = {b1, . . . , bn} in Kn(F )/2Kn(F ).

Proof. Let b = 〈〈a1, . . . , an〉〉 and c = 〈〈b1, . . . , bn〉〉. As metabolic Pfister
forms are trivial in W (F ) and any bilinear n-fold Pfister form lying in In+1(F )
must be metabolic by the Hauptsatz 6.18, we may assume that b and c are both
anisotropic.

(2) ⇒ (1) follows from Corollary 6.19.
(1) ⇒ (3): By Theorem 6.10, we have 〈〈a1, . . . , an〉〉 ≈ 〈〈b1, . . . , bn〉〉, so it suffices

to show that (3) holds if

〈〈ai, aj〉〉 ' 〈〈bi, bj〉〉 with i 6= j and al = bl for all l 6= i, j.

As {ai, aj} = {bi, bj} by Proposition 5.3, statement (3) follows.
(3) ⇒ (2) follows from (5.1). ¤
Arason proved and used the Common Slot Property 6.16 in [4] to give an

independent proof in the case of characteristic different from 2 of Theorem 6.20
which was first proven in [32].

6.B. Linkage of bilinear Pfister forms. We derive some further properties
of bilinear Pfister forms that we shall need later.

Proposition 6.21. Let b1 and b2 be two anisotropic general bilinear Pfister forms.
Let c be a general r-fold Pfister form with r ≥ 0 that is isometric to a subform of
b1 and to a subform of b2. If i(b1 ⊥ −b2) > 2r, then there exists a k-fold Pfister
form d with k > 0 such that c⊗ d is isometric to a subform of b1 and to a subform
of b2. Furthermore, i(b1 ⊥ −b2) = 2r+k.
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Proof. By Corollary 6.17, there exist Pfister forms d1 and d2 such that b1 '
c ⊗ d1 and b2 ' c ⊗ d2. Let b = b1 ⊥ −b2. As b is isotropic, b1 and b2 have a
common nonzero value. Dividing the bi by this nonzero common value, we may
assume that the bi are Pfister forms. We have

b ' c⊗ (d′1 ⊥ −d′2) ⊥ (c ⊥ −c).

The form c ⊥ −c is metabolic by Example 1.22(2) and i(b) > dim c. Therefore,
the form c⊗ (d′1 ⊥ −d′2) is isotropic, hence there is a ∈ D(c⊗ d′1) ∩D(c⊗ d′2). By
Proposition 6.15, we have b1 ' c ⊗ 〈〈−a〉〉 ⊗ e1 and b2 ' c ⊗ 〈〈−a〉〉 ⊗ e2 for some
bilinear Pfister forms e1 and e2. As

b ' c⊗ (e′1 ⊥ −e′2) ⊥
(
c⊗ 〈〈−a〉〉 ⊥ −c⊗ 〈〈−a〉〉),

either i(b) = 2r+1 or we may repeat the argument. The result follows. ¤

If a general bilinear r-fold Pfister form c is isometric to a common subform of
two general Pfister forms b1 and b2, we call it a linkage of b1 and b2 and say that b1

and b2 are r-linked. The integer m = max
{
r | b1 and b2 are r-linked

}
is called

the linkage number of b1 and b2. The proposition says that i(b1 ⊥ −b2) = 2m. If
b1 and b2 are n-fold Pfister forms and r = n− 1, we say that b1 and b2 are linked.
By Corollary 6.17 the linkage of any pair of bilinear Pfister forms is a divisor of
each. The theory of linkage was first developed in [32].

If b is a nondegenerate symmetric bilinear form over F , then the annihilator of
b in W (F ) ,

annW (F )(b) :=
{
c ∈ W (F ) | b · c = 0

}

is an ideal in W (F ). When b is a Pfister form this ideal has a nice structure that
we now establish. First note that if b is an anisotropic Pfister form and x ∈ D(b),
then, as b is round by Corollary 6.2, we have 〈〈x〉〉 ⊗ b ' b ⊥ −xb ' b ⊥ −b is
metabolic. It follows that 〈〈x〉〉 ∈ annW (F )(b). We shall show that these binary
forms generate annW (F )(b). This will follow from the next result, also known as
the Pfister-Witt Theorem.

Proposition 6.22. Let b be an anisotropic bilinear Pfister form and c a nonde-
generate symmetric bilinear form. Then there exists a symmetric bilinear form d
satisfying all of the following:

(1) b · c = b · d in W (F ).
(2) b⊗ d is anisotropic. Moreover, dim d ≤ dim c and dim d ≡ dim c mod 2.
(3) c− d lies in the subgroup of W (F ) generated by 〈〈x〉〉 with x ∈ D(b).

Proof. We prove this by induction on dim c. By the Witt Decomposition
Theorem 1.27, we may assume that c is anisotropic. Hence c is diagonalizable by
Corollary 1.19, say c = 〈x1, . . . , xn〉 with xi ∈ F×. If b ⊗ c is anisotropic, the
result is trivial, so assume it is isotropic. Therefore, there exist a1, . . . , an ∈ D̃(b)
not all zero such that a1x1 + · · · + anxn = 0. Let bi = ai if ai 6= 0 and bi = 1
otherwise. In particular, bi ∈ G(b) for all i. Let e = 〈b1x1, . . . , bnxn〉. Then
c− e = x1〈〈b1〉〉+ · · ·+ xn〈〈bn〉〉 with each bi ∈ D(b) as b is round by Corollary 6.2.
Since e is isotropic, we have b · c = b · (e)an in W (F ). As dim(e)an < dim c, by
the induction hypothesis there exists d such that b⊗ d is anisotropic and e− d and
therefore c− d lies in the subgroup of W (F ) generated by 〈〈x〉〉 with x ∈ D(b). As
b ⊗ d is anisotropic, it follows by (1) that dim d ≤ dim c. It follows from (3) that
the dimension of c− d is even. ¤
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Corollary 6.23. Let b be an anisotropic bilinear Pfister form. Then annW (F )(b)
is generated by 〈〈x〉〉 with x ∈ D(b).

If b is 2-dimensional, we obtain stronger results first established in [34].

Lemma 6.24. Let b be a binary anisotropic bilinear form over F and c an anisotro-
pic bilinear form over F such that b ⊗ c is isotropic. Then c ' d ⊥ e for some
symmetric binary bilinear form d annihilated by b and symmetric bilinear form e
over F .

Proof. Let {e, f} be a basis for Vb. By assumption there exist vectors v, w ∈
Vc such that e⊗ v + f ⊗w is an isotropic vector for b⊗ c. Choose a 2-dimensional
subspace W ⊂ Vc containing v and w. Since c is anisotropic, so is c|W . In particular,
c|W is nondegenerate, hence c = c|W ⊥ c|W⊥ by Proposition 1.6. As b⊗ (c|W ) is an
isotropic general 2-fold Pfister form, it is metabolic by Corollary 6.3. ¤
Proposition 6.25. Let b be a binary anisotropic bilinear form over F and c an
anisotropic form over F . Then there exist symmetric bilinear forms c1 and c2 over
F such that c ' c1 ⊥ c2 with b⊗ c2 anisotropic and c1 ' d1 ⊥ · · · ⊥ dn where each
di is a binary bilinear form annihilated by b. In particular, if det di = −diF

×2,
then di ∈ D(b) for each i.

Proof. The first statement of the proposition follows from the lemma and the
second from its proof. ¤
Corollary 6.26. Let b be a binary anisotropic bilinear form over F and c an
anisotropic form over F annihilated by b. Then c ' d1 ⊥ · · · ⊥ dn for some
symmetric binary forms di annihilated by b for i ∈ [1, n].



CHAPTER II

Quadratic Forms

7. Foundations

In this section, we introduce the basic properties of quadratic forms over an
arbitrary field F . Their study arose from the investigation of homogeneous poly-
nomials of degree two. If the characteristic of F is different from 2, then this study
and that of symmetric bilinear forms are essentially the same as the diagonal of a
symmetric bilinear form is a quadratic form and each determines the other by the
polar identity. However, they are different when the characteristic of F is 2. In
general, quadratic forms unlike bilinear forms have a rich geometric flavor. When
studying symmetric bilinear forms, we saw that one could easily reduce to the study
of nondegenerate forms. For quadratic forms, the situation is more complex. The
polar form of a quadratic form no longer determines the quadratic form when the
underlying field is of characteristic 2. However, the radical of the polar form is
invariant under field extension. This leads to two types of quadratic forms. One is
the study of totally singular quadratic forms, i.e., those whose polar bilinear form
is zero. Such quadratic forms need not be trivial in the case of characteristic 2.
The other extreme is when the radical of the polar form is as small as possible
(which means of dimension zero or one), this gives rise to nondegenerate quadratic
forms. As in the study of bilinear forms, certain properties are not invariant under
base extension. The most important of these is anisotropy. Analogous to the bi-
linear case, an anisotropic quadratic form is one having no nontrivial zero, i.e., no
isotropic vectors. Every vector that is isotropic for the quadratic form is isotropic
for its polar form. If the characteristic is 2, the converse is false as every vector
is an isotropic vector of the polar form. As in the previous chapter, we shall base
this study on a coordinate free approach and strive to give uniform proofs in a
characteristic free fashion.

Definition 7.1. Let V be a finite dimensional vector space over F . A quadratic
form on V is a map ϕ : V → F satisfying:

(1) ϕ(av) = a2ϕ(v) for all v ∈ V and a ∈ F .
(2) (Polar Identity) bϕ : V × V → F defined by

bϕ(v, w) = ϕ(v + w)− ϕ(v)− ϕ(w)

is a bilinear form.
The bilinear form bϕ is called the polar form of of ϕ. We call dim V the dimension
of the quadratic form and also write it as dimϕ. We write ϕ is a quadratic form
over F if ϕ is a quadratic form on a finite dimensional vector space over F and
denote the underlying space by Vϕ.

Note that the polar form of a quadratic form is automatically symmetric and
even alternating if charF = 2. If b : V × V → F is a bilinear form (not necessarily

39
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symmetric), let ϕb : V → F be defined by ϕb(v) = b(v, v) for all v ∈ V . Then
ϕb is a quadratic form and its polar form bϕb

is b + bt. We call ϕb the associated
quadratic form of b.

In particular, if b is symmetric, the composition b 7→ ϕb 7→ bϕb
is multiplication

by 2 as is the composition ϕ 7→ bϕ 7→ ϕbϕ
.

Let ϕ and ψ be two quadratic forms. An isometry f : ϕ → ψ is a linear map
f : Vϕ → Vψ such that ϕ(v) = ψ

(
f(v)

)
for all v ∈ Vϕ. If such an isometry exists,

we write ϕ ' ψ and say that ϕ and ψ are isometric.

Example 7.2. If ϕ is a quadratic form over F and v ∈ V satisfies ϕ(v) 6= 0, then
the (hyperplane) reflection

τv : ϕ → ϕ given by w 7→ w − bϕ(v, w)ϕ(v)−1v

is an isometry.

Let V be a finite dimensional vector space over F . Define the hyperbolic form
of V to be the form H(V ) = ϕH on V ⊕ V ∗ defined by

ϕH(v, f) := f(v)

for all v ∈ V and f ∈ V ∗. Note that the polar form of ϕH is bϕH = H1(V ). If ϕ is a
quadratic form isometric to H(W ) for some vector space W , we call ϕ a hyperbolic
form. The form H(F ) is called the hyperbolic plane and we denote it simply by H.
If ϕ ' H, two vectors e, f ∈ Vϕ satisfying ϕ(e) = ϕ(f) = 0 and bϕ(e, f) = 1 are
called a hyperbolic pair.

Let ϕ be a quadratic form on V and let {v1, . . . , vn} be a basis for V . Let
aii = ϕ(vi) for all i and

aij =

{
bϕ(vi, vj) for all i < j,

0 for all i > j.

As

ϕ(
n∑

i=1

xivi) =
∑

i,j

aijxixj ,

the homogeneous polynomial on the right hand side as well as the matrix (aij)
determined by ϕ completely determines ϕ.

Notation 7.3. (1) Let a ∈ F . The quadratic form on F given by ϕ(v) = av2 for
all v ∈ F will be denoted by 〈a〉q or simply 〈a〉.

(2) Let a, b ∈ F . The 2-dimensional quadratic form on F 2 given by ϕ(x, y) =
ax2 + xy + by2 will be denoted by [a, b]. The corresponding matrix for ϕ in the
standard basis is

A =
(

a 1
0 b

)
,

while the corresponding matrix for bϕ is
(

2a 1
1 2b

)
= A + At.

Remark 7.4. Let ϕ be a quadratic form on V over F . Then the associated polar
form bϕ is not the zero form if and only if there are two vectors v, w in V satisfying
b(v, w) = 1. In particular, if ϕ is a nonzero binary form, then ϕ ' [a, b] for some
a, b ∈ F .
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Example 7.5. Let {e, f} be a hyperbolic pair for H. Using the basis {e, ae + f},
we have H ' [0, 0] ' [0, a] for any a ∈ F .

Example 7.6. Let charF = 2 and ℘ : F → F be the Artin-Schreier map ℘(x) =
x2+x. Let a ∈ F . Then the quadratic form [1, a] is isotropic if and only if a ∈ ℘(F ).

Let V be a finite dimension vector space over F . The set Quad(V) of quadratic
forms on V is a vector space over F . We have linear maps

Bil(V ) → Quad(V ) given by b 7→ ϕb

and
Quad(V ) → Sym(V ) given by ϕ 7→ bϕ.

Restricting the first map to Sym(V ) and composing shows the compositions

Sym(V ) → Quad(V ) → Sym(V ) and Quad(V ) → Sym(V ) → Quad(V )

are multiplication by 2. In particular, if charF 6= 2 the map Quad(V ) → Sym(V )
given by ϕ 7→ 1

2bϕ is an isomorphism inverse to the map Sym(V ) → Quad(V ) by
b 7→ ϕb. For this reason, we shall usually identify quadratic forms and symmetric
bilinear forms over a field of characteristic different from 2.

The correspondence between quadratic forms on a vector space V of dimension
n and matrices defines a linear isomorphism Quad(V ) → Tn(F ), where Tn(F ) is
the vector space of n×n upper-triangular matrices. Therefore by the surjectivity of
the linear epimorphism Mn(F ) → Tn(F ) given by (aij) 7→ (bij) with bij = aij +aji

for all i < j, and bii = aii for all i, and bij = 0 for all j < i implies that the linear
map Bil(V ) → Quad(V ) given by b 7→ ϕb is also surjective. We, therefore, have an
exact sequence

0 → Alt(V ) → Bil(V ) → Quad(V ) → 0.

Exercise 7.7. The natural exact sequence

0 → Λ2(V ∗) → V ∗ ⊗F V ∗ → S2(V ∗) → 0

can be identified with the sequence above via the isomorphism

S2(V ∗) → Quad(V ) given by f · g 7→ ϕf ·g : v 7→ f(v)g(v).

If ϕ, ψ ∈ Quad(V), we say ϕ is similar to ψ if there exists an a ∈ F× such that
ϕ ' aψ.

Let ϕ be a quadratic form on V . A vector v ∈ V is called anisotropic if ϕ(v) 6= 0
and isotropic if v 6= 0 and ϕ(v) = 0. We call ϕ anisotropic if there are no isotropic
vectors in V and isotropic if there are.

If W ⊂ V is a subspace, the restriction of ϕ on W is the quadratic form whose
polar form is given by bϕ|W = bϕ|W . It is denoted by ϕ|W and called a subform of
ϕ. Define W⊥ to be the orthogonal complement of W relative to the polar form of
ϕ. The space W is called a totally isotropic subspace if ϕ|W = 0. If this is the case,
then bϕ|W = 0.

Example 7.8. If F is algebraically closed, then any homogeneous polynomial in
more than one variable has a nontrivial zero. In particular, up to isometry, the only
anisotropic quadratic forms over F are 0 and 〈1〉.
Remark 7.9. Let ϕ be a quadratic form on V over F . If ϕ = ϕb for some symmet-
ric bilinear form b, then ϕ is isotropic if and only if b is. In addition, if charF 6= 2,
then ϕ is isotropic if and only if its polar form bϕ is. However, if charF = 2, then
every 0 6= v ∈ V is an isotropic vector for bϕ.
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Let ψ be a subform of a quadratic form ϕ. The restriction of ϕ on (Vψ)⊥ (with
respect to the polar form bϕ) is denoted by ψ⊥ and is called the complementary form
of ψ in ϕ. If Vϕ = W ⊕ U is a direct sum of vector spaces with W ⊂ U⊥, we write
ϕ = ϕ|W ⊥ ϕ|U and call it an internal orthogonal sum. So ϕ(w +u) = ϕ(w)+ϕ(u)
for all w ∈ W and u ∈ U . Note that ϕ|U is a subform of (ϕ|W )⊥.

Remark 7.10. Let ϕ be a quadratic form with rad bϕ = 0. If ψ is a subform of ϕ,
then by Proposition 1.5, we have dim ψ⊥ = dim ϕ− dim ψ and therefore ψ⊥⊥ = ψ.

Let ϕ be a quadratic form on V . We say that ϕ is totally singular if its polar
form bϕ is zero. If charF 6= 2, then ϕ is totally singular if and only if ϕ is the zero
quadratic form. If charF = 2 this may not be true. Define the quadratic radical of
ϕ by

radϕ :=
{
v ∈ rad bϕ | ϕ(v) = 0

}
.

This is a subspace of rad bϕ. We say that ϕ is regular if rad ϕ = 0. If charF 6= 2,
then radϕ = rad bϕ. In particular, ϕ is regular if and only if its polar form is
nondegenerate. If charF = 2, this may not be true.

Example 7.11. Every anisotropic quadratic form is regular.

Clearly, if f : ϕ → ψ is an isometry of quadratic forms, then f(rad bϕ) = rad bψ

and f(rad ϕ) = radψ.
Let ϕ be a quadratic form on V and : V → V = V/ rad ϕ the canonical

epimorphism. Let ϕ denote the quadratic form on V given by ϕ(v) := ϕ(v) for all
v ∈ V . In particular, the restriction of ϕ to rad bϕ/ rad ϕ determines an anisotropic
quadratic form. We have:

Lemma 7.12. Let ϕ be a quadratic form on V and W any subspace of V satisfying
V = rad ϕ⊕W . Then

ϕ = ϕ|rad ϕ ⊥ ϕ|W = 0|rad ϕ ⊥ ϕ|W
with ϕ|W ' ϕ the induced quadratic form on V/ radϕ. In particular, ϕ|W is unique
up to isometry.

If ϕ is a quadratic form, the form ϕ|W , unique up to isometry will be called its
regular part. The subform ϕ|W in the lemma is regular but bϕ|W may be degenerate
if charF = 2. To obtain a further orthogonal decomposition of a quadratic form,
we need to look at the regular part. The key is the following:

Proposition 7.13. Let ϕ be a regular quadratic form on V . Suppose that V con-
tains an isotropic vector v. Then there exists a 2-dimensional subspace W of V
containing v such that ϕ|W ' H.

Proof. As rad ϕ = 0, we have v /∈ rad bϕ. Thus there exists a vector w ∈ V
such that a = bϕ(v, w) 6= 0. Replacing v by a−1v, we may assume that a = 1. Let
W = Fv ⊕ Fw. Then v, w − ϕ(w)v is a hyperbolic pair. ¤

We say that any isotropic regular quadratic form splits off a hyperbolic plane.
If K/F is a field extension, let ϕK be the quadratic form on VK defined by

ϕK(x ⊗ v) := x2ϕ(v) for all x ∈ K and v ∈ V with polar form bϕK
= (bϕ)K .

Although (rad bϕ)K = rad(bϕ)K , we only have (rad ϕ)K ⊂ rad ϕK with inequality
possible.
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Remark 7.14. If K/F is a field extension and ϕ a quadratic form over F , then ϕ
is regular if ϕK is.

The following is a useful observation. The proof analogous to that for Lemma
1.21 shows:

Lemma 7.15. Let ϕ be an anisotropic quadratic form over F . If K/F is purely
transcendental, then ϕK is anisotropic.

7.A. Nondegenerate quadratic forms. To define nondegeneracy, we use
the following lemma.

Lemma 7.16. Let ϕ be a quadratic form over F . Then the following are equivalent:
(1) ϕK is regular for every field extension K/F .
(2) ϕK is regular over an algebraically closed field K containing F .
(3) ϕ is regular and dim rad bϕ ≤ 1.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): As (rad ϕ)K ⊂ radϕK = 0, we have rad ϕ = 0. To show the

second statement, we may assume that F is algebraically closed. As ϕ|rad bϕ =
ϕ|rad bϕ/ rad ϕ is anisotropic and over an algebraically closed field, any quadratic
form of dimension greater than one is isotropic, dim rad bϕ ≤ 1.

(3) ⇒ (1): Suppose that rad ϕK 6= 0. As rad ϕK ⊂ rad bϕK
and rad bϕK

=
(rad bϕ)K is of dimension at most one, we have rad ϕK = (rad bϕ)K . Let 0 6= v ∈
rad bϕ. Then v ∈ radϕK , hence ϕ(v) = 0 contradicting rad ϕ = 0. ¤
Definition 7.17. A quadratic form ϕ over F is called nondegenerate if the equiv-
alent conditions of the lemma are satisfied.

Remark 7.18. If K/F is a field extension, then ϕ is nondegenerate if and only if
ϕK is nondegenerate by Lemma 7.16.

This definition of a nondegenerate quadratic form agrees with the one given in
[86]. It is different than that found in some other texts. The geometric character-
ization of this definition of nondegeneracy explains our definition. In fact, if ϕ is
a nonzero quadratic form on V of dimension at least two, then the following are
equivalent:

(1) The quadratic form ϕ is nondegenerate.
(2) The projective quadric Xϕ associated to ϕ is smooth. (Cf. Proposition

22.1.)
(3) The even Clifford algebra C0(ϕ) (cf. §11 below) of ϕ is separable (i.e., is a

product of finite dimensional simple algebras each central over a separable
field extension of F ). (Cf. Proposition 11.6.)

(4) The group scheme SO(ϕ) of all isometries of ϕ identical on radϕ is re-
ductive (semi-simple if dim ϕ ≥ 3 and simple if dimϕ ≥ 5). (Cf. [86,
Chapter VI].)

Proposition 7.19. (1) The form 〈a〉 is nondegenerate if and only if a ∈ F×.
(2) The form [a, b] is nondegenerate if and only if 1 − 4ab 6= 0. In particular,

this binary quadratic form as well as its polar form is always nondegenerate if
charF = 2.

(3) Hyperbolic forms are nondegenerate.
(4) Every binary isotropic nondegenerate quadratic form is isomorphic to H.
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Proof. (1) and (3) are clear.
(2): This follows by computing the determinant of the matrix representing the

polar form corresponding to [a, b]. (Cf. Notation 7.3.)
(4) follows by Proposition 7.13. ¤

Let ϕi be a quadratic form on Vi for i = 1, 2. Then their external orthogonal
sum, denoted by ϕ1 ⊥ ϕ2, is the form on V1 ⊕ V2 given by

(ϕ1 ⊥ ϕ2)
(
(v1, v2)

)
:= ϕ1(v1) + ϕ2(v2)

for all vi ∈ Vi, i = 1, 2. Note that bϕ1⊥ϕ2 = bϕ1 ⊥ bϕ2 .

Remark 7.20. Let charF 6= 2. Let ϕ and ψ be quadratic forms over F .
(1) The form ϕ is nondegenerate if and only if ϕ is regular.
(2) If ϕ and ψ are both nondegenerate, then ϕ ⊥ ψ is nondegenerate as bϕ⊥ψ =

bϕ ⊥ bψ.

Remark 7.21. Let charF = 2. Let ϕ and ψ be quadratic forms over F .
(1) If dim ϕ is even, then ϕ is nondegenerate if and only if its polar form bϕ is

nondegenerate.
(2) If dim ϕ is odd, then ϕ is nondegenerate if and only if dim rad bϕ = 1 and

ϕ|rad bϕ is nonzero.
(3) If ϕ and ψ are nondegenerate quadratic forms over F at least one of which

is of even dimension, then ϕ ⊥ ψ is nondegenerate.

The important analogue of Proposition 1.6 is immediate (using Lemma 7.16
for the last statement):

Proposition 7.22. Let ϕ be a quadratic form on V . Let W be a vector subspace
such that bϕ|W is a nondegenerate bilinear form. Then ϕ|W is nondegenerate and
ϕ = ϕ|W ⊥ ϕ|W⊥ . In particular, (ϕ|W )⊥ = ϕ|W⊥ . Further, if ϕ is also nondegen-
erate, then so is ϕ|W⊥ .

Example 7.23. Suppose that char F = 2 and a, b, c ∈ F . Let ϕ = [c, a] ⊥ [c, b] and
{e, f, e′, f ′} be a basis for Vϕ satisfying ϕ(e) = c = ϕ(e′), ϕ(f) = a, ϕ(f ′) = b,
and bϕ(e, f) = 1 = b(e′, f ′). Then in the basis {e, f + f ′, e + e′, f ′}, we have

[c, a] ⊥ [c, b] ' [c, a + b] ⊥ H
by Example 7.5.

If n is a nonnegative integer and ϕ is a quadratic form over F , we let

nϕ := ϕ ⊥ · · · ⊥ ϕ︸ ︷︷ ︸
n

.

In particular, if n is an integer, we do not interpret nϕ with n viewed in the field.
For example, if V is an n-dimensional vector space, H(V ) ' nH.

We denote 〈a1〉q ⊥ · · · ⊥ 〈an〉q by

〈a1, . . . , an〉q or simply 〈a1, . . . , an〉.
So ϕ ' 〈a1, . . . , an〉 for some ai ∈ F if and only if Vϕ has an orthogonal basis.

If Vϕ has an orthogonal basis, we say ϕ is diagonalizable.
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Remark 7.24. Suppose that charF = 2 and ϕ is a quadratic form over F . Then
ϕ is diagonalizable if and only if ϕ is totally singular, i.e., its polar form bϕ = 0. If
this is the case, then every basis for Vϕ is orthogonal. In particular, there are no
diagonalizable nondegenerate quadratic forms of dimension greater than one.

Exercise 7.25. A quadratic form ϕ is diagonalizable if and only if ϕ = ϕb for
some symmetric bilinear form b.

Example 7.26. Suppose that charF 6= 2. If a ∈ F×, then 〈a,−a〉 ' H.

Example 7.27. (Cf. Example 1.10.) Let charF = 2 and ϕ = 〈1, a〉 with a 6= 0.
If {e, f} is the basis for Vϕ with ϕ(e) = 1 and ϕ(f) = a, then computing on the
orthogonal basis {e, xe + yf} with x, y ∈ F , y 6= 0 shows ϕ ' 〈1, x2 + ay2〉.
Consequently, 〈1, a〉 ' 〈1, b〉 if and only if b = x2 + ay2 with y 6= 0.

7.B. Structure theorems for quadratic forms. We wish to decompose a
quadratic form over a field F into an orthogonal sum of nice subforms. We begin
with nondegenerate quadratic forms with large totally isotopic subspaces. Unlike
the case of symmetric bilinear forms in characteristic 2, 2-dimensional nondegener-
ate isotropic quadratic forms are hyperbolic.

Proposition 7.28. Let ϕ be an 2n-dimensional nondegenerate quadratic form on
V . Suppose that V contains a totally isotropic subspace W of dimension n. Then
ϕ ' nH. Conversely, every hyperbolic form of dimension 2n contains a totally
isotropic subspace of dimension n.

Proof. Let 0 6= v ∈ W . Then by Proposition 7.13 there exists a 2-dimensional
subspace V1 of V containing v with ϕ|V1 a nondegenerate subform isomorphic to
H. By Proposition 7.22, this subform splits off as an orthogonal summand. Since
ϕ|V1 is nondegenerate, W ∩ V1 is 1-dimensional, so dim W ∩ V ⊥

1 = n− 1. The first
statement follows by induction applied to the totally isotropic subspace W ∩V ⊥

1 of
V ⊥

1 . The converse is easy. ¤

We turn to splitting off anisotopic subforms of regular quadratic forms. It is
convenient to write these decompositions separately for fields of characteristic 2
and not 2.

Proposition 7.29. Let charF 6= 2 and ϕ a quadratic form on V over F . Then
there exists an orthogonal basis for V . In particular, there exist 1-dimensional
subspaces Vi ⊂ V , 1 ≤ i ≤ n for some n and an orthogonal decomposition

ϕ = ϕ|rad bϕ ⊥ ϕ|V1 ⊥ · · · ⊥ ϕ|Vn

with ϕ|V1 ' 〈ai〉, ai ∈ F× for all i ∈ [1, n]. In particular,

ϕ ' r〈0〉 ⊥ 〈a1, . . . , an〉
with r = dim rad bϕ.

Proof. We may assume that ϕ 6= 0. Hence there exists an anisotropic vector
0 6= v ∈ V . As bϕ|F v

is nondegenerate, ϕ|Fv splits off as an orthogonal summand
of ϕ by Proposition 7.22. The result follows easily by induction. ¤

Corollary 7.30. Suppose that charF 6= 2. Then every quadratic form over F is
diagonalizable.
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Proposition 7.31. Let charF = 2 and ϕ a quadratic form on V over F . Then
there exists 2-dimensional subspaces Vi ⊂ V , 1 ≤ i ≤ n for some n, a subspace
W ⊂ rad bϕ, and an orthogonal decomposition

ϕ = ϕ|rad(ϕ) ⊥ ϕ|W ⊥ ϕ|V1 ⊥ · · · ⊥ ϕ|Vn

with ϕ|Vi
' [ai, bi] nondegenerate, ai, bi ∈ F for all i ∈ [1, n]. Moreover, ϕ|W is

anisotropic, diagonalizable, and is unique up to isometry. In particular,

ϕ ' r〈0〉 ⊥ 〈c1, . . . , cs〉 ⊥ [a1, b1] ⊥ · · · ⊥ [an, bn]

with r = dim rad ϕ and s = dim W , ci ∈ F×, 1 ≤ i ≤ s.

Proof. Let W ⊂ V be a subspace such that rad bϕ = rad ϕ⊕W and V ′ ⊂ V
a subspace such that V = rad bϕ⊕V ′. Then ϕ = ϕ|rad(ϕ) ⊥ ϕ|W ⊥ ϕ|V ′ . The form
ϕ|W is diagonalizable as bϕ|W = 0 and anisotropic as W ∩ radϕ = 0. By Lemma
7.12, the form ϕ|W = (ϕ|rad bϕ

)|W is unique up to isometry. So to finish we need
only show that ϕ|V ′ is an orthogonal sum of nondegenerate binary subforms of the
desired isometry type. We may assume that V ′ 6= {0}. Let 0 6= v ∈ V ′. Then there
exists 0 6= v′ ∈ V ′ such that c = bϕ(v, v′) 6= 0. Replacing v′ by c−1v′, we may
assume that bϕ(v, v′) = 1. In particular, ϕ|Fv⊕Fv′ ' [ϕ(v), ϕ(v′)]. As [ϕ(v), ϕ(v′)]
and its polar form are nondegenerate by Proposition 7.19, the subform ϕ|Fv⊕Fv′ is
an orthogonal direct summand of ϕ by Proposition 7.22. The decomposition follows
by Lemma 7.12 and induction. ¤

Corollary 7.32. Let charF = 2 and let ϕ be a nondegenerate quadratic form over
F .

(1) If dim ϕ = 2n, then

ϕ ' [a1, b1] ⊥ · · · ⊥ [an, bn]

for some ai, bi ∈ F , i ∈ [1, n].
(2) If dim ϕ = 2n + 1, then

ϕ ' 〈c〉 ⊥ [a1, b1] ⊥ · · · ⊥ [an, bn]

for some ai, bi ∈ F , i ∈ [1, n], and c ∈ F× unique up to F×2.

Example 7.33. Suppose that F is quadratically closed of characteristic 2. Then
every anisotropic form is isometric to 0, 〈1〉 or [1, a] with a ∈ F \ ℘(F ) where
℘ : F → F is the Artin-Schreier map.

Exercise 7.34. Every nondegenerate quadratic form over a separably closed field
F is isometric to nH or 〈a〉 ⊥ nH for some n ≥ 0 and a ∈ F×.

8. Witt’s Theorems

As with the bilinear case, the classical Witt theorems are more delicate to as-
certain over fields of arbitrary characteristic. We shall give characteristic free proofs
of these. The basic Witt theorem is the Witt Extension Theorem (cf. Theorem 8.3
below). Witt’s original theorem (cf. [139]) has been generalized in various ways.
We use one similar to that given by Kneser (cf. [80, Th. 1.2.2]). We construct the
quadratic Witt group of even-dimensional anisotropic quadratic forms and use the
Witt theorems to study this group.
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To obtain further decompositions of a quadratic form, we need generalizations
of the classical Witt theorems for bilinear forms over fields of characteristic different
from 2.

Let ϕ be a quadratic form on V . Let v and v′ in V satisfy ϕ(v) = ϕ(v′). If the
vector v̄ = v − v′ is anisotropic, then the reflection (cf. Example 7.2) τv̄ : ϕ → ϕ
satisfies

(8.1) τv̄(v) = v′.

What if v̄ is isotropic?

Lemma 8.2. Let ϕ be a quadratic form on V with polar form b. Let v and v′

lie in V and v̄ = v − v′. Suppose that ϕ(v) = ϕ(v′) and ϕ(v̄) = 0. If w ∈ V is
anisotropic and satisfies that both b(w, v) and b(w, v′) are nonzero, then the vector
w′ = v − τw(v′) is anisotropic and (τw ◦ τw′)(v) = v′.

Proof. As w′ = v̄ + b(v′, w)ϕ(w)−1w, we have

ϕ(w′) = ϕ(v̄) + b
(
v̄, b(v′, w)ϕ(w)−1w

)
+ b(v′, w)2ϕ(w)−1

= b(v, w)b(v′, w)ϕ(w)−1 6= 0.

It follows from (8.1) that τw′(v) = τw(v′), hence the result. ¤

Theorem 8.3 (Witt Extension Theorem). Let ϕ and ϕ′ be isometric quadratic
forms on V and V ′ respectively. Let W ⊂ V and W ′ ⊂ V ′ be subspaces such
that W ∩ rad bϕ = 0 and W ′ ∩ rad bϕ′ = 0. Suppose that there is an isometry
α : ϕ|W → ϕ′|W ′ . Then there exists an isometry α̃ : ϕ → ϕ′ such that α̃(W ) = W ′

and α̃|W = α.

Proof. It is sufficient to treat the case V = V ′ and ϕ = ϕ′. Let b denote
the polar form of ϕ. We proceed by induction on n = dim W , the case n = 0
being obvious. Suppose that n > 0. In particular, ϕ is not identically zero. Let
u ∈ V satisfy ϕ(u) 6= 0. As dim W ∩ (Fu)⊥ ≥ n− 1, there exists a subspace W0 ⊂
W of codimension one with W0 ⊂ (Fu)⊥. Applying the induction hypothesis to
β = α|W0 : ϕ|W0 → ϕ|α(W0), there exists an isometry β̃ : ϕ → ϕ satisfying β̃(W0) =
α(W0) and β̃|W0 = β. Replacing W ′ by β̃−1(W ′), we may assume that W0 ⊂ W ′

and α|W0 is the identity.
Let v be any vector in W \ W0 and set v′ = α(v) ∈ W ′. It suffices to find

an isometry γ of ϕ such that γ(v) = v′ and γ|W0 = Id, the identity on W0. Let
v̄ = v− v′ as above and S = W⊥

0 . Note that for every w ∈ W0, we have α(w) = w,
hence

b(v̄, w) = b(v, w)− b
(
α(v), α(w)

)
= 0,

i.e., v̄ ∈ S.
Suppose that ϕ(v̄) 6= 0. Then τv̄(v) = v′ using (8.1). Moreover, τv̄(w) = w for

every w ∈ W0 as v̄ is orthogonal to W0. Then γ = τv̄ works. So we may assume
that ϕ(v̄) = 0. We have

0 = ϕ(v̄) = ϕ(v)− b(v, v′) + ϕ(v′) = b(v, v)− b(v, v′) = b(v, v̄),

i.e., v̄ is orthogonal to v. Similarly, v̄ is orthogonal to v′.
By Proposition 1.5, the map lW : V → W ∗ is surjective. In particular, there

exists u ∈ V such that b(u,W0) = 0 and b(u, v) = 1. In other words, v is not
orthogonal to S, i.e., the intersection H = (Fv)⊥ ∩ S is a subspace of codimension
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one in S. Similarly, H ′ = (Fv′)⊥ ∩ S is also a subspace of codimension one in S.
Note that v̄ ∈ H ∩H ′.

Suppose that there exists an anisotropic vector w ∈ S such that w /∈ H and
w /∈ H ′. By Lemma 8.2, we have (τw ◦ τw′)(v) = v′ where

w′ = v − τw(v′) = v̄ + b(v′, w)ϕ(w)−1w ∈ S.

As w,w′ ∈ S, the map τw ◦ τw′ is the identity on W0. Setting γ = τw ◦ τw′ produces
the desired extension. Consequently, we may assume that ϕ(w) = 0 for every
w ∈ S \ (H ∪H ′).

Case 1: |F | > 2.
Let w1 ∈ H ∩H ′ and w2 ∈ S \ (H ∪H ′). Then aw1 + w2 ∈ S \ (H ∪H ′) for

any a ∈ F , so by assumption

0 = ϕ(aw1 + w2) = a2ϕ(w1) + ab(w1, w2) + ϕ(w2).

Since |F | > 2, we must have ϕ(w1) = b(w1, w2) = ϕ(w2) = 0. So ϕ(H ∩H ′) = 0,
ϕ
(
S \ (H ∪H ′)

)
= 0, and H ∩H ′ is orthogonal to S \ (H ∪H ′), (i.e., b(x, y) = 0

for all x ∈ H ∩H ′ and y ∈ S \ (H ∪H ′)).
Let w ∈ H and w′ ∈ S\(H∪H ′). As |F | > 2, we see that w+aw′ ∈ S\(H∪H ′)

for some a ∈ F . Hence the set S \ (H ∪H ′) generates S. Consequently, H ∩H ′ is
orthogonal to S. In particular, b(v̄, S) = 0. Thus H = H ′. It follows that ϕ(H) = 0
and ϕ(S \H) = 0, hence ϕ(S) = 0, a contradiction. This finishes the proof in this
case.

Case 2: F = F2, the field of two elements.
As H ∪H ′ 6= S, there exists a w ∈ S such that b(w, v) 6= 0 and b(w, v′) 6= 0.

As F = F2, this means that b(w, v) = 1 = b(w, v′). Moreover, by our assumptions,
ϕ(v̄) = 0 and ϕ(w) = 0. Consider the linear map

γ : V → V given by γ(x) = x + b(v̄, x)w + b(w, x)v̄.

Note that b(w, v̄) = b(w, v) + b(w, v′) = 1 + 1 = 0. A simple calculation shows
that γ2 = Id and ϕ

(
γ(x)

)
= ϕ(x) for any x ∈ V , i.e., γ is an isometry. Moreover,

γ(v) = v + v̄ = v′. Finally, γ|W0 = Id since w and v̄ are orthogonal to W0. ¤

Theorem 8.4 (Witt Cancellation Theorem). Let ϕ, ϕ′ be quadratic forms on V
and V ′ respectively, and ψ, ψ′ quadratic forms on W and W ′ respectively, with
rad bψ = 0 = rad bψ′ . If

ϕ ⊥ ψ ' ϕ′ ⊥ ψ′ and ψ ' ψ′,

then ϕ ' ϕ′.

Proof. Let f : ψ → ψ′ be an isometry. By the Witt Extension Theorem, f

extends to an isometry f̃ : ϕ ⊥ ψ → ϕ′ ⊥ ψ′. As f̃ takes V = W⊥ to V ′ = (W ′)⊥,
the result follows. ¤

Witt Cancellation together with our previous computations allow us to derive
the decomposition that we want.

Theorem 8.5 (Witt Decomposition Theorem). Let ϕ be a quadratic form on V .
Then there exist subspaces V1 and V2 of V such that ϕ = ϕ|rad ϕ ⊥ ϕ|V1 ⊥ ϕ|V2

with ϕ|V1 anisotropic and ϕ|V2 hyperbolic. Moreover, ϕ|V1 and ϕ|V2 are unique up
to isometry.
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Proof. We know that ϕ = ϕ|rad ϕ ⊥ ϕ|V ′ with ϕV ′ on V ′ unique up to isom-
etry. Therefore, we can assume that ϕ is regular. Suppose that ϕV ′ is isotropic.
By Proposition 7.13, we can split off a subform as an orthogonal summand isomet-
ric to the hyperbolic plane. The desired decomposition follows by induction. As
every hyperbolic form is nondegenerate, the Witt Cancellation Theorem shows the
uniqueness of ϕ|V1 up to isometry hence ϕ|V2 is unique by dimension count. ¤

8.A. Witt equivalence. Using the Witt Decomposition Theorem 8.5, we can
define an equivalence of quadratic forms over a field F .

Definition 8.6. Let ϕ be a quadratic form on V and ϕ = ϕ|rad ϕ ⊥ ϕ|V1 ⊥ ϕ|V2

be the decomposition in the theorem. The anisotropic form ϕ|V1 , unique up to
isometry, will be denoted ϕan and called the anisotropic part of ϕ. As ϕV2 is
hyperbolic, dim V2 = 2n for some unique nonnegative number n. The integer n
is called the Witt index of ϕ and denoted by i0(ϕ). We say that two quadratic
forms ϕ and ψ are Witt-equivalent and write ϕ ∼ ψ if dim radϕ = dim radψ and
ϕan ' ψan. Equivalently, ϕ ∼ ψ if and only if ϕ ⊥ nH ' ψ ⊥ mH for some n and
m.

Note that if ϕ ∼ ψ, then ϕK ∼ ψK for any field extension K/F .
Witt cancellation does not hold in general for nondegenerate quadratic forms

in characteristic 2. We show in the next result, Proposition 8.8, that

(8.7) [a, b] ⊥ 〈a〉 ' H ⊥ 〈a〉
if charF = 2 for all a, b ∈ F with a 6= 0. But [a, b] ' H if and only if [a, b]
is isotropic by Proposition 7.19(4). Although Witt cancellation does not hold in
general in characteristic 2, we can use the following:

Proposition 8.8. Let ρ be a nondegenerate quadratic form of even dimension over
a field F of characteristic 2. Then ρ ⊥ 〈a〉 ∼ 〈a〉 for some a ∈ F× if and only if
ρ ∼ [a, b] for some b ∈ F .

Proof. The case charF 6= 2 is easy, so we can assume that charF = 2.
Let ϕ = [a, b] ⊥ 〈a〉 with a, b ∈ F and a 6= 0. Clearly, ϕ is isotropic and it is
nondegenerate as ϕ|rad bϕ = 〈a〉. It follows by Proposition 7.13 that [a, b] ⊥ 〈a〉 '
H ⊥ 〈a〉 ∼ 〈a〉. Since ρ ∼ [a, b], we have ρ ⊥ 〈a〉 ∼ 〈a〉.

Conversely, suppose that ρ ⊥ 〈a〉 ∼ 〈a〉 for some a ∈ F×. We prove the
statement by induction on n = dim ρ. If n = 0, we can take b = 0. So assume that
n > 0. We may also assume that ρ is anisotropic. By assumption, the form ρ ⊥ 〈a〉
is isotropic. Therefore, a = ρ(v) for some v ∈ Vρ, and we can find a decomposition
ρ = ρ′ ⊥ [a, d] for some nondegenerate form ρ′ of dimension n − 2 and b ∈ F . As
[a, d] ⊥ 〈a〉 ' H ⊥ 〈a〉 by the first part of the proof, we have

〈a〉 ∼ ρ ⊥ 〈a〉 = ρ′ ⊥ [a, d] ⊥ 〈a〉 ∼ ρ′ ⊥ 〈a〉.
By the induction hypothesis, ρ′ ' [a, c] for some c ∈ F . Therefore, by Example
7.23,

ρ = ρ′ ⊥ [a, d] ∼ [a, c] ⊥ [a, d] ' [a, c + d] ⊥ H ∼ [a, c + d]. ¤

Remark 8.9. Let ϕ and ψ be quadratic forms over F .
(1) If ϕ is nondegenerate and anisotropic over F and K/F a purely transcen-

dental extension, then ϕK remains anisotropic by Lemma 7.15. In particular, for
any nondegenerate ϕ, we have i0(ϕ) = i0(ϕK).
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(2) Let a ∈ F×. Then ϕ ' aψ if and only if ϕan ' aψan as any form similar to
a hyperbolic form is hyperbolic.

(3) If charF = 2, the quadratic form ϕan may be degenerate. This is not
possible if charF 6= 2.

(4) If char F 6= 2, then every symmetric bilinear form corresponds to a quadratic
form, hence the Witt theorems hold for symmetric bilinear forms in characteristic
different from 2.

8.B. Totally isotropic subspaces. Given a regular quadratic form ϕ on
V , we show that every totally isotopic subspace of V lies in a maximal isotropic
subspace of V of dimension equal to the Witt index of ϕ.

Lemma 8.10. Let ϕ be a regular quadratic form on V with W ⊂ V a totally
isotropic subspace of dimension m. If ψ is the quadratic form on W⊥/W induced
by the restriction of ϕ on W⊥, then ϕ ' ψ ⊥ mH.

Proof. As W ∩ rad bϕ ⊂ radϕ, the intersection W ∩ rad bϕ is trivial. Thus
the map V → W ∗ by v 7→ lv|W : w 7→ bϕ(v, w) is surjective by Proposition 1.5 and
dim W⊥ = dim V − dim W . Let W ′ ⊂ V be a subspace mapping isomorphically
onto W ∗. Clearly, W ∩W ′ = {0}. Let U = W ⊕W ′.

We show the form ϕ|U is hyperbolic. The subspace W ⊕W ′ is nondegenerate
with respect to bϕ. Indeed, let 0 6= v = w + w′ ∈ W ⊕W ′. If w′ 6= 0, there exists
a w0 ∈ W such that bϕ(w′, w0) 6= 0, hence bϕ(v, w0) 6= 0. If w′ = 0, there exists
w′0 ∈ W ′ such that bϕ(w,w′0) 6= 0, hence bϕ(v, w′0) 6= 0. Thus by Proposition 7.28,
the form ϕ|U is isometric to mH where m = dim W .

By Proposition 7.22, we have ϕ = ϕ|U⊥ ⊥ ϕ|U ' ϕ|U⊥ ⊥ mH. As W and
U⊥ are subspaces of W⊥ and U ∩ W⊥ = W , we have W⊥ = W ⊕ U⊥. Thus
W⊥/W ' U⊥ and the result follows. ¤
Proposition 8.11. Let ϕ be a regular quadratic form on V . Then every totally
isotropic subspace of V is contained in a totally isotropic subspace of dimension
i0(ϕ).

Proof. Let W ⊂ V be a totally isotropic subspace of V . We may assume
that it is a maximal totally isotropic subspace. In the notation in the proof of
Lemma 8.10, we have ϕ = ϕ|U⊥ ⊥ ϕ|U with ϕ|U ' mH where m = dim W . The
form ϕ|U⊥ is anisotropic by the maximality of W , hence must be ϕan by the Witt
Decomposition Theorem 8.5. In particular, dim W = i0(ϕ). ¤
Corollary 8.12. Let ϕ be a regular quadratic form on V . Then every totally
isotropic subspace W of V has dimension at most i0(ϕ) with equality if and only if
W is a maximal totally isotropic subspace of V .

Let ρ be a nondegenerate quadratic form and ϕ a subform of ρ. If bϕ is
nondegenerate, then ρ = ϕ ⊥ ϕ⊥, hence ρ ⊥ (−ϕ) ∼ ϕ⊥. However, in general,
ρ 6= ϕ ⊥ ϕ⊥. We do always have:

Lemma 8.13. Let ρ be a nondegenerate quadratic form of even dimension and ϕ
a regular subform of ρ. Then ρ ⊥ (−ϕ) ∼ ϕ⊥.

Proof. Let W be the subspace defined by W = {(v, v) | v ∈ Vϕ} of Vρ ⊕ Vϕ.
Clearly W is totally isotropic with respect to the form ρ ⊥ (−ϕ) on Vρ ⊕ Vϕ.
By the proof of Lemma 8.10, we have dim W⊥/W = dim Vρ ⊕ Vϕ − 2 dim W =
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dim Vρ − dim Vϕ. By Remark 7.10, we also have dim V ⊥
ϕ = dim Vρ − dim Vϕ. It

follows that the linear map W⊥/W → V ⊥
ϕ defined by (v, v′) 7→ v−v′ is an isometry.

On the other hand, by Lemma 8.10, the form on W⊥/W is Witt-equivalent to
ρ ⊥ (−ϕ). ¤

Let V and W be vector spaces over F . Let b be a symmetric bilinear form on
W and ϕ be a quadratic form on V . The tensor product of b and ϕ is the quadratic
form b⊗ ϕ on W ⊗F V defined by

(8.14) (b⊗ ϕ)(w ⊗ v) = b(w,w) · ϕ(v)

for all w ∈ W and v ∈ V with the polar form of b⊗ϕ equal to b⊗bϕ. For example,
if a ∈ F , then 〈a〉b ⊗ ϕ ' aϕ.

Example 8.15. If b is a symmetric bilinear form, then ϕb ' b⊗ 〈1〉q.
Lemma 8.16. Let b be a nondegenerate symmetric bilinear form over F and ϕ a
nondegenerate quadratic form over F . In addition, assume that dim ϕ is even if
characteristic of F is 2. Then:

(1) The quadratic form b⊗ ϕ is nondegenerate.
(2) If either ϕ or b is hyperbolic, then b⊗ ϕ is hyperbolic.

Proof. (1): The bilinear form bϕ is nondegenerate by Remark 7.20 and by
Remark 7.21 if characteristic of F is not 2 or 2, respectively. By Lemma 2.1, the
form b⊗ bϕ is nondegenerate, hence so is b⊗ ϕ.

(2): Using Proposition 7.28, we see that Vb⊗ϕ contains a totally isotropic space
of dimension 1

2 dim(b⊗ ϕ). ¤

As the orthogonal sum of even-dimensional nondegenerate quadratic forms over
F is nondegenerate, the isometry classes of even-dimensional nondegenerate qua-
dratic forms over F form a monoid under orthogonal sum. The quotient of the
Grothendieck group of this monoid by the subgroup generated by the image of the
hyperbolic plane is called the quadratic Witt group and will be denoted by Iq(F ).
The tensor product of a bilinear with a quadratic form induces a W (F )-module
structure on Iq(F ) by Lemma 8.16.

Remark 8.17. Let ϕ and ψ be two nondegenerate even-dimensional quadratic
forms over F . By the Witt Decomposition Theorem 8.5,

ϕ ' ψ if and only if ϕ = ψ in Iq(F ) and dim ϕ = dim ψ.

Remark 8.18. Let F → K be a homomorphism of fields. Analogous to Proposi-
tion 2.7, this map induces the restriction homomorphism

rK/F : Iq(F ) → Iq(K).

It is a group homomorphism. If K/F is purely transcendental, the restriction map
is injective by Lemma 7.15.

Suppose that charF 6= 2. Then we have an isomorphism I(F ) → Iq(F ) given
by b 7→ ϕb. We will use the correspondence b 7→ ϕb to identify bilinear forms in
W (F ) with quadratic forms. In particular, we shall view the class of a quadratic
form in the Witt ring of bilinear forms when charF 6= 2.
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9. Quadratic Pfister forms I

As in the bilinear case, there is a special class of forms built from tensor prod-
ucts of forms. If the characteristic of F is different from 2, these forms can be
identified with the bilinear Pfister forms. If the characteristic is 2, these forms arise
as the tensor product of a bilinear Pfister form and a binary quadratic form of the
type [1, a] and were first introduced by Baeza (cf. [15]). In general, the quadratic
1-fold Pfister forms are just the norm forms of a quadratic étale F -algebra and the
2-fold quadratic Pfister forms are just the reduced norm forms of quaternion alge-
bras. These forms as their bilinear analogue satisfy the property of being round.
In this section, we begin their study.

9.A. Values and similarities of quadratic forms. Analogously to the sym-
metric bilinear case, we study the values that a quadratic form can take as well as
the similarity factors. We begin with some notation.

Let ϕ be a quadratic form on V over F . Let

D(ϕ) :=
{
ϕ(v) | v ∈ V, ϕ(v) 6= 0

}
,

the set on nonzero values of ϕ and

G(ϕ) :=
{
a ∈ F× | aϕ ' ϕ

}
,

a group called the group of similarity factors of b. If D(ϕ) = F×, we say that ϕ is
universal. Also set

D̃(ϕ) := D(ϕ) ∪ {0}.
We say that elements in D̃(ϕ) are represented by ϕ. For example, G(H) = F× (as
for bilinear hyperbolic planes) and D(H) = F×. In particular, if ϕ is an regular
isotropic quadratic form over F , then ϕ is universal by Proposition 7.13.

The analogous proof of Lemma 1.13 shows:

Lemma 9.1. Let ϕ be a quadratic form. Then

D(ϕ) ·G(ϕ) ⊂ D(ϕ).

In particular, if 1 ∈ D(ϕ), then G(ϕ) ⊂ D(ϕ).

The relationship between values and similarities of a symmetric bilinear form
and its associated quadratic form is given by the following:

Lemma 9.2. Let b a symmetric bilinear form on F and ϕ = ϕb. Then:
(1) D(ϕ) = D(b).
(2) G(b) ⊂ G(ϕ).

Proof. (1): By definition, ϕ(v) = b(v, v) for all v ∈ V .
(2): Let a ∈ G(b) and λ : b → ab an isometry. Then ϕ

(
λ(v)

)
= b

(
λ(v), λ(v)

)
=

ab(v, v) = aϕ(v) for all v ∈ V . ¤
A quadratic form is called round if G(ϕ) = D(ϕ). In particular, if ϕ is round,

then D(ϕ) is a group. For example, any hyperbolic form is round.
A basic example of round forms arises from quadratic F -algebras (cf. §98.B):

Example 9.3. Let K be a quadratic F -algebra. Then there exists an involution
on K denoted by x 7→ x̄ and a quadratic norm form ϕ = N given by x 7→ xx̄ (cf.
§98.B). We have ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ K. If x ∈ K with ϕ(x) 6= 0, then
x ∈ K×. Hence the map K → K given by multiplication by x is an F -isomorphism
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and ϕ(x) ∈ G(ϕ). Thus D(ϕ) ⊂ G(ϕ). As 1 ∈ D(ϕ), we have G(ϕ) ⊂ D(ϕ). In
particular, ϕ is round.

Let K be a quadratic étale F -algebra. So K = Fa for some a ∈ F (cf. Examples
98.2 and 98.3). Denote the norm form N of Fa in Example 9.3 by 〈〈a]] and call it
a quadratic 1-fold Pfister form. In particular, it is round. Explicitly, we have:

Example 9.4. For Fa a quadratic étale F algebra, we have:
(1) (Cf. Example 98.2.) If charF 6= 2, then Fa = F [t]/(t2 − a) with a ∈ F×

and the quadratic form 〈〈a]] = 〈1,−a〉q ' 〈〈a〉〉b ⊗ 〈1〉q is the norm form of Fa.
(2) (Cf. Example 98.3.) If charF = 2, then Fa = F [t]/(t2 + t + a) with

a ∈ F and the quadratic form 〈〈a]] = [1, a] is the norm form of Fa. In particular,
〈〈a]] ' 〈〈x2 + x + a]] for any x ∈ F .

9.B. Quadratic Pfister forms and round forms. Let n ≥ 1. A quadratic
form isometric to a quadratic form of the type

〈〈a1, . . . , an]] := 〈〈a1, . . . , an−1〉〉b ⊗ 〈〈an]]

for some a1, . . . , an−1 ∈ F× and an ∈ F (with an 6= 0 if char F 6= 2) is called a
quadratic n-fold Pfister form. It is convenient to call the form isometric to 〈1〉q a
0-fold Pfister form. Every quadratic n-fold Pfister form is nondegenerate by Lemma
8.16. We let

Pn(F ) :=
{
ϕ |ϕ a quadratic n-fold Pfister form

}
,

P (F ) :=
⋃

Pn(F ),

GPn(F ) :=
{
aϕ | a ∈ F×, ϕ a quadratic n-fold Pfister form

}
,

GP (F ) :=
⋃

GPn(F ).

Forms in GPn(F ) are called general quadratic n-fold Pfister forms.

If charF 6= 2, the form 〈〈a1, . . . , an]] is the associated quadratic form of the
bilinear Pfister form 〈〈a1, . . . , an〉〉b by Example 9.4 (1). We shall also use the
notation 〈〈a1, . . . , an〉〉 for the quadratic Pfister form 〈〈a1, . . . , an]] in this case.

The class of an n-fold Pfister form (n > 0) belongs to

In
q (F ) := In−1(F ) · Iq(F ).

As [a, b] = a[1, ab] for all a, b ∈ F with a 6= 0, every nondegenerate binary
quadratic form is a general 1-fold Pfister form. In particular, GP1(F ) generates
Iq(F ). It follows that GPn(F ) generates In

q (F ) as an abelian group. In fact, as

(9.5) a〈〈b, c]] = 〈〈ab, c]]− 〈〈a, c]]

for all a, b ∈ F× and c ∈ F (with c 6= 0 if charF 6= 2), Pn(F ) generates In
q (F ) as

an abelian group for n > 1.
Note that in the case charF 6= 2, under the identification of I(F ) with Iq(F ),

the group In(F ) corresponds to In
q (F ) and a bilinear Pfister form 〈〈a1, . . . , an〉〉b

corresponds to the quadratic Pfister form 〈〈a1, . . . , an〉〉.
Using the material in §98.E, we have the following example.

Example 9.6. Let A be a quaternion F -algebra.

(1) (Cf. Example 98.10.) Suppose that charF 6= 2. If A =
(

a,b
F

)
, then the

reduced quadratic norm form is equal to the quadratic form 〈1,−a,−b, ab〉 = 〈〈a, b〉〉.
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(2) (Cf. Example 98.11.) Suppose that charF = 2. If A =
[

a,b
F

]
, then the

reduced quadratic norm form is equal to the quadratic form [1, ab] ⊥ [a, b]. This
form is hyperbolic if a = 0 and is isomorphic to 〈1, a〉b⊗ [1, ab] = 〈〈a, ab]] otherwise.

Example 9.7. Let L/F be a separable quadratic field extension and Q = (L/F, b),
i.e., Q = L ⊕ Lj a quaternion F -algebra with j2 = b ∈ F× (cf. §98.E). For any
q = l+ l′j ∈ Q, we have NrdQ(q) = NL(l)−b NL(l′). Therefore, NrdQ ' 〈〈b〉〉⊗NL.

Proposition 9.8. Let ϕ be a round quadratic form and a ∈ F×. Then
(1) The form 〈〈a〉〉 ⊗ ϕ is also round.
(2) If ϕ is regular, then the following are equivalent:

(i) 〈〈a〉〉 ⊗ ϕ is isotropic.
(ii) 〈〈a〉〉 ⊗ ϕ is hyperbolic.
(iii) a ∈ D(ϕ).

Proof. Set ψ = 〈〈a〉〉 ⊗ ϕ.
(1): Since 1 ∈ D(ϕ), it suffices to prove that D(ψ) ⊂ G(ψ). Let c be a

nonzero value of ψ. Write c = x − ay for some x, y ∈ D̃(ϕ). If y = 0, we have
c = x ∈ D(ϕ) = G(ϕ) ⊂ G(ψ). Similarly, y ∈ G(ψ) if x = 0, hence c = −ay ∈ G(ψ)
as −a ∈ G

(〈〈a〉〉) ⊂ G(ψ).
Now suppose that x and y are nonzero. Since ϕ is round, x, y ∈ G(ϕ) and,

therefore,
ψ = ϕ ⊥ (−aϕ) ' ϕ ⊥ (−ayx−1)ϕ = 〈〈ayx−1〉〉 ⊗ ϕ.

By Example 1.14, we know that 1 − ayx−1 ∈ G
(〈〈ayx−1〉〉) ⊂ G(ψ). Since x ∈

G(ϕ) ⊂ G(ψ), we have c = (1− ayx−1)x ∈ G(ψ).
(2): (i) ⇒ (iii): If ϕ is isotropic, then ϕ is universal by Proposition 7.13.

So suppose that ϕ is anisotropic. Since ψ = ϕ ⊥ (−aϕ) is isotropic, there exist
x, y ∈ D(ϕ) such that x − ay = 0. Therefore a = xy−1 ∈ D(ϕ) as D(ϕ) is closed
under multiplication.

(iii) ⇒ (ii): As ϕ is round, a ∈ D(ϕ) = G(ϕ) and 〈〈a〉〉 ⊗ ϕ is hyperbolic.
(ii) ⇒ (i) is trivial. ¤

Corollary 9.9. Quadratic Pfister forms are round.

Corollary 9.10. A quadratic Pfister form is either anisotropic or hyperbolic.

Proof. Suppose that ψ is an isotropic quadratic n-fold Pfister form. If n = 1,
the result follows by Proposition 7.19(4). So assume that n > 1. Then ψ ' 〈〈a〉〉⊗ϕ
for a quadratic Pfister form ϕ and the result follows by Proposition 9.8. ¤

Let charF = 2. We need another characterization of hyperbolic Pfister forms
in this case. Let ℘ : F → F be the Artin-Schreier map defined by ℘(x) = x2 + x.
(Cf. §98.B.) For a quadratic 1-fold Pfister form we have 〈〈d]] is hyperbolic if and
only if d ∈ im(℘) by Example 98.3. More generally, we have:

Lemma 9.11. Let b be an anisotropic bilinear Pfister form and d ∈ F . Then
b⊗ 〈〈d]] is hyperbolic if and only if d ∈ im(℘) + D̃(b′).

Proof. Suppose that b⊗〈〈d]] is hyperbolic and therefore isotropic. Let {e, f}
be the standard basis of 〈〈d]]. Let v ⊗ e + w ⊗ f be an isotropic vector of b⊗ 〈〈d]]
where v, w ∈ Vb. We have a + b + cd = 0 where a = b(v, v), b = b(v, w), and
c = b(w,w).
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As b is anisotropic, we have w 6= 0, i.e., c 6= 0. Suppose first that v = sw for
some s ∈ F . Then 0 = a + b + cd = c(s2 + s + d), hence d = s2 + s ∈ im(℘).

Now suppose that v and w generate a 2-dimensional subspace W of Vb. The
determinant of b|W is equal to xF×2 where x = b2 + bc + c2d. Hence b|W ' c〈〈x〉〉
by Example 1.10. As c ∈ D(b) = G(b) by Corollary 6.2, the form 〈〈x〉〉 is isometric
to a subform of b. By the Bilinear Witt Cancellation (Corollary 1.28), we have 〈x〉
is a subform of b′, i.e., x ∈ D(b′). Hence (b/c)2 + (b/c) + d = x/c2 ∈ D(b′) and
therefore d ∈ im(℘) + D(b′).

Conversely, let d = x + y where x ∈ im(℘) and y ∈ D̃(b′). If y = 0, then 〈〈d]]
is hyperbolic, hence so is b⊗ 〈〈d]]. So suppose that y 6= 0. By Lemma 6.11 there is
a bilinear Pfister form c such that b ' c⊗ 〈〈y〉〉. Therefore, b⊗ 〈〈d]] ' c⊗ 〈〈y, d〉〉 is
hyperbolic as 〈〈y, d]] ' 〈〈y, y]] by Example 98.3 which is hyperbolic. ¤

9.C. Annihilators. If ϕ is a nondegenerate quadratic form over F , then the
annihilator of ϕ in W (F )

annW (F )(ϕ) :=
{
c ∈ W (F ) | c · ϕ = 0

}

is an ideal. When ϕ is a Pfister form this ideal has the structure that we had
when ϕ was a bilinear anisotropic Pfister form. Indeed, the same proof yielding
Proposition 6.22 and Corollary 6.23 shows:

Theorem 9.12. Let ϕ be anisotropic quadratic Pfister form. Then annW (F )(ϕ) is
generated by binary symmetric bilinear forms 〈〈x〉〉b with x ∈ D(ϕ).

As in the bilinear case, if ϕ is 2-dimensional, we obtain stronger results. Indeed,
the same proofs for the corresponding results show:

Lemma 9.13 (cf. Lemma 6.24). Let ϕ be a binary anisotropic quadratic form over
F and c an anisotropic bilinear form over F such that c ⊗ ϕ is isotropic. Then
c ' d ⊥ e for some binary bilinear form d annihilated by ϕ and bilinear form e over
F .

Proposition 9.14 (cf. Proposition 6.25). Let ϕ be a binary anisotropic quadratic
form over F and c an anisotropic bilinear form over F . Then there exist bilinear
forms c1 and c2 over F such that c ' c1 ⊥ c2 with c2⊗ϕ anisotropic and c1 ' d1 ⊥
· · · ⊥ dn where each di is a binary bilinear form annihilated by ϕ. In particular,
−det di ∈ D(ϕ) for each i.

Corollary 9.15 (cf. Corollary 6.26). Let ϕ be a binary anisotropic quadratic form
over F and c an anisotropic bilinear form over F annihilated by b. Then c ' d1 ⊥
· · · ⊥ dn for some binary bilinear forms di annihilated by b for i ∈ [1, n].

10. Totally singular forms

Totally singular forms in characteristic different from 2 are zero forms, but in
characteristic 2 they become interesting. In this section, we look at totally singular
forms in characteristic 2. In particular, throughout most of this section, charF = 2.

Let charF = 2. Let ϕ be a quadratic form over F . Then ϕ is a totally singular
form if and only if it is diagonalizable. Moreover, if this is the case, then every
basis of Vϕ is orthogonal by Remark 7.24 and D̃(ϕ) is a vector space over the field
F 2.
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We investigate the F -subspace
(
D̃(ϕ)

)1/2 of F 1/2. Define an F -linear map

f : Vϕ →
(
D̃(ϕ)

)1/2 given by f(v) =
√

ϕ(v).

Then f is surjective and Ker(f) = rad ϕ. Let ϕ̃ be the quadratic form on
(
D̃(ϕ)

)1/2

over F defined by ϕ̃(
√

a) = a. Clearly ϕ̃ is anisotropic. Consequently, if ϕ̄ is the
quadratic form induced on Vϕ/ radϕ by ϕ, then f induces an isometry between ϕ̄

and ϕ̃. Moreover, ϕ̃ ' ϕan. Therefore, if charF = 2, the correspondence ϕ 7→ D̃(ϕ)
gives rise to a bijection

Isometry classes of totally singular
anisotropic quadratic forms

∼−→ Finite dimensional
F 2-subspaces of F

Moreover, for any totally singular quadratic form ϕ, we have

dim ϕan = dim D̃(ϕ)

and if ϕ and ψ are two totally singular quadratic forms, then

ϕ ' ψ if and only if D(ϕ) = D(ψ) and dim ϕ = dim ψ.

We also have D̃(ϕ ⊥ ψ) = D̃(ϕ) + D̃(ψ).

Example 10.1. If F is a separably closed field of characteristic 2, the anisotropic
quadratic forms are diagonalizable, hence totally singular.

Note that if b is an alternating bilinear form and ψ is a totally singular quadratic
form, then b⊗ψ = 0. It follows that the tensor product of totally singular quadratic
forms ϕ ⊗ ψ := c ⊗ ψ is well-defined where c is a bilinear form with ϕ = ϕc. The
space D̃(ϕ⊗ ψ) is spanned by D(ϕ) ·D(ψ) over F 2.

Proposition 10.2. Let charF = 2. If ϕ is a totally singular quadratic form, then

G(ϕ) =
{
a ∈ F× | aD(ϕ) ⊂ D(ϕ)

}
.

Proof. The inclusion “⊂” follows from Lemma 9.1. Conversely, let a ∈ F×

satisfy aD(ϕ) ⊂ D(ϕ). Then the F -linear map g :
(
D̃(ϕ)

)1/2 → (
D̃(ϕ)

)1/2 defined
by g(b) =

√
a b is an isometry between ϕ̃ and aϕ̃. Therefore a ∈ G(ϕ̃) = G(ϕ). ¤

It follows from Proposition 10.2 that G̃(ϕ) := G(ϕ) ∪ {0} is a subfield of F

containing F 2 and D̃(ϕ) is a vector space over G̃(ϕ).
It is also convenient to introduce a variant of the notion of Pfister forms in

all characteristics. A quadratic form ϕ is called a quasi-Pfister form if there exists
a bilinear Pfister form b with ϕ ' ϕb, i.e., ϕ ' 〈〈a1, . . . , an〉〉b ⊗ 〈1〉q. for some
a1, . . . , an ∈ F×. Denote

〈〈a1, . . . , an〉〉b ⊗ 〈1〉q by 〈〈a1, . . . , an〉〉q.
If char F 6= 2, then the classes of quadratic Pfister and quasi-Pfister forms coincide.
If charF = 2 every quasi-Pfister form is totally singular. Quasi-Pfister forms have
some properties similar to those for quadratic Pfister forms.

Corollary 10.3. Quasi-Pfister forms are round.

Proof. Let b be a bilinear Pfister form. As 〈1〉q is a round quadratic form,
the quadratic form b⊗ 〈1〉q is round by Proposition 9.8. ¤
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Remark 10.4. Let charF = 2. Let ρ = 〈〈a1, . . . , an〉〉q be an anisotropic quasi-
Pfister form. Then D̃(ρ) is equal to the field F 2(a1, . . . , an) of degree 2n over F 2.
Conversely, every field K such that F 2 ⊂ K ⊂ F with

[
K : F 2

]
= 2n is generated

by n elements and therefore K = D̃(ρ) for an anisotropic n-fold quasi-Pfister form
ρ. Thus we get a bijection

Isometry classes of anisotropic
n-fold quasi-Pfister forms ' Fields K with F 2 ⊂ K ⊂ F

and
[
K : F 2

]
= 2n

Let ϕ be an anisotropic totally singular quadratic form. Then K = G̃(ϕ) is a field
with K · D̃(ϕ) ⊂ D̃(ϕ). We have [K : F 2] < ∞ and D̃(ϕ) is a vector space over
K. Let {b1, . . . , bm} be a basis of D̃(ϕ) over K and set ψ = 〈b1, . . . , bm〉q. Choose
an anisotropic n-fold quasi-Pfister form ρ such that D̃(ρ) = G̃(ϕ). As D̃(ϕ) is the
vector space spanned by K · D(ψ) over F 2, we have ϕ ' ρ ⊗ ψ. In fact, ρ is the
largest quasi-Pfister divisor of ϕ, i.e., quasi-Pfister form of maximal dimension such
that ϕ ' ρ⊗ ψ.

11. The Clifford algebra

To each quadratic form ϕ, one associates a Z/2Z-graded algebra by factoring
the tensor algebra on Vϕ by the relation ϕ(v) = v2. This algebra, called the
Clifford algebra generalizes the exterior algebra. In this section, we study the basic
properties of Clifford algebras.

Let ϕ be a quadratic form on V over F . Define the Clifford algebra of ϕ to be
the factor algebra C(ϕ) of the tensor algebra

T (V ) :=
∐

n≥0

V ⊗n

modulo the ideal I generated by (v ⊗ v) − ϕ(v) for all v ∈ V . We shall view
vectors in V as elements of C(ϕ) via the natural F -linear map V → C(ϕ). Note
that v2 = ϕ(v) in C(ϕ) for every v ∈ V . The Clifford algebra of ϕ has a natural
Z/2Z-grading

C(ϕ) = C0(ϕ)⊕ C1(ϕ)

as I is homogeneous if degree is viewed modulo two. The subalgebra C0(ϕ) is
called the even Clifford algebra of ϕ. We have dim C(ϕ) = 2dim ϕ and dim C0(ϕ) =
2dim ϕ−1. If K/F is a field extension, C(ϕK) = C(ϕ)K and C0(ϕK) = C0(ϕ)K .

Lemma 11.1. Let ϕ be a quadratic form on V over F with polar form b. Let
v, w ∈ V . Then b(v, w) = vw + wv in C(ϕ). In particular, v and w are orthogonal
if and only if vw = −wv in C(ϕ).

Proof. This follows from the polar identity. ¤

Example 11.2. (1) The Clifford algebra of the zero quadratic form on V coincides
with the exterior algebra Λ(V ).

(2) C0

(〈a〉) = F .
(3) If char F 6= 2, then the Clifford algebra of the quadratic form 〈a, b〉 is

C
(〈a, b〉) =

(
a,b
F

)
and C0

(〈a, b〉) = F−ab. In particular, C0

(〈〈b〉〉) = Fb.
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(4) If charF = 2, then C
(
[a, b]

)
=

[
a,b
F

]
and C0

(
[a, b]

)
= Fab. In particular,

C0

(〈〈b]]) = Fb.

By construction, the Clifford algebra satisfies the following universal property:
For any F -algebra A and any F -linear map f : V → A satisfying f(v)2 = ϕ(v) for
all v ∈ V , there exists a unique F -algebra homomorphism f̃ : C(ϕ) → A satisfying
f̃(v) = f(v) for all v ∈ V .

Example 11.3. Let C(ϕ)op denote the Clifford algebra of ϕ with the opposite
multiplication. The canonical linear map V → C(ϕ)op extends to an involution

: C(ϕ) → C(ϕ) given by the algebra isomorphism C(ϕ) → C(ϕ)op. Note that if
x = v1v2 · · · vn, then x̄ = vn · · · v2v1.

Proposition 11.4. Let ϕ be a quadratic form on V over F and let a ∈ F×. Then
(1) C0(aϕ) ' C0(ϕ), i.e., the even Clifford algebras of similar quadratic forms

are isomorphic.
(2) Let ϕ = 〈a〉 ⊥ ψ. Then C0(ϕ) ' C(−aψ).

Proof. (1): Set K = F [t]/(t2 − a) = F ⊕ F t̄ with t̄ the image of t in K.
Since (v⊗ t̄)2 = ϕ(v)⊗ t̄2 = aϕ(v)⊗1 in C(ϕ)K = C(ϕ)⊗F K, there is an F -algebra
homomorphism α : C(aϕ) → C(ϕ)K taking v ∈ V to v⊗ t̄ by the universal property
of the Clifford algebra aϕ. Since

(v ⊗ t̄)(v′ ⊗ t̄) = vv′ ⊗ t̄2 = avv′ ⊗ 1 ∈ C(ϕ) ⊂ C(ϕ)K ,

the map α restricts to an F -algebra homomorphism C0(aϕ) → C0(ϕ). As this map
is clearly a surjective map of algebras of the same dimension, it is an isomorphism.

(2): Let V = Fv ⊕W with ϕ(v) = a and W ⊂ (Fv)⊥. Since

(vw)2 = −v2w2 = −ϕ(v)ψ(w) = −aψ(w)

for every w ∈ W , the map W → C0(ϕ) defined by w 7→ vw extends to an F -algebra
isomorphism C(−aψ) ∼→ C0(ϕ) by the universal property of Clifford algebras. ¤

Let ϕ be a quadratic form on V over F . Applying the universal property of
Clifford algebras to the natural linear map V → V/ radϕ → C(ϕ̄), where ϕ̄ is the
induced quadratic form on V/ radϕ, we get a surjective F -algebra homomorphism
C(ϕ) → C(ϕ̄) with kernel (rad ϕ)C(ϕ). Consequently, we get canonical isomor-
phisms

C(ϕ̄) ' C(ϕ)/(rad ϕ)C(ϕ),

C0(ϕ̄) ' C0(ϕ)/(rad ϕ)C1(ϕ).

Example 11.5. Let ϕ = H(W ) be the hyperbolic form of the vector space V =
W ⊕W ∗ with W a nonzero vector space. Then

C(ϕ) ' EndF

(
Λ(W )

)
,

where the exterior algebra Λ(W ) of V is considered as a vector space (cf. [86, Prop.
8.3]). Moreover,

C0(ϕ) = EndF

(
Λ0(W )

)× EndF

(
Λ1(W )

)
,

where
Λ0(W ) :=

⊕

i≥0

Λ2i(W ) and Λ1(W ) :=
⊕

i≥0

Λ2i+1(W ).
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In particular, C(ϕ) is a split central simple F -algebra and the center of C0(ϕ) is
the split quadratic étale F -algebra F ×F . Note also that the natural F -linear map
V → C(ϕ) is injective.

Proposition 11.6. Let ϕ be a quadratic form over F .
(1) If dim ϕ ≥ 2 is even, then the following conditions are equivalent:

(a) ϕ is nondegenerate.
(b) C(ϕ) is central simple.
(c) C0(ϕ) is separable with center Z(ϕ), a quadratic étale algebra.

(2) If dim ϕ ≥ 3 is odd, then the following conditions are equivalent:
(a) ϕ is nondegenerate.
(b) C0(ϕ) is central simple.

Proof. We may assume that F is algebraically closed. Suppose first that ϕ is
nondegenerate and even-dimensional. Then ϕ is hyperbolic; and, by Example 11.5,
the algebra C(ϕ) is a central simple F -algebra and C0(ϕ) is a separable F -algebra
whose center is the split quadratic étale F -algebra F × F .

Conversely, suppose that the even Clifford algebra C0(ϕ) is separable or C(ϕ)
is central simple. Let v ∈ radϕ. The ideals I = vC1(ϕ) in C0(ϕ) and J = vC(ϕ) in
C(ϕ) satisfy I2 = 0 = J2. Consequently, I = 0 or J = 0 as C0(ϕ) is semi-simple or
C(ϕ) is central simple and therefore v = 0 thus rad ϕ = 0. Thus ϕ is nondegenerate.

Now suppose that dim ϕ is odd. Write ϕ = 〈a〉 ⊥ ψ for some a ∈ F and an
even-dimensional form ψ. Let v ∈ Vϕ be a nonzero vector satisfying ϕ(v) = a with
v orthogonal to Vψ. If ϕ is nondegenerate, then a 6= 0 and ψ is nondegenerate.
It follows from Proposition 11.4(2) and the first part of the proof that the algebra
C0(ϕ) ' C(−aψ) is central simple.

Conversely, suppose that the algebra C0(ϕ) is central simple. As dim ϕ ≥ 3,
the subspace I := vC1(ϕ) of C0(ϕ) is nonzero. If a = 0, then I is a nontrivial
ideal of C0(ϕ), a contradiction to the simplicity of C0(ϕ). Thus a 6= 0 and by
Proposition 11.4(2), C0(ϕ) ' C(−aψ). Hence by the first part of the proof, the
form ψ is nondegenerate. Therefore, ϕ is also nondegenerate. ¤

Lemma 11.7. Let ϕ be a nondegenerate quadratic form of positive even dimension.
Then yx = x̄y for every x ∈ Z(ϕ) and y ∈ C1(ϕ).

Proof. Let v ∈ Vϕ be an anisotropic vector hence a unit in C(ϕ). Since
conjugation by v on C(ϕ) stabilizes C0(ϕ), it stabilizes the center of C0(ϕ), i.e.,
vZ(ϕ)v−1 = Z(ϕ). As C(ϕ) is a central algebra, conjugation by v induces a non-
trivial automorphism on Z(ϕ) given by x 7→ x̄ otherwise, since C1(ϕ) = C0(ϕ)v,
the full algebra C(ϕ) would commute with Z(ϕ). Thus vx = x̄v for all x ∈ Z(ϕ).
Let y ∈ C1(ϕ). Writing y in the form y = zv for some z ∈ C0(ϕ), we have
yx = zvx = zx̄v = x̄zv = x̄y for every x ∈ Z(ϕ). ¤

Corollary 11.8. Let ϕ be a nondegenerate quadratic form of positive even dimen-
sion. If a is a norm for the quadratic étale algebra Z(ϕ) then C(aϕ) ' C(ϕ).

Proof. Let x ∈ Z(ϕ) satisfy N(x) = a. By Lemma 11.7, we have (vx)2 =
N(x)v2 = aϕ(v) in C(ϕ) for every v ∈ V . By the universal property of the Clifford
algebra aϕ, there is an algebra homomorphism α : C(aϕ) → C(ϕ) mapping v to vx.
Since both algebras are simple of the same dimension, α is an isomorphism. ¤
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12. Binary quadratic forms and quadratic algebras

In §98.B and §98.E we review the theory of quadratic and quaternion algebras.
In this section, we study the relationship between these algebras and quadratic
forms.

If A is a quadratic F -algebra, we let TrA and NA denote the trace form and
the quadratic norm form of A, respectively. (cf. §98.B). Note that NA is a binary
form representing 1.

Conversely, if ϕ is a binary quadratic form over F , then the even Clifford algebra
C0(ϕ) is a quadratic F -algebra. We have defined two maps

Quadratic
F -algebras

−→
←−

Binary quadratic
forms representing 1

Proposition 12.1. The two maps above induce mutually inverse bijections of the
set of isomorphism classes of quadratic F -algebras and the set of isometry classes
of binary quadratic forms representing one. Under these bijections, we have:

(1) Quadratic étale algebras correspond to nondegenerate binary forms.
(2) Quadratic fields correspond to anisotropic binary forms.
(3) Semisimple algebras correspond to regular binary quadratic forms.

Proof. Let A be a quadratic F -algebra. We need to show that A ' C0(NA).
We have C1(NA) = A. Therefore, the map α : A → C0(NA) defined by x 7→ 1 · x
(where dot denotes the product in the Clifford algebra) is an F -linear isomorphism.
We shall show that α is an algebra isomorphism, i.e., (1 · x) · (1 · y) = 1 · xy for
all x, y ∈ A. The equality holds if x ∈ F or y ∈ F . Since A is 2-dimensional over
F , it suffices to check the equality when x = y and it does not lie in F . We have
1 · x + x · 1 = NA(x + 1)−NA(x)−NA(1) = TrA(x), so

(1 · x) · (1 · x) = (1 · x) · (TrA(x)− x · 1) = 1 · TrA(x)x− 1 ·NA(x) · 1 = 1 · x2

as needed.
Conversely, let ϕ be a binary quadratic form on V representing 1. We shall show

that the norm form for the quadratic F -algebra C0(ϕ) is isometric to ϕ. Let v0 ∈ V
be a vector satisfying ϕ(v0) = 1. Let f : V → C0(ϕ) be the F -linear isomorphism
defined by f(v) = v · v0. The quadratic equation (98.1) for v · v0 ∈ C0(ϕ) in §98.B
becomes

(v · v0)2 = v · (b(v, v0)− v · v0) · v0 = b(v, v0)(v · v0)− ϕ(v),

so NC0(ϕ)(v · v0) = ϕ(v); hence

NC0(ϕ)

(
f(v)

)
= NC0(ϕ)(v · v0) = ϕ(v),

i.e., f is an isometry of ϕ with the norm form of C0(ϕ) as needed.
In order to prove that quadratic étale algebras correspond to nondegenerate

binary forms it is sufficient to assume that F is algebraically closed. Then a qua-
dratic étale algebra A is isomorphic to F × F and therefore NA ' H. Conversely,
by Example 11.5, C0(H) ' F × F .

If a quadratic F -algebra A is a field, then obviously the norm form NA is
anisotropic. Conversely, if NA is anisotropic, then for every nonzero a ∈ A we have
aā = NA(a) 6= 0, therefore a is invertible, i.e., A is a field.
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Statement (3) follows from statements (1) and (2), since a quadratic F -algebra
is semisimple if and only if it is either a field or F ×F , and a binary quadratic form
is regular if and only if it is anisotropic or hyperbolic. ¤

Corollary 12.2. (1) Let A and B be quadratic F -algebras. Then A and B are
isomorphic if and only if the norm forms NA and NB are isometric.

(2) Let ϕ and ψ be nonzero binary quadratic forms. Then ϕ and ψ are similar
if and only if the even Clifford algebras C0(ϕ) and C0(ψ) are isomorphic.

Corollary 12.3. Let ϕ be an anisotropic binary quadratic form and let K/F be a
quadratic field extension. Then ϕK is isotropic if and only if K ' C0(ϕ).

Proof. By Proposition 12.1, the form ϕK is isotropic if and only if the 2-
dimensional even Clifford K-algebra C0(ϕK) = C0(ϕ)⊗K is not a field. The latter
is equivalent to K ' C0(ϕ). ¤

We now consider the relationship between quaternion and Clifford algebras.

Proposition 12.4. Let Q be a quaternion F -algebra and ϕ the reduced norm qua-
dratic form of Q. Then C(ϕ) 'M2(Q).

Proof. For every x ∈ Q, let mx be the matrix
(

0 x
x̄ 0

)
in M2(Q). Since m2

x =
xx̄ = Nrd(x) = ϕ(x), the F -linear map Q → M2(Q) defined by x 7→ mx extends
to an F -algebra homomorphism α : C(ϕ) → M2(Q) by the universal property of
Clifford algebras. As C(ϕ) is a central simple algebra of dimension 16 = dimM2(Q),
the map α is an isomorphism. ¤

Corollary 12.5. Two quaternion algebras are isomorphic if and only if their re-
duced norm quadratic forms are isometric. In particular, a quaternion algebra is
split if and only if its reduced norm quadratic form is hyperbolic.

Exercise 12.6. Let Q be a quaternion F -algebra and let ϕ′ be the restriction of
the reduced norm quadratic form to the space Q′ of pure quaternions. Prove that
ϕ′ is nondegenerate and C0(ϕ′) is isomorphic to Q. Conversely, prove that any
3-dimensional nondegenerate quadratic form ψ is similar to the restriction of the
reduced norm quadratic form of C0(ψ) to the space of pure quaternions. Therefore,
there is a natural bijection between the set of isomorphism classes of quaternion
algebras over F and the set of similarity classes of 3-dimensional nondegenerate
quadratic forms over F .

13. The discriminant

A major objective is to define sufficiently many invariants of quadratic forms.
The first and simplest such invariant is the dimension. In this section, using qua-
dratic étale algebras, we introduce a second invariant, the discriminant, of a non-
degenerate quadratic form.

Let ϕ be a nondegenerate quadratic form over F of positive even dimension.
The center Z(ϕ) of C0(ϕ) is a quadratic étale F -algebra. The class of Z(ϕ) in
Ét2(F ), the group of isomorphisms classes of quadratic étale F -algebras under the
operation · induced by ? (cf. §98.B), is called the discriminant of ϕ and will be
denoted by disc(ϕ). Define the discriminant of the zero form to be trivial.
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Example 13.1. By Example 11.2, we have disc
(〈a, b〉) = F−ab if charF 6= 2 and

disc
(
[a, b]

)
= Fab if charF = 2. It follows from Example 11.5 that the discriminant

of a hyperbolic form is trivial.

The discriminant is a complete invariant for the similarity class of a nondegen-
erate binary quadratic form, i.e.,

Proposition 13.2. Two nondegenerate binary quadratic forms are similar if and
only if their discriminants are equal.

Proof. Let disc(ϕ) = disc(ψ), i.e., C0(ϕ) ' C0(ψ). Write ϕ = aϕ′ and
ψ = bψ′, where ϕ′ and ψ′ both represent 1. By Proposition 12.1, the forms ϕ′ and
ψ′ are the norm forms for C0(ϕ′) = C0(ϕ) and C0(ψ′) = C0(ψ), respectively. Since
these algebras are isomorphic, we have ϕ′ ' ψ′. ¤

Corollary 13.3. A nondegenerate binary quadratic form ϕ is hyperbolic if and
only if disc(ϕ) is trivial.

Lemma 13.4. Let ϕ and ψ be nondegenerate quadratic forms of even dimension
over F . Then disc(ϕ ⊥ ψ) = disc(ϕ) · disc(ψ).

Proof. The even Clifford algebra C0(ϕ ⊥ ψ) coincides with
(
C0(ϕ)⊗F C0(ψ)

)⊕ (
C1(ϕ)⊗F C1(ψ)

)

and contains Z(ϕ)⊗F Z(ψ). By Lemma 11.7, we have yx = x̄y for every x ∈ Z(ϕ)
and y ∈ C1(ϕ). Similarly, wz = z̄w for every z ∈ Z(ψ) and w ∈ C1(ψ). Therefore,
the center of C0(ϕ ⊥ ψ) coincides with the subalgebra Z(ϕ) ? Z(ψ) of all stable
elements of Z(ϕ)⊗F Z(ψ) under the automorphism x⊗ y 7→ x̄⊗ ȳ. ¤

Example 13.5. (1) Let charF 6= 2. Then

disc
(〈a1, a2, . . . , a2n〉

)
= Fc

where c = (−1)na1a2 . . . a2n. For this reason, the discriminant is often called the
signed determinant when the characteristic of F is different from 2.

(2) Let charF = 2. Then

disc
(
[a1, b1] ⊥ · · · ⊥ [an, bn]

)
= Fc

where c = a1b1 + · · ·+ anbn. The discriminant in the characteristic 2 case is often
called the Arf invariant.

Proposition 13.6. Let ρ be a nondegenerate quadratic form over F . If disc(ρ) = 1
and ρ ⊥ 〈a〉 ∼ 〈a〉 for some a ∈ F×, then ρ ∼ 0.

Proof. We may assume that the characteristic of F is 2. By Proposition 8.8,
we have ρ ∼ [a, b] for some b ∈ F . Therefore, disc

(
[a, b]

)
is trivial and [a, b] ∼ 0. ¤

It follows from Lemma 13.4 and Example 11.5 that the map

e1 : Iq(F ) → Ét2(F )

taking a form ϕ to disc(ϕ) is a well-defined group homomorphism.
The analogue of Proposition 4.13 is true, viz.,

Theorem 13.7. The homomorphism e1 is surjective with kernel I2
q (F ).
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Proof. The surjectivity follows from Example 13.1. Since similar forms have
isomorphic even Clifford algebras, for any ϕ ∈ Iq(F ) and a ∈ F×, we have

e1

(〈〈a〉〉 · ϕ)
= e1(ϕ) · e1(−aϕ) = 0.

Therefore, e1

(
I2
q (F )

)
= 0.

Let ϕ ∈ Iq(F ) be a form with trivial discriminant. We show by induction on
dim ϕ that ϕ ∈ I2

q (F ). The case dim ϕ = 2 follows from Corollary 13.3. Suppose
that dim ϕ ≥ 4. Write ϕ = ρ ⊥ ψ with ρ a binary form. Let a ∈ F× be chosen so
that the form ϕ′ = aρ ⊥ ψ is isotropic. Then the class of ϕ′ in Iq(F ) is represented
by a form of dimension less than dim ϕ. As disc(ϕ′) = disc(ϕ) is trivial, ϕ′ ∈ I2

q (F )
by induction. Since ρ ≡ aρ mod I2

q (F ), ϕ also lies in I2
q (F ). ¤

Remark 13.8. One can also define a discriminant like invariant for all nondegene-
rate quadratic forms. Let ϕ be a nondegenerate quadratic form. Define the deter-
minant detϕ of ϕ to be det bϕ in F×/F×2 if the bilinear form bϕ is nondegenerate.
If charF = 2 and dim ϕ is odd (the only remaining case), define det ϕ to be aF×2

in F×/F×2 where a ∈ F× satisfies ϕ|rad bϕ
' 〈a〉.

Remark 13.9. Let ϕ be a nondegenerate even-dimensional quadratic form with
trivial discriminant over F , i.e., ϕ ∈ I2

q (F ). Then Z(ϕ) ' F×F , in particular, C(ϕ)
is not a division algebra, i.e., C(ϕ) ' M2

(
C+(ϕ)

)
for a central simple F -algebra

C+(ϕ) uniquely determined up to isomorphism. Moreover, C0(ϕ) ' C+(ϕ) ×
C+(ϕ).

14. The Clifford invariant

A more delicate invariant of a nondegenerate even-dimensional quadratic form
arises from its associated Clifford algebra.

Let ϕ be a nondegenerate even-dimensional quadratic form over F . The Clifford
algebra C(ϕ) is then a central simple F -algebra. Denote by clif(ϕ) the class of C(ϕ)
in the Brauer group Br(F ). It follows from Example 11.3 that clif(ϕ) ∈ Br2(F ).
We call clif(ϕ) the Clifford invariant of ϕ.

Example 14.1. Let ϕ be the reduced norm form of a quaternion algebra Q. It
follows from Proposition 12.4 that clif(ϕ) = [Q].

Lemma 14.2. Let ϕ and ψ be two nondegenerate even-dimensional quadratic forms
over F . If disc(ϕ) is trivial, then clif(ϕ ⊥ ψ) = clif(ϕ) · clif(ψ).

Proof. Let e ∈ Z(ϕ) be a nontrivial idempotent and set s = e − ē = 1 − 2e.
We have s̄ = −s, s2 = 1, and vs = s̄v = −sv for every v ∈ Vϕ by Lemma 11.7.
Therefore, in the Clifford algebra of ϕ ⊥ ψ, we have (v⊗1+s⊗w)2 = ϕ(v)+ψ(w) for
all v ∈ Vϕ and w ∈ Vψ. It follows from the universal property of the Clifford algebra
that the F -linear map Vϕ ⊕ Vψ → C(ϕ)⊗F C(ψ) defined by v⊕w 7→ v⊗ 1 + s⊗w
extends to an F -algebra homomorphism C(ϕ ⊥ ψ) → C(ϕ) ⊗F C(ψ). This map
is an isomorphism as the Clifford algebra of an even-dimensional form is central
simple. ¤
Theorem 14.3. The map

e2 : I2
q (F ) → Br2(F )

taking a form ϕ to clif(ϕ) is a well-defined group homomorphism. Moreover,
I3
q (F ) ⊂ Ker(e2).
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Proof. It follows from Lemma 14.2 that e2 is well-defined. Next let ϕ ∈ I2
q (F )

and a ∈ F×. Since disc(ϕ) is trivial, it follows from Corollary 11.8 that C(aϕ) '
C(ϕ). Therefore, e2

(〈〈a〉〉 ⊗ ϕ
)

= e2(ϕ)− e2(aϕ) = 0. ¤

We shall, in fact, prove that I3
q (F ) = Ker(e2) in §16 for fields of characteristic

2 and Chapter VIII for fields of characteristic not 2.

15. Chain p-equivalence of quadratic Pfister forms

We saw that anisotropic bilinear Pfister forms 〈〈a1, . . . , an〉〉 and 〈〈b1, . . . , bn〉〉
were p-chain equivalent if and only if they were isometric. This equivalence rela-
tion was based on isometries of 2-fold Pfister forms. In this section, we prove the
analogous result for quadratic Pfister forms. This was first proven in the case of
characteristic 2 by Aravire and Baeza in [12]. To begin we therefore need to estab-
lish isometries of quadratic 2-fold Pfister forms in characteristic 2. This is given by
the following:

Lemma 15.1. Let F be a field of characteristic 2. Then in Iq(F ), we have
(1) 〈〈a, b + b′]] = 〈〈a, b]] + 〈〈a, b′]].
(2) 〈〈aa′, b]] ≡ 〈〈a, b]] + 〈〈a′, b]] mod I3

q (F ).

(3) 〈〈a + x2, b]] = 〈〈a,
ab

a + x2
]].

(4) 〈〈a + a′, b]] ≡ 〈〈a,
ab

a + a′
]] + 〈〈a′, a′b

a + a′
]] mod I3

q (F ).

Proof. (1): This follows by Example 7.23.
(2): Follows from the equality 〈〈a〉〉+ 〈〈a′〉〉 = 〈〈aa′〉〉+ 〈〈a, a′〉〉 in the Witt ring

of bilinear forms by Example 4.10.
(3): Let c = b/(a + x2) and

A =
[a, c

F

]
and B =

[
a + x2, c

F

]
.

By Corollary 12.5, it suffices to prove that A ' B. Let {1, i, j, ij} be the standard
basis of A, i.e., i2 = a, j2 = b and ij + ji = 1. Considering the new basis
{1, i + x, j, (i + x)j} with (i + x)2 = a + x2 shows that A ' B.

(4): We have by (1)–(3):

〈〈a + a′, b]] ≡ 〈〈 a

a′
+ 1, b]] + 〈〈a′, b]] = 〈〈 a

a′
,

ab

a + a′
]] + 〈〈a′, b]]

≡ 〈〈a,
ab

a + a′
]] + 〈〈a′, ab

a + a′
]] + 〈〈a′, b]]

= 〈〈a,
ab

a + a′
]] + 〈〈a′, a′b

a + a′
]] mod I3

q (F ). ¤

The definition of chain p-equivalence for quadratic Pfister forms is slightly more
involved than that for bilinear Pfister forms.

Definition 15.2. Let a1, . . . , an−1, b1, . . . , bn−1 ∈ F× and an, bn ∈ F with n ≥ 1.
We assume that an and bn are nonzero if charF 6= 2. Let ϕ = 〈〈a1, . . . , an−1, an]]
and ψ = 〈〈b1, . . . , bn−1, bn]]. We say that the quadratic Pfister forms ϕ and ψ are
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simply p-equivalent if either n = 1 and 〈〈a1]] ' 〈〈b1]] or n ≥ 2 and there exist i and
j with 1 ≤ i < j ≤ n satisfying

〈〈ai, aj〉〉 ' 〈〈bi, bj〉〉 with j < n and al = bl for all l 6= i, j or

〈〈ai, aj ]] ' 〈〈bi, bj ]] with j = n and al = bl for all l 6= i, j.

We say that ϕ and ψ are chain p-equivalent if there exist quadratic n-fold Pfister
forms ϕ0, . . . , ϕm for some m such that ϕ = ϕ0, ψ = ϕm and ϕi is simply p-
equivalent to ϕi+1 for each i ∈ [0, m− 1].

Theorem 15.3. Let

ϕ = 〈〈a1, . . . , an−1, an]] and ψ = 〈〈b1, . . . , bn−1, bn]]

be anisotropic quadratic n-fold Pfister forms. Then ϕ ≈ ψ if and only if ϕ ' ψ.

We shall prove this result in a series of steps. Suppose that ϕ ' ψ. The case
charF 6= 2 was considered in Theorem 6.10, so we may also assume that charF = 2.
As before the map ℘ : F → F is defined by ℘(x) = x2 + x when charF = 2.

Lemma 15.4. Let charF = 2. If b = 〈〈a1, . . . , an〉〉 is an anisotropic bilinear
Pfister form and d1, d2 ∈ F , then b ⊗ 〈〈d1]] ' b ⊗ 〈〈d2]] if and only if b ⊗ 〈〈d1]] ≈
b⊗ 〈〈d2]].

Proof. Assume that b ⊗ 〈〈d1]] ' b ⊗ 〈〈d2]]. It follows from Example 7.23
that the form b⊗ 〈〈d1 + d2]] is Witt-equivalent to b⊗ 〈〈d1]] ⊥ b⊗ 〈〈d2]] and hence
is hyperbolic. By Lemma 9.11, we have d1 + d2 = x + y where x ∈ im(℘) and
y ∈ D̃(b′). If y = 0, then 〈〈d1]] ' 〈〈d2]] and we are done. So suppose that y 6= 0.
By Lemma 6.11, there is a bilinear Pfister form c such that b ≈ c ⊗ 〈〈y〉〉. As
〈〈y, d1]] ' 〈〈y, d2]], we have

b⊗ 〈〈d1]] ≈ c⊗ 〈〈y, d1]] ≈ c⊗ 〈〈y, d2]] ≈ b⊗ 〈〈d2]]. ¤
Lemma 15.5. Let charF = 2. If ρ = 〈〈b, b2, . . . , bn, d]] is a quadratic Pfister form,
then for every a ∈ F× and z ∈ D(ρ), we have 〈〈a〉〉 ⊗ ρ ≈ 〈〈az〉〉 ⊗ ρ.

Proof. We induct on dim ρ. Let η = 〈〈b2, . . . bn, d]]. We have z = x + by

with x, y ∈ D̃(η). If y = 0, then x = z 6= 0 and by the induction hypothesis
〈〈a〉〉 ⊗ η ≈ 〈〈az〉〉 ⊗ η, hence

〈〈a〉〉 ⊗ ρ = 〈〈a, b〉〉 ⊗ η ≈ 〈〈az, b〉〉 ⊗ η ≈ 〈〈az〉〉 ⊗ ρ.

If x = 0, then z = by and by the induction hypothesis 〈〈a〉〉 ⊗ η ≈ 〈〈ay〉〉 ⊗ η, hence

〈〈a〉〉 ⊗ ρ = 〈〈a, b〉〉 ⊗ η ≈ 〈〈ay, b〉〉 ⊗ η ≈ 〈〈az, b〉〉 ⊗ η ≈ 〈〈az〉〉 ⊗ ρ.

Now suppose that both x and y are nonzero. As η is round, xy ∈ D(η). By the
induction hypothesis and Lemma 4.15,

〈〈a〉〉 ⊗ ρ = 〈〈a, b〉〉 ⊗ η ≈ 〈〈a, ab〉〉 ⊗ η ≈ 〈〈ax, aby〉〉 ⊗ η

≈ 〈〈az, bxy〉〉 ⊗ η ≈ 〈〈az, b〉〉 ⊗ η = 〈〈az〉〉 ⊗ ρ. ¤

Lemma 15.6. Let charF = 2. Let b = 〈〈a1, . . . , am〉〉 be a bilinear Pfister form,
ρ = 〈〈b1, . . . , bn, d]] a quadratic Pfister form with n ≥ 0 (if n = 0, then ρ = 〈〈d]]),
and c ∈ F×. Suppose there exists an x ∈ D(b) with c+x 6= 0 satisfying b⊗〈〈c+x〉〉⊗ρ
is anisotropic. Then

b⊗ 〈〈c + x〉〉 ⊗ ρ ≈ b⊗ 〈〈c〉〉 ⊗ ψ

for some quadratic Pfister form ψ.
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Proof. We proceed by induction on the dimension of b. Suppose b = 〈1〉.
Then x = y2 for some y ∈ F . It follows from Lemma 15.1 that 〈〈c + y2, d]] '
〈〈c, cd/(c + y2)]], hence 〈〈c + y2〉〉 ⊗ ρ ≈ 〈〈c〉〉 ⊗ 〈〈b1, . . . , bn, cd/(c + y2)]].

So we may assume that dim b > 1. Let c = 〈〈a2, . . . , am〉〉 and a = a1. We have
x = y + az where y, z ∈ D̃(c). If c = az, then c + x = y belongs to D(b), so the
form b⊗ 〈〈c + x〉〉 would be metabolic contradicting hypothesis.

Let d := c + az. We have d 6= 0. By the induction hypothesis,

c⊗ 〈〈d + y〉〉 ⊗ ρ ≈ c⊗ 〈〈d〉〉 ⊗ µ and c⊗ 〈〈ac + a2z〉〉 ⊗ µ ≈ c⊗ 〈〈ac〉〉 ⊗ ψ

for some quadratic Pfister forms µ and ψ. Hence by Lemma 4.15,

b⊗〈〈c + x〉〉 ⊗ ρ = b⊗ 〈〈d + y〉〉 ⊗ ρ = c⊗ 〈〈a, d + y〉〉 ⊗ ρ

≈ c⊗ 〈〈a, d〉〉 ⊗ µ = c⊗ 〈〈a, c + az〉〉 ⊗ µ ≈ c⊗ 〈〈a, ac + a2z〉〉 ⊗ µ

≈ c⊗ 〈〈a, ac〉〉 ⊗ ψ ≈ c⊗ 〈〈a, c〉〉 ⊗ ψ = b⊗ 〈〈c〉〉 ⊗ ψ. ¤

If b is a bilinear Pfister form over a field F , then b ' b′ ⊥ 〈1〉 with the
pure subform b′ unique up to isometry. For a quadratic Pfister form over a field
of characteristic 2, the analogue of this is not true. So, in this case, we have to
modify our notion of a pure subform of a quadratic Pfister form. So suppose that
charF = 2. Let ϕ = b ⊗ 〈〈d]] be a quadratic Pfister form with b = b′ ⊥ 〈1〉, a
bilinear Pfister form. We have ϕ = 〈〈d]] ⊥ ϕ◦ with ϕ◦ = b′ ⊗ 〈〈d]]. The form ϕ◦

depends on the presentation of b. Let ϕ′ := 〈1〉 ⊥ b′ ⊗ 〈〈d]]. This form coincides
with the complementary form 〈1〉⊥ in ϕ. The form ϕ′ is uniquely determined by
ϕ up to isometry. Indeed, by Witt Extension Theorem 8.3, for any two vectors
v, w ∈ Vϕ with ϕ(v) = ϕ(w) = 1 there is an auto-isometry α of ϕ such that
α(v) = w. Therefore, the orthogonal complements of Fv and Fw are isometric.
We call the form ϕ′ the pure subform of ϕ.

Proposition 15.7. Let ρ = 〈〈b1, . . . , bn, d]] be a quadratic Pfister form, n ≥ 1,
and b = 〈〈a1, . . . , am〉〉 a bilinear Pfister form. Set ϕ = b ⊗ ρ. Suppose that ϕ is
anisotropic. Let c ∈ D(b ⊗ ρ′) \D(b). Then ϕ ≈ b ⊗ 〈〈c〉〉 ⊗ ψ for some quadratic
Pfister form ψ.

Proof. Let ρ = 〈〈b〉〉 ⊗ η with b = b1 and η = 〈〈b2, . . . , bn, d]] (with η = 〈〈d]] if
n = 1). We proceed by induction on dim ρ. Note that if n = 1, we have η′ = 〈1〉
and D(b⊗ η′) = D(b). As

b⊗ ρ′ = (b⊗ η′) ⊥ (bb⊗ η),

we have c = x + by with x ∈ D̃(b⊗ η′), and y ∈ D̃(b⊗ η).
If y = 0, then c = x ∈ D(b⊗ η′) \D(b). In particular, n > 1. By the induction

hypothesis, b⊗ η ≈ b⊗ 〈〈c〉〉 ⊗ µ for some quadratic Pfister form µ. Hence

ϕ = b⊗ ρ = b⊗ 〈〈b〉〉 ⊗ η ≈ b⊗ 〈〈c〉〉 ⊗ 〈〈b〉〉 ⊗ µ.

Now suppose that y 6= 0. By Lemma 15.5,

(15.8) ϕ = b⊗ ρ = b⊗ 〈〈b〉〉 ⊗ η ≈ b⊗ 〈〈by〉〉 ⊗ η.

Assume that x /∈ D̃(b). In particular, n > 1. By the induction hypothesis, b⊗ η ≈
b⊗ 〈〈x〉〉 ⊗ µ for some quadratic Pfister form µ. Therefore, by Lemma 4.15,

ϕ ≈ b⊗ 〈〈by〉〉 ⊗ η ≈ b⊗ 〈〈x, by〉〉 ⊗ µ ≈ b⊗ 〈〈c, bxy〉〉 ⊗ µ.
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Finally, we assume that x ∈ D̃(b). By Lemma 15.6 and (15.8),

ϕ ≈ b⊗ 〈〈by〉〉 ⊗ η = b⊗ 〈〈c + x〉〉 ⊗ η ≈ b⊗ 〈〈c〉〉 ⊗ ψ

for a quadratic Pfister form ψ. ¤

Proof of Theorem 15.3. Let ϕ and ψ be isometric anisotropic quadratic
n-fold Pfister forms over F as in the statement of Theorem 15.3. We must show
that ϕ ≈ ψ. We may assume that charF = 2.
Claim: For every r ∈ [0, n − 1], there exist a bilinear r-fold Pfister form b and
quadratic (n− r)-fold Pfister forms ρ and µ such that ϕ ≈ b⊗ ρ and ψ ≈ b⊗ µ.

We prove the claim by induction on r. The case r = 0 is obvious. Suppose we
have such b, ρ and µ for some r < n− 1. Write ρ = 〈〈c〉〉 ⊗ ψ for some c ∈ F× and
quadratic Pfister form ψ, so ϕ ≈ b ⊗ 〈〈c〉〉 ⊗ ψ. Note that as ϕ is anisotropic, we
have c ∈ D(b⊗ ρ′) \D(b).

The form b ⊗ 〈1〉 is isometric to subforms of ϕ and ψ. As bϕ and bψ are
nondegenerate, by the Witt Extension Theorem 8.3, an isometry between these
subforms extends to an isometry between ϕ and ψ. This isometry induces an
isometry of orthogonal complements b ⊗ ρ′ and b ⊗ µ′. Therefore, we have c ∈
D(b ⊗ ρ′) \ D(b) = D(b ⊗ µ′) \ D(b). It follows from Proposition 15.7 that ψ ≈
b ⊗ 〈〈c〉〉 ⊗ σ for some quadratic Pfister form σ. Thus ψ ≈ b ⊗ 〈〈c〉〉 ⊗ σ and the
claim is established.

Applying the claim in the case r = n− 1, we find a bilinear (n− 1)-fold Pfister
form b and elements d1, d2 ∈ F such that ϕ ≈ b ⊗ 〈〈d1]] and ψ ≈ b ⊗ 〈〈d2]]. By
Lemma 15.4, we have b⊗ 〈〈d1]] ≈ b⊗ 〈〈d2]], hence ϕ ≈ ψ. ¤

16. Cohomological invariants

A major problem in the theory of quadratic forms was to determine the rela-
tionship between quadratic forms and Galois cohomology. In this section, using the
cohomology groups defined in §101, we introduce the problem.

Let Hn(F ) be the groups defined in §101. In particular,

Hn(F ) '
{

Ét2(F ), if n = 1,
Br2(F ), if n = 2.

Let ϕ be a quadratic n-fold Pfister form. Suppose that ϕ ' 〈〈a1, . . . , an]].
Define the cohomological invariant of ϕ to be the class en(ϕ) in Hn(F ) given by

en(ϕ) = {a1, a2, . . . , an−1} · [Fan ],

where [Fc] is the class of the étale quadratic extension Fc/F in Ét2(F ) ' H1(F ).
The cohomological invariant en is well-defined on quadratic n-fold Pfister forms:

Proposition 16.1. Let ϕ and ψ be quadratic n-fold Pfister forms. If ϕ ' ψ, then
en(ϕ) = en(ψ) in Hn(F ).

Proof. This follows from Theorems 6.20 and 15.3. ¤

As in the bilinear case, if we use the Hauptsatz 23.7 below, we even have that
if

ϕ ≡ ψ mod In+1
q (F ), then en(ϕ) = en(ψ)

in Hn(F ). (Cf. Corollary 23.9 below.) In fact, we shall also show by elementary
means in Proposition 24.6 below that if ϕ1, ϕ2 and ϕ3 are general quadratic n-fold



68 II. QUADRATIC FORMS

Pfister forms such that ϕ1 + ϕ2 + ϕ3 ∈ In+1
q (F ), then en(ϕ1) + en(ϕ2) + en(ϕ3) =

0 ∈ Hn(F ).
We call the extension of en to a group homomorphism en : In

q (F ) → Hn(F )
the nth cohomological invariant of In

q (F ).

Fact 16.2. The nth cohomological invariant en exists for all fields F and for all
n ≥ 1. Moreover, Ker(en) = In+1

q (F ). Furthermore, there is a unique isomorphism

en : In
q (F )/In+1

q (F ) → Hn(F )

satisfying ēn

(
ϕ + In+1

q (F )
)

= en(ϕ) for every quadratic n-fold Pfister quadratic
form ϕ.

Special cases of Fact 16.2 can be proven by elementary methods. Indeed, we
have already shown that the invariant e1 is well-defined on all of Iq(F ) and coincides
with the discriminant in Theorem 13.7 and e2 is well-defined on all of I2

q (F ) and
coincides with the Clifford invariant by Theorem 14.3. Then by Theorems 13.7 and
14.3 the maps ē1 and ē2 are well-defined. For fields of characteristic different from 2,
e3 was shown to be well-defined, hence ē3 by Arason in [4], and ē3 an isomorphism
in [103], and independently by Rost [115]; and Jacob and Rost showed that e4 was
well-defined in [65].

Suppose that charF 6= 2. Then the identification of bilinear and quadratic
forms leads to the composition

hn
F : Kn(F )/2Kn(F )

fn−→ In(F )/In+1(F ) = In
q (F )/In+1

q (F ) en−→ Hn(F ),

where hn
F is the norm residue homomorphism of degree n defined in §101.

Milnor conjectured that hn
F was an isomorphism for all n in [106]. Voevodsky

proved the Milnor Conjecture in [136]. As stated in Fact 5.15 the map fn is an
isomorphism for all n. In particular, en is well-defined and ēn is an isomorphism
for all n.

If charF = 2, Kato proved Fact 16.2 in [78].
We have proven that ē1 is an isomorphism in Theorem 13.7. We shall prove that

h2
F is an isomorphism in Chapter VIII below if the characteristic of F is different

from 2. It follows that ē2 is an isomorphism. We now turn to the proof that ē2 is
an isomorphism if charF = 2. The following statement was first proven by Sah in
[118].

Theorem 16.3. Let charF = 2. Then ē2 : I2
q (F )/I3

q (F ) → Br2(F ) is an isomor-
phism.

Proof. The classes of quaternion algebras generate the group Br2(F ) by
[1, Ch. VII, Th. 30]. It follows that ē2 is surjective. So we need only show
that ē2 is injective.

Let α ∈ I2
q (F ) satisfy e2(α) = 1. Write α in the form

∑n
i=1 di〈〈ai, bi]]. By

assumption, the product of all
[ai, ci

F

]
with ci = bi/ai is trivial in Br(F ).

We prove by induction on n that α ∈ I3
q (F ). If n = 1, we have α = 〈〈a1, b1]] and

e2(α) =
[a1, c1

F

]
= 1. Therefore, the reduced norm form α of the split quaternion

algebra
[a1, c1

F

]
is hyperbolic by Corollary 12.5, hence α = 0.
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In the general case, let L = F (a1/2
1 , . . . , a

1/2
n−1). The field L splits

[ai, ci

F

]

for all i ∈ [1, n − 1] and hence splits
[an, cn

F

]
. By Lemma 98.16, we have

[an, cn

F

]
=

[
c, d

F

]
, where c is the square of an element of L, i.e., c is the sum of

elements of the form g2m where g ∈ F and m is a monomial in the ai, i ∈ [1, n−1].
It follows from Corollary 12.5 that 〈〈an, bn]] = 〈〈c, cd]]. By Lemma 15.1, we have
〈〈c, cd]] is congruent modulo I3

q (F ) to the sum of 2-fold Pfister forms 〈〈ai, fi]] with
i ∈ [1, n− 1], fi ∈ F . Therefore, we may assume that α =

∑n−1
i=1 〈〈ai, b

′
i]] for some

b′i. By the induction hypothesis, α ∈ I3
q (F ). ¤





CHAPTER III

Forms over Rational Function Fields

17. The Cassels-Pfister Theorem

Given a quadratic form ϕ over a field over F , it is natural to consider values
of the form over the rational function field F (t). The Cassels-Pfister Theorem
shows that whenever ϕ represents a polynomial over F (t), then it already does so
when viewed as a quadratic form over the polynomial ring F [t]. This results in
specialization theorems. As an n-dimensional quadratic form ψ can be viewed as
a polynomial in F [T ] := F [t1, . . . , tn], one can also ask when is ψ(T ) a value of
ϕF (T )? If both the forms are anisotropic, we shall also show in this section the
fundamental result that this is true if and only if ψ is a subform of ϕ.

Let ϕ be an anisotropic quadratic form on V over F and b its polar form. Let
v and u be two distinct vectors in V and set w = v − u. Let τw be the reflection
with respect to w as defined in Example 7.2. Then ϕ

(
τw(v)

)
= ϕ(v) as τw is an

isometry and

(17.1) τw(v) = u +
ϕ(u)− ϕ(v)

ϕ(w)
w

as bϕ(v, w) = −bϕ(v,−w) = −ϕ(u) + ϕ(v) + ϕ(w) by definition.

Notation 17.2. If T = (t1, . . . , tn) is a tuple of independent variables, let

F [T ] := F [t1, . . . , tn] and F (T ) := F (t1, . . . , tn).

If V is a finite dimensional vector space over F , let

V [T ] := F [T ]⊗F V and V (T ) := VF (T ) := F (T )⊗F V.

Note that V (T ) is also the localization of V [T ] at F [T ] \ {0}. In particular, if
v ∈ V (T ), there exist w ∈ V [T ] and a nonzero f ∈ F [T ] satisfying v = w/f . For a
single variable t, we let V [t] := F [t]⊗F V and V (t) := VF (t) := F (t)⊗F V .

The following general form of the Classical Cassels-Pfister Theorem is true.

Theorem 17.3 (Cassels-Pfister Theorem). Let ϕ be a quadratic form on V and let
h ∈ F [t] ∩ D(ϕF (t)). Then there is a w ∈ V [t] such that ϕ(w) = h.

Proof. Suppose first that ϕ is anisotropic. Let v ∈ V (t) satisfy ϕ(v) = h.
There is a nonzero polynomial f ∈ F [t] such that fv ∈ V [t]. Choose v and f so
that deg(f) is the smallest possible. It suffice to show that f is constant. Suppose
deg(f) > 0.

Using the analog of the Division Algorithm, we can divide the polynomial vector
fv by f to get fv = fu + r, where u, r ∈ V [t] and deg(r) < deg(f). If r = 0, then

71
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v = u ∈ V [t] and f is constant; so we may assume that r 6= 0. In particular,
ϕ(r) 6= 0 as ϕ is anisotropic. Set w = v − u = r/f and consider the vector

(17.4) τw(v) = u +
ϕ(u)− h

ϕ(r)/f
r

as in (17.1). We have ϕ
(
τw(v)

)
= h. We show that f ′ := ϕ(r)/f is a polynomial.

As
f2h = ϕ(fv) = ϕ(fu + r) = f2ϕ(u) + fbϕ(u, r) + ϕ(r),

we see that ϕ(r) is divisible by f . Equation (17.4) implies that f ′τw(v) ∈ V [t] and
the definition of r yields

deg(f ′) = deg ϕ(r)− deg(f) < 2 deg(f)− deg(f) = deg(f),

a contradiction to the minimality of deg(f).
Now suppose that ϕ is isotropic. By Lemma 7.12, we may assume that radϕ =

0. In particular, a hyperbolic plane splits off as an orthogonal direct summand of
ϕ by Lemma 7.13. Let e, e′ be a hyperbolic pair for this hyperbolic plane. Then

ϕ(he + e′) = bϕ(he, e′) = hbϕ(e, e′) = h. ¤
The theorem above was first proved by Cassels in [22] for the form 〈1, . . . , 1〉

over a field of characteristic not 2. This was generalized by Pfister to nondegenerate
forms over such fields in [108] and used to prove the results through Corollary 17.13
below in that case.

Corollary 17.5. Let b be a symmetric bilinear form on V and let h ∈ F [t] ∩
D(ϕF (t)). Then there is a v ∈ V [t] such that b(v, v) = h.

Proof. Let ϕ be ϕb, i.e., ϕ(v) = b(v, v) for all v ∈ V . The result follows from
the Cassels-Pfister Theorem for ϕ. ¤
Corollary 17.6. Let f ∈ F [t] be a sum of n squares in F (t). Then f is a sum of
n squares in F [t].

Corollary 17.7 (Substitution Principle). Let ϕ be a quadratic form over F and
h ∈ D(ϕF (T )) with T = (t1, . . . , tn). Suppose that h(x) is defined for x ∈ Fn and
h(x) 6= 0, then h(x) ∈ D(ϕ).

Proof. As h(x) is defined, we can write h = f/g with f, g ∈ F [T ] and g(x) 6=
0. Replacing h by g2h, we may assume that h ∈ F [T ]. Let T ′ = (t1, . . . , tn−1)
and x = (x1, . . . , xn). By the theorem, there exists v(T ′, tn) ∈ V (T ′)[tn] satisfying
ϕ
(
v(T ′, tn)

)
= h(T ′, tn). Evaluating tn at xn shows that h(T ′, xn) = ϕ

(
v(T ′, xn)

) ∈
D(ϕF (T ′)). The conclusion follows by induction on n. ¤

As above, we also deduce:

Corollary 17.8 (Bilinear Substitution Principle). Let b be a symmetric bilinear
form over F and h ∈ D(bF (T )) with T = (t1, . . . , tn). Suppose that h(x) is defined
for x ∈ Fn and h(x) 6= 0, then h(x) ∈ D(b).

We shall need the following slightly more general version of the Cassels-Pfister
Theorem.

Proposition 17.9. Let ϕ be an anisotropic quadratic form on V . Suppose that
s ∈ V and v ∈ V (t) satisfy ϕ(v) ∈ F [t] and bϕ(s, v) ∈ F [t]. Then there is w ∈ V [t]
such that ϕ(w) = ϕ(v) and bϕ(s, w) = bϕ(s, v).
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Proof. It suffices to show the value bϕ(s, v) does not change when v is modified
in the course of the proof of Theorem 17.3. Choose v0 ∈ V [t] satisfying bϕ(s, v0) =
bϕ(s, v).

Let f ∈ F [t] be a nonzero polynomial such that fv ∈ V [t]. As the remainder r
on dividing fv and fv − fv0 by f is the same and fv − fv0 ∈ (F (t)s)⊥, we have
r ∈ (F (t)s)⊥. Therefore, bϕ

(
s, τr(v)

)
= bϕ(s, v). ¤

Lemma 17.10. Let ϕ be an anisotropic quadratic form and ρ a nondegenerate
binary anisotropic quadratic form satisfying ρ(t1, t2) + d ∈ D(ϕF (t1,t2)) for some
d ∈ F . Then ϕ ' ρ ⊥ µ for some form µ and d ∈ D̃(µ).

Proof. Let ρ(t1, t2) = at21 + bt1t2 + ct22. As ρ(t1, t2) + dt23 is a value of ϕ
over F (t1, t2, t3), there is a u ∈ V = Vϕ such that ϕ(u) = a by the Substitution
Principle 17.7. Applying the Cassels-Pfister Theorem 17.3 to the form ϕF (t2), we
find a v ∈ VF (t2)[t1] such that ϕ(v) = at21 + bt1t2 + ct22 + d. Since ϕ is anisotropic,
we have degt1 v ≤ 1, i.e., v(t1) = v0 + v1t1 for some v0, v1 ∈ VF (t2). Expanding we
get

ϕ(v0) = a, b(v0, v1) = bt2, ϕ(v1) = ct22 + d,

where b = bϕ. Clearly, v0 /∈ rad(bF (t2)).
We claim that u /∈ rad(b). We may assume that u 6= v0 and therefore

0 6= ϕ(u− v0) = ϕ(u) + ϕ(v0)− b(u, v0) = b(u, u− v0)

as ϕF (t2) is anisotropic by Lemma 7.15, hence the claim follows.
By the Witt Extension Theorem 8.3, there is an isometry γ of ϕF (t2) satisfying

γ(v0) = u. Replacing v0 and v1 by u = γ(v0) and γ(v1) respectively, we may assume
that v0 ∈ V .

Applying Proposition 17.9 to the vectors v0 and v1, we find w ∈ V [t2] satisfying
ϕ(w) = ct22 + d and b(v0, w) = bt2. In a similar fashion, we have w = w0 + w1t2
with w0, w1 ∈ V . Expanding, we have

ϕ(v0) = a, b(v0, w1) = b, ϕ(w1) = c,

ϕ(w0) = d, b(v0, w0) = 0, b(w0, w1) = 0.

It follows that if W is the subspace generated by v0 and w1, then ϕ|W ' ρ and
d ∈ D̃(µ) where µ = ϕ|W⊥ . ¤

Corollary 17.11. Let ϕ and ψ be two anisotropic quadratic forms over F with
dim ψ = n. Let T = (t1, . . . , tn). Suppose that ψ(T ) ∈ D(ϕF (T )). If ψ = ρ ⊥ σ
with ρ a nondegenerate binary form and T ′ = (t3, . . . , tn), then ϕ ' ρ ⊥ µ for some
form µ and µ(T ′) ∈ D̃F (T ′)(ϕF (T ′)).

Theorem 17.12 (Representation Theorem). Let ϕ and ψ be two anisotropic qua-
dratic forms over F with dim ψ = n. Let T = (t1, . . . , tn). Then the following are
equivalent:

(1) D(ψK) ⊂ D(ϕK) for every field extension K/F .
(2) ψ(T ) ∈ D(ϕF (T )).
(3) ψ is isometric to a subform of ϕ.

In particular, if any of the above conditions hold, then dim ψ ≤ dim ϕ.
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Proof. (1) ⇒ (2) and (3) ⇒ (1) are trivial.
(2) ⇒ (3): Applying the structure results, Propositions 7.31 and 7.29, we can

write ψ = ψ1 ⊥ ψ2, where ψ1 is an orthogonal sum of nondegenerate binary forms
and ψ2 is diagonalizable. Repeated application of Corollary 17.11 allows us to
reduce to the case ψ = ψ2, i.e., ψ = 〈a1, . . . , an〉 is diagonalizable.

We induct on n. The case n = 1 follows from the Substitution Principle 17.7.
Suppose that n = 2. Then we have a1t

2 + a2 ∈ D(ϕF (t)). By the Cassels-Pfister
Theorem, there is a v ∈ V [t] where V = Vϕ satisfying ϕ(v) = a1t

2 + a2. As ϕ
is anisotropic, we have v = v1 + v2t for v1, v2 ∈ V and therefore ϕ(v1) = a1,
ϕ(v2) = a2, and b(v1, v2) = 0. The restriction of ϕ on the subspace spanned by v1

and v2 is isometric to ψ.
In the general case, set T = (t1, t2, . . . , tn), T ′ = (t2, . . . , tn), b = a2t

2 + · · ·+
ant2n. As a1t

2 + b is a value of ϕ over F (T ′)(t), by the case considered above, there
are vectors v1, v2 ∈ VF (T ′) satisfying

ϕ(v1) = a1, ϕ(v2) = b and b(v1, v2) = 0.

It follows from the Substitution Principle 17.7 that there is w ∈ V such that
ϕ(w) = a1.

We claim that there is an isometry γ of ϕ over F (T ′) such that ϕ(v1) = w. We
may assume that w 6= v1 as ϕF (T ′) is anisotropic by Lemma 7.15. We have

0 6= ϕ(w − v1) = ϕ(w) + ϕ(v1)− b(w, v1) = b(w,w − v1) = b(v1 − w, v1),

therefore w and v1 do not belong to rad b. The claim follows by the Witt Extension
Theorem 8.3.

Replacing v1 and v2 by γ(v1) = w and γ(v2) respectively, we may assume that
v1 ∈ V . Set W = (Fv1)⊥. Note that v2 ∈ WF (T ′), hence b is a value of ϕ|W over
F (T ′). By the induction hypothesis applied to the forms ψ′ = 〈a2, . . . , an〉 and
ϕ|W , there is a subspace V ′ ⊂ W such that ϕ|V ′ ' 〈a2, . . . , an〉. Note that v1 is
orthogonal to V ′ and v1 /∈ V ′ as ψ is anisotropic. Therefore, the restriction of ϕ on
the subspace Fv1 ⊕ V ′ is isometric to ψ. ¤

A field F is called formally real if −1 is not a sum of squares. In particular,
charF = 0 if this is the case (cf. §95).

Corollary 17.13. Suppose that F is formally real and T = (t0, . . . , tn). Then
t20 + t21 + · · ·+ t2n is not a sum of n squares in F (T ).

Proof. If this is false, then t20 + t21 + · · · + t2n ∈ D
(
n〈1〉). As (n + 1)〈1〉 is

anisotropic, this contradicts the Representation Theorem. ¤
The ideas above also allow us to develop a test for simultaneous zeros for

quadratic forms. This was proven independently by Amer in [2] and Brumer in
[21] for fields of characteristic not 2 and by Leep for arbitrary fields in [92].

Theorem 17.14. Let ϕ and ψ be two quadratic forms on a vector space V over
F . Then the form ϕF (t) + tψF (t) on V (t) over F (t) is isotropic if and only if ϕ and
ψ have a common isotropic vector in V .

Proof. Clearly, a common isotropic vector for ϕ and ψ is also an isotropic
vector for ρ := ϕF (t) + tψF (t).

Conversely, let ρ be isotropic. There exists a nonzero v ∈ V [t] such that
ρ(v) = 0. Choose such a v of the smallest degree. We claim that deg v = 0, i.e.,
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v ∈ V . If we show this, the equality ϕ(v) + tψ(v) = 0 implies that v is a common
isotropic vector for ϕ and ψ.

Suppose n := deg v > 0. Write v = w + tnu with u ∈ V and w ∈ V [t] of degree
less than n. Note that by assumption ρ(u) 6= 0. Consider the vector

v′ = ρ(u) · τu(v) = ρ(u)v − bρ(v, u)u ∈ V [t].

As ρ(v) = 0, we have ρ(v′) = 0. It follows from the equality

ρ(w)v− bρ(v, w)w = ρ(v− tnu)v− bρ(v, v− tnu)(v− tnu) = t2n
(
ρ(u)v− bρ(v, u)u

)

that

v′ =
ρ(w)v − bρ(v, w)w

t2n
.

Note that deg ρ(w) ≤ 2n− 1 and deg bρ(v, w) ≤ 2n. Therefore, deg v′ < n, contra-
dicting the minimality of n. ¤

18. Values of forms

Let ϕ be an anisotropic quadratic form over F . Let p ∈ F [T ] = F [t1, . . . , tn] be
irreducible and F (p) the quotient field of F [T ]/(p). In this section, we determine
what it means for ϕF (p) to be isotropic. We base our presentation on ideas of
Knebusch in [82]. This result has consequences for finite extensions K/F . In
particular, the classical Springer’s Theorem that forms remain anisotropic under
odd degree extensions follows as well as a norm principle about values of ϕK .

Order the group Zn lexicographically, i.e., (i1, . . . , in) < (j1, . . . , jn) if for the
first integer k satisfying ik 6= jk with 1 ≤ k ≤ n, we have ik < jk. If i = (i1, . . . , in)
in Zn and a ∈ F×, write aT i for ati11 · · · tin

n and call i the degree of aT i. Let
f = aT i + monomials of lower degree in F [T ] with a ∈ F×. The term aT i is
called the leading term of f . We define the degree deg f of f to be i, the degree of
the leading term, and the leading coefficient f∗ of f to be a, the coefficient of the
leading term. Let Tf denote T i if i is the degree of the leading term of f . Then
f = f∗Tf + f ′ with deg f ′ < deg Tf . For convenience, we view deg 0 < deg f for
every nonzero f ∈ F [T ]. Note that deg(fg) = deg f + deg g and (fg)∗ = f∗g∗. If
h ∈ F (T )× and h = f/g with f, g ∈ F [T ], let h∗ = f∗/g∗.

Let V be a finite dimensional vector space over F . For every nonzero v ∈ V [T ]
define the degree deg v, the leading vector v∗, and the leading term v∗Tv in a similar
fashion. Let deg 0 < deg v for any nonzero v ∈ V [T ]. So if v ∈ V [T ] is nonzero, we
have v = v∗Tv + v′ with deg v′ < deg Tv.

Lemma 18.1. Let ϕ be a quadratic form on V over F and g ∈ F [T ]. Suppose that
g ∈ D(ϕF (T )). Then g∗ ∈ D(ϕ). If, in addition, ϕ is anisotropic, then deg g ∈ 2Zn.

Proof. Since ϕ on V and the induced quadratic form ϕ̄ on V/ rad ϕ have the
same values, we may assume that rad(ϕ) = 0. In particular, if ϕ is isotropic, it is
universal, so we may assume that ϕ anisotropic.

Let g = ϕ(v) with v ∈ V (T ). Write v = w/f with w ∈ V [T ] and nonzero
f ∈ F [T ]. Then f2g = ϕ(w). As (f2g)∗ = (f∗)2g∗, we may assume that v ∈ F [T ].
Let v = v∗Tv + v′ with deg v′ < deg v. Then

g = ϕ(v∗Tv) + bϕ(v∗Tv, v′) + ϕ(v′) = ϕ(v∗)T 2
v + bϕ(v∗, v′)Tv + ϕ(v′)

= ϕ(v∗)T 2
v + terms of lower degree.
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As ϕ is anisotropic, we must have ϕ(v∗) 6= 0, hence g∗ = ϕ(v∗) ∈ D(ϕ). As the
leading term of g is ϕ(v∗)T 2

v , the second statement also follows. ¤
Let v ∈ V [T ]. Suppose that f ∈ F [T ] satisfies degt1 f > 0. Let T ′ =

(t2, . . . , tn). Viewing v ∈ V (T ′)[t1], the analog of the usual division algorithm
produces an equation

v = fw′ + r′ with w′, r′ ∈ VF (T ′)[t1] and degt1 r′ < degt1 f.

Clearing denominators in F [T ′], we get
hv = fw + r

with w, r ∈ V [T ], 0 6=h ∈ F [T ′] and degt1 r < degt1 f,

so deg h < deg f, deg r < deg f.

(18.2)

If ϕ is a quadratic form over F let
〈
D(ϕ)

〉
denote the subgroup in F× generated

by D(ϕ).

Theorem 18.3 (Quadratic Value Theorem). Let ϕ be an arbitrary anisotropic qua-
dratic form on V and f ∈ F [T ] a nonzero polynomial. Then the following conditions
are equivalent:

(1) f∗f ∈ 〈
D(ϕF (T ))

〉
.

(2) There exists an a ∈ F× such that af ∈ 〈
D(ϕF (T ))

〉
.

(3) ϕF (p) is isotropic for each irreducible divisor p occurring to an odd power
in the factorization of f .

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): Let af ∈ 〈

D(ϕF (T ))
〉
, i.e., there are

0 6= h ∈ F [T ] and v1, . . . , vm ∈ V [T ]

such that ah2f =
∏

ϕ(vi). Let p be an irreducible divisor of f to an odd power.
Write vi = pkiv′i so that v′i is not divisible by p. Dividing out both sides by p2k,
with k =

∑
ki, we see that the product

∏
ϕ(v′i) is divisible by p. Hence the residue

of one of the ϕ(v′i) is trivial in the residue field F (p) while the residue of v′i is not
trivial. Therefore, fF (p) is isotropic.

(3) ⇒ (1): We proceed by induction on n and deg f . The statement is obvious
if f = f∗. In the general case, we may assume that f is irreducible. Therefore,
by assumption ϕF (f) is isotropic. In particular, we see that there exists a vector
v ∈ Vϕ[T ] such that f | ϕ(v) and f 6 | v. If degt1 f = 0, let T ′ = (t2, . . . , tn) and
let L denote the quotient field of F [T ′]/(f). Then F (f) = L(t1) so ϕL is isotropic
by Lemma 7.15 and we are done by induction on n. Therefore, we may assume
that degt1 f > 0. By (18.2), there exist 0 6= h ∈ F [T ] and w, r ∈ V [T ] such that
hv = fw + r with deg h < deg f and deg r < deg f . As

ϕ(hv) = ϕ(fw + r) = f2ϕ(w) + fbϕ(w, r) + ϕ(r),

we have f | ϕ(r). If r = 0, then f | hv. But f is irreducible and f 6 | v, so f | h. This
is impossible as deg h < deg f . Thus r 6= 0. Let ϕ(r) = fg for some g ∈ F [T ]. As ϕ
is anisotropic g 6= 0. So we have fg ∈ D(ϕF (T )), hence also (fg)∗ = f∗g∗ ∈ D(ϕ)
by Lemma 18.1.

Let p be an irreducible divisor occurring to an odd power in the factorization
of g. As deg ϕ(r) < 2 deg f , we have deg g < deg f , hence p occurs with the same
multiplicity in the factorization of fg. By (2) ⇒ (3), applied to the polynomial
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fg, the form ϕF (p) is isotropic. Hence the induction hypothesis implies that g∗g ∈
〈D(ϕF (T ))〉. Consequently, f∗f = f∗2 · (f∗g∗)−1 · g∗g · fg · g−2 ∈ 〈

D(ϕF (T ))
〉
. ¤

Theorem 18.4 (Bilinear Value Theorem). Let b be an anisotropic symmetric bi-
linear form on V and f ∈ F [T ] a nonzero polynomial. Then the following conditions
are equivalent:

(1) f∗f ∈ 〈
D(bF (T ))

〉
.

(2) There exists an a ∈ F× such that af ∈ 〈
D(bF (T ))

〉
.

(3) bF (p) is isotropic for each irreducible divisor p occurring to an odd power
in the factorization of f .

Proof. Let ϕ = ϕb. As D(bK) = D(ϕK) for every field extension K/F by
Lemma 9.2 and bK is isotropic if and only if ϕK is isotropic, the result follows by
the Quadratic Value Theorem 18.3. ¤

A basic result in Artin-Schreier theory is that an ordering on a formally real field
extends to an ordering on a finite algebraic extension of odd degree, equivalently
if the bilinear form n〈1〉 is anisotropic over F for any integer n, it remains so over
any finite extension of odd degree. Witt conjectured in [139] that any anisotropic
symmetric bilinear form remains anisotropic under an odd degree extension (if
charF 6= 2). This was first shown to be true by Springer in [126]. This is in fact
true without a characteristic assumption for both quadratic and symmetric bilinear
forms.

Corollary 18.5 (Springer’s Theorem). Let K/F be a finite extension of odd de-
gree. Suppose that ϕ (respectively, b) is an anisotropic quadratic form (respectively,
symmetric bilinear form) over F . Then ϕK (respectively, bK) is anisotropic.

Proof. By induction on [K : F ], we may assume that K = F (θ) is a primitive
extension. Let p be the minimal polynomial of θ over F . Suppose that ϕK is
isotropic. Then ap ∈ 〈

D(ϕF (t))
〉

for some a ∈ F× by the Quadratic Value Theorem
18.3. It follows that p has even degree by Lemma 18.1, a contradiction. If b is a
symmetric bilinear form over F , applying the above to the quadratic form ϕb shows
the theorem also holds in the bilinear case. ¤

We shall give another proof of Springer’s Theorem in Corollary 71.3 below.

Corollary 18.6. If K/F is an extension of odd degree, then rK/F : W (F ) →
W (K) and rK/F : Iq(F ) → Iq(K) are injective.

Corollary 18.7. Let ϕ and ψ be two quadratic forms on a vector space V over F
having no common isotropic vector in V . Then for any field extension K/F of odd
degree the forms ϕK and ψK have no common isotropic vector in VK .

Proof. This follows from Springer’s Theorem and Theorem 17.14. ¤

Exercise 18.8. Let charF 6= 2 and K/F be a finite purely inseparable field ex-
tension. Then rK/F : W (F ) → W (K) is an isomorphism.

Corollary 18.9. Let K = F (θ) be an algebraic extension of F and p the (monic)
minimal polynomial of θ over F . Let ϕ be a regular quadratic form over F . Suppose
that there exists a c ∈ F such that p(c) /∈ 〈

D(ϕ)
〉
. Then ϕK is anisotropic.
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Proof. As rad ϕ = 0, if ϕ were isotropic it would be universal. Thus ϕ is
anisotropic. In particular, p is not linear, hence p(c) 6= 0. Suppose that ϕK is
isotropic. By the Quadratic Value Theorem 18.3, we have p ∈ 〈

D(ϕF (t))
〉
. By the

Substitution Principle 17.7, we have p(c) ∈ 〈
D(ϕ)

〉
for all c ∈ F , a contradiction.

¤

As another consequence, we obtain the following theorem first proved by Kneb-
usch in [81].

Theorem 18.10 (Value Norm Principle). Let ϕ be a quadratic form over F and
K/F a finite field extension. Then NK/F

(
D(ϕK)

) ⊂ 〈
D(ϕ)

〉
.

Proof. Let V = Vϕ. Since the form ϕ on V and the induced form ϕ̄ on
V/ rad(ϕ) have the same values, we may assume that rad(ϕ) = 0. If ϕ is isotropic,
then ϕ splits off a hyperbolic plane. In particular, ϕ is universal and the statement
is obvious. Thus we may assume that ϕ is anisotropic. Moreover, we may assume
that dim ϕ ≥ 2 and 1 ∈ D(ϕ).

Case 1: ϕK is isotropic.

Let x ∈ D(ϕK). Suppose that K = F (x). Let p ∈ F [t] denote the (monic)
minimal polynomial of x so K = F (p). It follows from the Quadratic Value Theorem
18.3 that p ∈ 〈

D(ϕF (t))
〉

and deg p is even. In particular, NK/F (x) = p(0) and by
the Substitution Principle 17.7,

NK/F (x) = p(0) ∈ 〈
D(ϕ)

〉
.

If F (x) ( K, let m = [K : F (x)]. If m is even, then NK/F (x) ∈ F×2 ⊂ 〈
D(ϕ)

〉
. If

m is odd, then ϕF (x) is isotropic by Springer’s Theorem 18.5. Applying the above
argument to the field extension F (x)/F yields

NK/F (x) = NF (x)/F (x)m ∈ 〈
D(ϕ)

〉

as needed.

Case 2: ϕK is anisotropic.

Let x ∈ D(ϕK). Choose vectors v, v0 ∈ VK such that ϕK(v) = x and ϕK(v0) =
1. Let V ′ ⊂ VK be a 2-dimensional subspace (over K) containing v and v0. The
restriction ϕ′ of ϕK to V ′ is a binary anisotropic quadratic form over K representing
x and 1. It follows from Proposition 12.1 that the even Clifford algebra L = C0(ϕ′)
is a quadratic field extension of K and x = NL/K(y) for some y ∈ L×. Moreover,
since C0(ϕ′L) = C0(ϕ′)⊗K L = L⊗K L is not a field, by the same proposition, ϕ′

and therefore ϕ is isotropic over L. Applying Case 1 to the field extension L/F
yields

NK/F (x) = NK/F

(
NL/K(y)

)
= NL/F (y) ∈ 〈

D(ϕ)
〉
. ¤

Theorem 18.11 (Bilinear Value Norm Principle). Let b be a symmetric bilinear
form over F and let K/F be a finite field extension. Then NK/F

(
D(bK)

) ⊂ 〈
D(b)

〉
.

Proof. As D(bE) = D(ϕbE ) for any field extension E/F , this follows from
the quadratic version of the theorem. ¤
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19. Forms over a discrete valuation ring

We wish to look at similarity factors of bilinear and quadratic forms. To do so
we need a few facts about such forms over a discrete valuation ring (DVR) which
we now establish. These results are based on the work of Springer in [127] in the
case of fields of characteristic different from 2.

Throughout this section, R will be a DVR with quotient field K, residue field
K̄, and prime element π. If V is a free R-module of finite rank, then the definition
of a (symmetric) bilinear form and quadratic form on V is analogous to the field
case. In particular, we can associate to every quadratic form its polar form bϕ :
(v, w) 7→ ϕ(v +w)−ϕ(v)−ϕ(w). Orthogonal complements are defined in the usual
way. Orthogonal sums of bilinear (respectively, quadratic) forms are defined as in
the field case. We use analogous notation as in the field case when clear. If F → R
is a ring homomorphism and ϕ is a quadratic form over F , we let ϕR = R⊗F ϕ.

A bilinear form b on V is nondegenerate if l : V → HomR(V, R) defined by
v 7→ lv : w → b(v, w) is an isomorphism. As in the field case, we have the crucial

Proposition 19.1. Let R be a DVR. Let V be a free R-module of finite rank and
W a submodule of V . If ϕ is a quadratic form on V with bϕ|W nondegenerate, then
ϕ = ϕ|W ⊥ ϕ|W⊥ .

Proof. As bϕ|W is nondegenerate, W ∩W⊥ = {0} and if v ∈ V , there exists
w′ ∈ W such that the linear map W → F by w 7→ bϕ(v, w) is given by bϕ(v, w) =
bϕ(w′, w) for all w ∈ W . Consequently, v = w +(v−w′) ∈ W ⊕W⊥ and the result
follows. ¤

Hyperbolic quadratic forms and planes are also defined in an analogous way.
We let H denote the quadratic hyperbolic plane.

If R is a DVR and V a vector space over the quotient field K of R. A vector
v ∈ V is called primitive if it is not divisible by a prime element π, i.e., the image
v̄ of v in K̄ ⊗R V is not zero.

Arguing as in Proposition 7.13, we have

Lemma 19.2. Let R be a DVR. Let ϕ be a quadratic form on V whose polar form
is nondegenerate. Suppose that V contains an isotropic vector v. Then there exists
a submodule W of V containing v such that ϕ|W ' H.

Proof. Dividing v by πn for an appropriate choice of n, we may assume that
v is primitive. It follows easily that V/Rv is torsion-free, hence free. In particular,
V → V/Rv splits, therefore, Rv is a direct summand of V . Let f : V → R be an
R-linear map satisfying f(v) = 1. As l : V → HomR(V, R) is an isomorphism, there
exists an element w ∈ V such that f = lw, hence bϕ(v, w) = 1. Let W = Rv⊕Rw.
Then v, w − ϕ(w)v is a hyperbolic pair. ¤

By induction, we conclude:

Corollary 19.3. Suppose that R is a DVR. Let ϕ be a quadratic form on V over R
whose polar form is nondegenerate. Then ϕ = ϕ|V1 ⊥ ϕ|V2 with V1, V2 submodules
of V satisfying ϕ|V1 is anisotropic and ϕ|V2 ' mH for some m ≥ 0.

Associated to a quadratic form ϕ on V over R are two forms: ϕK on K ⊗R V
over K and ϕ̄ = ϕK̄ on K̄ ⊗R V over K̄.
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Lemma 19.4. Suppose that R is a complete DVR. Let ϕ be an anisotropic qua-
dratic form over R whose associated bilinear form bϕ is nondegenerate. Then ϕ̄ is
also anisotropic.

Proof. Let {v1, . . . , vn} be a basis for Vϕ and t1, . . . , tn the respective coordi-

nates. If w ∈ Vϕ, then
∂ϕ

∂ti
(w) = bϕ(vi, w). In particular, if w̄ 6= 0̄, there exists an i

such that b̄ϕ(v̄i, w̄) 6= 0. It follows by Hensel’s lemma that ϕ would be isotropic if
ϕ̄ is. ¤

Lemma 19.5. Let ϕ and ψ be two quadratic forms over a DVR R such that ϕ̄ and
ψ̄ are anisotropic over K̄. Then ϕK ⊥ πψK is anisotropic over K.

Proof. Suppose that ϕ(u) + πψ(v) = 0 for some u ∈ Vϕ and v ∈ Vψ with
at least one of u and v primitive. Reducing modulo π, we have ϕ̄(ū) = 0. Since
ϕ̄ is anisotropic, u = πw for some w. Therefore, πϕ(w) + ψ(v) = 0 and reducing
modulo π we get ψ̄(v̄) = 0. Since ψ̄ is also anisotropic, v is divisible by π, a
contradiction. ¤

Corollary 19.6. Let ϕ and ψ be anisotropic forms over F . Then ϕF (t) ⊥ tψF (t)

is anisotropic.

Proof. In the lemma, let R = F [t](t), a DVR, π = t a prime. As ϕR = ϕ and
ψR = ψ, the result follows from the lemma. ¤

Proposition 19.7. Let ϕ be a quadratic form over a complete DVR R such that
the associated bilinear form bϕ is nondegenerate. Suppose that ϕK ' πϕK . Then
ϕ̄ is hyperbolic.

Proof. Write ϕ = ψ ⊥ nH with ψ anisotropic. By Lemma 19.4, we have ψ̄ is
anisotropic. The form

ϕK ⊥ (−πϕK) ' ψK ⊥ (−πψK) ⊥ 2nH

is hyperbolic and ψK ⊥ (−πψK) is anisotropic over K by Lemma 19.5. We must
have ψ = 0 by uniqueness of the Witt decomposition over K, hence ϕ = nH is
hyperbolic. It follows that ϕ̄ is hyperbolic. ¤

Proposition 19.8. Let ϕ be a nondegenerate quadratic form over F of even di-
mension. Let f ∈ F [T ] and p ∈ F [T ] an irreducible polynomial factor of f of odd
multiplicity. If ϕF (T ) ' fϕF (T ), then ϕF (p) is hyperbolic.

Proof. Let R denote the completion of the DVR F [T ](p) and let K be its
quotient field. The residue field of R coincides with F (p). Modifying f by a square,
we may assume that f = up for some u ∈ R×. As ϕF (T ) ' fϕF (T ), we have
ϕF (T ) ' upϕF (T ). Applying Proposition 19.7 to the form ϕR and π = up yields
(ϕR) = ϕF (p) is hyperbolic. ¤

We shall also need the following:

Proposition 19.9. Let R be a DVR with quotient field K. Let ϕ and ψ be two
quadratic forms on V and W over R, respectively, such that their respective residue
forms ϕ̄ and ψ̄ are anisotropic. If ϕK ' ψK , then ϕ ' ψ (over R).
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Proof. Let f : VK → WK be an isometry between ϕK and ψK . It suffices to
prove that f(V ) ⊂ W and f−1(W ) ⊂ V . Suppose that there exists a v ∈ V such
that f(v) is not in W . Then f(v) = w/πk for some primitive w ∈ W and k > 0.
Since f is an isometry, we have ψ(w) = π2kϕ(v), i.e., ψ(w) is divisible by π, hence
w̄ is an isotropic vector of ψ̄, a contradiction. Analogously, f−1(W ) ⊂ V . ¤

19.A. Residue homomorphisms. If R is a DVR, then for each x ∈ K× we
can write x = uπn for some u ∈ R× and n ∈ Z.

Lemma 19.10. Let R be a DVR with quotient field K and residue field K̄. Let π
be a prime element in R. There exist group homomorphisms

∂ : W (K) → W (K̄) and ∂π : W (K) → W (K̄)

satisfying

∂
(〈uπn〉) =

{
〈ū〉 n is even
0 n is odd

and ∂π

(〈uπn〉) =

{
0 n is even,
〈ū〉 n is odd,

for u ∈ R× and n ∈ Z.

Proof. It suffices to prove the existence of ∂ as we can take ∂π = ∂ ◦λπ where
λπ is the group homomorphism λπ : W (K) → W (K) given by b → πb.

By Theorem 4.8, it suffices to check that the generating relations of the Witt
ring are respected. As 〈1〉+ 〈−1〉 = 0 in W (K̄), it suffices to show if a, b ∈ R with
a + b 6= 0, then

(19.11) ∂
(〈a〉) + ∂

(〈b〉) = ∂
(〈a + b〉) + ∂

(〈ab(a + b)〉)

in W (K̄).
Let

a = a0π
n, b = b0π

m, a + b = πlc0 with a0, b0, c0 ∈ R×,

and m, n, l ∈ Z satisfying min{m,n} ≤ l. We may assume that n ≤ m.
Suppose that n < m. Then

a + b = πna0(1 + πm−n b0

a0
) and ab(a + b) = π2n+mb0a

2
0(1 +

b0

a0
πm−n).

In particular, ∂
(〈a〉) = ∂

(〈a + b〉) and ∂
(〈b〉) = ∂

(〈ab(a + b)〉) as needed.
Suppose that n = m. If n = l, then a0 + b0 ∈ R× and the result follows by the

Witt relation in W (K̄).
So suppose that n < l. Then ā0 = −b̄0 so the left hand side of (19.11) is zero.

If l is odd, then ∂
(〈a+ b〉) = 0 = ∂

(〈ab(a+ b)〉) as needed. So we may assume that
l is even. Then 〈a + b〉 ' 〈c0〉 and 〈ab(a + b)〉 ' 〈a0b0c0〉 over K. Hence the right
hand side of (19.11) is 〈c̄0〉+ 〈ā0b̄0c̄0〉 = 〈c̄0〉+ 〈−c̄0〉 = 0 in W (K̄) also. ¤

The map ∂ : W (K) → W (K̄) in the lemma is not dependent on the choice on
the prime element π. It is called the first residue homomorphism with respect to
R. The map ∂π : W (K) → W (K̄) does depend on π. It is called the second residue
homomorphism with respect to R and π.

Remark 19.12. Let R be a DVR with quotient field K and residue field K̄. Let π
be a prime element in R. If b is a nondegenerate diagonalizable bilinear form over
K, we can write b as

b ' 〈u1, . . . , un〉 ⊥ π〈v1, . . . , vm〉
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for some ui, vj ∈ R×. Then ∂(b) = 〈ū1, . . . , ūn〉 in W (K̄) and ∂π(b) = 〈v̄1, . . . , v̄m〉
in W (K̄).

Example 19.13. Let R be a DVR with quotient field K and residue field K̄.
Let π be a prime element in R. Let b = 〈〈a1, . . . , an〉〉 be an anisotropic n-fold
Pfister form over K. Then we may assume that ai = πjiui with ji = 0 or 1
and ui ∈ R× for all i. By Corollary 6.13, we may assume that ai ∈ R× for
all i > 1. As b = −a1〈〈a2, . . . , an〉〉 ⊥ 〈〈a2, . . . , an〉〉, if a1 ∈ R×, then ∂(b) =
〈〈ā1, . . . , ān〉〉 and ∂π(b) = 0, and if a1 = πu1, then ∂(b) = 〈〈ā2, . . . , ān〉〉 and
∂π(b) = −ū1〈〈ā2, . . . , ān〉〉.

As n-fold Pfister forms generate In(F ), we have, by the example, the following:

Lemma 19.14. Let R be a DVR with quotient field K and residue field K̄. Let π
be a prime element in R. Then for every n ≥ 1:

(1) ∂
(
In(K)

) ⊂ In−1(K̄).
(2) ∂π

(
In(K)

) ⊂ In−1(K̄).

Exercise 19.15. Suppose that R is a complete DVR with quotient field K and
residue field K̄. If char K̄ 6= 2, then the residue homomorphisms induce split exact
sequences of groups:

0 → W (K̄) → W (K) → W (K̄) → 0

and
0 → In(K̄) → In(K) → In−1(K̄) → 0.

20. Similarities of forms

Let ϕ be an anisotropic quadratic form over F . Let p ∈ F [T ] := F [t1, . . . , tn]
be irreducible and F (p) the quotient field of F [T ]/(p). In this section, we determine
what it means for ϕF (p) to be hyperbolic. We also establish the analogous result
for anisotropic bilinear forms over F . We saw that a form becoming isotropic over
F (p) was related to the values it represented over the polynomial ring F [T ]. We
shall see that hyperbolicity is related to the similarity factors of the form over
F [T ]. We shall also deduce norm principles for similarity factors of a form over
F first established by Scharlau in [119] and Knebusch in [82]. To establish these
results, we introduce the transfer of forms from a finite extension of F to F , an idea
introduced by Scharlau (cf. [119]) for quadratic forms over fields of characteristic
different from 2 and Baeza (cf. [15]) in arbitrary characteristic.

20.A. Transfer of bilinear and quadratic forms. Let K/F be a finite
field extension and s : K → F an F -linear functional. If b is a symmetric bilinear
form on V over K define the transfer s∗(b) of b induced by s to be the symmetric
bilinear form on V over F given by

s∗(b)(v, w) = s
(
b(v, w)

)
for all v, w ∈ V.

If ϕ is a quadratic form on V over K, define the transfer s∗(ϕ) of ϕ induced by s
to be the quadratic form on V over F given by s∗(ϕ)(v) = s

(
ϕ(v)

)
for all v ∈ V

with polar form s∗(bϕ).
Note that dim s∗(b) = [K : F ] dim b.
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Lemma 20.1. Let K/F be a finite field extension and s : K → F an F -linear
functional. The transfer s∗ factors through orthogonal sums and preserves isome-
tries.

Proof. Let v, w ∈ Vb. If b(v, w) = 0, then s∗(b)(v, w) = s
(
b(v, w)

)
= 0. Thus

s∗(b ⊥ c) = s∗(b) ⊥ s∗(c). If σ : b → b′ is an isometry, then

s∗(b′)
(
σ(v), σ(w)

)
= s

(
b′(σ(v), σ(w))

)
= s

(
b(v, w)

)
= s∗(b)(v, w),

so σ : s∗(b) → s∗(b′) is also an isometry. ¤

Proposition 20.2 (Frobenius Reciprocity). Suppose that K/F is a finite exten-
sion of fields and s : K → F an F -linear functional. Let b and c be symmetric
bilinear forms over F and K, respectively, and ϕ and ψ quadratic forms over F
and K respectively. Then there exist canonical isometries:

s∗(bK ⊗K c) ' b⊗F s∗(c),(20.3a)

s∗(bK ⊗K ψ) ' b⊗F s∗(ψ),(20.3b)

s∗(c⊗K ϕK) ' s∗(c)⊗F ϕ.(20.3c)

In particular,
s∗(bK) ' b⊗F s∗

(〈1〉b
)
.

Proof. (a): The canonical F -linear map VbK
⊗K Vc → Vb ⊗F Vc given by

(a⊗ v)⊗ w 7→ v ⊗ aw is an isometry. Indeed,

s(bK ⊗ c)
(
(a⊗ v)⊗ w, (a′ ⊗ v′)⊗ w′

)
= s

(
aa′b(v, v′)c(w, w′)

)

= b(v, v′)s
(
c(aw, a′w′)

)

= (b⊗ sc)(v ⊗ aw, v′ ⊗ a′w′).

The last statement follows from the first by setting c = 〈1〉.
(b) and (c) are proved in a similar fashion. ¤

Lemma 20.4. Let K/F be a finite field extension and s : K → F a nonzero F -
linear functional.

(1) If b is a nondegenerate symmetric bilinear form on V over K, then s∗(b)
is nondegenerate on V over F .

(2) If ϕ is an even-dimensional nondegenerate quadratic form on V over K,
then s∗(ϕ) is nondegenerate on V over F .

Proof. Suppose that 0 6= v ∈ V . As b is nondegenerate, there exists a w ∈ V
such that 1 = b(v, w). As s is not zero, there exists a c ∈ K such that 0 6=
s(c) = s∗(b)(v, cw). This shows (1). Statement (2) follows from (1) and Remark
7.21(1). ¤

Corollary 20.5. Let K/F be a finite extension of fields and s : K → F a nonzero
F -linear functional.

(1) If c is a bilinear hyperbolic form over K, then s∗(c) is a hyperbolic form
over F .

(2) If ϕ is a quadratic hyperbolic form over K, then s∗(ϕ) is a hyperbolic form
over F .
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Proof. (1): As s∗ respects orthogonality, we may assume that c = H1. By
Frobenius Reciprocity,

s∗(H1) ' s∗
(
(H1)K

) ' (H1)F ⊗ s∗
(〈1〉).

As s∗
(〈1〉) is nondegenerate by Lemma 20.4, we have s∗(H1) is hyperbolic by

Lemma 2.1.
(2): This follows in the same way as (1) using Lemma 8.16. ¤
Let K/F be a finite field extension and s : K → F a nonzero F -linear func-

tional. By Lemmas 20.4 and 20.5, the functional s induces group homomorphisms

s∗ : Ŵ (K) → Ŵ (F ), s∗ : W (K) → W (F ), and s∗ : Iq(K) → Iq(F )

called transfer maps. Let b and c be nondegenerate symmetric bilinear forms over
F and K, respectively, and ϕ and ψ nondegenerate quadratic forms over F and K,
respectively. By Frobenius Reciprocity, we have

s∗
(
rK/F (b) · c) = b · s∗(c)

in Ŵ (F ) and W (F ), i.e., s∗ : Ŵ (K) → Ŵ (F ) is a Ŵ (F )-module homomorphism
and s∗ : W (K) → W (F ) is a W (F )-module homomorphism where we view W (K)
as a W (F )-module via rK/F . Furthermore,

s∗
(
rK/F (b) · ψ)

= b · s∗(ψ) and s∗
(
c · rK/F (ϕ)

)
= s∗(c) · ϕ

in Iq(F ). Note that s∗
(
I(K)

) ⊂ I(F ).

Corollary 20.6. Let K/F be a finite field extension and s : K → F a nonzero
F -linear functional. Then the compositions

s∗rK/F : Ŵ (F ) → Ŵ (F ), s∗rK/F : W (F ) → W (F ), and s∗rK/F : Iq(F ) → Iq(F )

are given by multiplication by s∗
(〈1〉b

)
, i.e., b 7→ b · s∗

(〈1〉b
)

for a nondegenerate
symmetric bilinear form b and ϕ 7→ s∗

(〈1〉b
) ·ϕ for a nondegenerate quadratic form

ϕ.

Corollary 20.7. Let K/F be a field extension and s : K → F a nonzero F -
linear functional. Then im(s∗) is an ideal in Ŵ (F ) (respectively, W (F )) and is
independent of s.

Proof. By Frobenius Reciprocity, im(s∗) is an ideal. Suppose that s1 : K →
F is another nonzero F -linear functional. Let K → HomF (K,F ) be the F -
isomorphism given by a 7→ (

x 7→ s(ax)
)
. Hence there exists a unique a ∈ K×

such that s1(x) = s(ax) for all x ∈ K. Consequently, (s1)∗(b) = s∗(ab) for all
nondegenerate symmetric bilinear forms b over K. ¤

Let K = F (x)/F be an extension of degree n and a = NK/F (x) ∈ F× the norm
of x. Let

s : K → F be the F -linear functional defined by

s(1) = 1 and s(xi) = 0 for all i ∈ [1, n− 1].
(20.8)

Then s(xn) = (−1)n+1a.

Lemma 20.9. The transfer induced by the F -linear functional s in (20.8) satisfies

s∗
(〈1〉b

)
=

{ 〈1〉b if n is odd,
〈1,−a〉b if n is even.
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Proof. Let b = s∗
(〈1〉). Let V ⊂ K be the F -subspace spanned by xi with

i ∈ [1, n], a nondegenerate subspace. Then V ⊥ = F , consequently K = F ⊕ V .
First suppose that n = 2m + 1 is odd. The subspace of W spanned by xi,

i ∈ [1, m], is a lagrangian of b|V , hence b|V is metabolic and b = b|V ⊥ = 〈1〉 in
W (F ).

Next suppose that n = 2m is even. We have

b(xi, xj) =
{

0 if i + j < n,
−a if i + j = n.

It follows that det b = (−1)maF×2 and the subspace W ′ ⊂ W spanned by all xi

with i 6= m and 1 ≤ i ≤ n is nondegenerate. In particular, K = W ′ ⊕ (W ′)⊥

by Proposition 1.6. By dimension count dim(W ′)⊥ = 2. As the subspace of W ′

spanned by xi, i ∈ [1, m − 1], is a lagrangian of b|W ′ , we have b|W ′ is metabolic.
Computing determinants, yields b|(W ′)⊥ ' 〈1,−a〉, hence in W (F ), we have b =
b|(W ′)⊥ = 〈1,−a〉. ¤
Corollary 20.10. Suppose that K = F (x) is a finite extension of even degree over
F . Then Ker(rK/F ) ⊂ annW (F )

(〈〈NK/F (x)〉〉).
Proof. Let s be the F -linear functional in (20.8). By Corollary 20.6 and

Lemma 20.9, we have

Ker
(
rK/F : W (F ) → W (K)

) ⊂ annW (F )

(
s∗(〈1〉)

)
= annW (F )

(〈〈NK/F (x)〉〉). ¤
Corollary 20.11. Let K/F be a finite field extension of odd degree. Then the map
rK/F : W (F ) → W (K) is injective.

Proof. If K = F (x) and s is as in (20.8), then by Corollary 20.6 and Lemma
20.9, we have

Ker
(
rK/F : W (F ) → W (K)

) ⊂ annW (F )

(
s∗(〈1〉)

)
= annW (F )

(〈1〉) = 0.

The general case follows by induction of the odd integer [K : F ]. ¤
Note that this corollary provides a more elementary proof of Corollary 18.6.

Lemma 20.12. The transfer induced by the F -linear functional s in (20.8) satisfies

s∗
(〈x〉b

)
=

{ 〈a〉b if n is odd,
0 if n is even.

Proof. Let b = s∗
(〈x〉). First suppose that n = 2m + 1 is odd. Then

b(xi, xj) =
{

0 if i + j < n− 1,
a if i + j = n− 1.

It follows that det b = (−1)maF×2 and the subspace W ⊂ K spanned by all xi with
i 6= m and 1 ≤ i ≤ n is nondegenerate. In particular, K = W ⊕W⊥ by Proposition
1.6 and W⊥ is 1-dimensional by dimension count. Computing determinants, we
see that b|W⊥ ' 〈a〉. As the subspace of W spanned by xi, i ∈ [0, m − 1], is a
lagrangian of b|W , the form b|W is metabolic. Consequently, b = b|W⊥ = 〈a〉 in
W (F ).

Next, suppose that n = 2m is even. The subspace of K spanned by xi, i ∈
[0, m− 1], is a lagrangian of b so b is metabolic and b = 0 in W (F ). ¤
Corollary 20.13. Let s∗ be the transfer induced by the F -linear functional s in
(20.8). Then s∗

(〈〈x〉〉) = 〈〈a〉〉 in W (F ).
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20.B. Similarity theorems. As a consequence, we get the norm principle
first established by Scharlau in [119].

Theorem 20.14 (Similarity Norm Principle). Let K/F be a finite field extension
and ϕ a nondegenerate even-dimensional quadratic form over F . Then

NK/F

(
G(ϕK)

) ⊂ G(ϕ).

Proof. Let x ∈ G(ϕK). Suppose first that K = F (x). Let s be as in (20.8).
As 〈〈x〉〉 · ϕK = 0 in Iq(K), applying the transfer s∗ : Iq(K) → Iq(F ) yields

0 = s∗
(〈〈x〉〉 · ϕK

)
= s∗

(〈〈x〉〉) · ϕ = 〈〈NK/F (x)〉〉 · ϕ
in Iq(F ) by Frobenius Reciprocity 20.2 and Corollary 20.13. Hence NK/F (x) ∈
G(ϕ) by Remark 8.17.

In the general case, set k = [K : F (x)]. If k is even, we have

NK/F (x) = NF (x)/F (x)k ∈ G(ϕ)

since F×2 ⊂ G(ϕ). If k is odd, the homomorphism Iq

(
F (x)

) → Iq(K) is injective
by Remark 18.6, hence 〈〈x〉〉·ϕF (x) = 0. By the first part of the proof, NF (x)/F (x) ∈
G(ϕ). Therefore, NK/F (x) ∈ NF (x)/F (x)F×2 ⊂ G(ϕ). ¤

We turn to similarities of forms over polynomial rings. As with values, Kneb-
usch proved analogous results for similarities in [82].

Lemma 20.15. Let ϕ be a nondegenerate quadratic form of even dimension and
p ∈ F [t] a monic irreducible polynomial (in one variable). If ϕF (p) is hyperbolic,
then p ∈ G(ϕF (t)).

Proof. Let x be the image of t in K = F (p) = F [t]/(p). We have p is the
norm of t − x in the extension K(t)/F (t). Since ϕK(t) is hyperbolic, t − x ∈
G(ϕK(t)). Applying the Norm Principle 20.14 to the form ϕF (t) and the field
extension K(t)/F (t) yields p ∈ G(ϕF (t)). ¤

Theorem 20.16 (Quadratic Similarity Theorem). Let ϕ be a nondegenerate qua-
dratic form of even dimension and f ∈ F [T ] = F [t1, . . . , tn] a nonzero polynomial.
Then the following conditions are equivalent:

(1) f∗f ∈ G(ϕF (T )).
(2) There exists an a ∈ F× such that af ∈ G(ϕF (T )).
(3) For any irreducible divisor p of f to an odd power, the form ϕF (p) is

hyperbolic.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3) follows from Proposition 19.8.
(3) ⇒ (1): We proceed by induction on the number n of variables. We may

assume that f is irreducible and degt1 f > 0. In particular, f is an irreducible
polynomial in t1 over the field E = F (T ′) = F (t2, . . . , tn). Let g ∈ F [T ′] be the
leading term of f . In particular, g∗ = f∗. As the polynomial f ′ = fg−1 in E[t1]
is monic irreducible and E(f ′) = F (f), the form ϕE(f ′) is hyperbolic. Applying
Lemma 20.15 to ϕE and the polynomial f ′, we have fg = f ′ · g2 ∈ G(ϕF (T )).

Let p ∈ F [T ′] be an irreducible divisor of g to an odd power. Since p does
not divide f , by the first part of the proof applied to the polynomial fg, the
form ϕF (p)(t1) is hyperbolic. Since the homomorphism Iq

(
F (p)

) → Iq

(
F (p)(t1)

)
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is injective by Remark 8.18, we have ϕF (p) is hyperbolic. Applying the induction
hypothesis to g yields g∗g ∈ G(ϕF (T ′)). Therefore, f∗f = g∗f = g∗g · fg · g−2· ∈
G(ϕF (T )). ¤

Theorem 20.17 (Bilinear Similarity Norm Principle). Let K/F be a finite field
extension and b an anisotropic symmetric bilinear form over F of positive dimen-
sion. Then

NK/F

(
G((bK)an)

) ⊂ G(b).

Proof. Let x ∈ G
(
(bK)an

)
. Suppose first that K = F (x). Let s be as

in (20.8). Let bK = (bK)an ⊥ c with c a metabolic form over K. Then xc is
metabolic, so

bK = (bK)an = x(bK)an = x
(
(bK)an + c

)
= xbK

in W (K). Consequently, 〈〈x〉〉·bK = 0 in I(K). Applying the transfer s∗ : W (K) →
W (F ) yields

0 = s∗
(〈〈x〉〉 · bK

)
= s∗

(〈〈x〉〉) · b = 〈〈NK/F (x)〉〉 · b
by Frobenius Reciprocity 20.2 and Corollary 20.13. Hence NK/F (x)b = b in W (F )
with both sides anisotropic. It follows from Proposition 2.4 that NK/F (x) ∈ G(b).

In the general case, set k = [K : F (x)]. If k is even, we have

NK/F (x) = NF (x)/F (x)k ∈ G(b)

since F×2 ⊂ G(b). If k is odd, the homomorphism W
(
F (x)

) → W (K) is injective
by Corollary 18.6, hence 〈〈x〉〉 · (bF (x)

)
an

= 0 in W
(
F (x)

)
. Thus x ∈ G

(
(bF (x))an

)
by Proposition 2.4. By the first part of the proof, NF (x)/F (x) ∈ G(b). Conse-
quently, NK/F (x) ∈ NF (x)/F (x)F×2 ⊂ G(b). ¤

Lemma 20.18. Let b be a nondegenerate anisotropic symmetric bilinear form and
p ∈ F [t] a monic irreducible polynomial (in one variable). If bF (p) is metabolic,
then p ∈ G(bF (t)).

Proof. Let x be the image of t in K = F (p) = F [t]/(p). We have p is the
norm of t− x in the extension K(t)/F (t). Since bK(t) is metabolic, (bK(t))an = 0.
Thus x− t ∈ G

(
(bK(t))an

)
. Applying the Norm Principle 20.17 to the anisotropic

form bF (t) and the field extension K(t)/F (t) yields p ∈ G(bF (t)). ¤

Theorem 20.19 (Bilinear Similarity Theorem). Let b be an anisotropic bilinear
form of even dimension and f ∈ F [T ] = F [t1, . . . , tn] a nonzero polynomial. Then
the following conditions are equivalent:

(1) f∗f ∈ G(bF (T )).

(2) There exists an a ∈ F× such that af ∈ G(bF (T )).
(3) For any irreducible divisor p of f to an odd power, the form bF (p) is

metabolic.

Proof. Let ϕ = ϕb be of dimension m.
(1) ⇒ (2) is trivial.
(2) ⇒ (3): Let p be an irreducible factor of f to an odd degree. As F (T ) is the

quotient field of the localization F [T ](p) and F [T ](p) is a DVR, we have a group
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homomorphism ∂ : W
(
F (T )

) → W
(
F (p)

)
given by Lemma 19.10. Since p is a

divisor to an odd power of f ,

bF (p) = ∂(bF (T )) = ∂(afbF (T )) = 0

in W
(
F (p)

)
. Thus bF (p) is metabolic.

(3) ⇒ (1): The proof is analogous to the proof of (3) ⇒ (1) in the Quadratic
Similarity Theorem 20.16 with Lemma 20.18 replacing Lemma 20.15 and hyperbol-
icity replaced by metabolicity. ¤

Corollary 20.20. Let ϕ be a quadratic form (respectively, b an anisotropic bilinear
form) on V over F and f ∈ F [T ] with T = (t1, . . . , tn). Suppose that f ∈ G(ϕF (T ))
(respectively, f ∈ G(bF (T ))). If f(a) is defined and nonzero with a ∈ Fn, then
f(a) ∈ G(ϕ).

Proof. We may assume that ϕ is anisotropic as G(ϕ) = G(ϕan). (Cf. Remark
8.9.) By induction, we may assume that f is a polynomial in one variable t. Let
R = F [t](t−a), a DVR. As f(a) 6= 0, we have f ∈ R×. Over F (t), we have
ϕF (t) ' fϕF (t), hence ϕR ' fϕR by Proposition 19.9. Since F is the residue class
field of R, upon taking the residue forms, we see that ϕ = f(a)ϕ as needed.

As in the quadratic case, we reduce to f being a polynomial in one variable.
We then have bF (t) ' fbF (t). Taking ∂ of this equation relative to the DVR
R = F [t](t−a) yields b̄ = f̄ b̄ = f(a)b̄ in W (F ) as f ∈ R×. The result follows by
Proposition 2.4. ¤

Corollary 20.21. Let ϕ be an quadratic form (respectively, b an anisotropic bi-
linear form) on V over F and g ∈ F [T ]. Suppose that g ∈ G(ϕF (T )) (respectively,
g ∈ G(bF (T ))). Then g∗ ∈ G(ϕ) (respectively, g∗ ∈ G(b)).

Proof. We may assume that ϕ is anisotropic as G(ϕ) = G(ϕan). (Cf. Remark
8.9.) By induction on the number of variables, we may assume that g ∈ F [t].
By Lemma 18.1 and Lemma 9.1, we must have deg g = 2r is even. Let h(t) =
t2rg(1/t) ∈ G(ϕF (t)). Then g∗ = h(0) ∈ G(ϕ) by Corollary 20.20. An analogous
proof shows the result for symmetric bilinear forms (using also Lemma 9.2 to see
that deg g is even). ¤

21. An exact sequence for W
(
F (t)

)

Let A1
F be the 1-dimensional affine line over F . Let x ∈ A1

F be a closed point
and F (x) be the residue field of x. Then there exists a unique monic irreducible
polynomial fx ∈ F [t] of degree d = deg x such that F (x) = F [t]/(fx). By Lemma
19.10, we have the first and second residue homomorphisms with respect to the
DVR OA1

F ,x and prime element fx:

W
(
F (t)

) ∂−→ W
(
F (x)

)
and W

(
F (t)

) ∂fx−−→ W
(
F (x)

)
.

Denote ∂fx by ∂x. If g ∈ F [t], then ∂x

(〈g〉) = 0 unless fx | g in F [t]. It follows if b

is a nondegenerate bilinear form over F (t) that ∂x(b) = 0 for almost all x ∈ A1
F .

We have:
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Theorem 21.1. The sequence

0 → W (F )
rF (t)/F−−−−−→ W

(
F (t)

) ∂−→
∐

x∈A1
F

W
(
F (x)

) → 0

is split exact where ∂ = (∂x).

Proof. As anisotropic bilinear forms remain anisotropic under a purely tran-
scendental extension, rF (t)/F is monic. It is split by the first residue homomorphism
with respect to any rational point in A1

F .
Let F [t]d := {g | g ∈ F [t], deg g ≤ d} and Ld ⊂ W

(
F (t)

)
the subring generated

by 〈g〉 with g ∈ F [t]d. Then L0 ⊂ L1 ⊂ L2 ⊂ · · · and W
(
F (t)

)
=

⋃
d Ld. Note

that im(rF (t)/F ) = L0. Let Sd be the multiplicative monoid in F [t] generated by
F [t]d \ {0}. As a group Ld is generated by 1-dimensional forms of the type

(21.2) 〈f1 · · · fmg〉
with distinct monic irreducible polynomials f1, . . . , fm ∈ F [t] of degree d and g ∈
Sd−1.

Claim: The additive group Ld/Ld−1 is generated by 〈fg〉 + Ld−1 with f ∈ F [t]
monic irreducible of degree d and g ∈ Sd−1. Moreover, if h ∈ F [t]d−1 satisfies g ≡ h
mod (f), then 〈fg〉 ' 〈fh〉 mod Ld−1.

We first must show that a generator of the form in (21.2) is a sum of the desired
forms mod Ld−1. By induction on m, we need only do the case m = 2. Let f1, f2

be distinct irreducible monic polynomials of degree d and g ∈ Sd−1. Let h = f1−f2,
so deg h < d. We have

〈f1〉 = 〈h〉+ 〈f2〉 − 〈f1f2h〉
in W

(
F (t)

)
by the Witt relation (4.2). Multiplying this equation by 〈f2g〉 and

deleting squares, yields

〈f1f2g〉 = 〈f2gh〉+ 〈g〉 − 〈f1gh〉 ≡ 〈f2gh〉 − 〈f1gh〉 mod Ld−1

as needed.
Now suppose that g = g1g2 with g1, g2 ∈ F [t]d−1. As f 6 | g by the Division

Algorithm, there exist polynomials q, h ∈ F [t] with h 6= 0 and deg h < d satisfying
g = fq + h. It follows that deg q < d. By the Witt relation (4.2), we have

〈g〉 = 〈fq〉+ 〈h〉 − 〈fqhg〉
in Ld, hence multiplying by 〈f〉, we have

〈fg〉 = 〈q〉+ 〈fh〉 − 〈qhg〉 ≡ 〈fh〉 mod Ld−1.

The Claim now follows by induction on the number of factors for a general g ∈ Sd−1.
Let x ∈ A1

F be of degree d and f = fx. Define

αx : W
(
F (x)

) → Ld/Ld−1 by 〈g + (f)〉 7→ 〈g〉+ Ld−1 for g ∈ F [t]d−1.

We show this map is well-defined. If h ∈ F [t]d−1 satisfies gh2 ≡ l mod (f), with
l ∈ F [t]d−1, then 〈fg〉 = 〈fgh2〉 ≡ 〈fl〉 mod Ld−1 by the Claim, so the map is
well-defined on 1-dimensional forms. If g1, g2 ∈ F [t]d−1 satisfy g1 + g2 6= 0 and
h ≡ (g1 + g2)g1g2 mod (f), then

〈fg1〉+ 〈fg2〉 = 〈f(g1 + g2)〉+ 〈fg1g2(g1 + g2)〉 ≡ 〈f(g1 + g2)〉+ 〈fh〉 mod Ld−1

by the Claim. As 〈f〉+ 〈−f〉 = 0 in W
(
F (t)

)
, it follows that αx is well-defined by

Theorem 4.8.
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Let x′ ∈ A1
F with deg x′ = d. Then the composition

W
(
F (x)

) αx−−→ Ld/Ld−1
∂x′−−→ W

(
F (x′)

)

is the identity if x = x′, otherwise it is the zero map. It follows that the map
∐

deg x = d

W
(
F (x)

) (αx)−−−→ Ld/Ld−1

is split by (∂x)deg x=d. As (αx) is surjective by the Claim, it is an isomorphism with
inverse (∂x)deg x=d. By induction on d, we check that

(∂x)deg x≤d : Ld/L0 −→
∐

deg x≤d

W
(
F (x)

)

is an isomorphism. As L0 = W (F ), passing to the limit yields the result. ¤
It follows from Lemma 19.14 or Example 19.13 that ∂x

(
In(F (t))

) ⊂ In−1
(
F (x)

)
for every x ∈ A1

F .

Corollary 21.3. The sequence

0 → In(F )
rF (t)/F−−−−−→ In

(
F (t)

) ∂−→
∐

x∈A1
F

In−1
(
F (x)

) → 0

is split exact for each n ≥ 1.

Proof. We show by induction on d = deg x that In−1
(
F (x)

)
lies in im(∂).

Let g2, . . . , gn ∈ F [t] be of degree < d. We need to prove that b = 〈〈ḡ2, . . . , ḡn〉〉 lies
in im(∂) where ḡi is the image of gi in F (x). By Example 19.13, we have ∂x(c) = b
where c = 〈〈−fx, g2, . . . , gn〉〉. Moreover, c−b ∈ ∐

deg x<d In−1
(
F (x)

)
and therefore

c− b ∈ im(∂) by induction.
To finish, it suffices to show exactness at In

(
F (t)

)
. Let b ∈ Ker(∂). By

Theorem 21.1, there exists c ∈ W (F ) satisfying rF (t)/F (c) = b. We show c ∈ In(F ).
Let x ∈ A1

F be a fixed rational point and f = t− t(x). Define ρ : W
(
F (t)

) → W (F )
by ρ(d) = ∂x

(〈〈−f〉〉 · d). By Lemma 19.14, we have ρ(In
(
F (t)

) ⊂ In(F ) as F (x) =
F . By Example 19.13, the composition ρ ◦ rF (t)/F is the identity. It follows that
c = ρ(b) ∈ In(F ) as needed. ¤

The above was proven by Milnor in [106] for fields of characteristic not 2. We
wish to modify the sequence in Theorem 21.1 to the projective line P1

F . If x ∈ A1
F

is of degree n, let sx : F (x) → F be the F -linear functional

sx

(
tn−1(x)

)
= 1 and sx

(
ti(x)

)
= 0 for i < n− 1.

The infinite point ∞ corresponds to the 1/t-adic valuation. It has residue field F .
The corresponding second residue homomorphism ∂∞ : W

(
F (t)

) → W (F ) is taken
with respect to the prime 1/t. So if 0 6= h ∈ F [t] is of degree n and has leading
coefficient a, we have ∂∞

(〈h〉) = 〈a〉 if n is odd, and ∂∞
(〈h〉) = 0 otherwise.

Define (s∞)∗ to be −Id : W (F ) → W (F ). The following theorem was first proved
by Scharlau in [120] for fields of characteristic not 2.

Theorem 21.4. The sequence

0 → W (F )
rF (t)/F−−−−−→ W

(
F (t)

) ∂−→
∐

x∈P1F

W
(
F (x)

) s∗−→ W (F ) → 0

is exact with ∂ = (∂x) and s∗ =
(
(sx)∗

)
.
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Proof. The map (s∞)∗ is −Id. Hence by Theorem 21.1, it suffices to show
s∗ ◦ ∂ is the zero map.

As 1-dimensional bilinear forms generate W
(
F (t)

)
, it suffices to check the result

on 1-dimensional forms. Let 〈af1 · · · fn〉 be a 1-dimensional form with fi ∈ F [t]
monic of degree di and a ∈ F× for i ∈ [1, n]. Let xi ∈ A1

F satisfy fi = fxi
and

si = sxi for 1 ≤ i ≤ n. We must show that
∑

X∈A1
F

(sx)∗ ◦ ∂x

(〈af1 · · · fn〉
)

= −(s∞)∗ ◦ ∂∞
(〈af1 · · · fn〉

)

in W (F ). Multiplying through by 〈a〉, we may also assume that a = 1.
Set A = F [t]/(f1 · · · fn) and d = dim A. Then d =

∑
di. Let : F [t] → A be

the canonical epimorphism and set qi = (f1 · · · fn)/fi. We have an F -vector space
homomorphism

α :
n∐

i=1

F (xi) → A given by
(
h1(xi), . . . , hn(xi)

) 7→
∑

h̄iq̄i for all h ∈ F [t].

We show that α is an isomorphism. As both spaces have the same dimension, it
suffices to show α is monic. As the qi are relatively prime in F [t], we have an
equation

∑n
i=1 giqi = 1 with all gi ∈ F [t]. Then the map

A →
∐

F (xi) given by h̄ → (
h(x1)g(x1), . . . , h(xn)gn(xn)

)

splits α, hence α is monic as needed. Set Ai = α
(
F (xi)

)
for 1 ≤ i ≤ n.

Let s : A → F be the F -linear functional defined by s(t̄d−1) = 1 and s(t̄i) = 0
for 0 ≤ i < d− 1. Define b to be the bilinear form on A over F given by b(f̄ , h̄) =
s(f̄ h̄) for f, h ∈ F [t]. If i 6= j, we have

b
(
α(f(xi)), α(h(xj))

)
= b(f̄ q̄i, h̄q̄j) = s(f̄ h̄q̄iq̄j) = s(0) = 0

for all f, h ∈ F [t]. Consequently, b|Ai is orthogonal to b|Aj if i 6= j.

Claim: b|Ai ' (si)∗
(
∂fi(〈f1 · · · fn〉)

)
for i ∈ [1, n].

Let g, h ∈ F [t]. Write

qigh = c0 + · · ·+ cdi−1t
di−1 + fip

for some ci ∈ F and p ∈ F [t].
By definition, we have

(si)∗
(
∂fi(〈f1 · · · fn〉)

)(
g(xi), h(xi)

)
= si

(
qi(xi)g(xi)h(xi)

)
= cdi−1.

As deg qi = d− di, we have deg qit
di−1 = d− 1. Thus

b|Ai

(
α(g(xi)), α(h(xi))

)
= b(ḡq̄i, h̄q̄i) = s(q̄2

i ḡh̄) = cdi−1,

and the claim is established.
As ∂f (f1 · · · fn) = 0 for all irreducible monic polynomials f 6= fi, i ∈ [1, n], in

F [t], we have, by the Claim,

b =
n∑

i=1

(si)∗
(
∂xi(〈f1 · · · fn〉)

)
=

∑

x∈A1
F

(sx)∗
(
∂x(〈f1 · · · fn〉)

)

in W (F ).
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Suppose that d = 2e is even. The form b is then metabolic as it has a totally
isotropic subspace of dimension e spanned by 1, t̄, . . . , t̄e−1. We also have (s∞)∗ ◦
∂∞(b) = 0 in this case.

Suppose that d = 2e + 1. Then b has a totally isotropic subspace spanned by
1, t̄, . . . , t̄e−1 so b ' 〈a〉 ⊥ c with c metabolic by the Witt Decomposition Theorem
1.27. Computing det b on the basis {1, t̄, . . . , ¯td−1}, we see that 〈a〉 = 〈1〉. As
(s∞)∗ ◦ ∂∞(b) = −〈1〉, the result follows. ¤
Corollary 21.5. Let K be a finite simple extension of F and s : K → F a non-
trivial F -linear functional. Then s∗

(
In(K)

) ⊂ In(F ) for all n ≥ 0. Moreover, the
induced map In(K)/In+1(K) → In(F )/In+1(F ) is independent of the nontrivial
F -linear functional s for all n ≥ 0.

Proof. Let x lie in A1
F with K = F (x). Let b ∈ In(K). By Lemma 21.3,

there exists c ∈ In+1
(
F (t)

)
such that ∂y(c) = 0 for all y ∈ A1

F unless y = x in
which case ∂x(c) = b. It follows by Theorem 21.4 that

0 =
∑

y∈P1F

(sy)∗ ◦ ∂y(c) = (sx)∗(b)− ∂∞(c).

By Lemma 19.14, we have ∂∞(c) ∈ In(F ), so (sx)∗(b) ∈ In(F ). Suppose that
s : K → F is another nontrivial F -linear functional. As in the proof of Corollary
20.7, there exists a c ∈ K× such that (s)∗(c) = (sx)∗(cc) for all symmetric bilinear
forms c. In particular, (s)∗(b) = (sx)∗(cb) lies in In(F ). As 〈〈c〉〉 · b ∈ In+1(K), we
also have

s∗(b)− (sx)∗(b) = (sx)∗
(〈〈c〉〉 · b)

lies in In+1(F ). The result follows. ¤
The transfer induced by distinct nontrivial F -linear functionals K → F are

not, in general, equal on In(F ).

Exercise 21.6. Show that Corollary 21.5 holds for arbitrary finite extensions K/F .

Corollary 21.7. The sequence

0 → In(F )
rF (t)/F−−−−−→ In

(
F (t)

) ∂−→
∐

x∈P1F

In−1
(
F (x)

) s∗−→ In−1(F ) → 0

is exact.



CHAPTER IV

Function Fields of Quadrics

22. Quadrics

A quadratic form ϕ over F defines a projective quadric Xϕ over F . The
quadric Xϕ is smooth if and only if ϕ is nondegenerate (cf. Proposition 22.1).
The quadric Xϕ encodes information about isotropy properties of ϕ, namely the
form ϕ is isotropic over a field extension E/F if and only if Xϕ has a point over
E. In the third part of the book, we will use algebraic-geometric methods to study
isotropy properties of ϕ.

If b is a symmetric bilinear form, the quadric Xϕb
reflects isotropy properties of

b (and of ϕb as well). If the characteristic of F is 2, only totally singular quadratic
forms arise from symmetric bilinear forms. In particular, quadrics arising from
bilinear forms are not smooth. Therefore, algebraic-geometric methods have wider
application in the theory of quadratic forms than in the theory of bilinear forms.

In the previous sections, we looked at quadratic forms over field extensions
determined by irreducible polynomials. In particular, we were interested in when a
quadratic form becomes isotropic over such a field. Viewing a quadratic form as a
homogeneous polynomial of degree two, results from these sections apply.

Let ϕ and ψ be two anisotropic quadratic forms. In this section, we begin our
study of when ϕ becomes isotropic or hyperbolic over the function field F (Xψ) of the
integral quadric Xψ. It is natural at this point to introduce the geometric language
that we shall use, i.e., to associate to a quadratic form a projective quadric.

Let ϕ be a quadratic form on V . Viewing ϕ ∈ S2(V ∗), we define the projective
quadric associated to ϕ to be the closed subscheme

Xϕ = Proj
(
S•(V ∗)/(ϕ)

)

of the projective space P(V ) = Proj S•(V ∗) where S•(V ∗) is the symmetric algebra
of the dual space V ∗ of V . The scheme Xϕ is equidimensional of dimension dim V −2
if ϕ 6= 0 and dim V ≥ 2. We define the Witt index of Xϕ by i0(Xϕ) := i0(ϕ). By
construction, for any field extension L/F , the set of L-points Xϕ(L) coincides with
the set of isotropic lines in VL. Therefore, Xϕ(L) = ∅ if and only if ϕL is anisotropic.

For any field extension K/F we have XϕK = (Xϕ)K .
Let ψ be a subform of ϕ. The inclusion of vector spaces Vψ ⊂ V gives rise to

a surjective graded ring homomorphism

S•(V ∗)/(ϕ) → S•(Vψ
∗)/(ψ)

which in turn leads to a closed embedding Xψ ↪→ Xϕ. We shall always identify Xψ

with a closed subscheme of Xϕ.

Proposition 22.1. Let ϕ be a nonzero quadratic form of dimension at least 2.
Then the quadric Xϕ is smooth if and only if ϕ is nondegenerate.

93
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Proof. By Lemma 7.16, we may assume that F is algebraically closed. We
claim that P(rad ϕ) is the singular locus of Xϕ. Let 0 6= u ∈ V be an isotropic vector.
Then the isotropic line U = Fu ⊂ V can be viewed as a rational point of Xϕ. As
ϕ(u + εv) = 0 if and only if u is orthogonal to v (where ε2 = 0), the tangent space
TX,U is the subspace Hom(U,U⊥/U) of the tangent space TP(V ),U = Hom(U, V/U)
(cf. Example 104.20). In particular, the point U is regular on X if and only if
dim TX,U = dim X = dim V − 2 if and only if U⊥ 6= V , i.e., U is not contained in
radϕ. Thus Xϕ is smooth if and only if rad ϕ = 0, i.e., ϕ is nondegenerate. ¤

We say that the quadratic form ϕ on V is irreducible if ϕ is irreducible in the
ring S•(V ∗). If ϕ is nonzero and not irreducible, then ϕ = l · l′ for some nonzero
linear forms l, l′ ∈ V ∗. Then rad ϕ = Ker(l) ∩ Ker(l′) has codimension at most
2 in V . Therefore, the induced form ϕ̄ on V/ radϕ is either 1-dimensional or a
hyperbolic plane. It follows that a regular quadratic form ϕ is irreducible if and
only if dimϕ ≥ 3 or dim ϕ = 2 and ϕ is anisotropic.

If ϕ is irreducible, Xϕ is an integral scheme. The function field F (Xϕ) is called
the function field of ϕ and will be denoted by F (ϕ). By definition, F (ϕ) is the
subfield of degree 0 elements in the quotient field of the domain S•(V ∗)/(ϕ). Note
that the quotient field of S•(V ∗)/(ϕ) is a purely transcendental extension of F (ϕ) of
degree 1. Clearly, ϕ is isotropic over the quotient field of S•(V ∗)/(ϕ) and therefore
is isotropic over F (ϕ).

Example 22.2. Let σ be an anisotropic binary quadratic form. As σ is isotropic
over F (σ), it follows from Corollary 12.3 that F (σ) ' C0(σ).

If K/F is a field extension such that ϕK is still irreducible, we simply write
K(ϕ) for K(ϕK).

Example 22.3. Let ϕ and ψ be irreducible quadratic forms. Then

F (Xϕ ×Xψ) ' F (ϕ)(ψF (ϕ)) ' F (ψ)(ϕF (ψ)).

Let ϕ and ψ be two irreducible regular quadratic forms. We shall be interested
in when ϕF (ψ) is hyperbolic or isotropic. A consequence of the Quadratic Similarity
Theorem 20.16 is:

Proposition 22.4. Let ϕ be a nondegenerate quadratic form of even dimension
and ψ be an irreducible quadratic form of dimension n over F . Suppose that T =
(t1, . . . , tn) and b ∈ D(ψ). Then ϕF (ψ) is hyperbolic if and only if

b · ψ(T )ϕF (T ) ' ϕF (T ).

Proof. By the Quadratic Similarity Theorem 20.16, we have ϕF (ψ) is hyper-
bolic if and only if ψ∗ψ(T )ϕF (T ) ' ϕF (T ). Let b ∈ D(ψ). Choosing a basis for V
with first vector v satisfying ψ(v) = b, we have ψ∗ = b. ¤
Theorem 22.5 (Subform Theorem). Let ϕ be a nonzero anisotropic quadratic form
and ψ be an irreducible anisotropic quadratic form such that the form ϕF (ψ) is hy-
perbolic. Let a ∈ D(ϕ) and b ∈ D(ψ). Then abψ is isometric to a subform of ϕ
and, therefore, dim ψ ≤ dim ϕ.

Proof. We view ψ as an irreducible polynomial in F [T ]. The form ϕ is
nondegenerate of even dimension by Remark 7.18, so by Corollary 22.4, we have
bψ(T ) ∈ G(ϕF (T )). Since a ∈ D(ϕ), we have abψ(T ) ∈ D(ϕF (T )). By the Repre-
sentation Theorem 17.12, we conclude that abψ is a subform of ϕ. ¤
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By the proof of the theorem and Corollary 20.20, we have

Corollary 22.6. Let ϕ be an anisotropic quadratic form and ψ an irreducible
anisotropic quadratic form. If ϕF (ψ) is hyperbolic, then D(ψ)D(ψ) ⊂ G(ϕ). In
particular, if 1 ∈ D(ψ), then D(ψ) ⊂ G(ϕ).

Remark 22.7. The natural analogues of the Representation Theorem 17.12 and
the Subform Theorem 22.5 are not true for bilinear forms in characteristic 2. Let
b = 〈1, b〉 and c = 〈1, c〉 be anisotropic symmetric bilinear forms with b and c =
x2 + by2 nonzero and bF×2 6= cF×2 in a field F of characteristic 2. Thus b 6' c.
However, ϕb ' ϕc by Example 7.27. So ϕc(t1, t2) ∈ D(ϕbF (t1,t2)) and cF (ϕb) is
isotropic, hence metabolic, but ac is not a subform of b for any a 6= 0.

We do have, however, the following:

Corollary 22.8. Let b and c be anisotropic bilinear forms with dim c ≥ 2 and b
nonzero. Let ψ be the associated quadratic form of c. If bF (ψ) is metabolic, then
dim c ≤ dim b.

Proof. Let ϕ = ϕb. By the Bilinear Similarity Theorem 20.19 and Lemma 9.2,
we have aψ(T ) ∈ G(bF (T )) ⊂ G(ϕF (T )) for some a ∈ F× where T = (t1, . . . , tdim ψ).
It follows that bψ(T ) ∈ D(ϕF (T )) for some b ∈ F×. Consequently,

dim b = dim ϕ ≥ dim ψ = dim c

by the Representation Theorem 17.12. ¤
We turn to the case in which a quadratic form becomes isotropic over the

function field of another form or itself.

Proposition 22.9. Let ϕ be an irreducible regular quadratic form. Then the field
extension F (ϕ)/F is purely transcendental if and only if ϕ is isotropic.

Proof. Suppose that the field extension F (ϕ)/F is purely transcendental. As
ϕF (ϕ) is isotropic, ϕ is isotropic by Lemma 7.15.

Now suppose that ϕ is isotropic. Then ϕ = H ⊥ ϕ′ for some ϕ′ by Proposition
7.13. Let V = Vϕ, V ′ = Vϕ′ and let h, h′ ∈ V be a hyperbolic pair of H. Let
ψ = ϕ|Fh′⊕V ′ with h′ ∈ (V ′)⊥. It suffices to show that Xϕ \Xψ is isomorphic to
an affine space. Every isotropic line in Xϕ \Xψ has the form F (h + ah′ + v′) for
unique a ∈ F and v′ ∈ V ′ satisfying

0 = ϕ(h + ah′ + v′) = a + ϕ(v′),

i.e., a = −ϕ(v′). Therefore, the morphism Xϕ \Xψ → A(V ′) taking F (h+ah′+v′)
to v′ is an isomorphism with the inverse given by v′ 7→ F

(
h− ϕ(v′)h′ + v′

)
. ¤

Remark 22.10. Let charF = 2 and let ϕ be an irreducible totally singular form.
Then the field extension F (ϕ)/F is not purely transcendental even if ϕ is isotropic.

Proposition 22.11. Let ϕ be an anisotropic quadratic form over F and K/F a
quadratic field extension. Then ϕK is isotropic if and only if there is a binary
subform σ of ϕ such that F (σ) ' K.

Proof. Let σ be a binary subform of ϕ with F (σ) ' K. Since σ is isotropic
over F (σ) we have ϕ isotropic over F (σ) ' K.

Conversely, suppose that ϕK(v) = 0 for some nonzero v ∈ (Vϕ)K . Since K
is quadratic over F , there is a 2-dimensional subspace U ⊂ Vϕ with v ∈ UK .
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Therefore, the form σ = ϕ|U is isotropic over K. As σ is also isotropic over F (σ),
it follows from Corollary 12.3 and Example 22.2 that F (σ) ' C0(σ) ' K. ¤

Corollary 22.12. Let ϕ be an anisotropic quadratic form and σ a nondegenerate
anisotropic binary quadratic form. Then ϕ ' b ⊗ σ ⊥ ψ with b a nondegenerate
symmetric bilinear form and ψF (σ) anisotropic.

Proof. Suppose that ϕF (σ) is isotropic. By Proposition 22.11, there is a binary
subform σ′ of ϕ with F (σ′) = F (σ). By Corollary 12.2 and Example 22.2, we have
σ′ is similar to σ. Consequently, there exists an a ∈ F× such that ϕ ' aσ ⊥ ψ for
some quadratic form ψ. The result follows by induction on dimϕ. ¤

Recall that a field extension K/F is called separable if there exists and inter-
mediate field E in K/F with E/F purely transcendental and K/E algebraic and
separable. We show that regular quadratic forms remain regular after extending to
a separable field extension.

Lemma 22.13. Let ϕ be a regular quadratic form over F and K/F a separable
(possibly infinite) field extension. Then ϕK is regular.

Proof. We proceed in several steps.

Case 1: [K : F ] = 2.
Let v ∈ (Vϕ)K be an isotropic vector. Then v ∈ UK for a 2-dimensional sub-

space U ⊂ Vϕ such that ϕ|U is similar to the norm form N of K/F (cf. Proposition
12.1). As N is nondegenerate, v /∈ rad bϕK , therefore, rad ϕK = 0.

Case 2: K/F is of odd degree or purely transcendental.
We have ϕ ' ϕan ⊥ nH. The anisotropic part ϕan stays anisotropic over K by

Springer’s Theorem 18.5 or Lemma 7.15, respectively; therefore ϕK is regular.

Case 3: [K : F ] is finite.
We may assume that K/F is Galois by Remark 7.14. Then K/F is a tower of

odd degree and quadratic extensions.

Case 4: The general case.
In general, K/F is a tower of a purely transcendental and a finite separable

extension. ¤

We turn to the function field of an irreducible quadratic form.

Lemma 22.14. Let ϕ be an irreducible quadratic form over F . Then there exists
a purely transcendental extension E of F with [F (ϕ) : E] = 2. Moreover, if ϕ is not
totally singular, the field E can be chosen with F (ϕ)/E separable. In particular,
F (ϕ)/F is separable.

Proof. Let U ⊂ Vϕ be an anisotropic line. The rational projection f : Xϕ 99K
P = P(V/U) taking a line U ′ to (U + U ′)/U is a double cover, so F (ϕ)/E is a
quadratic field extension where E is the purely transcendental extension F (P) of
F .

Let τ be the reflection of ϕ with respect to a nonzero vector in U . Clearly,
f(τU ′) = f(U ′) for every line U ′ in Xϕ. Therefore, τ induces an automorphism
of every fiber of f . In particular, τ induces an automorphism of the generic fiber,
hence an automorphism ε of the field F (ϕ) over E.
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If ϕ is not totally singular, we can choose U not in rad bϕ. Then the isometry τ
and the automorphism ε are nontrivial. Consequently, the field extension F (ϕ)/E
is separable. ¤

22.A. Domination relation. Let ϕ and ψ be anisotropic quadratic forms of
dimension at least 2 over F . We say ϕ dominates ψ and write ϕ Â ψ if ϕF (ψ) is
isotropic and write ϕ ≺Â ψ if ϕ Â ψ and ψ Â ϕ. For example, if ψ is a subform of
ϕ, then ϕ Â ψ.

We have ϕ Â ψ if and only if there exists a rational map Xψ 99K Xϕ.
We show that the relation Â is transitive.

Lemma 22.15. Let ϕ and ψ be anisotropic quadratic forms over F . If ψ Â µ,
then there exist a purely transcendental field extension E/F and a binary subform
σ of ψE over E such that E(σ) = F (µ).

Proof. By Lemma 22.14, there exists a purely transcendental field extension
E/F such that F (µ) is a quadratic extension of E. As ψ is isotropic over F (µ), it
follows from Proposition 22.11 applied to the form ψE and the quadratic extension
F (µ)/E that ψE contains a binary subform σ over E satisfying E(σ) = F (µ). ¤

Proposition 22.16. Let ϕ, ψ, and µ be anisotropic quadratic forms over F . If
ϕ Â ψ Â µ, then ϕ Â µ.

Proof. Consider first the case when µ is a subform of ψ.
We may assume that µ is of codimension one in ψ. Let T = (t1, . . . , tn) be the

coordinates in Vψ so that Vµ is given by t1 = 0. By assumption, there is v ∈ Vϕ[T ]
such that ϕ(v) is divisible by ψ(T ) but v is not divisible by ψ(T ). Since ψ is
anisotropic, we have degti

ψ = 2 for every i. Applying the division algorithm by
dividing v by ψ with respect to the variable t2, we may assume that degt2 v ≤ 1.
Moreover, dividing out a power of t1 if necessary, we may assume that v is not
divisible by t1. Therefore, the vector w := v|t1=0 ∈ Vϕ[T ′] with T ′ = (t2, . . . , tn) is
not zero. As degt2 w ≤ 1 and degt2 µ = 2, the vector w is not divisible by µ(T ′).
On the other hand, ϕ(w) is divisible by ψ(T )|t1=0 = µ(T ′), i.e., ϕ is isotropic over
F (µ).

Now consider the general case. By Lemma 22.15, there exist a purely tran-
scendental field extension E/F and a binary subform σ of ψE over E such that
E(σ) = F (µ). By the first part of the proof applied to the forms ϕE Â ψE Â σ, we
have ϕE is isotropic over E(σ) = F (µ), i.e., ϕ Â µ. ¤

Corollary 22.17. Let ϕ, ψ, and µ be anisotropic quadratic forms over F . If
ϕ ≺Â ψ, then µF (ϕ) is isotropic if and only if µF (ψ) is isotropic.

Proposition 22.18. Let ψ and µ be anisotropic quadratic forms over F satisfying
ψ Â µ. Let ϕ be a quadratic form such that ϕF (ψ) is hyperbolic. Then ϕF (µ) is
hyperbolic.

Proof. Consider first the case when µ is a subform of ψ. Choose variables T ′ of
µ and variables T = (T ′, T ′′) of ψ so that µ(T ′) = ψ(T ′, 0). As ϕF (ψ) is hyperbolic,
by the Quadratic Similarity Theorem 20.16, we have ϕF (T ) ' aψ(T )ϕF (T ) over
F (T ) for some a ∈ F×. Specializing the variables T ′′ = 0, we see by Corollary 20.20
that ϕF (T ′) ' aµ(T ′)ϕF (T ′) over F (T ′), and again it follows from the Quadratic
Similarity Theorem 20.16 that ϕF (µ) is hyperbolic.
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Now consider the general case. By Lemma 22.15, there exist a purely tran-
scendental field extension E/F and a binary subform σ of ψE over E such that
E(σ) = F (µ). As ϕE(ψ) is hyperbolic, by the first part of the proof applied to the
forms ψE Â σ, we have ϕE(σ) = ϕF (µ) is hyperbolic. ¤

23. Quadratic Pfister forms II

The introduction of function fields of quadrics allows us to determine the main
characterization of general quadratic Pfister forms first proven by Pfister in [108]
for fields of characteristic different from 2. They are precisely those forms that
become hyperbolic over their function fields. In particular, Pfister forms can be
characterized as universally round forms.

If ϕ is an anisotropic general quadratic Pfister form, then ϕF (ϕ) is isotropic,
hence hyperbolic by Corollary 9.10. We wish to show the converse of this property.
We begin by looking at subforms of Pfister forms.

Lemma 23.1. Let ϕ be an anisotropic quadratic form over F and ρ a subform of
ϕ. Suppose that D(ϕK) and D(ρK) are groups for all field extensions K/F . Let
a = −ϕ(v) for some v ∈ V ⊥

ρ \Vρ. Then the form 〈〈a〉〉⊗ρ is isometric to a subform
of ϕ.

Proof. Let T = (t1, . . . , tn) and T ′ = (tn+1, . . . , t2n) be 2n independent vari-
ables where n = dim ρ. We have

ρ(T )− aρ(T ′) = ρ(T ′)
[ ρ(T )
ρ(T ′)

− a
]
.

As D(ρF (T,T ′)) is a group, we have
ρ(T )
ρ(T ′)

∈ D(ρF (T,T ′)), hence
ρ(T )
ρ(T ′)

− a ∈
D(ϕF (T,T ′)). As ρ(T ′) ∈ D(ϕF (T,T ′)), we have

ρ(T )− aρ(T ′) ∈ D(ϕF (T,T ′))D(ϕF (T,T ′)) = D(ϕF (T,T ′)).

By the Representation Theorem 17.12, we conclude that 〈〈a〉〉 ⊗ ρ is a subform of
ϕ. ¤

Theorem 23.2. Let ϕ be a nondegenerate (respectively, totally singular) anisotro-
pic quadratic form over F of dimension n ≥ 1. Let T = (t1, . . . , tn) and T ′ =
(tn+1, . . . , t2n) be 2n independent variables. Then the following are equivalent:

(1) n = 2k for some k ≥ 1 and ϕ ∈ Pk(F ) (respectively, ϕ is a quadratic
quasi-Pfister form).

(2) G(ϕK) = D(ϕK) for all field extensions K/F .
(3) D(ϕK) is a group for all field extensions K/F .
(4) Over the rational function field F (T, T ′), we have

ϕ(T )ϕ(T ′) ∈ D(ϕF (T,T ′)).

(5) ϕ(T ) ∈ G(ϕF (T )).

Proof. (2) ⇒ (3) ⇒ (4) are trivial.
(5) ⇐ (1) ⇒ (2): As quadratic Pfister forms are round by Corollary 9.9 and

quasi-Pfister forms are round by Corollary 10.3, the implications follow.
(5) ⇒ (4): We have ϕ(T ) ∈ G(ϕF (T )) ⊂ G(ϕF (T,T ′)) and ϕ(T ′) ∈ D(ϕT,T ′)).

It follows by Lemma 9.1 that ϕ(T )ϕ(T ′) ∈ D(ϕF (T,T ′)).
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(4) ⇒ (3): If K/F is a field extension, then ϕ(T )ϕ(T ′) ∈ D(ϕK(T,T ′)). By the
Substitution Principle 17.7, it follows that D(ϕK) is a group.

(3) ⇒ (1): As 1 ∈ D(ϕ), it is sufficient to show that ϕ is a general quadratic
(quasi-) Pfister form. We may assume that dim ϕ ≥ 2. If ϕ is nondegenerate, ϕ
contains a nondegenerate binary subform, i.e., a 1-fold general quadratic Pfister
form. Let ρ be the largest quadratic general Pfister subform of ϕ if ϕ is nondegen-
erate and the largest quasi-Pfister form if ϕ is totally singular. Suppose that ρ 6= ϕ.
If ϕ is nondegenerate, then V ⊥

ρ 6= 0 and V ⊥
ρ ∩ Vρ = rad bρ = 0 and if ϕ is totally

singular, then V ⊥
ρ = Vϕ and Vρ 6= Vϕ. In either case, there exists a v ∈ V ⊥

ρ \ Vρ.
Set a = −ϕ(v). By Lemma 23.1, we have 〈〈a〉〉 ⊗ ρ is isometric to a subform of ϕ,
a contradiction. ¤

Remark 23.3. Let ϕ be a nondegenerate isotropic quadratic form over F . As
hyperbolic quadratic forms are universal and round, if ϕ is hyperbolic, then ϕ(T ) ∈
G(ϕF (T )). Conversely, suppose ϕ(T ) ∈ G(ϕF (T )). As

(ϕF (T ))an ⊥ i0(ϕ)H ' ϕF (T ) ' ϕ(T )ϕF (T ) ' ϕ(T )(ϕF (T ))an ⊥ i0(ϕ)ϕ(T )H,

we have ϕ(T ) ∈ G
(
(ϕF (T ))an

)
by Witt Cancellation 8.4. If ϕ was not hyperbolic,

then the Subform Theorem 22.5 would imply dimϕF (T ) ≤ dim(ϕF (T ))an, a contra-
diction. Consequently, ϕ(T ) ∈ G(ϕF (T )) if and only if ϕ is hyperbolic.

Corollary 23.4. Let ϕ be a nondegenerate anisotropic quadratic form of dimension
at least two over F . Then the following are equivalent:

(1) dimϕ is even and i1(ϕ) = dim ϕ/2.
(2) ϕF (ϕ) is hyperbolic.
(3) ϕ ∈ GPn(F ) for some n ≥ 1.

Proof. Statements (1) and (2) are both equivalent to ϕF (ϕ) contains a totally
isotropic subspace of dimension 1

2 dim ϕ. Let a ∈ D(ϕ). Replacing ϕ by 〈a〉ϕ we
may assume that ϕ represents one. By Theorem 22.4, condition (2) in the corollary
is equivalent to condition (5) of Theorem 23.2, hence conditions (2) and (3) above
are equivalent. ¤

Corollary 23.5. Let ϕ and ψ be quadratic forms over F with ϕ ∈ Pn(F ) anisotro-
pic. Suppose that there exists an F -isomorphism F (ϕ) ' F (ψ). Then there exists
an a ∈ F× such that ψ ' aϕ over F , i.e., ϕ and ψ are similar over F .

Proof. As ϕF (ϕ) is hyperbolic, so is ϕF (ψ). In particular, aψ is a subform of
ϕ for some a ∈ F× by the Subform Theorem 22.5. Since F (ϕ) ' F (ψ), we have
dim ϕ = dim ψ and the result follows. ¤

In general, the corollary does not generalize to non-Pfister forms. Let F =
Q(t1, t2, t3). The quadratic forms ϕ = 〈〈t1, t2〉〉 ⊥ 〈−t3〉 and ϕ = 〈〈t1, t3〉〉 ⊥ 〈−t2〉
have isomorphic function fields but are not similar. (Cf. [89, Th. XII.2.15].)

Let r : F → K be a homomorphism of fields. Denote the kernel of rK/F :
W (F ) → W (K) by W (K/F ) and the kernel of rK/F : Iq(F ) → Iq(K) by Iq(K/F ).
If ϕ is a nondegenerate even-dimensional quadratic form over F , we denote by
W (F )ϕ the cyclic W (F )-module in Iq(F ) generated by ϕ.

Corollary 23.6. Let ϕ be an anisotropic quadratic n-fold Pfister form with n ≥ 1
and ψ an anisotropic quadratic form of even dimension over F . Then there is an
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isometry ψ ' b⊗ ϕ over F for some symmetric bilinear form b over F if and only
if ψF (ϕ) is hyperbolic. In particular, Iq(F (ϕ)/F ) = W (F )ϕ.

Proof. If b is a bilinear form, then (b⊗ ϕ)F (ϕ) = bF (ϕ) ⊗ ϕF (ϕ) is hyperbolic
by Lemma 8.16 as ϕF (ϕ) is hyperbolic by Corollary 9.10. Conversely, suppose that
ψF (ϕ) is hyperbolic. We induct on dimψ. Assume that dim ψ > 0. By the Subform
Theorem 22.5 and Proposition 7.22, we have ψ ' aϕ ⊥ γ for some a ∈ F× and
quadratic form γ. The form γ also satisfies γF (ϕ) is hyperbolic, so the result follows
by induction. ¤

23.A. The Hauptsatz. We next prove a fundamental fact about forms in
In(F ) and In

q (F ) due to Arason and Pfister known as the Hauptsatz and proven in
[10].

Theorem 23.7 (Hauptsatz). (1) Let 0 6= ϕ be an anisotropic quadratic form lying
in In

q (F ). Then dim ϕ ≥ 2n.
(2) Let 0 6= b be an anisotropic bilinear form lying in In(F ). Then dim(b) ≥ 2n.

Proof. (1): As In
q (F ) is additively generated by general quadratic n-fold Pfis-

ter forms, we can write ϕ =
∑r

1=i aiρi in W (F ) for some anisotropic ρi ∈ Pn(F )
and ai ∈ F×. We prove the result by induction on r. If r = 1, the result is triv-
ial as ρ1 is anisotropic, so we may assume that r > 1. As (ρr)F (ρr) is hyperbolic
by Corollary 9.10, applying the restriction map rF (ρr)/F : W (F ) → W

(
F (ρr)

)

to ϕ yields ϕF (ρr) =
∑r−1

i=1 ai(ρi)F (ρr) in In
q

(
F (ρ)

)
. If ϕF (ρr) is hyperbolic, then

2n = dim ρ ≤ dim ϕ by the Subform Theorem 22.5. If this does not occur, then by
induction 2n ≤ dim(ϕF (ρr))an ≤ dim ϕ and the result follows.

(2): As In(F ) is additively generated by bilinear n-fold Pfister forms, we can
write b =

∑r
1=i εici in W (F ) for some ci anisotropic bilinear n-fold Pfister forms

and εi ∈ {±1}. Let ϕ = ϕcr be the quadratic form associated to cr. Then ϕF (ϕ)

is isotropic, hence (cr)F (ϕ) is isotropic, hence metabolic by Corollary 6.3. If bF (ϕ)

is not metabolic, then 2n ≤ dim(bF (ϕ))an ≤ dim b by induction on r. If bF (ϕ) is
metabolic, then 2n = dim c ≤ dim b by Corollary 22.8. ¤

An immediate consequence of the Hauptsatz is a solution to a problem of
Milnor, viz.,

Corollary 23.8.
⋂∞

i=1 In(F ) = 0 and
⋂∞

i=1 In
q (F ) = 0.

The proof of the Hauptsatz for bilinear forms completes the proof of Corollary
6.19 and Theorem 6.20. We have an analogous result for quadratic Pfister forms.

Corollary 23.9. Let ϕ,ψ ∈ GPn(F ). If ϕ ≡ ψ mod In+1
q (F ), then ϕ ' aψ for

some a ∈ F×, i.e., ϕ and ψ are similar over F . If, in addition, D(ϕ) ∩D(ψ) 6= ∅,
then ϕ ' ψ.

Proof. By the Hauptsatz 23.7, we may assume both ϕ and ψ are anisotropic.
As 〈〈a〉〉 ⊗ ψ ∈ GPn+1(F ), we have aψ ≡ ψ mod In+1

q (F ) for any a ∈ F×. Choose
a ∈ F× such that ϕ ⊥ −aψ in In+1

q (F ) is isotropic. By the Hauptsatz 23.7, the
form ϕ ⊥ −aψ is hyperbolic, hence ϕ = aψ in Iq(F ). As both forms are anisotropic,
it follows by dimension count that ϕ ' aψ by Remark 8.17. If D(ϕ) ∩D(ψ) 6= ∅,
then we can take a = 1. ¤
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If ϕ is a nonzero subform of dimension at least two of an anisotropic quadratic
form ρ, then ρF (ϕ) is isotropic. As ϕ must also be anisotropic, we have ρ Â ϕ. For
general Pfister forms, we can say more. Let ρ be an anisotropic general quadratic
Pfister form. Then ρF (ρ) is hyperbolic, so it contains a totally isotropic subspace of
dimension (dim ρ)/2. Suppose that ϕ is a subform of ρ satisfying dim ϕ > (dim ρ)/2.
Then ϕF (ρ) is isotropic, hence ϕ Â ρ also. This motivates the following:

Definition 23.10. An anisotropic quadratic form ϕ is called a Pfister neighbor if
there is a general quadratic Pfister form ρ such that ϕ is isometric to a subform of
ρ and dimϕ > (dim ρ)/2.

For example, nondegenerate anisotropic forms of dimension at most 3 are Pfister
neighbors.

Remark 23.11. Let ϕ be a Pfister neighbor isometric to a subform of a general
quadratic Pfister form ρ with dim ϕ > (dim ρ)/2. By the above, ϕ ≺Â ρ. Let σ be
another general quadratic Pfister form such that ϕ is isometric to a subform of σ
and dim ϕ > (dimσ)/2. As ρ ≺Â ϕ ≺Â σ and D(ρ) ∩D(σ) 6= ∅, we have σ ' ρ by
the Subform Theorem 22.5. Thus the general Pfister form ρ is uniquely determined
by ϕ up to isomorphism. We call ρ the associated general Pfister form of ϕ. If ϕ
represents one, then ρ is a Pfister form.

24. Linkage of quadratic forms

In this section, we look at the quadratic analogue of linkage of bilinear Pfis-
ter forms. The Hauptsatz shows that anisotropic forms in In

q (F ) have dimension
at least 2n. We shall be interested in those dimensions that are realizable by
anisotropic forms in In

q (F ). In this section, we determine the possible dimension of
anisotropic forms that are the sum of two general quadratic Pfister forms as well
as the meaning of when the sum of three general n-fold Pfister forms is congruent
to zero mod In

q (F ). We shall return to and expand these results in §35 and §82.

Proposition 24.1. Let ϕ ∈ GP (F ).
(1) Let ρ ∈ GPn(F ) be a subform of ϕ with n ≥ 1. Then there is a bilinear

Pfister form b such that ϕ ' b⊗ ρ.
(2) Let b be a general bilinear Pfister form such that ϕb is a subform of ϕ.

Then there is ρ ∈ P (F ) such that ϕ ' b⊗ ρ.

Proof. We may assume that ϕ is anisotropic of dimension ≥ 2.
(1): Let b be a bilinear Pfister form of the largest dimension such that b⊗ ρ is

isometric to a subform ψ of ϕ. As b⊗ ρ in nondegenerate, V ⊥
ψ ∩ Vψ = 0. We claim

that ψ = ϕ. Suppose not. Then V ⊥
ψ 6= 0, hence V ⊥

ψ \ Vψ 6= ∅. Choose a = −ψ(v)
with v ∈ V ⊥

ψ \ Vψ. Lemma 23.1 implies that 〈〈a〉〉 ⊗ ρ is isometric to a subform of
ϕ, contradicting the maximality of b.

(2): We may assume that charF = 2 and b is a Pfister form, so 1 ∈ D(ϕb) ⊂
D(ϕ). Let W be a subspace of Vϕ such that ϕ|W ' ϕb. Choose a vector w ∈ W
such that ϕb(w) = 1 and write the quasi-Pfister form ϕb = 〈1〉 ⊥ ϕ′b where Vϕ′b
is any complementary subspace of Fw in Vϕb

. Let v ∈ Vϕ satisfy v is orthogonal
to Vϕ′b , but b(v, w) 6= 0. Then the restriction of ϕ on W ⊕ Fv is isometric to
ψ := ϕ′b ⊥ [1, a] for some a ∈ F×. Note that ψ is isometric to subforms of both
of the general Pfister forms ϕ and µ := b ⊗ 〈〈a]]. In particular, ψ and µ are
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anisotropic. As dim ψ > 1
2 dim µ, the form ψ is a Pfister neighbor of µ. Hence

ψ ≺Â µ by Remark 23.11. Since ϕF (ψ) is hyperbolic by Proposition 22.18 so is
ϕF (µ). It follows from the Subform Theorem 22.5 that µ is isomorphic to a subform
of ϕ as 1 ∈ D(µ) ∩ D(ϕ). By the first statement of the proposition, there is a
bilinear Pfister form c such that ϕ ' c⊗ µ = c⊗ b⊗ 〈〈a]]. Hence ϕ ' b⊗ ρ where
ρ = c⊗ 〈〈a]]. ¤

Let ρ be a general quadratic Pfister form. We say a general quadratic Pfister
form ψ (respectively, a general bilinear Pfister form b) is a divisor ρ if ρ ' c⊗ψ for
some bilinear Pfister form c (respectively, ρ ' b⊗µ for some quadratic Pfister form
µ). By Proposition 24.1, any general quadratic Pfister subform of ρ is a divisor of
ρ and any general bilinear Pfister form b of ρ whose associated quadratic form is a
subform of ρ is a divisor ρ.

Theorem 24.2. Let ϕ1, ϕ2 ∈ GP (F ) be anisotropic. Let ρ ∈ GP (F ) be a form of
largest dimension such that ρ is isometric to subforms of ϕ1 and ϕ2. Then

i0(ϕ1 ⊥ −ϕ2) = dim ρ.

Proof. Note that i0 := i0(ϕ1 ⊥ −ϕ2) ≥ d := dim ρ. We may assume that
i0 > 1. We claim that ϕ1 and ϕ2 have isometric nondegenerate binary subforms.
To prove the claim let W be a 2-dimensional totally isotropic subspace of Vϕ1⊕V−ϕ2 .
As ϕ1 and ϕ2 are anisotropic, the projections U1 and U2 of W to Vϕ1 and V−ϕ2 =
Vϕ2 , respectively, are 2-dimensional. Moreover, the binary forms ψ1 := ϕ1|U1 and
ψ2 = ϕ2|U2 are isometric. We may assume that ψ1 and ψ2 are degenerate (and
therefore, char(F ) = 2). Hence ψ1 and ψ2 are isometric to ϕb, where b is a 1-fold
general bilinear Pfister form. By Proposition 24.1(2), we have ϕ1 ' b ⊗ ρ1 and
ϕ2 ' b⊗ ρ2 for some ρi ∈ P (F ). Write ρi = ci⊗ νi for bilinear Pfister forms ci and
1-fold quadratic Pfister forms νi. Consider quaternion algebras Q1 and Q2 whose
reduced norm forms are similar to b⊗ ν1 and b⊗ ν2, respectively. The algebras Q1

and Q2 are split by a quadratic field extension that splits b. By Theorem 98.19, the
algebras Q1 and Q2 have subfields isomorphic to a separable quadratic extension
L/F . By Example 9.7, the reduced norm forms of Q1 and Q2 are divisible by the
nondegenerate norm form of L/F . Hence the forms b⊗ ν1 and b⊗ ν2 and therefore
ϕ1 and ϕ2 have isometric nondegenerate binary subforms. The claim is proven.

By the claim, ρ is a general r-fold Pfister form with r ≥ 1. Write ϕ1 = ρ ⊥ ψ1

and ϕ2 = ρ ⊥ ψ2 for some forms ψ1 and ψ2. We have ϕ1 ⊥ (−ϕ2) ' ψ1 ⊥ (−ψ2) ⊥
dH. Assume that i0 > d. Then the form ψ1 ⊥ (−ψ2) is isotropic, i.e., ψ1 and ψ2

have a common value, say a ∈ F×. By Lemma 23.1, the form 〈〈−a〉〉⊗ρ is isometric
to subforms of ϕ1 and ϕ2, a contradiction. ¤

Corollary 24.3. Let ϕ1, ϕ2 ∈ GPn(F ) be anisotropic forms. Then the possible
values of i0(ϕ1 ⊥ −ϕ2) are 0, 1, 2, 4, . . . , 2n.

Let ϕ1 ∈ GPm(F ) and ϕ2 ∈ GPn(F ) be anisotropic forms satisfying
i(ϕ1 ⊥ −ϕ2) = 2r > 0. Let ρ be a general quadratic r-fold Pfister form iso-
metric to a subform of ϕ1 and to a subform of ϕ2. We call ρ the linkage of ϕ1 and
ϕ2 and say that ϕ1 and ϕ2 are r-linked. By Proposition 24.1, the linkage ρ is a
divisor of ϕ1 and ϕ2. If m = n and r ≥ n− 1, we say that ϕ1 and ϕ2 are linked.

Remark 24.4. Let ϕ1 and ϕ2 be general quadratic Pfister forms. Suppose that
ϕ1 and ϕ2 have isometric r-fold quasi-Pfister subforms. Then i0(ϕ1 ⊥ −ϕ2) ≥ 2r
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and by Theorem 24.2, the forms ϕ1 and ϕ2 have isometric general quadratic r-fold
Pfister subforms.

For three n-fold Pfister forms, we have:

Proposition 24.5. Let ϕ1, ϕ2, ϕ3 ∈ Pn(F ). If ϕ1 + ϕ2 + ϕ3 ∈ In+1
q (F ) then

there exist a quadratic (n − 1)-fold Pfister form ρ and a1, a2, a3 ∈ F× such that
a1a2a3 = 1 and ϕi ' 〈〈ai〉〉 ⊗ ρ for i = 1, 2, 3. In particular, ρ is a common divisor
of ϕi for i = 1, 2, 3.

Proof. We may assume that all ϕi are anisotropic Pfister forms by Corollary
9.10. In addition, we have (ϕ3)F (ϕ3) is hyperbolic. By Proposition 23.9, the form
(ϕ1 ⊥ −ϕ2)F (ϕ3) is also hyperbolic. As ϕ3 is anisotropic, ϕ1 ⊥ −ϕ2 cannot be
hyperbolic by the Hauptsatz 23.7. Consequently,

(ϕ1 ⊥ −ϕ2)an ' aϕ3 ⊥ τ

over F for some a ∈ F× and a quadratic form τ by the Subform Theorem 22.5
and Proposition 7.22. As dim τ < 2n and τ ∈ In+1

q (F ), the form τ is hyper-
bolic by Hauptsatz 23.7 and therefore ϕ1 − ϕ2 = aϕ3 in Iq(F ). It follows that
i0(ϕ1 ⊥ −ϕ2) = 2n−1, hence ϕ1 and ϕ2 are linked by Theorem 24.2.

Let ρ be a linkage of ϕ1 and ϕ2. By Proposition 24.1, we have ϕ1 ' 〈〈a1〉〉 ⊗ ρ
and ϕ2 ' 〈〈a2〉〉 ⊗ ρ for some a1, a2 ∈ F×. Then ϕ3 is similar to (ϕ1 ⊥ −ϕ2)an '
−a1〈〈a1a2〉〉 ⊗ ρ, i.e., ϕ3 ' 〈〈a1a2〉〉 ⊗ ρ. ¤
Corollary 24.6. Let ϕ1, ϕ2, ϕ3 ∈ Pn(F ). Suppose that

(24.7) ϕ1 + ϕ2 + ϕ3 ≡ 0 mod In+1
q (F ).

Then
en(ϕ1) + en(ϕ2) + en(ϕ3) = 0 in Hn(F ).

Proof. By Proposition 24.5, we have ϕi ' 〈〈ai〉〉 ⊗ ρ for some ρ ∈ Pn−1(F )
and ai ∈ F× for i = 1, 2, 3 satisfying a1a2a3 = 1. It follows from Proposition 16.1
that

en(ϕ1) + en(ϕ2) + en(ϕ3) = en

(〈〈a1〉〉 ⊗ ρ
)

+ en

(〈〈a2〉〉 ⊗ ρ
)

+ en

(〈〈a3〉〉 ⊗ ρ
)

= {a1a2a3}en−1(ρ) = 0. ¤

25. The submodule Jn(F )

By Corollary 23.4, a general quadratic Pfister form has the following “intrin-
sic” characterization: a nondegenerate anisotropic quadratic form ϕ of positive
even dimension is a general quadratic Pfister form if and only if the form ϕF (ϕ) is
hyperbolic. We shall use this to characterize elements of In

q (F ). Let ϕ be a form
that is nonzero in Iq(F ). There exists a field extension K/F such that (ϕK)an is
a general quadratic n-fold Pfister form for some n ≥ 1. The smallest possible such
n is called the degree deg(ϕ) of ϕ. We shall see in Theorem 40.10 that ϕ ∈ In

q (F )
if and only if deg ϕ ≥ n. In this section, we shall begin the study of the degree of
forms. The ideas in this section are due to Knebusch (cf. [83] and [84]).

We begin by constructing a tower of field extensions of F with (ϕK)an a general
quadratic n-fold Pfister form where K is the penultimate field K in the tower.

Let ϕ be a nondegenerate quadratic form over F . We construct a tower of
fields F0 ⊂ F1 ⊂ · · · ⊂ Fh and quadratic forms ϕk over Fk for all k ∈ [0, h] as
follows: We start with F0 := F , ϕ0 := ϕan, and inductively set Fk := Fk−1(ϕk−1),
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ϕk := (ϕFk
)an for k > 0. We stop at Fh such that dim ϕh ≤ 1. The form ϕk is

called the kth (anisotropic) kernel form of ϕ. The tower of the fields Fk is called
the generic splitting tower of ϕ. The integer h is called the height of ϕ and denoted
by h(ϕ). We have h(ϕ) = 0 if and only if dim ϕan ≤ 1.

Let h = h(ϕ). For any k ∈ [0, h], the k-th absolute higher Witt index jk(ϕ) of ϕ
is defined as the integer i0(ϕFk

). Clearly, one has

0 ≤ j0(ϕ) < j1(ϕ) < · · · < jh(ϕ) = [(dim ϕ)/2].

The set of integers {j0(ϕ), . . . , jh(ϕ)} is called the splitting pattern of ϕ.

Proposition 25.1. Let ϕ be a nondegenerate quadratic form with h = h(ϕ). The
splitting pattern {j0(ϕ), . . . , jh(ϕ)} of ϕ coincides with the set of Witt indices i0(ϕK)
over all field extensions K/F .

Proof. Let K/F be a field extension. Define a tower of fields K0 ⊂ K1 ⊂
· · · ⊂ Kh by K0 = K and Kk = Kk−1(ϕk−1) for k > 0. Clearly, Fk ⊂ Kk for all k.
Let k ≥ 0 be the smallest integer such that ϕk is anisotropic over Kk. It suffices to
show that i0(ϕK) = jk(ϕ).

By definition of ϕk and jk, we have ϕFk
= ϕk ⊥ jk(ϕ)H. Therefore, ϕKk

=
(ϕq)Kk

⊥ jk(ϕ)H. As ϕk is anisotropic over Kk, we have i0(ϕKk
) = jk(ϕ).

We claim that the extension Kk/K is purely transcendental. This is clear if
k = 0. Otherwise Kk = Kk−1(ϕk−1) is purely transcendental by Proposition 22.9,
since ϕk−1 is isotropic over Kk−1 by the choice of k and is nondegenerate. It follows
from the claim and Remark 8.9 that i0(ϕK) = i0(ϕKk

) = jk(ϕ). ¤

Corollary 25.2. Let ϕ be a nondegenerate quadratic form over F and let K/F be
a purely transcendental extension. Then the splitting patterns of ϕ and ϕK are the
same.

Proof. This follows from Lemma 7.15. ¤

We define the relative higher Witt index ik(ϕ), k ∈ [1, h(ϕ)], of a nondegenerate
quadratic form ϕ to be the difference

ik(ϕ) = jk(ϕ)− jk−1(ϕ).

Clearly, ik(ϕ) > 0 and ik(ϕ) = ir(ϕs) for any r > 0 and s ≥ 0 such that r + s = k.

Corollary 25.3. Let ϕ be a nondegenerate anisotropic quadratic form over F of
dimension at least two. Then

i1(ϕ) = j1(ϕ) = min{i0(ϕK) | K/F a field extension with ϕK isotropic}.
Let ϕ be a nondegenerate nonhyperbolic quadratic form of even dimension over

F with h = h(ϕ). Let F0 ⊂ F1 ⊂ · · · ⊂ Fh be the generic splitting tower of ϕ. The
form ϕh−1 = (ϕFh−1)an is hyperbolic over its function field, hence a general n-fold
Pfister form for some integer n ≥ 1 with ih(ϕ) = 2n−1 by Corollary 23.4. The form
ϕh−1 is called the leading form of ϕ and n is called the degree of ϕ and is denoted
by deg ϕ. The field Fh−1 is called the leading field of ϕ. For convenience, we set
deg ϕ = ∞ if ϕ is hyperbolic.

Remark 25.4. Let ϕ be a nondegenerate quadratic form of even dimension with
the generic splitting tower F0 ⊂ F1 ⊂ · · · ⊂ Fh. If ϕk = (ϕFk

)an with k ∈ [0, h−1],
then deg ϕk = deg ϕ.
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Notation 25.5. Let ϕ be a nondegenerate quadratic form over F and X = Xϕ.
Let k ∈ [0, h(ϕ)]. We shall let Xk := Xϕk

and also write jk(X) (respectively,
ik(X)) for jk(ϕ) (respectively, ik(ϕ)).

It is a natural problem to classify nondegenerate quadratic forms over a field
F of a given height. This is still an open problem even for forms of height two. By
Corollary 23.4, we do know

Proposition 25.6. Let ϕ be an even-dimensional nondegenerate anisotropic qua-
dratic form. Then h(ϕ) = 1 if and only if ϕ ∈ GP (F ).

Proposition 25.7. Let ϕ be a nondegenerate quadratic form of even dimension
over F and K/F a field extension with (ϕK)an an m-fold general Pfister for some
m ≥ 1. Then m ≥ deg ϕ. In particular, deg ϕ is the smallest integer n ≥ 1 such
that (ϕK)an is a general n-fold Pfister form over an extension K/F .

Proof. It follows from Proposition 25.1 that

(dimϕ− 2m)/2 = i0(ϕK) ≤ jh(ϕ)−1(ϕ) = (dimϕ− 2deg ϕ)/2,

hence the inequality. ¤
Corollary 25.8. Let ϕ be a nondegenerate quadratic form of even dimension over
F . Then deg ϕE ≥ deg ϕ for any field extension E/F .

For every n ≥ 1 set

Jn(F ) :=
{
ϕ ∈ Iq(F ) | deg ϕ ≥ n

} ⊂ Iq(F ).

Clearly, J1(F ) = Iq(F ).

Lemma 25.9. Let ρ ∈ GPn(F ) be anisotropic with n ≥ 1. Let ϕ ∈ Jn+1(F ). Then
deg(ρ ⊥ ϕ) ≤ n.

Proof. We may assume that ϕ is not hyperbolic. Let ψ = ρ ⊥ ϕ. Let
F0, F1, . . . , Fh be the generic splitting tower of ϕ and let ϕi = (ϕFi)an. We show
that ρFh

is anisotropic. Suppose not. Choose j maximal such that ρFj is anisotropic.
Then ρFj+1 is hyperbolic so dim ϕj ≤ dim ρ by the Subform Theorem 22.5. Hence

2n = dim ρ ≥ dim ϕj ≥ deg 2deg ϕj = 2deg ϕ ≥ 2n+1

which is impossible. Thus ρFh
is anisotropic.

As ϕ is hyperbolic over Fh, we have ψFh
∼ ρFh

. Consequently,

deg ψ ≤ deg ψFh
= deg ρFh

= n,

hence deg ψ ≤ n as claimed. ¤
Corollary 25.10. Let ϕ and ψ be any even-dimensional nondegenerate quadratic
forms. Then deg(ϕ ⊥ ψ) ≥ min(deg ϕ, deg ψ).

Proof. If either ϕ or ψ is hyperbolic, this is trivial, so assume that both
forms are not hyperbolic. We may also assume that ϕ ⊥ ψ is not hyperbolic. Let
K/F be a field extension such that (ϕ ⊥ ψ)K ∼ ρ for some ρ ∈ GPn(K) where
n = deg(ϕ ⊥ ψ). Then ϕK ∼ ρ ⊥ (−ψK). Suppose that deg ψ > n. Then
deg ψK > n and applying the lemma to the form ρ ⊥ (−ψK) implies deg ϕK ≤ n.
Hence deg ϕ ≤ n = deg(ϕ ⊥ ψ). ¤
Proposition 25.11. Jn(F ) is a W (F )-submodule of Iq(F ) for every n ≥ 1.
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Proof. Corollary 25.10 shows that Jn(F ) is a subgroup of Iq(F ). Since
deg ϕ = deg(aϕ) for all a ∈ F×, it follows that Jn(F ) is also closed under multipli-
cation by elements of W (F ). ¤

Corollary 25.12. In
q (F ) ⊂ Jn(F ).

Proof. As general quadratic n-fold Pfister forms clearly lie in Jn(F ), the result
follows from Proposition 25.11. ¤

Proposition 25.13. I2
q (F ) = J2(F ).

Proof. Let ϕ ∈ J2(F ) and ϕk = ϕFk
with Fk, k ∈ [0, h], the generic splitting

tower. As deg ϕ ≥ 2, the field Fk is the function field of a smooth quadric of
dimension at least 2 over Fk−1, hence the field Fk−1 is algebraically closed in Fk.
Since the form ϕh = 0 has trivial discriminant, by descending induction on k, it
follows that ϕ = ϕ0 has trivial discriminant. By Theorem 13.7 we conclude that
ϕ ∈ I2

q (F ). ¤

Proposition 25.14. J3(F ) = {ϕ | dim ϕ is even, disc(ϕ) = 1, clif(ϕ) = 1}.
Proof. Let ϕ be an anisotropic form of even dimension and trivial discrimi-

nant. Then ϕ ∈ I2
q (F ) = J2(F ) by Theorem 13.7 and Proposition 25.13. Suppose

ϕ also has trivial Clifford invariant. We must show that deg ϕ ≥ 3. Let K be the
leading field of ϕ and ρ its leading form. Then ρ ∈ GPn(F ) with n ≥ 2. Suppose
that n = 2. As e2(ρ) = 0 in H2(K), we have ρ is hyperbolic by Corollary 12.5, a
contradiction. Therefore, ϕ ∈ J3(F ).

Let ϕ ∈ J3(F ). Then ϕ ∈ I2
q (F ) by Proposition 25.13. In particular, disc(ϕ) =

1 and ϕ =
∑r

i=1 ρi with ρi ∈ GP2(F ), 1 ≤ i ≤ r. We show that clif(ϕ) = 1 by
induction on r. Let ρr = b〈〈a, d]] and K = Fd. Then ϕK ∈ J3(K) and satisfies
ϕK =

∑r−1
i=1 (ρi)K as (ρr)K is hyperbolic. By induction, clif(ϕK) = 1. Thus clif(ϕ)

lies in kernel of Br(F ) → Br(K). Therefore, the index of clif(ϕ) is at most two.
Consequently, clif(ϕ) is represented by a quaternion algebra, hence there exists a
2-fold quadratic Pfister form σ satisfying clif(ϕ) = clif(σ). Thus clif(ϕ + σ) = 1,
so ϕ + σ lies in J3(F ) by the first part of the proof. It follows that σ lies in J3(F ).
Therefore, σ = 0 and clif(ϕ) = 1. ¤

As ē2 is an isomorphism (cf. Theorem 16.3 if char F = 2 and Chapter VIII
if charF 6= 2), we have I3(F ) = J3(F ). We shall show that In(F ) = Jn(F ) for
all n in Theorem 40.10. In this section, we show the following due to Arason and
Knebusch (cf. [9]).

Proposition 25.15. Im(F )Jn(F ) ⊂ Jn+m(F ).

Proof. Clearly, it suffices to do the case that m = 1. Since 1-fold bilinear
Pfister forms additively generate I(F ), it also suffices to show that if ϕ ∈ Jn(F )
and a ∈ F×, then 〈〈a〉〉 ⊗ ϕ ∈ Jn+1(F ). Let ψ be the anisotropic part of 〈〈a〉〉 ⊗ ϕ.
We may assume that ψ 6= 0.

First suppose that ψ ∈ GP (F ). We prove that deg ψ > n by induction on the
height h of ϕ. If h = 1, then ϕ ∈ GP (F ) and the result is clear. So assume that
h > 1. Suppose that ψF (ϕ) remains anisotropic. Applying the induction hypothesis
to the form ϕF (ϕ), we have

deg ψ = deg ψF (ϕ) > n.
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If ψF (ϕ) is isotropic, it is hyperbolic and therefore dim ψ ≥ dim ϕ by the Subform
Theorem 22.5. As h > 1, we have

2deg ψ = dim ψ ≥ dim ϕ > 2deg ϕ ≥ 2n,

hence deg ψ > n.
Now consider the general case. Let K/F be a field extension such that ψK is

Witt-equivalent to a general Pfister form and deg ψK = deg ψ. By the first part of
the proof

deg ψ = deg ψK > n. ¤

26. The Separation Theorem

There are anisotropic quadratic forms ϕ and ψ with dim ϕ < dim ψ and ϕF (ψ)

isotropic. For example, this is the case when ϕ and ψ are Pfister neighbors of the
same Pfister form. In this section, we show that if two anisotropic quadratic forms
ϕ and ψ are separated by a power of two, more precisely, if dim ϕ ≤ 2n < dim ψ
for some n ≥ 0, then ϕF (ψ) remains anisotropic.

We shall need the following observation.

Remark 26.1. Let ψ be a quadratic form. Then Vψ contains a (maximal) totally
isotropic subspace of dimension i′0(ψ) := i0(ψ) + dim(rad ψ). Define the invariant
s of a form by s(ψ) := dim ψ − 2i′0(ψ) = dimψan − dim(radψ). If two quadratic
forms ψ and µ are Witt-equivalent, then s(ψ) = s(µ).

A field extension L/F is called unirational if there is a field extension L′/L
with L′/F purely transcendental. A tower of unirational field extensions is unira-
tional. If L/F is unirational, then every anisotropic quadratic form over F remains
anisotropic over L by Lemma 7.15.

Lemma 26.2. Let ϕ be an anisotropic quadratic form over F satisfying dim ϕ ≤ 2n

for some n ≥ 0. Then there exists a field extension K/F and an (n + 1)-fold
anisotropic quadratic Pfister form ρ over K such that

(1) ϕK is isometric to a subform of ρ.
(2) The field extension K(ρ)/F is unirational.

Proof. Let K0 = F (t1, . . . , tn+1) and let ρ = 〈〈t1, . . . , tn+1]]. Then ρ is
anisotropic. Indeed, by Corollary 19.6 and induction, it suffices to show 〈〈t]] is
anisotropic over F (t). If this is false, there is an equation f2 + fg + tg2 = 0 with
f, g ∈ F [t]. Looking at the highest term of t in this equation gives either a2t2n = 0
or b2t2n+1 = 0 where a, b are the leading coefficients of f, g, respectively. Neither
is possible.

Consider the class F of field extensions E/K0 satisfying:
(1′) ρ is anisotropic over E.
(2′) The field extension E(ρ)/F is unirational.

We show that K0 ∈ F . By the above ρ is anisotropic. Let L = K0

(〈〈1, t1]]
)
.

Then L/F is purely transcendental. As ρL is isotropic, L(ρ)/L is also purely
transcendental and hence so is L(ρ)/F . Since K0(ρ) ⊂ L(ρ), the field extension
K0(ρ)/F is unirational.

For every field E ∈ F , the form ϕE is anisotropic by (2′). As ρE is nondegen-
erate, the form ρE ⊥ (−ϕE) is regular. We set

m(E) = i0
(
ρE ⊥ (−ϕE)

)
= i′0

(
ρE ⊥ (−ϕE)

)
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and let m be the maximum of the m(E) over all E ∈ F .

Claim 1: We have m(E) ≤ dim ϕ and if m(E) = dim ϕ, then ϕE is isometric to a
subform of ρE .

Let W be a totally isotropic subspace in VρE
⊥ V−ϕE

of dimension m(E).
Since ρE and ϕE are anisotropic, the projections of W to VρE

and V−ϕE
= VϕE

are injective. This gives the inequality. Suppose that m(E) = dim ϕ. Then the
projection p : W → VϕE

is an isomorphism and the composition

VϕE

p−1

−−→ W → VρE

identifies ϕE with a subform of ρE .

Claim 2: m = dim ϕ.
Assume that m < dim ϕ. We derive a contradiction. Let K ∈ F be a field

satisfying m = m(K) and set τ = (ρK ⊥ (−ϕK)
)
an

. As the form ρK ⊥ (−ϕK) is
regular, we have τ ∼ ρK ⊥ (−ϕK) and

(26.3) dim ρ + dim ϕ = dim τ + 2m.

Let W be a totally isotropic subspace in VρK
⊥ V−ϕK

of dimension m. Let σ
denote the restriction of ρK on VρK ∩W⊥. Thus σ is a subform of ρK of dimension
≥ 2n+1 −m > 2n. In particular, σ is a Pfister neighbor of ρK . By Lemma 8.10,
the natural map VρK

∩W⊥ → W⊥/W identifies σ with a subform of τ .
We show that condition (2′) holds for K(τ). Since σ is a Pfister neighbor

of ρK , the form σ and therefore τ is isotropic over K(ρ). By Lemma 22.14, the
extension K(ρ)/K is separable, hence τK(ρ) is regular by Lemma 22.13. Therefore,
by Lemma 22.9 the extension K(ρ)(τ)/K(ρ) is purely transcendental. It follows
that K(ρ)(τ) = K(τ)(ρ) is unirational over F , hence condition (2′) is satisfied.

As τ is isotropic over K(τ), we have m
(
K(τ)

)
> m, hence K(τ) /∈ F . There-

fore, condition (1′) does not hold for K(τ), i.e., ρK is isotropic and therefore hy-
perbolic over K(τ). As ∅ 6= D(σ) ⊂ D(ρK) ∩ D(τ), the form τ is isometric to a
subform of ρK by the Subform Theorem 22.5. Let τ⊥ be the complementary form
of τ in ρK . It follows from (26.3) that

dim τ⊥ = dim ρ− dim τ = 2m− dim ϕ < dim ϕ.

As ρK ⊥ (−τ) ∼ τ⊥ by Lemma 8.13,

(26.4) τ ⊥ (−τ) ∼ ρK ⊥ (−ϕK) ⊥ (−τ) ∼ τ⊥ ⊥ (−ϕK).

We now use the invariant s defined in Remark 26.1. Since the space of τ ⊥ (−τ)
contains a totally isotropic subspace of dimension dim τ , it follows from (26.4) and
Remark 26.1 that

s
(
τ⊥ ⊥ (−ϕK)

)
= s

(
τ ⊥ (−τ)

)
= 0,

i.e., the form τ⊥ ⊥ (−ϕK) contains a totally isotropic subspace of half the dimension
of the form. Since dim ϕ > dim τ⊥, this subspace intersects VϕK nontrivially, con-
sequently ϕK is isotropic contradicting condition (2′). This establishes the claim.

It follows from the claims that ϕK is isometric to a subform of ρK . ¤

Theorem 26.5 (Separation Theorem). Let ϕ and ψ be two anisotropic quadratic
forms over F . Suppose that dim ϕ ≤ 2n < dim ψ for some n ≥ 0. Then ϕF (ψ) is
anisotropic.



27. A FURTHER CHARACTERIZATION OF QUADRATIC PFISTER FORMS 109

Proof. Let ρ be an (n + 1)-fold Pfister form over a field extension K/F as
in Lemma 26.2 with ϕK a subform of ρ. By the lemma ψK(ρ) is anisotropic.
Suppose that ϕK(ψ) is isotropic. Then ρK(ψ) is isotropic, hence hyperbolic. By the
Subform Theorem 22.5, there exists an a ∈ F such that aψK is a subform of ρ.
As dim ψ > 1

2 dim ρ, the form aψK is a neighbor of ρ, hence aψK(ρ) and therefore
ψK(ρ) is isotropic. This is a contradiction. ¤
Corollary 26.6. Let ϕ and ψ be two anisotropic quadratic forms over F with
dim ψ ≥ 2. If dim ψ ≥ 2 dim ϕ− 1, then ϕF (ψ) is anisotropic.

The Separation Theorem was first proved by Hoffmann in [53] for fields of
characteristic different from 2 and by Hoffmann and Laghribi in [58] for fields of
characteristic 2. We shall give another, more geometric proof, in 79.8 below.

27. A further characterization of quadratic Pfister forms

In this section, we give a further characterization of quadratic Pfister forms
due to Fitzgerald (cf. [44]) used to answer a question of Knebusch in [84] for
fields of characteristic different from 2. Knebusch and Scharlau showed in [85] that
Fitzgerald’s theorem implied that if a nondegenerate anisotropic quadratic form
ρ becomes hyperbolic over the function field of an irreducible anisotropic form ϕ
satisfying dim ϕ > 1

3 dim ρ, then ρ is a general quadratic Pfister form. Hoffmann and
Laghribi showed that this characterization was also true for fields of characteristic
2 in [57].

For a nondegenerate nonhyperbolic quadratic form ρ of even dimension, we set
N(ρ) = dim ρ− 2deg ρ. Since the splitting patterns of ρ and ρF (t) are the same, by
Corollary 25.2, we have N(ρF (t)) = N(ρ).

Theorem 27.1. Let ρ be a nonhyperbolic quadratic form and ϕ a subform of ρ of
dimension at least 2. Suppose that:

(1) ϕ and its complementary form in ρ are anisotropic.
(2) ρF (ϕ) is hyperbolic.
(3) 2 dim ϕ > N(ρ).

Then ρ is an anisotropic general Pfister form.

Proof. Note that ρ is a nondegenerate form of even dimension by Remark
7.18 as ρF (ϕ) is hyperbolic.

Claim 1: For any field extension K/F with ϕK anisotropic and ρK not hyperbolic,
ϕK is isometric to a subform of (ρK)an.

By Lemma 8.13, the form ρ ⊥ (−ϕ) is Witt-equivalent to ψ := ϕ⊥. In partic-
ular, dim ρ = dim ϕ + dim ψ. Set ρ′ = (ρK)an. It follows from (3) that

dim
(
ρ′ ⊥ (−ϕK)

) ≥ 2deg ρ + dim ϕ > dim ρ− dim ϕ = dim ψ.

As ρ′ ⊥ (−ϕK) ∼ ψK it follows that the form ρ′ ⊥ (−ϕK) is isotropic, therefore
D(ρ′) ∩ D(ϕK) 6= ∅. Since ρ′K(ϕ) is hyperbolic, the form ϕK is isometric to a
subform of ρ′ by the Subform Theorem 22.5 as needed.

Claim 2: ρ is anisotropic.
Applying Claim 1 to K = F implies that ϕ is isometric to a subform of ρ′ = ρan.

Let ψ′ be the complementary form of ϕ in ρ′. By Lemma 8.13,

ψ′ ∼ ρ′ ⊥ (−ϕ) ∼ ρ ⊥ (−ϕ) ∼ ψ.
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As both forms ψ and ψ′ are anisotropic, we have ψ′ ' ψ. Hence

dim ρ = dim ϕ + dim ψ = dim ϕ + dim ψ′ = dim ρ′ = dim ρan.

Therefore, ρ is anisotropic.
We now investigate the form ϕF (ρ). Suppose it is isotropic. Then ϕ ≺Â ρ, hence

ρF (ρ) is hyperbolic by Proposition 22.18. It follows that ρ is a general Pfister form
by Corollary 23.4 and we are done. Thus we may assume that ϕF (ρ) is anisotropic.
Normalizing we may also assume that 1 ∈ D(ϕ). We shall prove that ρ is a Pfister
form by induction on dim ρ. Suppose that ρ is not a Pfister form. In particular,
ρ1 := (ρF (ρ))an is nonzero and dim ρ1 ≥ 2. We shall finish the proof by obtaining
a contradiction. Let ϕ1 = ϕF (ρ).

Note that deg ρ1 = deg ρ and dim ρ1 < dim ρ, hence N(ρ1) < N(ρ).

Claim 3: ρ1 is a Pfister form.
Applying Claim 1 to the field K = F (ρ), we see that ϕ1 is isometric to a

subform of ρ1. We have

2 dimϕ1 = 2dim ϕ > N(ρ) > N(ρ1).

By the induction hypothesis applied to the form ρ1 and its subform, ϕ1, we conclude
that the form ρ1 is a Pfister form proving the claim. In particular, dim ρ1 =
2deg ρ1 = 2deg ρ.

Claim 4: D(ρ) = G(ρ).
Since G(ρ) ⊂ D(ρ), it suffices to show if x ∈ D(ρ), then x ∈ G(ρ). Suppose that

x /∈ G(ρ). Hence the anisotropic part β of the isotropic form 〈〈x〉〉 ⊗ ρ is nonzero.
It follows from Proposition 25.15 that deg β ≥ 1 + deg ρ.

Suppose that βF (ρ) is hyperbolic. As ρ−β = −xρ in Iq(F ), the form ρ ⊥ (−β)
is isotropic, hence D(ρ) ∩ D(β) 6= ∅. It follows from this that ρ is isometric to a
subform of β by the Subform Theorem 22.5. Let β ' ρ ⊥ µ ∼ ρ ⊥ (−xρ) for some
form µ. By Witt cancellation, µ ∼ −xρ. But dim β < 2 dim ρ, hence dim µ < dim ρ.
As ρ is anisotropic, this is a contradiction. It follows that the form β1 = (βF (ρ))an

is not zero and hence dim β1 ≥ 2deg β ≥ 21+deg ρ.
Since ρ is hyperbolic over F (ϕ), it follows from the Subform Theorem 22.5 that

ϕ is isometric to a subform of xρ. Applying Claim 1 to the form xρF (ρ), we conclude
that ϕ1 is a subform of xρ1. As ϕ1 is also a subform of ρ1, the form 〈〈x〉〉⊗ρ1 contains
ϕ1 ⊥ (−ϕ1) and therefore a totally isotropic subspace of dimension dim ϕ1 = dim ϕ.
Therefore, dim

(〈〈x〉〉 ⊗ ρ1

)
an
≤ 2 dim ρ1 − 2 dim ϕ. Consequently,

21+deg ρ ≤ dim β1 = dim
(〈〈x〉〉 ⊗ ρ1

)
an
≤ 2 dim ρ1 − 2 dim ϕ < 21+deg ρ,

a contradiction. This proves the claim.
Let F (T ) = F (t1, . . . , tn) with n = dim ρ. We have deg ρF (T ) = deg ρ and

N(ρF (T )) = N(ρ). Working over F (T ) instead of F , we have the forms ϕF (T )

and ρF (T ) satisfy the conditions of the theorem. By Claim 4, we conclude that
G(ρF (T )) = D(ρF (T )). It follows from Theorem 23.2 that ρ is a Pfister form, a
contradiction. ¤

Corollary 27.2. Let ρ be a nonzero anisotropic quadratic form and ϕ an irre-
ducible anisotropic quadratic form satisfying dim ϕ > 1

3 dim ρ. If ρF (ϕ) is hyper-
bolic, then ρ ∈ GP (F ).
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Proof. As ρF (ϕ) is hyperbolic, the form ρ is nondegenerate. It follows by
the Subform Theorem 22.5 that aϕ is a subform of ρ for some a ∈ F×. As ρ is
anisotropic, the complementary form of aϕ in ρ is anisotropic.

Let K be the leading field of ρ and τ its leading form. We show that ϕK is
anisotropic. If ϕF (ρ) is isotropic, then ϕ ≺Â ρ. In particular, ρF (ρ) is hyperbolic by
Proposition 22.18, hence K = F and ϕ is anisotropic by hypothesis. Thus we may
assume that ϕF (ρ) is anisotropic. The assertion now follows by induction on h(ρ).
As τK(ϕ) ∼ ρK(ϕ) is hyperbolic, dim ϕ = dim ϕK ≤ dim τ = 2deg ρ by the Subform
Theorem 22.5. Hence N(ρ) = dim ρ− 2deg ρ ≤ dim ρ− dim ϕ < 2 dimϕ. The result
follows by Theorem 27.1. ¤

The restriction dimϕ > 1
3 dim ρ above is best possible (cf. [85]).

A further application of Theorem 27.1 is given by:

Theorem 27.3. Let ϕ and ψ be nondegenerate quadratic forms over F of the same
odd dimension. If i0(ϕK) = i0(ψK) for any field extension K/F , then ϕ and ψ are
similar.

Proof. We may assume that ϕ and ψ are anisotropic and have the same
determinants (cf. Remark 13.8). Let n = dim ϕ. We shall show that ϕ ' ψ by
induction on n. The statement is obvious if n = 1, so assume that n > 1.

We construct a nondegenerate form ρ of dimension 2n and trivial discriminant
containing ϕ such that ϕ⊥ ' −ψ as follows: If char F 6= 2, let ρ = ϕ ⊥ (−ψ).
If charF = 2, write ϕ ' 〈a〉 ⊥ ϕ′ and ψ ' 〈a〉 ⊥ ψ′ for some a ∈ F× and
nondegenerate forms ϕ′ and ψ′. Set ρ = [a, c] ⊥ ϕ′ ⊥ ψ′, where c is chosen so that
disc ρ is trivial.

By induction applied to the anisotropic parts of ϕF (ϕ) and ψF (ϕ), we have
ϕF (ϕ) ' ψF (ϕ). It follows from Witt Cancellation and Proposition 13.6 (in the
case charF = 2) that ρF (ϕ) is hyperbolic. If ρ itself is not hyperbolic, then by
Theorem 27.1, the form ρ is an anisotropic general Pfister form of dimension 2n.
In particular, n is a power of 2, a contradiction.

Thus ρ is hyperbolic. By Lemma 8.13, we have −ϕ ∼ ρ ⊥ (−ϕ) ∼ ϕ⊥ ' −ψ.
As ϕ and ψ have the same dimension we conclude that ϕ ' ψ. ¤

28. Excellent quadratic forms

In general, if ϕ is a nondegenerate quadratic form and K/F a field extension
then the anisotropic part of ϕK will not necessarily be isometric to a form defined
over F and extended to K. Those forms over a field F whose anisotropic part over
any extension field of F is defined over F are called excellent forms. These forms
were first introduced by Knebusch in [84]. We study them in this section.

Let K/F be a field extension and ψ a quadratic form over K. We say that ψ
is defined over F if there is a quadratic form η over F such that ψ ' ηK .

Theorem 28.1. Let ϕ be an anisotropic nondegenerate quadratic form of dimen-
sion ≥ 2. Then ϕ is a Pfister neighbor if and only if the quadratic form (ϕF (ϕ))an

is defined over F .

Proof. Let ϕ be a Pfister neighbor and let ρ be the associated general Pfister
form so ϕ is a subform of ρ. As ϕF (ϕ) is isotropic, the general Pfister form ρF (ϕ) is
hyperbolic by Corollary 9.10. By Lemma 8.13, the form ϕF (ϕ) is Witt-equivalent to
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−(ϕ⊥)F (ϕ). Since dim ϕ⊥ < (dim ρ)/2, it follows by Corollary 26.6 that (ϕ⊥)F (ρ)

is anisotropic. By Corollary 22.17, the form (ϕ⊥)F (ϕ) is also anisotropic as ϕ ≺Â ρ

by Remark 23.11. Consequently, (ϕF (ϕ))an ' (−ϕ⊥)F (ϕ) is defined over F .
Suppose now that (ϕF (ϕ))an ' ψF (ϕ) for some (anisotropic) form ψ over F .

Note that dim ψ < dim ϕ.

Claim: There exists a form ρ satisfying:
(1) ϕ is a subform of ρ.
(2) The complementary form ϕ⊥ is isometric to −ψ.
(3) ρF (ϕ) is hyperbolic.

Moreover, if dim ϕ ≥ 3, then ρ can be chosen in I2
q (F ).

Suppose that dim ϕ is even or charF 6= 2. Then ρ = ϕ ⊥ (−ψ) satisfies (1), (2),
and (3). As F is algebraically closed in F (ϕ), if dim ϕ ≥ 3, we have disc ϕ = disc ψ,
hence ρ ∈ I2

q (F ).
So we may assume that charF = 2 and dim ϕ is odd. Write ϕ = ϕ′ ⊥ 〈a〉 and

ψ = ψ′ ⊥ 〈b〉 for nondegenerate forms ϕ′, ψ′ and a, b ∈ F×. Note that 〈a〉 (respec-
tively, 〈b〉) is the restriction of ϕ (respectively, ψ) on rad bϕ (respectively, rad bψ)
by Proposition 7.31. By definition of ψ we have 〈a〉F (ϕ) ' 〈b〉F (ϕ). Since F (ϕ)/F
is a separable field extension by Lemma 22.14, we have 〈a〉 ' 〈b〉. Therefore, we
may assume that b = a.

Choose c ∈ F such that disc(ϕ′ ⊥ ψ′) = disc[a, c] and set ρ = ϕ′ ⊥ ψ′ ⊥ [a, c]
so that ρ ∈ I2

q (F ). Clearly, ϕ is a subform of ρ and ϕ⊥ is isometric to ψ. By
Lemma 8.13, ρ ⊥ ϕ ∼ ψ. Since ϕ and ψ are Witt-equivalent over F (ϕ), we have
ρF (ϕ) ⊥ ϕF (ϕ) ∼ ϕF (ϕ). Cancelling the nondegenerate form ϕ′F (ϕ) yields

ρF (ϕ) ⊥ 〈a〉F (ϕ) ∼ 〈a〉F (ϕ).

As ρ ∈ I2
q (F ) by Proposition 13.6, we have ρF (ϕ) ∼ 0 establishing the claim.

As dim ρ = dim ϕ + dim ψ < 2 dimϕ and ϕ is anisotropic, it follows that ρ
is not hyperbolic. Moreover, ϕ and its complement ϕ⊥ ' −ψ are anisotropic.
Consequently, ρ is a general Pfister form by Theorem 27.1, hence ϕ is a Pfister
neighbor. ¤
Exercise 28.2. Let ϕ be a nondegenerate quadratic form of odd dimension. Then
h(ϕ) = 1 if and only if ϕ is a Pfister neighbor of dimension 2n − 1 for some n ≥ 1.

Theorem 28.3. Let ϕ be a nondegenerate quadratic form. Then the following two
conditions are equivalent:

(1) For any field extension K/F , the form (ϕK)an is defined over F .
(2) There are anisotropic Pfister neighbors ϕ0 = ϕan, ϕ1, . . . , ϕr−1 with asso-

ciated general Pfister forms ρ0, ρ1, . . . , ρr−1, respectively, satisfying ϕi '
(ρi ⊥ ϕi+1)an for all i ∈ [0, r − 1] with a form ϕr of dimension at most
one.

Proof. (2) ⇒ (1): Let K/F be a field extension. If all general Pfister forms
ρi are hyperbolic over K, the isomorphisms in (2) show that all the ϕi are also
hyperbolic. In particular, (ϕK)an is the zero form and hence is defined over F .

Let s be the smallest integer such that (ρs)K is not hyperbolic. Then the
forms ϕ = ϕ0, ϕ1, . . . , ϕs are Witt-equivalent and (ϕs)K is a Pfister neighbor of
the anisotropic general Pfister form (ρs)K . In particular, (ϕs)K is anisotropic and
therefore (ϕK)an = (ϕs)K is defined over F .
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(1) ⇒ (2): We prove the statement by induction on dim ϕ. We may assume that
dim ϕan ≥ 2. By Theorem 28.1, the form ϕan is a Pfister neighbor. Let ρ be the
associated general Pfister form of ϕan. Consider the negative of the complementary
form ψ = −(ϕan)⊥ of ϕan in ρ. It follows from Lemma 8.13 that ϕan ' (ρ ⊥ ψ)an.

We claim that the form ψ satisfies (1). Let K/F be a field extension. If ρ
is hyperbolic over K, then ϕK and ψK are Witt-equivalent. Therefore, (ψK)an '
(ϕK)an is defined over F . If ρK is anisotropic, then so is ψK , therefore (ψK)an = ψK

is defined over F . By the induction hypothesis applied to ψ, there are anisotropic
Pfister neighbors ϕ1 = ψ, ϕ2, . . . , ϕr−1 with the associated general Pfister forms
ρ1, ρ2, . . . , ρr−1, respectively, such that ϕi ' (ρi ⊥ ϕi+1)an for all i ∈ [1, r − 1],
where ϕr is a form of dimension at most 1. To finish the proof let ϕ0 = (ϕ)an and
ρ0 = ρ. ¤

A quadratic form ϕ satisfying equivalent conditions of Theorem 28.3 is called
excellent. By Lemma 8.13, the form ϕi+1 in Theorem 28.3(2) is isometric to the
negative of the complement of ϕi in ρi. In particular, the sequences of forms ϕi

and ρi are uniquely determined by ϕ up to isometry. Note that all forms ϕi are
also excellent; this allows inductive proofs while working with excellent forms.

Example 28.4. If charF 6= 2, then the form n〈1〉 is excellent for every n > 0.

Proposition 28.5. Let ϕ be an excellent quadratic form. Then in the notation of
Theorem 28.3 we have the following:

(1) The integer r coincides with the height of ϕ.
(2) If F0 = F, F1, . . . , Fr is the generic splitting tower of ϕ, then (ϕFi)an '

(ϕi)Fi for all i ∈ [0, r].

Proof. The last statement is obvious if i = 0. As ρ0 is hyperbolic over F1 =
F (ϕan) = F (ϕ0), the forms ϕF1 and (ϕ1)F1 are Witt-equivalent. Since dim ϕ1 <
(dim ρ0)/2, the form ϕ1 is anisotropic over F (ρ0) by Corollary 26.6. As ϕ0 ≺Â ρ0,
the form ϕ1 is also anisotropic over F1 = F (ϕ0) by Corollary 22.17. Therefore,
(ϕF1)an ' (ϕ1)F1 . This proves the last statement for i = 1. Both statements of the
proposition follow now by induction on r. ¤

The notion of an excellent form was introduced by Knebusch.

29. Excellent field extensions

A field extension E/F is called excellent if the anisotropic part ϕE of any
quadratic form ϕ over F is defined over F , i.e., there is a quadratic form ψ over F
satisfying (ϕE)an ' ψE . The concept of an excellent field extension was introduced
in [39] and further information about this concept can be found there.

Example 29.1. Suppose that every anisotropic form over F remains anisotropic
over E. Then for every quadratic form ϕ over F the form (ϕan)E is anisotropic
and therefore is isometric to the anisotropic part of ϕE . It follows that E/F is an
excellent field extension. In particular, it follows from Lemma 7.15 and Springer’s
Theorem 18.5 that purely transcendental field extensions and odd degree field ex-
tensions are excellent.

Example 29.2. Let E/F be a separable quadratic field extension. Then E =
F (σ), where σ is the (nondegenerate) binary norm form of E/F . It follows from
Corollary 22.12 that E/F is an excellent field extension.
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Example 29.3. Let E/F be a field extension such that every quadratic form over
E is defined over F . Then E/F is obviously an excellent extension.

Exercise 29.4. Let E be either an algebraic closure or a separable closure of a
field F . Prove that every quadratic form over E is defined over F . In particular,
E/F is an excellent extension.

Let ρ be an irreducible nondegenerate quadratic form over F . If dim ρ = 2,
the extension F (ρ)/F is separable quadratic and therefore is excellent by Example
29.2. We extend this result to nondegenerate forms of dimension 3.

Notation 29.5. Until the end of this section, let K/F be a separable quadratic
field extension and let a ∈ F×. Consider the 3-dimensional quadratic form ρ =
NK/F ⊥ 〈−a〉 on the space U := K ⊕ F . Let X be the projective quadric of ρ. It
is a smooth conic curve in P(U). In the projective coordinates [s : t] on K ⊕ F ,
the conic X is given by the equation NK/F (s) = at2. We write E for the field
F (ρ) = F (X).

The intersection of X with P(K) is Spec F (x) for a point x ∈ X of degree 2
with F (x) ' K. In fact, Spec F (x) is the quadric of the form NK/F = ρ|K . Over
K the norm form NK/F (s) factors into a product s · s′ of linear forms. Therefore,
there are two rational points y and y′ of the curve XK mapping to x under the
natural morphism XK → X, so that the divisor div(s/t) equals y−y′ and div(s′/t)
equals y′ − y. Moreover, we have

(29.6) NKE/E(s/t) = NK/F (s)/t2 = at2/t2 = a.

For any n ≥ 0, let Ln be the F -subspace{
f ∈ E× | div(f) + nx ≥ 0

} ∪ {
0
}

of E. We have
F = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ E

and Ln · Lm ⊂ Ln+m for all n,m ≥ 0. In particular, the union L of all Ln is a
subring of E. In fact, E is the quotient field of L.

In addition, OX,x · Ln ⊂ Ln and mX,x · Ln ⊂ Ln−1 for every n ≥ 1 where
OX,x is the local ring of x and mX,x its maximal ideal. In particular, we have the
structure of a K-vector space on Ln/Ln−1 for every n ≥ 1.

Set Ln = Ln/Ln−1 for n ≥ 1 and L0 = K. The graded group L∗ has the
structure of a K-algebra.

The following lemma is an easy case of the Riemann-Roch Theorem.

Lemma 29.7. In the notation above, we have dimK(Ln) = 1 for all n ≥ 0. More-
over, L∗ is a polynomial ring over K in one variable.

Proof. Let f, g ∈ Ln \Ln−1 for n ≥ 1. Since f = (f/g)g and f/g ∈ (OX,x)×,
the images of f and g in Ln are linearly dependent over K. Hence dimK(Ln) ≤ 1.
On the other hand, for a nonzero linear form l on K, we have div(l/t) = z − x for
some z 6= x. Hence (l/t)n ∈ Ln \ Ln−1 and therefore dimK(Ln) ≥ 1. Moreover,
L∗ = K[l/t]. ¤
Proposition 29.8. Let ϕ : V → F be an anisotropic quadratic form and suppose
that for some n ≥ 1 there exists

v ∈ (V ⊗ Ln) \ (V ⊗ Ln−1)
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such that ϕ(v) = 0. Then there exists a subspace W ⊂ V of dimension 2 satisfying:

(1) ϕ|W is similar to NK/F .
(2) There exists a nonzero ṽ ∈ V ⊗ Ln−1 such that ϕ̃(ṽ) = 0 where ϕ̃ is the

quadratic form a(ϕ|W ) ⊥ ϕ|W⊥ on V .

Proof. Let v̄ denote the image of v under the canonical map V ⊗Ln → V ⊗Ln.
We have v̄ 6= 0 as v /∈ V ⊗Ln−1. Since Ln is 2-dimensional over F by Lemma 29.7,
there is a subspace W ⊂ V of dimension 2 with v̄ ∈ W ⊗ Ln.

As v̄ is an isotropic vector in W ⊗ L∗ and L∗ is a polynomial algebra over K,
we have W ⊗ K is isotropic. It follows from Corollary 22.12 that the restriction
ϕ|W is isometric to c NK/F for some c ∈ F× and, in particular, nondegenerate.

By Proposition 7.22, we can write v = w+w′ with w ∈ W ⊗Ln and w′ ∈ W⊥⊗
Ln. By construction of W , we have w̄′ = 0 in V ⊗Ln, i.e., w′ ∈ V ⊗Ln−1, therefore
ϕ(w′) ∈ L2n−2. Since 0 = ϕ(v) = ϕ(w) + ϕ(w′), we must have ϕ(w) ∈ L2n−2.

We may therefore assume that W = K and ϕ|K = c NK/F . Thus we have
w ∈ K ⊗ Ln ⊂ K ⊗ E = K(X). Considering w as a function on XK we have
div∞(w) = my + m′y′ for some m,m′ ≤ n where div∞ is the divisor of poles. As
w /∈ W ⊗ Ln−1, we must have one of the numbers m and m′, say m, equal to n.

Let σ be the generator of the Galois group of K/F . We have σ(y) = y′, hence
div∞(σw) = my′ + m′y and

div∞
(
ϕ(w)

)
= div∞

(
NK/F (w)

)
= div∞(w) + div∞(σw) = (m + m′)(y + y′).

As ϕ(w) ∈ L2n−2, we have m + m′ ≤ 2n− 2, i.e., m′ ≤ n− 2.
Note also that

div∞(ws/t) = div∞(w) + y − y′ = (m− 1)y + (m′ + 1)y′.

As both m− 1 and m′ + 1 are at most n− 1, we have ws/t ∈ K ⊗ Ln−1.
Now let ϕ̃ be the quadratic form a(ϕ|W ) ⊥ ϕ|W⊥ on V = W ⊕ W⊥ and set

ṽ = a−1ws/t + w′ ∈ V ⊗ Ln−1. By (29.6) we have

ϕ̃(ṽ) = aϕ(a−1ws/t) + ϕ(w′)

= a−1 NK(X)/F (X)(s/t)ϕ(w) + ϕ(w′) = ϕ(w) + ϕ(w′) = 0. ¤

Corollary 29.9. Let ϕ be a quadratic form over F such that ϕE is isotropic. Then
there exists an isotropic quadratic form ψ over F such that ψE ' ϕE.

Proof. Let v ∈ V ⊗E be an isotropic vector of ϕE . Scaling v we may assume
that v ∈ V ⊗ L. Choose the smallest n such that v ∈ V ⊗ Ln. We induct on n. If
n = 0, i.e., v ∈ V , the form ϕ is isotropic and we can take ψ = ϕ.

Suppose that n ≥ 1. By Proposition 29.8, there exist a 2-dimensional subspace
W ⊂ V such that ϕ|W is similar to NK/F and an isotropic vector ṽ ∈ V ⊗ Ln−1

for the quadratic form ϕ̃ = a(ϕ|W ) ⊥ (ϕ|W⊥) on V . As a is the norm in the
quadratic extension KE/E, the forms NK/F and aNK/F are isometric over E,
hence ϕ̃E ' ϕE . By the induction hypothesis applied to the form ϕ̃, there is an
isotropic quadratic form ψ over F such that ψE ' ϕ̃E ' ϕE . ¤

Theorem 29.10. Let ρ be a nondegenerate 3-dimensional quadratic form over F .
Then the field extension F (ρ)/F is excellent.
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Proof. We may assume ρ is the form in Notation 29.5 as every nondegenerate
3-dimensional quadratic form over F is similar to such a form. Let E = F (ρ) and
let ϕ be a quadratic form over F . We show by induction on dimϕan that (ϕE)an

is defined over F . If ϕan is anisotropic over E we are done as (ϕE)an ' (ϕan)E .
Suppose that ϕan is isotropic over E. By Corollary 29.9 applied to ϕan, there

exists an isotropic quadratic form ψ over F such that ψE ' (ϕan)E . As dim ψan <
dim ϕan, by the induction hypothesis, there is a quadratic form µ over F such that
(ψE)an ' µE . Since µE ∼ ψE ∼ ϕE , we have (ϕE)an ' µE . ¤
Corollary 29.11. Let ϕ ∈ GP2(F ). Then F (ϕ)/F is excellent.

Proof. Let ψ be a Pfister neighbor of ϕ of dimension three. Let K = F (ϕ) and
L = F (ψ). By Remark 23.11 and Proposition 22.9, the field extensions KL/K and
KL/L are purely transcendental. Let ν be a quadratic form over F . By Theorem
29.10, there exists a quadratic form σ over F such that (νL)an ' σL. Hence(

(νK)an

)
KL

' (νKL)an '
(
(νL)an

)
KL

' σKL.

It follows that (νK)an ' σK . ¤
The corollary above was first proven by Arason (cf. [39, Appendix II]). We

have followed here Rost’s approach in [116]. This result does not generalize to
higher fold Pfister forms. It is known, in general, for every n > 2, there exists a
field F and a ϕ ∈ GPn(F ) with F (ϕ)/F not an excellent extension (cf. [61]).

30. Central simple algebras over function fields of quadratic forms

Let D be a finite dimensional division algebra over a field F . Let D[t] denote
the F [t]-algebra D ⊗F F [t] and D(t) denote the F (t)-algebra D ⊗F F (t). As D(t)
has no zero divisors and is finite dimensional over F (t), it is a division algebra. The
main result in this section is Theorem 30.5. This was originally proved in [102]
for fields of characteristic different from 2 using Swan’s calculation of Grothendieck
group of a smooth projective quadric. We generalize the elementary proof for this
case given by Tignol in [131].

A subring A ⊂ D(t) is called an order over F [t] if it is a finitely generated
F [t]-submodule of D(t).

Lemma 30.1. Let D be a finite dimensional division F -algebra. Then every order
A ⊂ D(t) over F [t] is conjugate to a subring of D[t].

Proof. As A is finitely generated as an F [t]-module, there is a nonzero f ∈
F [t] such that Af ⊂ D[t]. The subset DAf of D[t] is a left ideal. The ring D[t]
admits both the left and the right Euclidean algorithm relative to degree. In follows
that all one-sided ideals in D[t] are principal. In particular, DAf = D[t]x for some
x ∈ D[t]. As A is a ring, for every y ∈ A, we have

xy ∈ D[t]xy = DAfy ⊂ DAf = D[t]x,

hence xyx−1 ∈ D[t]. Thus xAx−1 ⊂ D[t]. ¤
Lemma 30.2. Suppose that R is a commutative ring and S a (not necessarily
commutative) R-algebra. Let X ⊂ S be an R-submodule generated by n elements.
Suppose that every x ∈ X satisfies the equation x2 + ax + b = 0 for some a, b ∈ R.
Then the R-subalgebra of S generated by X can be generated as an R-module by 2n

elements.
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Proof. Let x1, . . . , xn be generators for the R-module X. Writing quadratic
equations for every pair of generators xi, xj and xi + xj , we see that xixj + xjxi +
axi + bxj + c = 0 for some a, b, c ∈ R. Therefore, the R-subalgebra of S generated
by X is generated as an R-module by the monomials xi1xi2 . . . xik

with i1 < i2 <
· · · < ik. ¤

Let ϕ be a quadratic form on V over F and v0 ∈ V a vector such that ϕ(v0) = 1.
For every v ∈ V , the element −vv0 in the even Clifford algebra C0(ϕ) satisfies the
quadratic equation

(30.3) (−vv0)2 + bϕ(v0, v)(−vv0) + ϕ(v) = 0.

Choose a subspace U ⊂ V such that V = Fv0⊕U . Let J be the ideal of the tensor
algebra T (U) generated by the elements v ⊗ v + bϕ(v0, v)v + ϕ(v) for all v ∈ U .

Lemma 30.4. With U as above, the F -algebra homomorphism α : T (U)/J →
C0(ϕ) defined by α(v + J) = −vv0 is an isomorphism.

Proof. By Lemma 30.2, we have dim T (U)/J ≤ 2dim U = dim C0(ϕ). As α is
surjective, it must be an isomorphism. ¤

Theorem 30.5. Let D be a finite dimensional division F -algebra and ϕ an irre-
ducible quadratic form over F . Then DF (ϕ) is not a division algebra if and only if
there is an F -algebra homomorphism C0(ϕ) → D.

Proof. Scaling ϕ, we may assume that there is v0 ∈ V satisfying ϕ(v0) = 1
where V = Vϕ. We use the decomposition V = Fv0 ⊕ U as above and set

l(v) = bϕ(v0, v) for every v ∈ U.

Claim: Suppose that DF (ϕ) is not a division algebra. Then there is an F -linear
map f : U → D satisfying the equality of quadratic maps

(30.6) f2 + lf + ϕ = 0.

(We view the left hand side as the quadratic map v 7→ f(v)2 + l(v)f(v) + ϕ(v) on
U).
If we establish the claim, then the map f extends to an F -algebra homomorphism
T (U)/J → D and, by Lemma 30.4, we get an F -algebra homomorphism C0(ϕ) → D
as needed.

We prove the claim by induction on dim U . Suppose that dimU = 1, i.e.,
U = Fv for some v. By Example 22.2, we have F (ϕ) ' C0(ϕ) = F ⊕ Fx with
x satisfying the quadratic equation x2 + ax + b = 0 with a = l(v) and b = ϕ(v)
by equation (30.3). Since DF (ϕ) is not a division algebra, there exists a nonzero
element d′ + dx ∈ DF (ϕ) with d, d′ ∈ D such that (d′ + dx)2 = 0 or equivalently
d′2 = bd2 and dd′ + d′d = ad2. Since D is a division algebra, we have d 6= 0. Then
the element d′d−1 in D satisfies

(d′d−1)2 − a(d′d−1) + b = 0.

Therefore, the assignment v 7→ −d′d−1 gives rise to the desired map f : U → D.
Now consider the general case dim U ≥ 2. Choose a decomposition

U = Fv1 ⊕ Fv2 ⊕W
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for some nonzero v1, v2 ∈ U and a subspace W ⊂ U and set V ′ = Fv0 ⊕ Fv1 ⊕W ,
U ′ = Fv1⊕W so that V ′ = Fv0⊕U ′. Consider the quadratic form ϕ′ on the vector
space V ′

F (t) over the function field F (t) defined by

ϕ′(av0 + bv1 + w) = ϕ(av0 + bv1 + btv2 + w).

We show that the function fields F (ϕ) and F (t)(ϕ′) are isomorphic over F .
Indeed, consider the injective F -linear map θ : V ∗ → V ′∗

F (t) taking a linear func-
tional z to the functional z′ defined by z′(av0 + bv1 + w) = z(av0 + bv1 + btv2 + w).
The map θ identifies the ring S•(V ∗) with a graded subring of S•(V ′∗

F (t)) so that
ϕ is identified with ϕ′. Let x1 and x2 be the coordinate functions of v1 and v2

in V , respectively, and x′1 the coordinate function of v1 in V ′. We have x1 = x′1
and x2 = tx′1 in S1(V ′∗

F (t)). Therefore, the localization of the ring S•(V ∗) with
respect to the multiplicative system F [x1, x2] \ {0} coincides with the localization
of S•(V ′∗

F (t)) with respect to F (t)[x′1] \ {0}. Note that F [x1, x2] ∩ (ϕ) = 0 and
F (t)[x′1] ∩ (ϕ′) = 0. It follows that the localizations S•(V ∗)(ϕ) and S•(V ′∗

F (t))(ϕ′)
are equal. As the function fields F (ϕ) and F (t)(ϕ′) coincide with the degree 0
components of the quotient fields of their respective localizations, the assertion
follows.

Let l′(v) = b′ϕ(v0, v), so

l′(av0 + bv1 + w) = l(av0 + bv1 + btv2 + w).

Applying the induction hypothesis to the quadratic form ϕ′ over F (t) and the
F (t)-algebra DF (t) produces an F (t)-linear map f ′ : U ′

F (t) → DF (t) satisfying

(30.7) f ′2 + l′f ′ + ϕ′ = 0.

Consider the F [t]-submodule X = f ′(U ′
F [t]) in DF [t]. By Lemma 30.2, the F [t]-

subalgebra generated by X is a finitely generated F [t]-module. It follows from
Lemma 30.1 that, after applying an inner automorphism of DF (t), we have f ′(v) ∈
DF [t] for all v. Considering the highest degree terms of f ′ (with respect to t) and
taking into account the fact that D is a division algebra, we see that deg f ′ ≤ 1,
i.e., f ′ = g + ht for two linear maps g, h : U ′ → D. Comparison of degree 2 terms
of (30.7) yields

h(v)2 + bl(v2)h(v) + b2ϕ(v2) = 0

for all v = bv1 + w. In particular, h is zero on W , therefore h(v) = bh(v1). Thus
(30.7) reads

(30.8)
(
g(v) + bth(v1)

)2 + l(bv1 + btv2)
(
g(v) + bth(v1)

)
+ ϕ(v + btv2) = 0

for every v = bv1 + w. Let f : U → D be the F -linear map defined by the formula

f(bv1 + cv2 + w) = g(bv1 + w) + ch(v1).

Substituting c/b for t in (30.8), we see that (30.6) holds on all vectors bv1 + cv2 +w
with b 6= 0 and therefore holds as an equality of quadratic maps. The claim is
proven.

We now prove the converse. Suppose that there is an F -algebra homomorphism
s : C0(ϕ) → D. Consider the two F -linear maps p, q : V → D given by p(v) = s(vv0)
and q(v) = s

(
vv0 − l(v)

)
. We have

p(v)q(v) = s
(
(vv0)2 − l(v)vv0

)
= s

(
ϕ(v)

)
= ϕ(v)
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by equation (30.3). It follows that p and q are injective maps if ϕ is anisotropic. The
maps p and q stay injective over any field extension. Let L/F be a field extension
such that ϕL is isotropic (e.g., L = F (ϕ)). Then if v′ ∈ VL is a nonzero isotropic
vector, we have p(v′)q(v′) = ϕ(v′) = 0, but p(v′) 6= 0 and q(v′) 6= 0. It follows that
DL is not a division algebra.

It remains to consider the case when ϕ is isotropic. We first show that every
isotropic vector v ∈ V belongs to rad bϕ. Suppose this is not true. Then there is a
u ∈ V satisfying bϕ(v, u) 6= 0. Let H be the 2-dimensional subspace generated by
v and u. The restriction of ϕ on H is a hyperbolic plane. Let w ∈ V be a nonzero
vector orthogonal to H and let a = ϕ(w). Then

M2(F ) = C(−aH) = C0(Fw ⊥ H) ⊂ C0(ϕ)

by Proposition 11.4. The image of the matrix algebra M2(F ) under s is isomorphic
toM2(F ) and therefore contains zero divisors, a contradiction proving the assertion.

Let V ′ be a subspace of V satisfying V = rad ϕ ⊕ V ′. As every isotropic
vector belongs to rad bϕ, the restriction ϕ′ of ϕ on V ′ is anisotropic. The natural
map C0(ϕ) → C0(ϕ′) induces an isomorphism C0(ϕ)/J

∼→ C0(ϕ′), where J =
(radϕ)C1(ϕ). Since x2 = 0 for every x ∈ rad ϕ, we have s(J) = 0. Therefore, s
induces an F -algebra homomorphism s′ : C0(ϕ′) → D. By the anisotropic case, D
is not a division algebra over F (ϕ′). Since F (ϕ) is a field extension of F (ϕ′), the
algebra DF (ϕ) is also not a division algebra. ¤

Corollary 30.9. Let D be a division F -algebra of dimension less than 22n and ϕ
a nondegenerate quadratic form of dimension at least 2n + 1 over F . Then DF (ϕ)

is also a division algebra.

Proof. Let ψ be a nondegenerate subform of ϕ of dimension 2n + 1. As
F (ψ)(ϕ)/F (ψ) is a purely transcendental extension by Proposition 22.9, we may
replace ϕ by ψ and assume that dimϕ = 2n + 1. By Proposition 11.6, the algebra
C0(ϕ) is simple of dimension 22n. If DF (ϕ) is not a division algebra, then there is
an F -algebra homomorphism C0(ϕ) → D by Theorem 30.5. This homomorphism
must be injective as C0(ϕ) is simple. But this is impossible by dimension count. ¤
Corollary 30.10. Let D be a division F -algebra and let ϕ be a nondegenerate
quadratic form over F satisfying:

(1) If dim ϕ is odd or ϕ ∈ Iq(F )\ I2
q (F ), then C0(ϕ) is not a division algebra.

(2) If ϕ ∈ I2
q (F ), then C+(ϕ) is not a division algebra over F (cf. Remark

13.9).
Then DF (ϕ) is a division algebra.

Proof. If DF (ϕ) is not a division algebra, there is an F -algebra homomorphism
f : C0(ϕ) → D by Theorem 30.5. If ϕ ∈ I2

q (F ) we have C0(ϕ) ' C+(ϕ) × C+(ϕ)
by Remark 13.9. Thus in every case the image of f lies in a nondivision subalgebra
of D. Therefore, D is not a division algebra, a contradiction. ¤
Corollary 30.11. Let D be a division F -algebra and let ϕ ∈ I3

q (F ) be a nonzero
quadratic form. Then DF (ϕ) is a division algebra.

Proof. By Theorem 14.3, the Clifford algebra C(ϕ) is split. In particular,
C+(ϕ) is not a division algebra. The statement follows now from Corollary 30.10.

¤





CHAPTER V

Bilinear and Quadratic Forms and Algebraic
Extensions

31. Structure of the Witt ring

In this section, we investigate the structure of the Witt ring of nondegenerate
symmetric bilinear forms. For fields F whose level s(F ) is finite, i.e., nonformally
real fields, the ring structure is quite simple. The Witt ring of such a field has a
unique prime ideal, viz., the fundamental ideal and W (F ) (as an abelian group)
has exponent 2s(F ). As s(F ) = 2n for some nonnegative integer this means that
the Witt ring is 2-primary torsion. The case of formally real fields F , i.e., fields of
infinite level, is more involved. Orderings on such a field give rise to prime ideals
in W (F ). The torsion in W (F ) is still 2-primary, but this is not as easy to show.
Therefore, we do the two cases separately.

31.A. Nonformally real fields. We consider the case of nonformally real
fields first.

A field F is called quadratically closed if F = F 2. For example, algebraically
closed fields are quadratically closed. A field of characteristic 2 is quadratically
closed if and only if it is perfect. Over a quadratically closed field, the structure of
the Witt ring is very simple. Indeed, we have

Lemma 31.1. For a field F the following are equivalent:
(1) F is quadratically closed.
(2) W (F ) = Z/2Z.
(3) I(F ) = 0.

Proof. As W (F )/I(F ) = Z/2Z, we have W (F ) ' Z/2Z if and only if I(F ) =
0 if and only if 〈1,−a〉 = 0 in W (F ) for all a ∈ F× if and only if a ∈ F×2 for all
a ∈ F×. ¤

Example 31.2. Let F be a finite field with charF = p and |F | = q. If p = 2,
then F = F 2 and F is quadratically closed. So suppose that p > 2. Then F×2 '
F×/{±1} so |F 2| = 1

2 (q + 1). Let F×/F×2 = {F×2, aF×2}. Since the finite sets
F 2 and {a − y2 | y ∈ F} both have 1

2 (q + 1) elements, they intersect nontrivially.
It follows that every element in F is a sum of two squares. We have −1 ∈ F×2 if
and only if q ≡ 1 mod 4.

If q ≡ 3 mod 4, then −1 /∈ F×2 and the level s(F ) of F is 2. We may
assume that a = −1. Then 〈1, 1, 1〉 = 〈1,−1,−1〉 = 〈−1〉 in W (F ) so W (F ) equals
{0, 〈1〉, 〈−1〉, 〈1, 1〉} and is isomorphic to the ring Z/4Z.

If q ≡ 1 mod 4, then −1 is a square and W (F ) equals {0, 〈1〉, 〈a〉, 〈1, a〉} and
is isomorphic to the group ring Z/2Z[F×/F×2].

121
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It follows from Example 31.2 that s(F ) = 1 or 2 for any field F of positive
characteristic. In general, if F is not formally real, s(F ) = 2n by Corollary 6.8.
There exist fields of level 2m for each m ≥ 1.

Lemma 31.3. Let 2m ≤ n < 2m+1. Suppose that F satisfies s(F ) > 2m, e.g., F
is formally real, and ϕ = (n + 1)〈1〉q. Then s

(
F (ϕ)

)
= 2m.

Proof. As s(F ) > 1, the characteristic of F is not 2. Since ϕF (ϕ) is isotropic,
it follows that s

(
F (ϕ)

) ≤ 2m by Corollary 6.8. If ϕ was isotropic over F , then
s(F ) = s

(
F (ϕ)

) ≤ 2m as F (ϕ)/F is purely transcendental by Proposition 22.9.
This contradicts the hypothesis. So ϕ is anisotropic. If s

(
F (ϕ)

)
< 2m, then(

2m〈1〉)
F (ϕ)

is a Pfister form as char F 6= 2, hence is hyperbolic. It follows that
2m = dim 2m〈1〉 ≥ dim ϕ > 2m by the Subform Theorem 22.5, a contradiction. ¤

The ring structure of W (F ) due to Pfister (cf. [110]) is given by the following:

Proposition 31.4. Let F be nonformally real with s(F ) = 2n. Then:
(1) Spec

(
W (F )

)
= {I(F )}.

(2) W (F ) is a local ring of Krull dimension zero with maximal ideal I(F ).
(3) nil

(
W (F )

)
= rad

(
W (F )

)
= zd(F ) = I(F ).

(4) W (F )× = {b | dim b is odd}.
(5) W (F ) is connected, i.e., 0 and 1 are the only idempotents in W (F ).
(6) W (F ) is a 2-primary torsion group of exponent 2s(F ).
(7) W (F ) is artinian if and only if it is noetherian if and only if |F×/F×2|

is finite if and only if W (F ) is a finite ring.

Proof. Let s = s(F ). The integer 2s is the smallest integer such that the
bilinear Pfister form 2s〈1〉b is metabolic, hence zero in the Witt ring. Therefore,
2n+1〈a〉 = 0 in W (F ) for every a ∈ F×. It follows that W (F ) is 2-primary torsion
of exponent 2n+1, i.e., (6) holds. As

〈〈a〉〉n+2 = 〈〈a, . . . , a〉〉 = 〈〈a,−1, . . . ,−1〉〉 = 2n+1〈〈a〉〉 = 0

in W (F ) for every a ∈ F× by Example 4.16, we have I(F ) lies in every prime ideal.
Since W (F )/I(F ) ' Z/2Z, the fundamental ideal I(F ) is maximal, hence is the
only prime ideal. This proves (1). As I(F ) is the only prime ideal (2)− (5) follows
easily.

Finally, we show (7). Suppose that W (F ) is noetherian. Then I(F ) is a
finitely generated W (F )-module so I(F )/I2(F ) is a finitely generated W (F )/I(F )-
module. As F×/F×2 ' I(F )/I2(F ) by Proposition 4.13 and Z/2Z ' W (F )/I(F ),
we have F×/F×2 is finite. Conversely, suppose that F×/F×2 is finite. By (2.6),
we have a ring epimorphism Z[F×/F×2] → W (F ). As the group ring Z[F×/F×2]
is noetherian, W (F ) is noetherian. As 2sW (F ) = 0 and W (F ) is generated by the
classes of 1-dimensional forms, we see that |W (F )| ≤ |F×/F×2|2s. Statement (7)
now follows easily. ¤

We turn to formally real fields, i.e., those fields of infinite level. In particular,
formally real fields are of characteristic 0, so the theories of symmetric bilinear
forms and quadratic forms merge. The structure of the Witt ring of a formally
real field is more complicated as well as more interesting. We shall use the basic
algebraic and topological structure of formally real fields which can be found in
Appendices §95 and §96. Recall that a formally field F is called euclidean if every



31. STRUCTURE OF THE WITT RING 123

element in F× is a square or minus a square. So F is euclidean if and only if F is
formally real and F×/F×2 = {F×2,−F×2}. In particular, every real-closed field
(cf. §95) is euclidean. Sylvester’s Law of Inertia for real-closed fields generalizes to
euclidean fields.

Proposition 31.5 (Sylvester’s Law of Inertia). Let F be a field. Then the follow-
ing are equivalent:

(1) F is euclidean.
(2) F is formally real and if b is a nondegenerate symmetric bilinear form,

there exists unique nonnegative integers m,n such that b ' m〈1〉 ⊥ n〈−1〉.
(3) W (F ) ' Z as rings.
(4) F 2 is an ordering of F .

Proof. (1) ⇒ (2): As F is formally real, charF = 0 so every bilinear form is
diagonalizable. Since F×/F×2 = {F×2,−F×2}, every nondegenerate bilinear form
is isometric to m〈1〉 ⊥ n〈−1〉 for some nonnegative integers n and m. The integers
n and m are unique by Witt Cancellation 1.28.

(2) ⇒ (3): By (2) every anisotropic quadratic form is isometric to r〈1〉 for some
unique integer r. As F is formally real every such form is anisotropic.

(3) ⇒ (4): Let sgn : W (F ) → Z be the isomorphism. Then sgn〈1〉 = 1 so 〈1〉
has infinite order, hence F is formally real. Let a ∈ F . Then sgn〈a〉 = n for some
integer n. Thus 〈a〉 = n〈1〉 in W (F ). In particular, n is odd. Taking determinants,
we must have aF×2 = ±F×2. It follows that F×/F×2 = {F×2,−F×2}. As F is
formally real, F 2 + F 2 ⊂ F 2, hence F 2 is an ordering.

(4) ⇒ (1): As F has an ordering, it is formally real. As F 2 is an ordering,
F = F 2 ∪ (−F 2) with −1 /∈ F 2, so F is euclidean. ¤

31.B. Pythagorean fields. We turn to a class of fields important in the
study of formally real fields that generalize quadratically closed fields.

Let F be a euclidean field. If b is a nondegenerate symmetric bilinear form,
then b ' m〈1〉 ⊥ n〈−1〉 for unique nonnegative integers n and m. The integer
m− n is called the signature of b and denoted sgn b. This induces an isomorphism
sgn : W (F ) → Z taking the Witt class of b to sgn b called the signature map.

Let F be a field. Set

D
(∞〈1〉) :=

⋃
n

D
(
n〈1〉) =

{
x | x is a nonzero sum of squares in F

}
,

D̃
(∞〈1〉) := D

(∞〈1〉) ∪ {0}.
A field F of characteristic different from 2 is called a pythagorean field if every sum
of squares of elements in F is itself a square, i.e., D̃

(∞〈1〉) = F 2. A field F of
characteristic 2 is called pythagorean if F is quadratically closed, i.e., perfect.

Example 31.6. Let F be a field.
(1) Every euclidean field is pythagorean.
(2) Let F be a field of characteristic different from 2 and K = F ((t)), a Laurent

series field over F . Then K is the quotient field of F [[t]], a complete discrete
valuation ring. If F is formally real, then so is K as n〈1〉 is anisotropic over K for
all n by Lemma 19.4. Suppose that F is formally real and pythagorean. If xi ∈ K×

for i = 1, 2, then there exist integers mi such that xi = tmi(ai + tyi) with ai ∈ F×

and yi ∈ F [[t]] for i = 1, 2. Suppose that m1 ≤ m2, then x2
1 + x2

2 = t2m1(c + tz)
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with z ∈ F [[t]] and c = a2
1 if m1 < m2 and c = a2

1 + a2
2 if m1 = m2, hence c is

a square in F in either case. As K is formally real, c 6= 0 in either case. Hence
c + tz is a square in K by Hensel’s Lemma. It follows that K is also pythagorean.
In particular, the finitely iterated Laurent series field Fn = F ((t1)) · · · ((tn)) as well
as the infinitely iterated Laurent series field F∞ = colimFn = F ((t1)) · · · ((tn)) · · ·
are formally real and pythagorean if F is.

(3) If F is not formally real and charF 6= 2, then s = s(F ) is finite so the
symmetric bilinear form (s + 1)〈1〉 is isotropic, hence universal by Corollary 1.25.
Therefore, F = D̃

(∞〈1〉). It follows that if F is not formally real, then F is
pythagorean if and only if it is quadratically closed. In particular, if F is not
formally real, then the field F ((t)) is not pythagorean as t is not a square.

Exercise 31.7. Let F be a formally real pythagorean field and let b be a bilinear
form over F . Prove that the set D(b) is closed under addition.

Proposition 31.8. Let F be a field. Then the following are equivalent:
(1) F is pythagorean.
(2) I(F ) is torsion-free.
(3) There are no anisotropic torsion binary bilinear forms over F .

Proof. (1) ⇒ (2): If s(F ) is finite, then F is quadratically closed so W (F ) =
{0, 〈1〉} and I(F ) = 0. Therefore, we may assume that F is formally real. We show
in this case that W (F ) is torsion-free. Let b be an anisotropic bilinear form over
F that is torsion in W (F ), say mb = 0 in W (F ) for some positive integer m. As
b is diagonalizable by Corollary 1.19, suppose that b ' 〈a1, . . . , an〉 with ai ∈ F×.
The form mbi is isotropic so there exists a nontrivial equation

∑
j

∑
i aix

2
ij = 0 in

F . As F is pythagorean, there exist xi ∈ F satisfying x2
i =

∑
j x2

ij . Since F is
formally real, not all the xi can be zero. Thus (x1, . . . , xn) is an isotropic vector
for b, a contradiction.

(2) ⇒ (3) is trivial.
(3) ⇒ (1): Let 0 6= z ∈ D

(
2〈1〉). Then 2〈〈z〉〉 = 0 in W (F ) by Corollary 6.6.

By assumption, 〈〈z〉〉 = 0 in W (F ), hence z ∈ F×2. ¤

Corollary 31.9. A field F is formally real and pythagorean if and only if W (F )
is torsion-free.

Proof. Suppose that W (F ) is torsion-free. Then I(F ) is torsion-free so F is
pythagorean. As 〈1〉 is not torsion, s(F ) is infinite, hence F is formally real.

Conversely, suppose that F is formally real and pythagorean. Then the proof
of (1) ⇒ (2) in Proposition 31.8 shows that W (F ) is torsion-free. ¤

Lemma 31.10. The intersection of pythagorean fields is pythagorean.

Proof. Let F =
⋂

I Fi with each Fi pythagorean. If z = x2+y2 with x, y ∈ F ,
then for each i ∈ I there exist zi ∈ Fi with z2

i = z. In particular, zi = ±zj for all
i, j ∈ I. Thus zj ∈

⋂
I Fi = F for every j ∈ I and z = z2

j . ¤

Exercise 31.11. Let K/F be a finite extension. Show that if K is pythagorean
so is F . (Hint: If charF 6= 2 and a = 1 + x2 ∈ F \ F 2, let z = a +

√
a ∈ K. Show

z ∈ F (
√

a)2, but NF (
√

a)/F (z) /∈ F 2.)
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Let F be a field and K/F an algebraic extension. We call K a pythagorean
closure of F if K is pythagorean, and if F ⊂ E $ K is an intermediate field, then
E is not pythagorean. If F̃ is an algebraic closure of F , then the intersection of all
pythagorean fields between F and F̃ is pythagorean by the lemma. Clearly, this is
a pythagorean closure of F . In particular, a pythagorean closure is unique (after
fixing an algebraic closure). We shall denote the pythagorean closure of F by Fpy.
If F is not a formally real field, then Fpy is just the quadratic closure of F , i.e., a
quadratically closed field K algebraic over F such that if F ⊂ E $ K, then E is
not quadratically closed. For example, the quadratic closure of the field of rational
numbers Q is the field of complex constructible numbers.

Exercise 31.12. Let E be a pythagorean closure of a field F . Prove that E/F is
an excellent extension. (Hint: In the formally real case use Exercise 31.7 to show
that for any quadratic form ϕ over F the form (ϕE)an over E takes values in F .)

We next show how to construct the pythagorean closure of a field.

Definition 31.13. Let F be a field with F̃ an algebraic closure. If K/F is a finite
extension in F̃ , then we say K/F is admissible if there exists a tower

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = K where

Fi = Fi−1(
√

zi−1) with zi−1 ∈ D(2〈1〉Fi−1)
(31.14)

from F to K.

Remark 31.15. If F is a formally real field and K an admissible extension of F ,
then K is formally real by Theorem 95.3 in §95.

Lemma 31.16. Suppose that charF 6= 2. Let L be the union of all admissible
extensions over F . Then L = Fpy. If F is formally real so is Fpy.

Proof. Let F̃ be a fixed algebraic closure of F . If E and K are admissible
extensions of F , then the compositum of EK of E and K is also an admissible
extension. It follows that L is a field. If z ∈ L satisfies z = x2 + y2, x, y ∈ L,
then there exist admissible extensions E and K of F with x ∈ E and y ∈ K. Then
EK(

√
z) is an admissible extension of F , hence

√
z ∈ EK(

√
z) ⊂ L. Therefore,

L is pythagorean. Let M be pythagorean with F ⊂ M ⊂ F̃ . We show L ⊂ M .
Let K/F be admissible. Let (31.14) be a tower from F to K. By induction, we
may assume that Fi ⊂ M . Therefore, zi ∈ M2, hence Fi+1 ⊂ M . Consequently,
K ⊂ M . It follows that L ⊂ M so L = Fpy. If F is formally real, then so is L by
Remark 31.15. ¤

If F is an arbitrary field, then the quadratic closure of F can also be constructed
by taking the union of all square root towers

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = K where Fi = Fi−1(
√

zi−1) with zi−1 ∈ F×i−1

over F .
Recall that if K/F is a field extension, then W (K/F ) is the kernel of the

restriction map rK/F : W (F ) → W (K).

Lemma 31.17. Let z ∈ D
(
2〈1〉) \ F×2. If K = F (

√
z) , then

W (K/F ) ⊂ annW (F )

(
2〈1〉).
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Proof. It follows from the hypothesis that 〈〈z〉〉 is anisotropic, hence K/F is
a quadratic extension. As z is a sum of squares and not a square, charF 6= 2.
Therefore, by Corollary 23.6, we have W (K/F ) = 〈〈z〉〉W (F ). By Corollary 6.6, we
have 2〈〈z〉〉 = 0 in W (F ) and the result follows. ¤

31.C. Formally real fields. Let

Wt(F ) :=
{
b ∈ W (F ) | there exists a positive integer n such that nb = 0

}
,

the additive torsion in W (F ). It is an ideal in W (F ). We have

Theorem 31.18. Let F be a formally real field.

(1) Wt(F ) is 2-primary, i.e., all torsion elements of W (F ) have exponent a
power of 2.

(2) Wt(F ) = W (Fpy/F ).

Proof. As W (Fpy) is torsion-free by Corollary 31.9, the torsion subgroup
Wt(F ) lies in W (Fpy/F ), so it suffices to show W (Fpy/F ) is a 2-primary torsion
group. Let K be an admissible extension of F as in (31.14). Since Fpy is the
union of admissible extensions by Lemma 31.16, it suffices to show W (K/F ) is
2-primary torsion. By Lemma 31.17 and induction, it follows that W (K/F ) ⊂
annW (F )

(
2n〈1〉) as needed. ¤

Lemma 31.19. Let F be a formally real field and b ∈ W (F ) satisfy 2nb 6= 0 in
W (F ) for any n ≥ 0. Let K/F be an algebraic extension that is maximal with
respect to bK not having order a power of 2 in W (K). Then K is euclidean. In
particular, sgn bK 6= 0.

Proof. Suppose K is not euclidean. As 2n〈1〉 6= 0, the field K is formally real.
Since K is not euclidean, there exists an x ∈ K× such that x /∈ (K×)2∪−(K×)2. In
particular, both K(

√
x)/K and K(

√−x)/K are quadratic extensions. By choice of
K, there exists a positive integer n such that c := 2nbK satisfies cK(

√
x) and cK(

√−x)

are metabolic, hence hyperbolic as char F 6= 2. By Corollary 23.6, there exist forms
c1 and c2 over K satisfying c ' 〈〈x〉〉 ⊗ c1 ' 〈〈−x〉〉 ⊗ c2. As −x〈〈x〉〉 ' 〈〈x〉〉 and
x〈〈−x〉〉 ' 〈〈−x〉〉, we conclude that xc ' c ' −xc and hence that 2c ' c ⊥ c '
xc ⊥ −xc. Thus 2c = 0 in W (K). This means that bK is torsion of order 2n+1, a
contradiction. ¤

Proposition 31.20. The following are equivalent:

(1) F can be ordered, i.e., X(F ), the space of orderings of F , is not empty.
(2) F is formally real.
(3) Wt(F ) 6= W (F ).
(4) W (F ) is not a 2-primary torsion group.
(5) There exists an ideal A ⊂ W (F ) such that W (F )/A ' Z.
(6) There exists a prime ideal P in W (F ) such that char(W (F )/P) 6= 2.

Moreover, if F is formally real, then for any prime ideal P in W (F ) which satisfies
char

(
W (F )/P

) 6= 2, the set

PP :=
{
x ∈ F× | 〈〈x〉〉 ∈ P

} ∪ {
0
}

is an ordering of F .
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Proof. (1) ⇒ (2) is clear.
(2) ⇒ (3): By assumption, −1 /∈ DF

(
n〈1〉) for any n > 0, so 〈1〉 /∈ Wt(F ).

(3) ⇒ (4) is trivial.
(4) ⇒ (5): By assumption there exists b ∈ W (F ) not having order a power of

2. By Lemma 31.19, there exists K/F with K euclidean. In particular, rK/F is
surjective. Therefore, A = W (K/F ) works by Lemma 31.19 and Sylvester’s Law of
Inertia 31.5.

(5) ⇒ (6) is trivial.
(6) ⇒ (1): By Proposition 31.4, the field F is formally real. We show that (6)

implies the last statement. This will also prove (1). Let P in W (F ) be a prime
ideal satisfying char(W (F )/P) 6= 2.
We must show

(i) PP ∪ (−PP) = F .
(ii) PP + PP ⊂ PP.
(iii) PP · PP ⊂ PP.
(iv) PP ∩ (−PP) = {0}.
(v) −1 6∈ PP.

Suppose that x 6= 0 and both ±x ∈ PP. Then 〈〈−1〉〉 = 〈〈−x〉〉 + 〈〈x〉〉 lies in
P so 2〈1〉 + P = 0 in W (F )/P, a contradiction. This shows (iv) and (v) hold.
As 〈〈x,−x〉〉 = 0 in W (F ), either 〈〈x〉〉 or 〈〈−x〉〉 lies in P, so (i) holds. Next
let x, y ∈ PP. Then 〈〈xy〉〉 = 〈〈x〉〉 + x〈〈y〉〉 lies in P so xy ∈ P which is (iii).
Finally, we show that (ii) holds, i.e., x + y ∈ PP. We may assume neither x
nor y is zero. This implies that z := x + y 6= 0, otherwise we have the equation
〈〈−1〉〉 = 〈1, x,−x, 1〉 = 〈1,−x,−y, 1〉 = 〈〈x〉〉 + 〈〈y〉〉 in W (F ) which implies that
〈〈−1〉〉 lies in P contradicting (v). Since 〈−x,−y〉 ' −z〈〈−xy〉〉 by Corollary 6.6,
we have

2〈−z〉 = 2〈−x,−y, zxy〉 = 〈−x,−y, zxy,−z,−zxy, zxy〉
= 〈〈x〉〉+ 〈〈y〉〉 − 2〈1〉 − z〈〈xy〉〉

in W (F ). As x, y ∈ PP and xy ∈ PP by (iii), it follows that 2〈〈z〉〉 ∈ P as
needed. ¤

The proposition gives another proof of the Artin-Schreier Theorem that every
formally real field can be ordered.

In [94], Lewis gave an elegant proof for the structure of the Witt ring, part of
which we present in the following exercise.

Exercise 31.21. Let F be an arbitrary field. Show all of the following:
(1) (Leung) Define a polynomial pn(t) in F [t] as follows:

pn(t) =

{
t(t2 − 22)(t2 − 42) · · · (t2 − n2) if n is even,
(t2 − 12)(t2 − 32)(t2 − 52) · · · (t2 − n2) if n is odd.

If b is an n-dimensional nondegenerate symmetric bilinear form over F , then pn(b) =
0 in W (F ).

(2) W (F ) is integral over Z if F is formally real and over Z/2rZ for some r if
F is not formally real. In particular, the Krull dimension of W (F ) is one if F is
formally real and zero if not.
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(3) Using Exercise 33.14 below show that Wt(F ) is 2-primary.
(4) W (F ) has no odd-dimensional zero divisors and if Wt(F ) 6= 0, then we have

zd
(
W (F )

)
= I(F ). Moreover, W (F ) contains no nontrivial idempotents.

(5) If F is formally real, then Wt(F ) = nil
(
W (F )

)
.

31.D. The Local-Global Principle. The main result of this subsection is
Theorem 31.22 below due to Pfister (cf. [110]).

Let F be a formally real field and X(F ) the space of orderings. Let P ∈
X(F ) and FP be the real closure of F at P (within a fixed algebraic closure).
By Sylvester’s Law of Inertia 31.5, the signature map defines an isomorphism
sgn : W (FP ) → Z. In particular, we have a signature map sgnP : W (F ) → Z
given by sgnP = sgn ◦ rFP /F . This is a ring homomorphism satisfying Wt(F ) ⊂
Ker(rFP /F ) = Ker(sgnP ). We let

PP = Ker(sgnP ) in Spec
(
W (F )

)
.

Note if F ⊂ K ⊂ FP and b is a nondegenerate symmetric bilinear form, then
sgnP b = sgnF 2

P∩K bK . In particular, if K is euclidean, then sgnP b = sgn bK .

Theorem 31.22 (Local-Global Principle). The sequence

0 → Wt(F ) → W (F )
(rFP /F )−−−−−→

∏

X(F )

W (FP )

is exact.

Proof. We may assume that F is formally real by Proposition 31.4. We saw
above that Wt(F ) ⊂ Ker(sgnP ) for every ordering P ∈ X(F ), so the sequence is
a zero sequence. Suppose that b ∈ W (F ) is not torsion of 2-power order. By
Lemma 31.19, there exists a euclidean field K/F with bK not of 2-power order. As
K2 ∈ X(K), we have P = K2 ∩ F ∈ X(F ). Thus sgnP b = sgn bK 6= 0. The result
follows. ¤

Corollary 31.23. The map

X(F ) → {
P ∈ Spec

(
W (F )

) | W (F )/P ' Z}
given by P 7→ PP

is a bijection.

Proof. Let P ⊂ W (F ) be a prime ideal such that W (F )/P ' Z. As in
Proposition 31.20, let PP := {x ∈ F× | 〈〈x〉〉 ∈ P} ∪ {0} ∈ X(F ).

Claim: P 7→ PP is the inverse, i.e., P = PPP and P = PPP
.

If P ∈ X(F ), then certainly P ⊂ PPP
, so we must have P = PPP

as both
are orderings. By definition, we see that the composition W (F ) → W (F )/P

∼−→ Z
maps 〈x〉 to sgnPP

〈x〉. Hence Ker(sgnPP
) = P. ¤

The spectrum of the Witt ring can now be determined. This result is due to
Lorenz-Leicht (cf. [95]) and Harrison (cf. [49]).

Theorem 31.24. Spec
(
W (F )

)
consists of:

(1) The fundamental ideal I(F ).
(2) PP with P ∈ X(F ).
(3) PP,p := PP + pW (F ) = sgn−1

P (pZ), p an odd prime, with P ∈ X(F ).
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Moreover, all these ideals are different. The prime ideals in (1) and (3) are the
maximal ideals of W (F ). If F is formally real, then the ideals in (2) are the minimal
primes of W (F ) and PP ⊂ PP,p ∩ I(F ) for all P ∈ X(F ) and for all odd primes p.

Proof. We may assume that F is formally real by Proposition 31.4. Let P be
a prime ideal in W (F ). Let a ∈ F×. As 〈〈a,−a〉〉 = 0 in W (F ) either 〈〈a〉〉 ∈ P or
〈〈−a〉〉 ∈ P. In particular, 〈a〉 ≡ ±〈1〉 mod P. Hence W (F )/P is cyclic generated
by 〈1〉 + P, so W (F )/P ' Z or Z/pZ for p a prime. If x, y ∈ F×, then 〈x〉 and
〈y〉 are units in W (F ), so do not lie in P. Suppose that W (F )/P ' Z/2Z. Then
we must have 〈x, y〉 ∈ P for all x, y ∈ F×, hence P = I(F ). So suppose that
W (F )/P 6' Z/2Z. By Proposition 31.20, the set P = PP lies in X(F ). Since
W (F )/PP ' Z, we have PP ⊂ P. Hence P = PP or P = PP,p for a suitable odd
prime. As each P ∈ X(F ) determines a unique PP and PP,p by Corollary 31.20,
the result follows. ¤

Corollary 31.25. If F is formally real, then dim W (F ) = 1 and the map X(F ) →
MinSpec

(
W (F )

)
given by P 7→ Ker(sgnP ) is a homeomorphism.

Proof. As 〈〈1〉〉 does not lie in any minimal prime, for each a ∈ F× either
a ∈ PP or −a ∈ PP but not both where P ∈ X(F ). The sets H(a) := {P | −a ∈ P}
form a subbase for the topology of X(F ) (cf. §96). As a ∈ P for P ∈ X(F ) if and
only if 〈〈a〉〉 ∈ PP if and only if PP lies in the basic open set {P | a /∈ P for P ∈
Min

(
Spec W (F )}, the result follows. ¤

The structure of the Witt ring in the formally real case due to Pfister (cf. [110])
can now be shown.

Proposition 31.26. Let F be formally real. Then:

(1) nil
(
W (F )

)
= rad

(
W (F )

)
= Wt(F ).

(2) W (F )× = {b | sgnP b = ±1 for all P ∈ X(F )}
= {〈a〉+ c | a ∈ F× and c ∈ I2(F ) ∩Wt(F )}.

(3) If F is not pythagorean, then zd
(
W (F )

)
= I(F ).

(4) If F is pythagorean, then zd
(
W (F )

)
=

⋃
X(F ) PP $ I(F ).

(5) W (F ) is connected, i.e., 0 and 1 are the only idempotents in W (F ).
(6) W (F ) is noetherian if and only if F×/F×2 is finite.

Proof. (1): If P ∈ X(F ), then PP =
⋂

p PP,p, so nil
(
W (F )

)
= rad

(
W (F )

)
.

By the Local-Global Principle 31.22, we have

Wt(F ) = Ker(
∏

P∈X(F )

rFP /F ) =
⋂

X(F )

Ker(sgnP )

=
⋂

X(F )

PP =
⋂

X(F )

PP,p = nil
(
W (F )

)
.

(2): We have sgnP

(
W (F )×

) ⊂ {±1} for all P ∈ X(F ). Let b be a nondegen-
erate symmetric bilinear form satisfying sgnP b = ±1 for all P ∈ X(F ). Choose
a ∈ F such that c := b − 〈a〉 lies in I2(F ) using Proposition 4.13. In particular,
sgnP b ≡ sgnP 〈a〉 mod 4, hence sgnP b = sgnP 〈a〉 for all P ∈ X(F ). Consequently,
sgnP c = 0 for all P ∈ X(F ) so c is torsion by the Local-Global Principle 31.22. By
(1), the form c is nilpotent hence b ∈ W (F )×.
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(3), (4): As the set of zero divisors is a saturated multiplicative set, it follows
by commutative algebra that it is a union of prime ideals.

Suppose that F is not pythagorean. Then Wt(F ) 6= 0 by Corollary 31.9. In
particular, 2nb = 0 ∈ W (F ) for some b 6= 0 in W (F ) and n ≥ 1 by Theorem 31.18.
Thus 〈〈−1〉〉 is a zero divisor. As I(F ) is the only prime ideal containing 〈〈−1〉〉, we
have I(F ) ⊂ zd

(
W (F )

)
. Since n〈1〉 is not a zero divisor for any odd integer n by

Theorem 31.18, no PP,p can lie in zd
(
W (F )

)
. It follows that zd

(
W (F )

)
= I(F ),

since PP ⊂ I(F ) for all P ∈ X(F ).
Suppose that F is pythagorean. Then W (F ) is torsion-free, so n〈1〉 is not

a zero-divisor for any nonzero integer n. In particular, no maximal ideal lies in
zd

(
W (F )

)
. Let P ∈ X(F ) and b ∈ PP . Then b is diagonalizable so we have

b ' 〈a1, . . . , an, b1, . . . bn〉 with ai,−bj ∈ P for all i, j. Let c = 〈〈a1b1, . . . , anbn〉〉.
Then c is nonzero in W (F ) as sgnP c = 2n. As 〈〈−aibi〉〉 · c = 0 in W (F ) for all
i, we have b · c = 0, hence b ∈ zd

(
W (F )

)
. Consequently, PP ⊂ zd

(
W (F )

)
for all

P ∈ X(F ), hence zd
(
W (F )

)
is the union of the minimal primes.

(5): If the result is false, then 1 = e1 + e2 for some nontrivial idempotents
e1, e2. As e1e2 = 0, we have e1, e2 ∈ zd

(
W (F )

) ⊂ I(F ) which implies 1 ∈ I(F ), a
contradiction.

(6): This follows by the same proof for the analogous result in Proposition
31.4. ¤

Let It(F ) := Wt(F ) ∩ I(F ).

Proposition 31.27. If F is formally real, then Wt(F ) is generated by 〈〈x〉〉 with
x ∈ D

(∞〈1〉), i.e., Wt(F ) = It(F ) is generated by torsion 1-fold Pfister forms.

Proof. Let b ∈ Wt(F ). Then 2nb = 0 for some integer n > 0. Thus b ∈
annW (F )

(
2n〈1〉). By Corollary 6.23, there exist binary forms di ∈ annW (F )

(
2n〈1〉)

satisfying b = d1 + · · ·+ dm in W (F ). The result follows. ¤
31.E. The Witt ring up to isomorphism. Because I(F ) is the unique ideal

of index two in W (F ), we can deduce the following due to Cordes and Harrison (cf.
[26]):

Theorem 31.28. Let F and K be two fields. Then W (F ) and W (K) are iso-
morphic as rings if and only if W (F )/I3(F ) and W (K)/I3(K) are isomorphic as
rings.

Proof. The fundamental ideal is the unique ideal of index two in its Witt
ring by Theorem 31.24. Therefore, any ring isomorphism W (F ) → W (K) induces
a ring isomorphism W (F )/I3(F ) → W (K)/I3(K).

Conversely, let g : W (F )/I3(F ) → W (K)/I3(K) be a ring isomorphism. As
the fundamental ideal is the unique ideal of index two in its Witt ring by Theorem
31.24, the map g induces an isomorphism I(F )/I3(F ) → I(K)/I3(K). From this
and Proposition 4.13, it follows easily that g induces an isomorphism h : F×/F×2 →
K×/K×2.

We adopt the following notation. For a coset α = xK×2, write 〈α〉 and 〈〈α〉〉
for the forms 〈x〉 and 〈〈x〉〉 in W (K), respectively. We also write s(a) for h(aF×2).
Note that s(ab) = s(a)s(b) for all a, b ∈ F×.

By construction,

g
(〈〈a〉〉+ I3(F )

) ≡ 〈〈s(a)〉〉 mod I2(K)/I3(K).
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As g(1) = 1, plugging in a = −1, we get 〈s(−1)〉 = 〈−1〉. In particular,

(31.29) 〈s(1)〉+ 〈s(−1)〉 = 〈1〉+ 〈−1〉 = 0 ∈ W (K).

Since g is a ring homomorphism, we have

g
(〈〈a, b〉〉+ I3(F )

)
= g

(〈〈a〉〉+ I3(F )
) · g(〈〈b〉〉+ I3(F )

)

= 〈〈s(a)〉〉 · 〈〈s(b)〉〉+ I3(K)

= 〈〈s(a), s(b)〉〉+ I3(K).

for every a, b ∈ F×.
If a+ b 6= 0, we have 〈〈a, b〉〉 ' 〈〈a+ b, ab(a+ b)〉〉 by Lemma 4.15(3). Therefore,

〈〈s(a), s(b)〉〉 ≡ 〈〈s(a + b), s
(
ab(a + b)

)〉〉 mod I3(K).

By Theorem 6.20, these two 2-fold Pfister forms are equal in W (K). Therefore,

(31.30) 〈s(a)〉+ 〈s(b)〉 = 〈s(a + b)〉+ 〈s(ab(a + b))〉
in W (K).

Let F be the free abelian group with basis the set of isomorphism classes
of 1-dimensional forms 〈a〉 over F . It follows from Theorem 4.8 and equations
(31.29) and (31.30) that the map F → W (K) taking 〈a〉 to 〈s(a)〉 gives rise to a
homomorphism s : W (F ) → W (K). Interchanging the roles of F and K, we have,
in a similar fashion, a homomorphism W (K) → W (F ) which is the inverse of s. ¤

32. Addendum on torsion

We know by Corollary 6.26 that if b ∈ annW (F )

(
2〈1〉), i.e., if 2b = 0 in W (F )

that b ' d1 ⊥ · · · ⊥ dn where each bi is a binary form annihilated by 2. In
particular, if b is an anisotropic bilinear Pfister form such that 2b = 0 in W (F ),
then the pure subform b′ of b satisfies D(b′)∩D

(
2〈−1〉) 6= ∅. In general, if 2nb = 0

in W (F ) with n > 1, then b is not isometric to binary forms annihilated by 2n nor
does the pure subform of a torsion bilinear Pfister form represent a totally negative
element. In this addendum, we construct a counterexample due to Arason and
Pfister (cf. [11]). We use the following variant of the Cassels-Pfister Theorem 17.3.

Lemma 32.1. Let charF 6= 2. Let ϕ = 〈a1, . . . , an〉q be anisotropic over F (t) with
a1, . . . , an ∈ F [t] all satisfying deg ai ≤ 1. Suppose that 0 6= q ∈ D(ϕF (t)) ∩ F [t].
Then there exist polynomials f1, . . . , fn ∈ F [t] such that q = ϕ(f1, . . . , fn), i.e.,
F [t]⊗F ϕ represents q.

Proof. Let ψ ' 〈−q〉 ⊥ ϕ and let

Q :=
{
f = (f0, . . . , fn) ∈ F [t]n+1 | bψ(f, f) = 0

}
.

Choose f ∈ Q such that deg f0 is minimal. Assume that the result is false. Then
deg f0 > 0. Write fi = f0gi + ri with ri = 0 or deg ri < deg f0 for each i using the
Euclidean Algorithm. So deg r2

i ≤ 2 deg f0 − 2 for all i. Let g = (1, g1, . . . , gn) and
define h ∈ F [t]n+1 by h = cf + dg with c = bψ(g, g) and d = −2bψ(f, g). We have

bψ(cf + dg, cf + dg) = c2bψ(f, f) + 2cdbψ(f, g) + d2bψ(g, g) = 0,

so h ∈ Q. Therefore,

h0 = bψ(g, g)f0 − 2bψ(f, g)g0 = bψ(f0g − 2f, g) = −bψ(f + r, g),
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so

f0h0 = −f0bψ(f + r, g) = −bψ(f + r, f − r) = bψ(r, r) =
n∑

i=1

airi,

which is not zero as ϕ is anisotropic. Consequently,

deg h0 + deg f0 ≤ max
i
{deg ai}+ 2 deg f0 − 2 ≤ 2 deg f0 − 1

as deg ai ≤ 1 for all i. This is a contradiction. ¤

Lemma 32.2. Let F be a formally real field and x, y ∈ D
(∞〈1〉). Let b =

〈〈−t, x + ty〉〉 be a 2-fold Pfister form over F (t). If b ' b1 ⊥ b2 over F (t) with
b1 and b2 binary torsion forms over F (t), then there exists a z ∈ D

(∞〈1〉) such
that x, y ∈ D

(〈〈−z〉〉).
Proof. If x (respectively, y or xy) is a square, let z = y (respectively, z =

x) to finish. So we may assume they are not squares. As b is round, we may
also assume that d1 ' 〈〈w〉〉 with w ∈ D

(∞〈1〉) by Corollary 6.6. In particular,
D(b′F ) ∩ D

(∞〈−1〉) 6= ∅ by Lemma 6.11. Thus, there exists a positive integer
n such that b′ ⊥ n〈1〉 is isotropic. Let c = 〈t,−(x + yt)〉 ⊥ n〈1〉. We have
t(x+yt) ∈ D(c). The form 〈1,−y〉 is anisotropic as is n〈1〉, since F is formally real.
If c is isotropic, then we would have an equation −tf2 =

∑
g2

i − (x + yt)h2 in F [t]
for some f, gi, h ∈ F [t]. Comparing leading terms implies that y is a square. So c
is anisotropic. By Lemma 32.1, there exist c, d, fi ∈ F [t] satisfying

f2
1 + · · ·+ f2

n + tc2 − (x + yt)d2 = t(x + yt).

Since 〈1,−y〉 and n〈1〉 are anisotropic and t2 occurs on the right hand side, we must
have c, d are constants and deg fi ≤ 1 for all i. Write fi = ai + bit with ai, bi ∈ F
for 1 ≤ i ≤ n. Then

n∑

i=1

a2
i = xd2, 2

n∑

i=1

aibi = −c2 + x + yd2, and
n∑

i=1

b2
i = y.

If d = 0, then ai = 0 for all i and x = c2 is a square which was excluded. So d 6= 0.
Let

z = 4
n∑

i=1

a2
i ·

n∑

i=1

b2
i − 4

( n∑

i=1

aibi

)2

= 4xyd2 − (x− c2 + yd2)2.

Applying the Cauchy-Schwarz Inequality in each real closure of F , we see that z is
nonnegative in every ordering, so z ∈ D̃

(∞〈1〉). As xy is not a square, z 6= 0. As
d 6= 0, we have xy ∈ D

(〈〈−z〉〉). Expanding, one checks

z = 4xyd2 − (x− c2 + yd2)2 = 4xc2 − (x− yd2 + c2)2.

Thus x ∈ D
(〈〈−z〉〉). As 〈〈−z〉〉 is round, y ∈ D

(〈〈−z〉〉) also. ¤

Lemma 32.3. Let F0 be a formally real field and u, y ∈ D(∞〈1〉F0). Let x = u+t2

in F = F0(t). If there exists a z ∈ D(∞〈1〉F ) such that x, y ∈ D
(〈〈−z〉〉), then

y ∈ D
(〈〈−u〉〉).
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Proof. We may assume that y is not a square. By assumption, we may write

z = (u + t2)f2
1 − g2

1 = yf2
2 − g2

2 for some f1, f2, g1, g2 ∈ F0(t).

Multiplying this equation by an appropriate square in F0(t), we may assume that
z ∈ F [t] and that f1, g1, f2, g2 ∈ F0[t] have no common nontrivial factor. As z is
totally positive, i.e., lies in D

(∞〈1〉), its leading term must be totally positive in
F0. Consequently,

deg g1 ≤ 1 + deg f1 and deg g2 ≤ deg f2.

It follows that 1
2 deg z ≤ 1 + deg f1. We have 1

2 deg z = deg f2, otherwise y ∈ F 2, a
contradiction. Thus, we have

deg f2 ≤ 1 + deg f1 and deg(g1 ± g2) ≤ 1 + deg f1.

If deg
(
(u + t2)f2

1 − yf2
2

)
< 2 deg f1 + 2, then y would be a square in F0, a contra-

diction. So
deg

(
(u + t2)f2

1 − yf2
2

)
= 2 + 2deg f1.

As (u + t2)f2
1 − yf2

2 = g2
1 − g2

2 , we have deg(g1 ± g2) = 1 + deg f1. It follows that
either f1 or g1 − g2 has a prime factor p of odd degree. Let F = F0[t]/(p) and

: F0[t] → F the canonical map. Suppose that f1 = 0. Then z = −g2
1 in F .

As z is a sum of squares in F0[t] (possibly zero), we must also have z is a sum of
squares in F . But [F : F0] is odd, hence F0 is still formally real by Theorem 95.3
or Springer’s Theorem 18.5. Consequently, we must have z = g1 = 0. This implies
that yf

2

2 = g2
2. As y cannot be a square in the odd degree extension F of F0 by

Springer’s Theorem 18.5, we must have f2 = 0 = g2. But there exist no prime p
dividing f1, f2, g1, and g2. Thus p6 | f1 in F0[t]. It follows that g1 = g2 which in
turn implies that (u + t

2)f
2

1 − yf
2

2 = 0. As f1 6= 0, we have f2 6= 0, so we conclude
that 〈u, 1,−y〉F is isotropic. As [F : F0] is odd, 〈u, 1,−y〉 is isotropic over F0 by
Springer’s Theorem 18.5, i.e., y ∈ D

(〈〈−u〉〉) as needed. ¤

We now construct the counterexample.

Example 32.4. We apply the above lemmas in the following case. Let F0 = Q(t1)
and u = 1 and y = 3. The element y is a sum of three but not two squares in F0

by the Substitution Principle 17.7. Let K = F0(t2) and b = 〈〈−t2, 1 + t21 + 3t2〉〉
over K. Then the Pfister form 4b is isotropic, hence metabolic so 4b = 0 in
W (K). As 1, 3t22 ∈ D

(〈〈−3t22〉〉K
)

and 3 /∈ D(2〈1〉Q(t1)), the lemmas imply that b is
not isometric to an orthogonal sum of binary torsion forms. In particular, it also
follows that the form b has the property D(b′) ∩D(∞〈−1〉K) = ∅.

33. The total signature

We saw when F is a formally real field, the torsion in the Witt ring W (F ) is
determined by the signatures at the orderings on F . In this section, we view the
relationship between bilinear forms over a formally real field F and the totality of
continuous functions on the topological space X(F ) of orderings on F with integer
values.

We shall use results in Appendices §95 and §96. Let F be a formally real field.
The space of orderings X(F ) is a boolean space, i.e., a totally disconnected compact
Hausdorff space with a subbase the collection of sets

(33.1) H(a) = HF (a) :=
{
P ∈ X(F ) | −a ∈ P

}
.
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Let b be a nondegenerate symmetric bilinear form over F . Then we define the
total signature of b to be the map

(33.2) sgn b : X(F ) → Z given by sgn b(P ) = sgnP b.

Theorem 33.3. Let F be formally real. Then

sgn b : X(F ) → Z
is continuous with respect to the discrete topology on Z. The topology on X(F ) is
the coarsest topology such that sgn b is continuous for all b.

Proof. As Z is a topological group, addition of continuous functions is con-
tinuous. As any nondegenerate symmetric bilinear form is diagonalizable over a
formally real field, we need only prove the result for b = 〈a〉, a ∈ F×. But

(
sgn〈a〉)−1(n) =




∅ if n 6= ±1,
H(a) if n = −1,
H(−a) if n = 1.

The result follows easily as the H(a) form a subbase. ¤
Let C

(
X(F ),Z

)
be the ring of continuous functions f : X(F ) → Z where Z has

the discrete topology. By the theorem, we have a map

(33.4) sgn : W (F ) → C
(
X(F ),Z

)
given by b 7→ sgn b

called the total signature map. It is a ring homomorphism. The Local-Global
Theorem 31.22 in this terminology states

Wt(F ) = Ker(sgn).

We turn to the cokernel of sgn : W (F ) → C
(
X(F ),Z

)
. We shall show that

it too is a 2-primary torsion group. This generalizes the two observations that
C

(
X(F ),Z

)
= 0 if F is not formally real and sgn : W (F ) → C

(
X(F ),Z

)
is an

isomorphism if F is euclidean. We use and generalize the approach and results
from [33] that we shall need in §41.

If A ⊂ X(F ), write χA for the characteristic function of A. In particular,
χA ∈ C

(
X(F ),Z

)
if A is clopen. Let f ∈ C

(
X(F ),Z

)
. Then An = f−1(n) is a

clopen set. As {An | n ∈ Z} partition the compact space X(F ), only finitely many
An are nonempty. In particular, f =

∑
nχAn is a finite sum. This shows that

C
(
X(F ),Z

)
is additively generated by χA, as A varies over the clopen sets in the

boolean space X(F ).
The finite intersections of the subbase elements (33.1),

(33.5) H(a1, . . . , an) := H(a1) ∩ · · · ∩H(an) with a1, . . . , an ∈ F×

form a base for the topology of X(F ). As

H(a1, . . . , an) = supp
(〈〈a1, . . . , an〉〉

)
,

where supp b := {P ∈ X(F ) | sgnP b 6= 0} is the support of b, this base is none
other than the collection of clopen sets

(33.6) {supp(b) | b is a bilinear Pfister form}.
We also have

(33.7) sgn b = 2nχsupp(b) if b is a bilinear n-fold Pfister form.

Theorem 33.8. The cokernel of sgn : W (F ) → C
(
X(F ),Z

)
is 2-primary torsion.
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Proof. It suffices to prove for each clopen set A ⊂ X(F ) that 2nχA ∈ im(sgn)
for some n ≥ 0. As X(F ) is compact, A is a finite union of clopen sets of the
form (33.6) whose characteristic functions lie in im(sgn) by (33.7). By induction,
it suffices to show that if A and B are clopen sets in X(F ) with 2nχA and 2mχB

lying in im(sgn) for some integers m and n, then 2sχA∪B lies in im(sgn) for some
s. But

(33.9) χA∪B = χA + χB − χA · χB ,

so

(33.10) 2m+nχA∪B = 2m(2nχA) + 2n(2mχB)− (2nχA) · (2mχB)

lies in im(sgn) as needed. ¤

Define the reduced stability index str(F ) of F to be n if 2n is the exponent of
the cokernel of the signature map (or infinity if this exponent is not finite).

Refining the argument in the last theorem, we establish:

Lemma 33.11. Let C ⊂ X(F ) be clopen. Then there exists an integer n > 0 and
a b ∈ In(F ) satisfying sgn b = 2nχC . More precisely, there exists an integer n > 0,
bilinear n-fold Pfister forms bi satisfying supp(bi) ⊂ C, and integers ki such that∑

ki sgn bi = 2nχC .

Proof. As X(F ) is compact and (33.6) is a base for the topology, there exists
an r ≥ 1 such that C = A1 ∪ · · · ∪ Ar with Ai = supp(bi) for some mi-fold Pfister
forms bi , i ∈ [1, r]. We induct on r. If r = 1 the result follows by (33.7), so assume
that r > 1. Let A = A1, b = b1, and B = A2 ∪ · · · ∪ Ar. By induction, there
exists an m ≥ 1 and a c ∈ Im(F ), a sum (and difference) of Pfister forms with the
desired properties with sgn c = 2mχB . Multiplying by a suitable power of 2, we
may assume that m = m1. Let d = 2m(b ⊥ c) ⊥ (−b) ⊗ c. Then d is a sum (and
difference) of Pfister forms whose supports all lie in C as supp(a) = supp(2a) for
any bilinear form a. By equations (33.9) and (33.10), we have

22mχA∪B = 22mχA + 22mχB − 2mχA · 2mχB

= 2m(sgn b + sgn c)− sgn b · sgn c = sgn d,

so the result follows. ¤

Using the lemma, we can establish two useful results. The first is:

Theorem 33.12 (Normality Theorem). Let A and B be disjoint closed subsets of
X(F ). Then there exists an integer n > 0 and b ∈ In(F ) satisfying

sgnP b =

{
2n if P ∈ A,

0 if P ∈ B.

Proof. The complement X(F ) \B is a union of clopen sets. As the closed set
A is covered by this union of clopen sets and X(F ) is compact, there exists a finite
cover {C1, . . . , Cr} of A for some clopen sets Ci, i ∈ [1, r] lying in X(F ) \ B. As
Ci \

(
Ci ∩ (

⋃
j 6=i Cj)

)
is clopen for i ∈ [1, r], we may assume this is a disjoint union.

By Lemma 33.11, there exist bi ∈ Imi(F ), some mi, such that sgn bi = 2miχCi .
Let n = max{mi | 1 ≤ i ≤ r}. Then b =

∑
i 2n−mibi lies in In(F ) and satisfies

b = 2nχ∪iCi . Since A ⊂ ∪iCi, the result follows. ¤
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We now investigate the relationship between elements in f ∈ C
(
X(F ), 2mZ

)
and bilinear forms b satisfying 2m | sgnP b for all P ∈ X(F ). We first need a useful
trick.

If ε = (ε1, . . . , εn) ∈ {±1}n and b = 〈〈a1, . . . , an〉〉 with ai ∈ F×, let

bε = 〈〈ε1a1, . . . , εnan〉〉.
Then supp(bε) ∩ supp(bε′) = ∅ unless ε = ε′.

Lemma 33.13. Let b be a bilinear n-fold Pfister form over an arbitrary field F .
Then 2n〈1〉 =

∑
ε bε in W (F ), where the sum runs over all ε ∈ {±1}n.

Proof. Let b = 〈〈a1, . . . , an〉〉 and c = 〈〈a1, . . . , an−1〉〉 with ai ∈ F×. As
〈〈−1〉〉 = 〈〈a〉〉+ 〈〈−a〉〉 in W (F ) for all a ∈ F×, we have

∑
ε

bε =
∑

ε′
cε′〈〈an〉〉+

∑

ε′
cε′〈〈−an〉〉 = 2

∑

ε′
cε′

where the ε′ run over all {±1}n−1. The result follows by induction on n. ¤
The generalization of Lemma 33.13 given in the following exercise is useful.

These identities were first observed by Witt, who used them to give a simple proof
that Wt(F ) is 2-primary (cf. Exercise 31.21(3)).

Exercise 33.14. Let a1, . . . , an ∈ F× and ε = (ε1, . . . , εn) ∈ {±1}n. Suppose that
b = 〈〈a1, . . . , an〉〉, c = 〈−a1, . . . ,−an〉, and eε = 〈ε1, . . . , εn〉. Then the following
are true in W (F ):

(1) c · bε = eε · bε = (
∑

i εi)bε.
(2) 2nc =

∑
ε eε · bε.

Using Lemma 33.11, we also establish:

Theorem 33.15. Let f ∈ C
(
X(F ), 2mZ

)
. Then there is a positive integer n and a

b ∈ Im+n(F ) such that 2nf = sgn b. More precisely, there exists an integer n such
that 2nf can be written as a sum

∑r
i=1 ki sgn bi for some integers ki and bilinear

(n + m)-fold Pfister forms bi such that supp(bi) ⊂ supp(f) for every i = 1, . . . , r
and whose supports are pairwise disjoint.

Proof. We first show:

Claim: Let g ∈ C
(
X(F ),Z

)
. Then there exists a nonnegative integer n and bilinear

n-fold Pfister forms ci such that 2ng =
∑r

i=1 si sgn ci for some integers si with
supp(ci) ⊂ supp(g) for every i = 1, . . . , r.

The function g is a finite sum of functions
∑

i iχg−1(i) with i ∈ Z and each
g−1(i) a clopen set. For each nonempty g−1(i), there exist a nonnegative integer ni,
bilinear ni-fold Pfister forms bij with supp(bij) ⊂ g−1(i) and integers kj satisfying
2niχg−1(i) =

∑
j kj sgn bij by Lemma 33.11. Let n = maxi{ni}. Then 2ng =∑

i,j ikj sgn(2n−nibij). This proves the Claim.

Let g = f/2m. By the Claim, 2ng =
∑r

i=1 si sgn ci for some n-fold Pfister forms
ci whose supports lie in supp(g) = supp(f). Thus 2nf =

∑r
i=1 si sgn 2mci with each

2mci an (n+m)-fold Pfister form. Let d = c1⊗· · ·⊗cr be an rn-fold Pfister form. By
Lemma 33.13, we have 2(n+1)rf =

∑
ε sgn(2msici · dε) in C

(
X(F ),Z

)
where ε runs

over all {±1}rn. For each i and ε, the form ci ·dε is isometric to either 2n+mdε or is
metabolic by Example 4.16(2) and (3). As the dε have pairwise disjoint supports,
adding the coefficients of the isometric forms ci · dε yields the result. ¤
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Corollary 33.16. Let b be a nondegenerate symmetric bilinear form over F and
fix m > 0. Then 2nb ∈ In+m(F ) for some n ≥ 0 if and only if

sgn b ∈ C
(
X(F ), 2mZ

)
.

Proof. We may assume that F is formally real as 2s(F )W (F ) = 0.

⇒: If d is a bilinear n-fold Pfister form, then sgn d ∈ C
(
X(F ), 2nZ

)
. It follows

that sgn
(
In(F )

) ⊂ C
(
X(F ), 2nZ

)
. Suppose that 2nb ∈ In+m(F ) for some n ≥ 0.

Then 2n sgn b ∈ C
(
X(F ), 2n+mZ

)
, hence sgn b ∈ C

(
X(F ), 2mZ

)
.

⇐: By Theorem 33.15, there exists c ∈ In+m(F ) such that sgn c = 2n sgn b. As
Wt(F ) = Ker(sgn) is 2-primary torsion by the Local-Global Principle 31.22, there
exists a nonnegative integer k such that 2n+kb = 2kc ∈ In+m+k(F ). ¤

This Corollary 33.16 suggests that if b is a nondegenerate symmetric bilinear
form over F , the following may be true:

(33.17) sgn b ∈ C
(
X(F ), 2nZ

)
if and only if b ∈ In(F ) + Wt(F ).

This question was raised by Lam in [88].
In particular, in the case that F is a formally real pythagorean field, this would

mean

b ∈ In(F ) if and only if 2n | sgnP (b) for all P ∈ X(F )

as W (F ) is then torsion-free which would answer a question of Marshall in [97].
Of course, if b ∈ In(F ) + Wt(F ), then sgn b ∈ C

(
X(F ), 2nZ

)
. The converse

would follow if

2mb ∈ In+m(F ) always implies that b ∈ In(F ) + Wt(F ).

If F were formally real pythagorean, the converse would follow if

2mb ∈ In+m(F ) always implies that b ∈ In(F ).

Because the nilradical of W (F ) is the torsion Wt(F ) when F is formally real,
the total signature induces an embedding of the reduced Witt ring

Wred(F ) := W (F )/nil
(
W (F )

)
= W (F )/Wt(F )

into C
(
X(F ),Z

)
. Moreover, since Wt(F ) is 2-primary, the images of two nondegen-

erate bilinear forms b and c are equal in the reduced Witt ring if and only if there
exists a nonnegative integer n such that 2nb = 2nc in W (F ). Let : W (F ) →
Wred(F ) be the canonical ring epimorphism. Then the problem above becomes: If
b is a nondegenerate symmetric bilinear form over F , then

b ∈ In
red(F ) if and only if sgn b ∈ C

(
X(F ), 2nZ

)
.

where In
red(F ) is the image of In(F ) in Wred(F ).

This is all, in fact, true as we shall see in §41 (Cf. Corollaries 41.9 and 41.10).
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34. Bilinear and quadratic forms under quadratic extensions

In this section we develop the relationship between bilinear and quadratic forms
over a field F and over a quadratic extension K of F . We know that bilinear and
quadratic forms can become isotropic over a quadratic extension and we exploit
this. We also investigate the transfer map taking forms over K to forms over F
induced by a nontrivial F -linear functional. This leads to useful exact sequences
of Witt rings and Witt groups done first in the case of characteristic not 2 in [37]
and by Arason in [4] in the case of characteristic 2 by Baeza in [15].

34.A. Bilinear forms under a quadratic extension. We start with bilin-
ear forms and the Witt ring.

Proposition 34.1. Let K/F be a quadratic field extension and s : K → F a
nontrivial F -linear functional satisfying s(1) = 0. Let c be an anisotropic bilinear
form over K. Then there exist bilinear forms b over F and a over K such that
c ' bK ⊥ a with s∗(a) anisotropic.

Proof. We induct on dim c. Suppose that s∗(c) is isotropic. It follows that
there is a b ∈ D(c) ∩ F , i.e., c ' 〈b〉 ⊥ c1 for some c1. Applying the induction
hypothesis to c1 completes the proof. ¤

We need the following generalization of Proposition 34.1.

Lemma 34.2. Let K/F be a quadratic extension of F and s : K → F a nontrivial
F -linear functional satisfying s(1) = 0. Let f be a bilinear anisotropic n-fold Pfis-
ter form over F and c a nondegenerate bilinear form over K such that fK ⊗ c is
anisotropic. Then there exists a bilinear form b over F and a bilinear form a over
K such that fK ⊗ c ' (f⊗ b)K ⊥ fK ⊗ a with f⊗ s∗(a) anisotropic.

Proof. Let d = fK ⊗ c. We may assume that s∗(d) is isotropic. Then there
exists a b ∈ D(d) ∩ F . If c ' 〈a1, . . . , an〉, there exist xi ∈ D̃(fK), not all zero
satisfying b = x1a1 + · · ·+ xnan. Let yi = xi if xi 6= 0 and yi = 1 otherwise. Then

fK ⊗ c ' fK ⊗ 〈y1a1, . . . , ynan〉 ' fK ⊗ 〈b, z2, . . . , zn〉
for some zi ∈ K× as G(fK) = D(fK). The result follows easily by induction. ¤

Corollary 34.3. Let K/F be a quadratic extension of F and s : K → F a non-
trivial F -linear functional satisfying s(1) = 0. Let f be a bilinear anisotropic n-fold
Pfister form and c an anisotropic bilinear form over K satisfying f ⊗ s∗(c) is hy-
perbolic. Then there exists a bilinear form b over F such that dim b = dim c and
fK ⊗ c ' (f⊗ b)K .

Proof. If fK ⊗ c is anisotropic, the result follows by Lemma 34.2, so we may
assume that fK ⊗ c is isotropic. If fK is isotropic, it is hyperbolic and the result
follows easily, so we may assume the Pfister form fK is anisotropic. Using Proposi-
tion 6.22, we see that there exist a bilinear form d with fK ⊗ d anisotropic and an
integer n ≥ 0 with dim d + 2n = dim c and fK ⊗ c ' fK ⊗ (d ⊥ nH). Replacing c by
d, we reduce to the anisotropic case. ¤

Note that if K/F is a quadratic extension and s, s′ : K → F are F -linear
functionals satisfying s(1) = 0 = s′(1) with s nontrivial, then s′∗ = as∗ for some
a ∈ F .
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Theorem 34.4. Let K/F be a quadratic field extension and s : K → F a nonzero
F -linear functional such that s(1) = 0. Then the sequence

W (F )
rK/F−−−→ W (K) s∗−→ W (F )

is exact.

Proof. Let b ∈ F× then the binary form s∗
(〈b〉K

)
is isotropic, hence meta-

bolic. Thus s∗ ◦ rK/F = 0. Let c ∈ W (K). By Proposition 34.1, there exists a
decomposition c ' bK ⊥ c1 with b a bilinear form over F and c1 a bilinear form
over K satisfying s∗(c1) is anisotropic. In particular, if s∗(c) = 0, we have c = bK .
This proves exactness. ¤

If K/F is a quadratic extension, denote the quadratic norm form of the qua-
dratic algebra K by NK/F (cf. §98.B).

Lemma 34.5. Let K/F be a quadratic extension and s : K → F a nontrivial F -
linear functional. Let b be an anisotropic binary bilinear form over F such that the
quadratic form b⊗NK/F is isotropic. Then b ' s∗

(〈y〉) for some y ∈ K×.

Proof. Let {1, x} be a basis of K over F . Let c be the polar form of NK/F .
We have

c(1, x) = NK/F (1 + x)−NK/F (x)−NK/F (1) = TrK/F (x)

for every x ∈ K. By assumption there are nonzero vectors v, w ∈ Vb such that

0 = (b⊗NK/F )(v ⊗ 1 + w ⊗ x)

= b(v, v)NK/F (1) + b(v, w)c(1, x) + b(w, w)NK/F (x)

= b(v, v) + b(v, w) TrK/F (x) + b(w,w) NK/F (x)

by the definition of tensor product (8.14). Let f : K → F be an F -linear functional
satisfying f(1) = b(w,w) and f(x) = b(v, w). By (98.1), we have

f(x2) = f
(−TrK/F (x)x−NK/F (x)

)

= −TrK/F (x)b(v, w)−NK/F (x)b(w, w) = b(v, v).

Therefore, the F -linear isomorphism K → Vb taking 1 to w and x to v is an isometry
between c = f∗

(〈1〉) and b. As f is the composition of s with the endomorphism
of K given by multiplication by some element y ∈ K×, we have b ' f∗

(〈1〉) '
s∗

(〈y〉). ¤

Proposition 34.6. Let K/F be a quadratic extension and s : K → F a nontrivial
F -linear functional. Let b be an anisotropic bilinear form over F . Then there exist
bilinear forms c over K and d over F such that b ' s∗(c) ⊥ d and d ⊗ NK/F is
anisotropic.

Proof. We induct on dim b. Suppose that b⊗NK/F is isotropic. Then there
is a 2-dimensional subspace W ⊂ Vb with (b|W )⊗NK/F isotropic. By Lemma 34.5,
we have b|W ' s∗

(〈y〉) for some y ∈ K×. Applying the induction hypothesis to the
orthogonal complement of W in V completes the proof. ¤
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Theorem 34.7. Let K = F (
√

a) be a quadratic field extension of F with a ∈ F×.
Let s : K → F be a nontrivial F -linear functional such that s(1) = 0. Then the
sequence

W (K) s∗−→ W (F )
〈〈a〉〉−−−→ W (F )

is exact where the last homomorphism is multiplication by 〈〈a〉〉.
Proof. For every c ∈ W (F ) we have 〈〈a〉〉s∗(c) = s∗

(〈〈a〉〉Kc
)

= 0 as 〈〈a〉〉K =
0. Therefore, the composition of the two homomorphisms in the sequence is trivial.
Since NK/F ' 〈〈a〉〉q, the exactness of the sequence now follows from Proposition
34.6. ¤

34.B. Quadratic forms under a quadratic extension. We now turn to
quadratic forms.

Proposition 34.8. Let K/F be a separable quadratic field extension and ϕ an
anisotropic quadratic form over F . Then

ϕ ' (b⊗NK/F ) ⊥ ψ

with b a nondegenerate symmetric bilinear form and ψ a quadratic form satisfying
ψK is anisotropic.

Proof. Since K/F is separable, the binary form σ := NK/F is nondegenerate.
As F (σ) ' K, the statement follows from Corollary 22.12. ¤
Theorem 34.9. Let K/F be a separable quadratic field extension and s : K → F
a nonzero functional such that s(1) = 0. Then the sequence

W (F )
rK/F−−−→ W (K) s∗−→ W (F )

NK/F−−−−→ Iq(F )
rK/F−−−→ Iq(K) s∗−→ Iq(F )

is exact where the middle homomorphism is multiplication by NK/F .

Proof. In view of Theorem 34.4 and Propositions 34.6 and 34.8, it suffices to
prove exactness at Iq(K). Let ϕ ∈ Iq(K) be an anisotropic form such that s∗(ϕ)
is hyperbolic. We show by induction on n = dimK ϕ that ϕ ∈ im(rK/F ). We may
assume that n > 0. Let W ⊂ Vϕ be a totally isotropic F -subspace for the form
s∗(ϕ) of dimension n. As Ker(s) = F we have ϕ(W ) ⊂ F .

We claim that the K-space KW properly contains W , in particular,

(34.10) dimK KW =
1
2

dimF KW >
1
2

dimF W =
n

2
.

To prove the claim choose an element x ∈ K such that x2 /∈ F . Then for every
nonzero w ∈ W , we have ϕ(xw) = x2ϕ(w) /∈ F , hence xw ∈ KW but x /∈ W . It
follows from the inequality (34.10) that the restriction of bϕ on KW and therefore
on W is nonzero. Consequently, there is a 2-dimensional F -subspace U ⊂ W
such that bϕ|U is nondegenerate. Therefore, the K-space KU is also 2-dimensional
and the restriction ψ = ϕ|U is a nondegenerate binary quadratic form over F
satisfying ψK ' ϕ|KU . Applying the induction hypothesis to (ψK)⊥, we have
(ψK)⊥ ∈ im(rK/F ). Therefore, ϕ = ψK + (ψK)⊥ ∈ im(rK/F ). ¤

Remark 34.11. In Proposition 34.9, we have Ker
(
rK/F : Iq(F ) → Iq(K)

)
=

W (F )〈〈a]] when K = Fa.

Application of the above in the case of fields of characteristic not 2 provides a
proof of the following result shown in [37] and by Arason in [4]:
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Corollary 34.12. Suppose that charF 6= 2 and K = F (
√

a)/F is a quadratic field
extension with a ∈ F×. If s : K → F is a nontrivial F -linear functional such that
s(1) = 0, then the triangle

W (K)
s∗

$$IIIIIIIII

W (F )

rK/F

::uuuuuuuuu
W (F )

·〈〈a〉〉
oo

is exact.

Proof. Since the quadratic norm form NK/F coincides with ϕb where b =
〈〈a〉〉, the map W (F ) → Iq(F ) given by multiplication by NK/F is identified with the
map W (F ) → I(F ) given by multiplication by 〈〈a〉〉. Note also that Ker(rK/F ) ⊂
I(F ), so the statement follows from Theorem 34.9. ¤

Remark 34.13. Suppose that charF 6= 2 and K = F (
√

a) is a quadratic extension
of F . Let b be an anisotropic bilinear form. Then by Proposition 34.8 and Example
9.4, we see that the following are equivalent:

(1) bK is metabolic.

(2) b ∈ 〈〈a〉〉W (F ).

(3) b ' 〈〈a〉〉 ⊗ c for some symmetric bilinear form c.

In the case that charF = 2, Theorem 34.9 can be slightly improved.
We need the following computation:

Lemma 34.14. Let F be a field of characteristic 2 and K/F a quadratic field
extension. Let s : K → F be a nonzero F -linear functional satisfying s(1) = 0.
Then for every x ∈ K we have

s∗
(〈〈x]]

)
=

{
0 if x ∈ F ,
s(x)〈〈TrK/F (x)]] otherwise.

In particular, s∗
(〈〈x]]

) ≡ 〈〈TrK/F (x)]] modulo I2
q (F ).

Proof. The element x satisfies the quadratic equation x2 + ax + b = 0 for
some a, b ∈ F . We have TrK/F (x) = a and s(x2) = as(x) = s(x)TrK/F (x).
Let x̄ = TrK/F (x) − x. The element x̄ satisfies the same quadratic equation and
s(x̄2) = s(x)TrK/F (x̄).

Let {v, w} be the standard basis for the space V of the form ϕ := 〈〈x]] over
K. If x ∈ F , then v and w span the totally isotropic F -subspace of s∗(ϕ), i.e.,
s∗(ϕ) = 0.

Suppose that x /∈ F . Then V = W ⊥ W ′ with W = Fv ⊕ Fxw and W ′ =
Fx̄v ⊕ Fw. We have s∗(ϕ) ' s∗(ϕ)|W ⊥ s∗(ϕ)|W ′ . As s∗(ϕ)(v) = s(1) = 0, the
form s∗(ϕ)|W is isotropic and therefore s∗(ϕ)|W ' H. Moreover,

s∗(ϕ)(x̄v) = s(x̄2) = s(x) TrK/F (x), s∗(ϕ)(w) = s(x) and

s∗
(
bϕ(x̄v, w)

)
= s(x̄) = s(x),

hence s∗(ϕ)|W ′ ' s(x)〈〈TrK/F (x)]]. ¤
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Corollary 34.15. Suppose that charF = 2. Let K/F be a separable quadratic field
extension and s : K → F a nonzero functional such that s(1) = 0. Then the
sequence

0 → W (F )
rK/F−−−→ W (K) s∗−→ W (F )

·NK/F−−−−→ Iq(F )
rK/F−−−→ Iq(K) s∗−→ Iq(F ) → 0

is exact.

Proof. To prove the injectivity of rK/F , it suffices to show that if b is an
anisotropic bilinear form over F , then bK is also anisotropic. Let x ∈ K \ F be an
element satisfying x2 + x + a = 0 for some a ∈ F and let bK(v + xw, v + xw) = 0
for some v, w ∈ Vb. We have

0 = bK(v + xw, v + xw) = b(v, v) + ab(w, w) + xb(w, w),

hence b(w, w) = 0 = b(v, v). Therefore, v = w = 0 as b is anisotropic.
By Lemma 34.14, we have for every y ∈ K, the form s∗

(〈〈y]]
)

is similar to
〈〈TrK/F (y)]]. As the map s∗ is W (F )-linear, Iq(F ) is generated by the classes of
binary forms and the trace map TrK/F is surjective, the last homomorphism s∗ in
the sequence is surjective. ¤

34.C. The filtrations of the Witt ring and Witt group under qua-
dratic extensions. We turn to the study of relations between the ideals In(F ),
In(K) and between the groups In

q (F ) and In
q (K) for a quadratic field extension

K/F .

Lemma 34.16. Let K/F be a quadratic extension. Let n ≥ 1.
(1) We have

In(K) = In−1(F )I(K),
i.e., In(K) is the W (F )-module generated by n-fold bilinear Pfister forms
bK ⊗ 〈〈x〉〉 with x ∈ K× and b an (n − 1)-fold bilinear Pfister form over
F .

(2) If charF = 2, then

In
q (K) = In−1(F )Iq(K) + I(K)In−1

q (F ).

Proof. (1): Clearly, to show that In(K) = In−1(F )I(K), it suffices to show
this for the case n = 2. Let x, y ∈ K \ F . As 1, x, y are linearly dependent over F ,
there are a, b ∈ F× such that ax+ by = 1. Note that the form 〈〈ax, by〉〉 is isotropic
and therefore metabolic. Using the relation

〈〈uv, w〉〉 = 〈〈u,w〉〉+ u〈〈v, w〉〉
in W (K), we have

0 = 〈〈ax, by〉〉 = 〈〈x, by〉〉+ a〈〈x, by〉〉 = 〈〈a, b〉〉+ b〈〈a, y〉〉+ a〈〈x, b〉〉+ ab〈〈x, y〉〉,
hence 〈〈x, y〉〉 ∈ I(F )I(K).

(2): In view of (1), it is sufficient to consider the case n = 2. The group I2
q (K)

is generated by the classes of 2-fold Pfister forms by (9.5). Let x, y ∈ K. If x ∈ F ,
then 〈〈x, y]] ∈ I(F )Iq(K). Otherwise, y = a + bx for some a, b ∈ F . Then, by
Lemma 15.1 and Lemma 15.5,

〈〈x, y]] = 〈〈x, a]] + 〈〈x, bx]] = 〈〈x, a]] + 〈〈b, bx]] ∈ I(K)Iq(F ) + I(F )Iq(K)

since 〈〈b, bx]] + 〈〈x, bx]] = 〈〈bx, bx]] = 0. ¤



34. BILINEAR AND QUADRATIC FORMS UNDER QUADRATIC EXTENSIONS 143

Corollary 34.17. Let K/F be a quadratic extension and s : K → F a nonzero
F -linear functional. Then for every n ≥ 1:

(1) s∗
(
In(K)

) ⊂ In(F ).
(2) s∗

(
In
q (K)

) ⊂ In
q (F ).

Proof. (1): Clearly, s∗
(
I(K)

) ⊂ I(F ). It follows from Lemma 34.16 and
Frobenius Reciprocity that

s∗
(
In(K)

)
= s∗

(
In−1(F )I(K)

)
= In−1(F )s∗

(
I(K)

) ⊂ In−1(F )I(F ) = In(F ).

(2): This follows from (1) if charF 6= 2 and from Lemma 34.16(2) and Frobenius
Reciprocity if charF = 2. ¤

Lemma 34.18. Let K/F be a quadratic extension and s, s′ : K → F two nonzero
F -linear functionals. Let b ∈ In(K). Then s∗(b) ≡ s′∗(b) mod In+1(F ).

Proof. As in the proof of Corollary 20.7, there exists a c ∈ K× such that
s′∗(c) = s∗(cc) for all symmetric bilinear forms c. As b ∈ In(K), we have 〈〈c〉〉 · b ∈
In+1(K). Consequently, s∗(b) − s′∗(b) = s∗

(〈〈c〉〉 · b)
lies in In+1(F ). The result

follows. ¤

Corollary 34.19. Let K/F be a quadratic field extension and s : K → F a non-
trivial F -linear functional. Then s∗

(〈〈x〉〉) ≡ 〈〈NK/F (x)〉〉 modulo I2(F ) for every
x ∈ K×.

Proof. By Lemma 34.18, we know that s∗
(〈〈x〉〉) is independent of the non-

trivial F -linear functional s modulo I2(F ). Using the functional defined in (20.8),
the result follows by Corollary 20.13. ¤

Let K/F be a separable quadratic field extension and let s : K → F be a
nontrivial F -linear functional such that s(1) = 0. It follows from Theorem 34.9 and
Corollary 34.17 that we have a well-defined complex
(34.20)

In(F )
rK/F−−−→ In(K) s∗−→ In(F )

·NK/F−−−−→ In+1
q (F )

rK/F−−−→ In+1
q (K) s∗−→ In+1

q (F )

and this induces (where by, abuse of notation, we label the maps in the same way)
(34.21)

I
n
(F )

rK/F−−−→ I
n
(K) s∗−→ I

n
(F )

·NK/F−−−−→ I
n+1

q (F )
rK/F−−−→ I

n+1

q (K) s∗−→ I
n+1

q (F ).

where I
n
(F ) := In(F )/In+1(F ).

By Lemma 34.18, it follows that the homomorphism s∗ in (34.21) is independent
of the nontrivial F -linear functional K → F although it is not independent in
(34.20).

We show that the complexes (34.20) and (34.21) are exact on bilinear Pfister
forms. More precisely, we have

Theorem 34.22. Let K/F be a separable quadratic field extension and s : K → F
a nontrivial F -linear functional such that s(1) = 0.

(1) Let c be an anisotropic bilinear n-fold Pfister form over K. If s∗(c) ∈
In+1(F ), then there exists a bilinear n-fold Pfister form b over F such
that c ' bK .
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(2) Let b be an anisotropic bilinear n-fold Pfister form over F . If b ·NK/F ∈
In+2(F ), then there exists a bilinear n-fold Pfister form c over K such
that b = s∗(c).

(3) Let ϕ be an anisotropic quadratic (n + 1)-fold Pfister form over F . If
rK/F (ϕ) ∈ In+2(K), then there exists a bilinear n-fold Pfister form b
over F such that ϕ ' b⊗NK/F .

(4) Let ψ be an anisotropic (n + 1)-fold quadratic Pfister form over K. If
s∗(ψ) ∈ In+2(F ), then there exists a quadratic (n+1)-fold Pfister form ϕ
over F such that ψ ' ϕK .

Proof. (1): As c represents 1, the form s∗(c) is isotropic and belongs to
In+1(F ). It follows from the Hauptsatz 23.7 that s∗(c) = 0 in W (F ). We show
by induction on k ≥ 0 that there is a bilinear k-fold Pfister form d over F and a
bilinear (n − k)-fold Pfister form e over K such that c ' dK ⊗ e. The statement
that we need follows when k = n.

Suppose we have d and e for some k < n. We have

0 = s∗(c) = s∗(dK · e′ ⊥ dK) = s∗(dK · e′)

in W (F ) where, as usual, e′ denotes the pure subform of e. In particular, s∗(dK⊗e′)
is isotropic. Thus there exists b ∈ F× ∩ D(dK ⊗ e′). It follows that dK ⊗ e '
dK ⊗ 〈〈b〉〉 ⊗ f for some Pfister form f over K by Theorem 6.15.

(2): By the Hauptsatz 23.7, we have b ⊗ NK/F is hyperbolic. We claim that
b ' 〈〈a〉〉⊗a for some a ∈ NK/F (K×) and an (n−1)-fold bilinear Pfister form a over
F . If char F 6= 2, the claim follows from Corollary 6.14. If charF = 2, it follows
from Lemma 9.11 that NK/F ' 〈〈a]] for some a ∈ D(b′). Clearly, a ∈ NK/F (K×)
and by Lemma 6.11, the form b is divisible by 〈〈a〉〉. The claim is proven.

As a ∈ NK/F (K×) there is y ∈ K× such that s∗
(〈〈y〉〉) = 〈〈a〉〉. It follows that

s∗
(〈〈y〉〉 · a)

= 〈〈a〉〉 · a = b.

(3): By the Hauptsatz 23.7, we have rK/F (ϕ) = 0 in Iq(K). The field K is
isomorphic to the function field of the 1-fold Pfister form NK/F . The statement
now follows from Corollary 23.6.

(4): In the case char F 6= 2, the statement follows from (1). So we may assume
that charF = 2. As ψ represents 1, the form s∗(ψ) is isotropic and belongs to
In+2
q (F ). It follows from the Hauptsatz 23.7 that s∗(ψ) = 0 ∈ Iq(F ). We show by

induction for each k ∈ [1, n] that there is a k-fold bilinear Pfister form d over F
and a quadratic Pfister form ρ over K such that ψ ' dK ⊗ ρ.

Suppose we have d and ρ for some k < n. As dim(dK⊗ρ′) > 1
2 dim(dK⊗ρ) with

ρ′ the pure subform of ρ, the subspace of s∗(dK ⊗ ρ′) intersects a totally isotropic
subspace of s∗(dK ⊗ ρ) and therefore is isotropic. Hence there is a c ∈ F satisfying
c ∈ D(dK⊗ρ)\D(dK). By Proposition 15.7, ψ ' d⊗ 〈〈c〉〉K⊗µ for some quadratic
Pfister form µ.

Applying the statement with k = n, we get an n-fold bilinear Pfister form b over
F such that ψ ' bK⊗〈〈y]] for some y ∈ K. As s∗

(〈〈y]]
)

is similar to 〈〈TrK/F (y)]], we
have b⊗ 〈〈TrK/F (y)]] = 0 ∈ Iq(F ). By Corollary 6.14, TrK/F (y) = b + b2 + b′(v, v)
for some b ∈ F and v ∈ Vb′ . Let x ∈ K \F be an element such that x2 + x + a = 0
for some a ∈ F . Set z = xb + (xb)2 + b′K(xv, xv) ∈ K and c = y + z. Since
TrK/F (x) = TrK/F (x2) = 1, we have TrK/F (z) = TrK/F (y). It follows that c ∈ F .
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Again by Corollary 6.14, we see that bK ⊗ 〈〈z]] is hyperbolic and therefore

ψ = bK · 〈〈y]] = bK · 〈〈y + z]] =
(
b · 〈〈c]])

K
. ¤

Remark 34.23. Suppose that charF 6= 2 and K = F (
√

a) is a quadratic extension
of F . Let b be an anisotropic bilinear n-fold Pfister form over F . Then NK/F =
〈〈a〉〉, so by Theorem 34.22(3), the following are equivalent:

(1) bK ∈ In+1(K).
(2) b ∈ 〈〈a〉〉W (F ).
(3) b ' 〈〈a〉〉 ⊗ c for some (n− 1)-fold Pfister form c.

We now consider the case of a purely inseparable quadratic field extension K/F .

Lemma 34.24. Let K/F be a purely inseparable quadratic field extension and
s : K → F a nonzero F -linear functional satisfying s(1) = 0. Let b ∈ F×. Then
the following conditions are equivalent:

(1) b ∈ NK/F (K×).
(2) 〈〈b〉〉K = 0 ∈ W (K).
(3) 〈〈b〉〉 = s∗

(〈y〉) for some y ∈ K×.

Proof. The equality NK/F (K×) = K2 ∩ F× proves (1) ⇔ (2). For any
y ∈ F×, it follows by Corollary 34.19 that s∗

(〈y〉) is similar to 〈〈NK/F (y)〉〉. This
proves that (1) ⇔ (3). ¤

Proposition 34.25. Let K/F be a purely inseparable quadratic field extension and
s : K → F a nontrivial F -linear functional such that s(1) = 0. Let b be an
anisotropic bilinear form over F . Then there exist bilinear forms c over K and d
over F satisfying b ' s∗(c) ⊥ d and dK is anisotropic.

Proof. We induct on dim b. Suppose that bK is isotropic. Then there is a
2-dimensional subspace W ⊂ Vb such that (b|W )K is isotropic. By Lemma 34.24,
we have b|W ' s∗

(〈y〉) for some y ∈ K×. Applying the induction hypothesis to the
orthogonal complement of W in V completes the proof. ¤

Theorem 34.4 and Proposition 34.25 yield

Corollary 34.26. Let K/F be a purely inseparable quadratic field extension and
s : K → F a nonzero F -linear functional such that s(1) = 0. Then the sequence

W (F )
rK/F−−−→ W (K) s∗−→ W (F )

rK/F−−−→ W (K)

is exact.

Let K/F be a purely inseparable quadratic field extension and s : K → F a
nonzero linear functional such that s(1) = 0. It follows from Corollaries 34.17 and
34.26 that we have well-defined complexes

(34.27) In(F )
rK/F−−−→ In(K) s∗−→ In(F )

rK/F−−−→ In(K)

and

(34.28) I
n
(F )

rK/F−−−→ I
n
(K) s∗−→ I

n
(F )

rK/F−−−→ I
n
(K).

As in the separable case, the homomorphism s∗ in (34.28) is independent of
the nontrivial F -linear functional K → F by Lemma 34.18 although it is not
independent in (34.27).
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We show that the complexes (34.27) and (34.28) are exact on quadratic Pfister
forms.

Theorem 34.29. Let K/F be a purely inseparable quadratic field extension and
s : K → F a nontrivial F -linear functional such that s(1) = 0.

(1) Let c be anisotropic n-fold bilinear Pfister form over K. If s∗(c) ∈ In+1(F ),
then there exists an b over K such that c ' bK .

(2) Let b be anisotropic n-fold bilinear Pfister form over F . If bK ∈ In+1(K),
then there exists an n-fold bilinear Pfister form c such that b = s∗(c).

Proof. (1): The proof is the same as in Theorem 34.22(1).
(2): By the Hauptsatz 23.7, we have bK = 0 ∈ W (K). In particular, bK is

isotropic and hence there is a 2-dimensional subspace W ⊂ Vb with b|W nonde-
generate and isotropic over K. Hence b|W is similar to 〈〈b〉〉 for some b ∈ F×. As
〈〈b〉〉K = 0, by Lemma 34.24 〈〈b〉〉 = s∗

(〈〈y〉〉) for some y ∈ K×. By Corollary 6.17,
we have b ' 〈〈b〉〉 ⊗ d for some bilinear Pfister form d. Finally,

b = 〈〈b〉〉 · d = s∗
(〈〈y〉〉) · d = s∗

(〈〈y〉〉 · d) ∈ W (F ). ¤

We shall show in Theorems 40.3, 40.5, and 40.6 that the complexes (34.20),
(34.21), (34.27) and (34.28) are exact for any n. Note that the exactness for small
n (up to 2) can be shown by elementary means.

34.D. Torsion in the Witt ring under a quadratic extension. We turn
to the transfer of the torsion ideal in the Witt ring of a quadratic extension to
obtain results found in [31]. We need the following lemma.

Lemma 34.30. Let K/F be a quadratic field extension of F and b a bilinear Pfister
form over F .

(1) If c is an anisotropic bilinear form over K such that bK⊗c is defined over
F , then there exists a form d over F such that bK ⊗ c ' (b⊗ d)K .

(2) rK/F

(
W (F )

) ∩ bKW (K) = rK/F

(
bW (F )

)
.

Proof. (1): Let c = 〈a1, . . . , an〉. We induct on dim c = n. By hypothesis,
there is a c ∈ F× ∩D(bK ⊗ c). Write c = a1b1 + · · ·+ anbn with bi ∈ D̃(bK). Let
ci = bi if bi 6= 0 and 1 if not. Then e := 〈a1c1, . . . , ancn〉 represents c so e ' 〈c〉 ⊥ f.
Since bi ∈ GK(b), we have

bK ⊗ c ' bK ⊗ e ' bK ⊗ 〈c〉 ⊥ bK ⊗ f.

As bK ⊗ f ∈ im(rK/F ), its anisotropic part is defined over F by Proposition 34.1
and Theorem 34.4. By induction, there exists a form g such that bK⊗ f ' bK⊗gK .
Then 〈c〉 ⊥ g works.

(2) follows easily from (1). ¤

Proposition 34.31. Let K = F (
√

a)/F be a quadratic extension with a ∈ F× and
s : K → F a nontrivial F -linear functional such that s(1) = 0. Let b be an n-fold
bilinear Pfister form. Then

s∗
(
W (K)

) ∩ annW (F )(b) = s∗
(
annW (K)(bK)

)
.

Proof. By Frobenius Reciprocity, we have

s∗
(
annW (K)(bK)

) ⊂ s∗
(
W (K)

) ∩ annW (F )(b).
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Conversely, if c ∈ s∗
(
W (K)

)∩ annW (F )(b), we can write c = s∗(d) for some form d
over K. By Theorem 34.4 and Lemma 34.30,

bK ⊗ d ∈ rK/F

(
W (F )

) ∩ bK W (K) = rK/F

(
bW (F )

)
.

Hence there exists a form e over F such that bK ⊗ d = (b⊗ e)K . Let f = d ⊥ −eK .
Then c = s∗(d) = s∗(f) ∈ s∗

(
annW (K)(bK)

)
as needed. ¤

The torsion Wt(F ) of W (F ) is 2-primary. Thus applying the proposition to
ρ = 2n〈1〉 for all n yields

Corollary 34.32. Let K = F (
√

a) be a quadratic extension of F with a ∈ F× and
s : K → F a nontrivial F -linear functional such that s(1) = 0. Then Wt(F ) ∩
s∗

(
W (K)

)
= s∗

(
Wt(K)

)
.

We also have the following:

Corollary 34.33. Suppose that F is a field of characteristic different from 2 and
K = F (

√
a) a quadratic extension of F . Let s : K → F be a nontrivial F -linear

functional such that s(1) = 0. Then

〈〈a〉〉W (F )∩ annW (F )

(
2〈1〉) = Ker(rK/F ) ∩ s∗

(
W (K)

)

⊂ annW (F )

(
2〈1〉) ∩ annW (F )

(〈〈a〉〉) = s∗
(
annW (K)(2〈1〉)

)
.

Proof. As 〈〈a, a〉〉 ' 〈〈−1, a〉〉, we have

〈〈a〉〉W (F ) ∩ annW (F )

(
2〈1〉) = 〈〈a〉〉W (F ) ∩ annW (F )

(〈〈a〉〉),
which yields the first equality by Corollary 34.12. As 〈〈a〉〉W (F ) ⊂ annW (F )

(〈〈a〉〉),
we have the inclusion. Finally, s∗

(
W (K)

)∩ annW (F )

(
2〈1〉) = s∗

(
annW (K)(2〈1〉K)

)
by Proposition 34.31, so Corollary 34.12 yields the second equality. ¤

Remark 34.34. Suppose that F is a formally real field and K a quadratic exten-
sion. Let s∗ : W (K) → W (F ) be the transfer induced by a nontrivial F -linear
functional such that s(1) = 0. Then it follows by Corollaries 34.12 and 34.32 that
the maps induced by rK/F and s∗ yield an exact sequence

0 → Wred(K/F ) → Wred(F )
rK/F−−−→ Wred(K) s∗−→ Wred(F )

(again abusing notation for the maps) where

Wred(K/F ) := Ker
(
Wred(F ) → Wred(K)

)
.

By Corollary 33.15, we have a zero sequence

0 → In
red(K/F ) → In

red(F )
rK/F−−−→ In

red(K) s∗−→ In
red(F )

where In
red(K/F ) := Ker

(
In
red(F ) → In

red(K)
)
.

In fact, we shall see in §41 that this sequence is also exact.

35. Torsion in In(F ) and torsion Pfister forms

In this section we study the property that I(F ) is nilpotent, i.e., that there
exists an n such that In(F ) = 0. For such an n to exist, the field must be nonfor-
mally real. In order to study all fields we broaden this investigation to the study
of the existence of an n such that In(F ) is torsion-free. We wish to establish the
relationship between this occurring over F and over a quadratic field extension K.
This more general case is more difficult, so in this section we look at the simpler
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property that there are no torsion bilinear n-fold Pfister forms over the field F . This
was the approach introduced and used in [37] and would be equivalent to In(F )
being torsion-free if we knew that torsion bilinear n-fold Pfister forms generate the
torsion in In(F ). This is in fact true as shown in [8] and which we shall show in
§41, but cannot be proven by these elementary methods.

35.A. The property An. In this section we begin to study torsion in In(F )
for a field F . We set

In
t (F ) := Wt(F ) ∩ In(F ).

Note that the group I1
t (F ) = It(F ) is generated by torsion binary forms by Propo-

sition 31.27.
It is obvious that

In
t (F ) ⊃ In−1(F )It(F ).

Proposition 35.1. I2
t (F ) = I(F )It(F ).

Proof. Note that for all a, a′ ∈ F× and w,w′ ∈ D
(∞〈1〉), we have

a〈〈w〉〉+ a′〈〈w′〉〉 = a〈〈−aa′, w〉〉+ a′w〈〈ww′〉〉,
hence

a〈〈w〉〉+ a′〈〈w′〉〉 ≡ a′w〈〈ww′〉〉 mod I(F )It(F ).

Let b ∈ I2
t (F ). By Proposition 31.27, we have b is a sum of binary forms

a〈〈w〉〉 with a ∈ F× and w ∈ D
(∞〈1〉). Repeated application of the congruence

above shows that b is congruent to a binary form a〈〈w〉〉 modulo I(F )It(F ). As
a〈〈w〉〉 ∈ I2(F ) we have a〈〈w〉〉 = 0 and therefore b ∈ I(F )It(F ). ¤

We shall prove in §41 that the equality In
t (F ) = In−1(F )It(F ) holds for every

n.
It is easy to determine Pfister forms of order 2 (cf. Corollary 6.14).

Lemma 35.2. Let b be a bilinear n-fold Pfister form. Then 2b = 0 in W (F ) if
and only if either charF = 2 or b = 〈〈w〉〉 ⊗ c for some w ∈ D

(
2〈1〉) and c is an

(n− 1)-fold Pfister form.

Proposition 35.3. Let F be a field and n ≥ 1 an integer. The following conditions
are equivalent:

(1) There are no n-fold Pfister forms of order 2 in W (F ).
(2) There are no anisotropic n-fold Pfister forms of finite order in W (F ).
(3) For every m ≥ n, there are no anisotropic m-fold Pfister forms of finite

order in W (F ).

Proof. The implications (3) ⇒ (2) ⇒ (1) are trivial.
(1) ⇒ (3): If charF = 2 the statement is clear as W (F ) is torsion. Assume

that charF 6= 2. Let 2kb = 0 in W (F ) for some k ≥ 1 and b an m-fold Pfister
form with m ≥ n. We show by induction on k that b = 0 in W (F ). It follows from
Lemma 35.2 that 2k−1b ' 〈〈w〉〉 ⊗ c for some w ∈ D

(
2〈1〉) and a (k + m − 2)-fold

Pfister form c. Let d be an (n − 1)-fold Pfister form dividing c. Again by Lemma
35.2, the form 2〈〈w〉〉 · d is 0 in W (F ), hence by assumption, 〈〈w〉〉 · d = 0 in W (F ).
It follows that 2k−1b = 〈〈w〉〉 · c = 0 in W (F ). By the induction hypothesis, b = 0
in W (F ). ¤
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We say that a field F satisfies An if the equivalent conditions of Proposition
35.3 hold. It follows from the definition that the condition An implies Am for every
m ≥ n. It follows from Proposition 31.9 that F satisfies A1 if and only if F is
pythagorean.

If F is not formally real, the condition An is equivalent to In(F ) = 0 as the
group W (F ) is torsion.

As the group It(F ) is generated by torsion binary forms, the property An

implies that In−1(F )It(F ) = 0.

Exercise 35.4. Suppose that F is a field of characteristic not 2. If K is a quadratic
extension of F , let sK : K → F be a nontrivial F -linear functional such that
sK(1) = 0. Show the following are equivalent:

(1) F satisfies An+1.

(2) s
F (
√

w)
∗

(
Pn(F (

√
w))

)
= Pn(F ) for every w ∈ D

(∞〈1〉).
(3) s

F (
√

w)
∗

(
In(F

(√
w))

)
= In(F ) for every w ∈ D

(∞〈1〉).
We now study the property An under field extensions. The case of fields of

characteristic 2 is easy.

Lemma 35.5. Let K/F be a finite extension of fields of characteristic 2. Then
In(F ) = 0 if and only if In(K) = 0.

Proof. The property In(E) = 0 for a field E is equivalent to [E : E2] < 2n by
Example 6.5. We have [K : F ] = [K2 : F 2], as the Frobenius map K → K2 given
by x → x2 is an isomorphism. Hence

(35.6) [K : K2] = [K : F 2]/[K2 : F 2] = [K : F 2]/[K : F ] = [F : F 2].

Thus we have In(K) = 0 if and only if In(F ) = 0. ¤

Let F0 be a formally real field satisfying A1, i.e., a pythagorean field. Let
Fn = F0((t1)) · · · ((tn)) be the iterated Laurent series field over F0. Then Fn is also
formally real pythagorean (cf. Example 31.6), hence Fn satisfies An for all n ≥ 1.
However, Kn = Fn

(√−1
)

does not satisfy An as 〈〈t1, . . . , tn〉〉 is an anisotropic form
over the nonformally real field Kn. Thus the property An is not preserved under
quadratic extensions. Nevertheless, we have

Proposition 35.7. Suppose that F satisfies An. Let K = F (
√

a) be a quadratic
extension of F with a ∈ F×. Then K satisfies An if either of the following two
conditions hold:

(1) a ∈ D
(∞〈1〉).

(2) Every bilinear n-fold Pfister form over F becomes metabolic over K.

Proof. If charF = 2, then In(F ) = 0, hence In(K) = 0 by Lemma 35.5.
So we may assume that charF 6= 2. Let y ∈ K× satisfy y ∈ D

(
2〈1〉K

)
and let e

be an (n − 1)-fold Pfister form over K. By Lemma 35.2, it suffices to show that
b := 〈〈y〉〉 ⊗ e is trivial in W (K). Let s∗ : W (K) → W (F ) be the transfer induced
by a nontrivial F -linear functional s(1) = 0.

We claim that s∗(b) = 0. Suppose that n = 1. Then s∗(b) ∈ It(F ) = 0. So
we may assume that n ≥ 2. As In−1(K) is generated by Pfister forms of the form
〈〈z〉〉⊗ dK with z ∈ K× and d an (n− 2)-fold Pfister form over F by Lemma 34.16,
we may assume that b = 〈〈y, z〉〉 ⊗ dK .
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We have s∗
(〈〈y, z〉〉) ∈ I2

t (F ) = I(F )It(F ) by Proposition 35.1. So

s∗
(〈〈y, z〉〉 · dK

)
= s∗

(〈〈y, z〉〉) · d
lies in In−1(F )It(F ) which is trivial by An. The claim is proven.

It follows that b = cK for some n-fold Pfister form c over F by Theorem 34.22.
Thus we are done if every n-fold Pfister form over F becomes hyperbolic over K.
So assume that a ∈ D

(∞〈1〉). As b is torsion in W (K), there exists an m such
that 2mb = 0 in W (F ). Thus 2mcK is hyperbolic so 2mc is a sum of binary forms
x〈〈ay2 + x2〉〉 in W (F ) for some x, y, z in F by Corollary 34.12. In particular, 2mc
is torsion and so trivial by An for F . The result follows. ¤

Corollary 35.8. Suppose that In(F ) = 0 (in particular, F is not formally real).
Let K/F be a quadratic extension. Then In(K) = 0.

In general, the above corollary does not hold if K/F is not quadratic. For
example, let F be the quadratic closure of the rationals, so I(F ) = 0. There exist
algebraic extensions K of F such that I(K) 6= 0, e.g., K = F

(
3
√

2
)
. It is true,

however, that in this case I2(K) = 0. It is still an unanswered question whether
I2(K) = 0 when K/F is finite and F is an arbitrary quadratically closed field,
equivalently whether the cohomological 2-dimension of a quadratically closed field
is at most one.

If In(F ) is torsion-free, then F satisfies An. Conversely, if F satisfies A1, then
I(F ) is torsion-free by Proposition 31.9. If F satisfies A2, then it follows from
Proposition 35.1 that I2(F ) is torsion-free as It(F ) is generated by torsion binary
forms.

Proposition 35.9. A field F satisfies A3 if and only if I3(F ) is torsion-free.

Proof. The statement is obvious if F is not formally real, so we may assume
that charF 6= 2. Let b ∈ I3(F ) be a torsion element. By Proposition 35.1,

b =
r∑

i=1

xi〈〈yi, wi〉〉

for some xi, yi ∈ F× and wi ∈ D
(∞〈1〉). We show by induction on r that b = 0.

It follows from Proposition 35.7 that K = F (
√

w) with w = wr satisfies A3. By
the induction hypothesis, we have bK = 0. Thus b = 〈〈w〉〉 · c for some c ∈ W (F )
by Corollary 34.12. Then c must be even-dimensional as the determinant of c is
trivial. Choose d ∈ F× such that d := c + 〈〈d〉〉 ∈ I2(F ).

Thus in W (F ),
b = 〈〈w〉〉 · d− 〈〈w, d〉〉.

Note that 〈〈w〉〉 · d = 0 in W (F ) by A3. Consequently, 〈〈w, d〉〉 ∈ I3(F ), so it is zero
in W (F ) by the Hauptsatz 23.7. This shows b = 0. ¤

We shall show in Corollary 41.5 below that In(F ) is torsion-free if and only if
F satisfies An for every n ≥ 1.

We have an application for quadratic forms first shown in [36].

Theorem 35.10 (Classification Theorem). Let F be a field.
(1) Dimension and total signature classify the isometry classes of nondegene-

rate quadratic forms over F if and only if Iq(F ) is torsion-free, i.e., F is
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pythagorean. In particular, if F is not formally real, then dimension clas-
sifies the isometry classes of forms over F if and only if F is quadratically
closed.

(2) Dimension, discriminant and total signature classify the isometry classes
of nondegenerate even-dimensional quadratic forms over F if and only
if I2

q (F ) is torsion-free. In particular, if F is not formally real, then
dimension and discriminant classify the isometry classes of forms over F
if and only if I2

q (F ) = 0.
(3) Dimension, discriminant, Clifford invariant, and total signature classify

the isometry classes of nondegenerate even-dimensional quadratic forms
over F if and only if I3

q (F ) is torsion-free. In particular, if F is not for-
mally real, then dimension, discriminant, and Clifford invariant classify
the isometry classes of forms over F if and only if I3

q (F ) = 0.

Proof. We prove (3) as the others are similar (and easier). If I3
q (F ) is not

torsion-free, then there exists an anisotropic torsion form ϕ ∈ P3(F ) by Proposition
35.9 if F is formally real and trivially if F is not formally real as then Iq(F ) is
torsion. As ϕ and 4H have the same dimension, discriminant, Clifford invariant,
and total signature but are not isometric, these invariants do not classify.

Conversely, assume that I3
q (F ) is torsion-free. Let ϕ and ψ be nondegenerate

even-dimensional quadratic forms having the same dimension, discriminant, Clifford
invariant, and total signature. Then by Theorem 13.7, the form θ := ϕ ⊥ −ψ lies
in I2

q (F ) and is torsion. As ϕ and ψ have the same dimension, it suffices to show
that θ is hyperbolic. Thus the result is equivalent to showing that if a torsion
form θ ∈ I2

q (F ) has trivial Clifford invariant and I3
q (F ) is torsion-free, then θ is

hyperbolic.
The case charF = 2 follows from Theorem 16.3. So we may assume that

charF 6= 2. By Proposition 35.1, we can write θ =
∑r

i=1 ai〈〈bi, ci〉〉 in Iq(F ) with
〈〈ci〉〉 torsion forms. We prove that θ is hyperbolic by induction on r.

Let K = F (
√

c) with c = cr. Clearly, θK ∈ I2
q (K) is torsion and has trivial

Clifford invariant. By Proposition 35.7 and Corollary 35.9, we have I3
q (K) is torsion-

free. By the induction hypothesis, θK is hyperbolic. By Corollary 23.6, we conclude
that θ = ψ · 〈〈c〉〉 in Iq(F ) for some quadratic form ψ. As disc(θ) is trivial, dim ψ is
even. Choose d ∈ F× such that τ := ψ + 〈〈d〉〉 ∈ I2(F ). Then

θ = τ · 〈〈c〉〉 − 〈〈d, c〉〉
in W (F ).

As the torsion form τ ⊗ 〈〈c〉〉 belongs to I3
q (F ), it is hyperbolic. As the Clifford

invariant of θ is trivial, it follows that the Clifford invariant of 〈〈d, c〉〉 must also be
trivial. By Corollary 12.5, 〈〈d, c〉〉 is hyperbolic and hence θ is hyperbolic. ¤

Remark 35.11. The Stiefel-Whitney classes introduced in (5.4) are defined on
nondegenerate bilinear forms. If b is such a form then the wi(b) determine sgn b
for every P ∈ X(F ) by Remark 5.8 and Example 5.13. We also have wi = ei for
i = 1, 2 by Corollary 5.9.

Let b and b′ be two nondegenerate symmetric bilinear forms of the same di-
mension. Suppose that w(b) = w(b′), then w

(
[b]− [b′]

)
= 1, where [ ] is the class

of a form in the Witt-Grothendieck ring Ŵ (F ). It follows that [b] − [b′] lies in
Î3(F ) by (5.11), hence b− b′ lies in I3(F ). As the wi determine the total signature
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of a form, we have b− b′ is torsion by the Local-Global Principle 31.22. It follows
that the dimension and total Stiefel-Whitney class determine the isometry class of
anisotropic bilinear forms if and only if I3(F ) is torsion-free.

Suppose that charF 6= 2. Then all metabolic forms are hyperbolic, so in this
case the dimension and total Stiefel-Whitney class determine the isometry class
of nondegenerate symmetric bilinear forms if and only if I3(F ) is torsion-free. In
addition, we can define another Stiefel-Whitney map

ŵ : Ŵ (F ) → H∗(F )[[t]]×

to be the composition of w and the map k∗(F )[[t]] → H∗(F )[[t]] induced by the
norm residue homomorphism h∗F : k∗(F ) → H∗(F ) in §101.5. Then dimension and
ŵ classify the isometry classes of nondegenerate bilinear forms if and only if I3(F )
is torsion-free by Theorem 35.10 as h∗ is an isomorphism if F is a real closed field
and w̃2 is the classical Hasse invariant so determines the Clifford invariant.

We turn to the question on whether the property An goes down. This was first
done in [37]. We use the proof given in [31].

Theorem 35.12. Let K/F be a finite normal extension. If K satisfies An so does
F .

Proof. Let G = Gal(K/F ) and let H be a Sylow 2-subgroup of G. Set
E = KH , L = KG. The field extension L/F is purely inseparable, so [L : F ] is
either odd or L/F is a tower of successive quadratic extensions. The extension
K/E is a tower of successive quadratic extensions and [E : L] is odd. Thus we may
assume that [K : F ] is either 2 or odd. Springer’s Theorem 18.5 solves the case of
odd degree. Hence we may assume that K/F is a quadratic extension.

The case charF = 2 follows from Lemma 35.5. Thus we may assume that the
characteristic of F is different from 2 and therefore K = F (

√
a) with a ∈ F×. Let

s : K → F be a nontrivial F -linear functional with s(1) = 0.
Let b be a 2-torsion bilinear n-fold Pfister form. We must show that b = 0 in

W (F ). As bK = 0 we have

b ∈ 〈〈a〉〉W (F ) ∩ annW (F )

(
2〈1〉)

by Corollary 34.12. As 〈〈a, a〉〉 = 〈〈a,−1〉〉, it follows that 〈〈a〉〉 · b = 0 in W (F ),
hence by Corollary 6.14, we can write b ' 〈〈b〉〉 ⊗ c for some (n − 1)-fold Pfister
form c and b ∈ D

(〈〈a〉〉). Choose x ∈ K× such that s∗
(〈x〉) = 〈〈b〉〉 and let d = xcK .

Then
s∗(d) = s∗

(〈x〉)c = 〈〈b〉〉c = b.

If d = 0, then b = 0 and we are done. So we may assume that d and therefore cK

is anisotropic.
We have s∗(2d) = 2b = 0 in W (F ), hence the form s∗(2d) is isotropic. There-

fore, 2d represents an element c ∈ F×, hence there exist u, v ∈ D̃(cK) satisfying
x(u+v) = c. But the form 〈〈u+v〉〉⊗c is 2-torsion and K satisfies An. Consequently,
u + v ∈ D(cK) = G(cK) as cK is anisotropic. We have

d = xcK ' x(u + v)cK = ccK .

Therefore, 0 = s∗(d) = b in W (F ) as needed. ¤

Corollary 35.13. Let K/F be a finite normal extension with F not formally real.
If In(K) = 0 for some n, then In(F ) = 0.
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The above corollary is, in fact, true without the condition that K/F be normal.
We have already shown this to be the case for fields of characteristic 2 in Lemma
35.5 and will show it to be true for characteristic not 2 in Corollary 43.9 below. In
fact, it follows from §43 below that if K/F a finitely generated field extension of
transcendence degree m, then In(K) = 0 implies n ≥ m and In−m(F ) = 0. But
we cannot do this by the elementary means employed here.

Corollary 35.14. Let K/F be a quadratic extension.
(1) Suppose that In(K) = 0. Then L satisfies An for every extension L/F

such that [L : F ] ≤ 2.
(2) Suppose that In(K) = 0. Then In(F ) = 〈〈−w〉〉In−1(F ) for every w ∈

D
(∞〈1〉).

(3) Suppose that In(F ) = 〈〈−w〉〉In−1(F ) for some w ∈ F×. Then both F
and K satisfy An+1 and if charF 6= 2, then w ∈ D

(∞〈1〉).
Proof. (1), (2): By Corollaries 35.8 and 35.13 if F is not formally real, then

In(F ) = 0 if and only if In(L) = 0 for any quadratic extension L/F . In particular,
(1) and (2) follow if F is not formally real. So suppose that F is formally real. We
may assume that K = F (

√
a) with a ∈ F×. Then In

(
L(
√

a)
)

= 0 by Proposition
35.7, hence In(L) satisfies An by Theorem 35.12. This establishes (1).

Let w ∈ D
(∞〈1〉). Then F (

√−w) is not formally real. By (1), the field
F (
√−w) satisfies An, hence In

(
F (
√−w)

)
= 0. In particular, if b is a bilinear

n-fold Pfister form, then bF (
√−w) is metabolic. Thus b ' 〈〈−w〉〉 ⊗ c for some

(n− 1)-fold Pfister form c over F by Remark 34.23 and (2) follows.
(3): If charF = 2, then In(F ) = 0, hence In(K) = 0 by Corollary 35.8. So

we may assume that charF 6= 2. By Remark 34.23, we have 2n〈1〉 ' 〈〈−w〉〉 ⊗ b
for some bilinear (n− 1)-fold Pfister form b. As 2n〈1〉 only represents elements in
D̃

(∞〈1〉), we have w ∈ D
(∞〈1〉).

To show the first statement, it suffices to show that L = F (
√−w) satisfies An+1

by (1) and (2). Since In+1(L) is generated by Pfister forms of the type 〈〈x〉〉 ⊗ cL

where x ∈ L× and c is an n-fold Pfister form over F by Lemma 34.16, we have
In+1(L) ⊂ 〈〈−w〉〉In(L) = {0}. ¤

If F is the field of 2-adic numbers, then I2(F ) = 2I(F ) and K satisfies I3(K) =
0 for all finite extensions K/F but no such K satisfies I2(K) = 0. In particular,
statement (3) of Corollary 35.14 is the best possible.

Corollary 35.15. Let F be a field extension of transcendence degree n over a real
closed field. Then D

(
2n〈1〉) = D

(∞〈1〉).
Proof. As F

(√−1
)

is a Cn-field by Theorem 97.7 below, we have

In
(
F (
√−1)

)
= 0.

Therefore, F satisfies An by Corollary 35.14. ¤
35.B. Torsion-freeness and In

(
F (
√−1)

)
= 0. We intend to prove a result

of Krüskemper 35.26 (cf. [87]) showing F satisfying An and In(F ) torsion-free are
equivalent when In

(
F (
√−1)

)
= 0. We follow Arason’s notes (cf. [3]) generalizing

our congruence relations of Pfister forms developed in §24.
Let b be a bilinear Pfister form. For simplicity, we set

Ib(F ) =
{
c ∈ I(F ) | b · c = 0 ∈ W (F )

}
= I(F ) ∩ annW (F )(b) ⊂ I(F ).
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We note if b is metabolic, then Ib(F ) = I(F ). We tacitly assume that b is
anisotropic below.

Lemma 35.16. Let c be a bilinear (n − 1)-fold Pfister form and d ∈ DF (b ⊗ c).
Then 〈〈d〉〉 · c ∈ In−1(F )Ib(F ).

Proof. We induct on n. The hypothesis implies that b · 〈〈d〉〉 · c = 0 in W (F ),
hence 〈1,−d〉 · c ∈ Ib(F ). In particular, the case n = 1 is trivial. So assume that
n > 1 and that the lemma holds for (n− 2)-fold Pfister forms. Write c = 〈〈a〉〉 ⊗ d

where d is an (n− 2)-fold Pfister form. Then d = e1− ae2, where e1, e2 ∈ D̃(b⊗ d).
If e2 = 0, then we are done by the induction hypothesis. So assume that e2 6= 0.
Then d = e2(e− a), where e = e1/e2 ∈ D̃(b⊗ d). By the induction hypothesis, we
have

〈〈d〉〉 · c = 〈〈e2(e− a)〉〉 · c = 〈〈e− a〉〉 · c + 〈〈e− a, e2〉〉 · c
≡ 〈〈e− a〉〉 · c mod In−1(F )Ib(F ).

It follows that we may assume that e2 = 1, hence that d = e− a. But then

〈〈d, a〉〉 = 〈〈e− a, a〉〉 = 〈〈e, a′〉〉
for some a′ 6= 0 by Lemma 4.15 , hence

〈〈d〉〉 · c = 〈〈d, a〉〉 · d = 〈〈e, a′〉〉 · d.
By the induction hypothesis, it follows that 〈〈d〉〉 · c ∈ In−1(F )Ib(F ). ¤

Lemma 35.17. Let e be a bilinear n-fold Pfister form and b ∈ D(b⊗e′). Then there
is a bilinear (n− 1)-fold Pfister form f such that e ≡ 〈〈b〉〉 · f mod In−1(F )Ib(F ).

Proof. We induct on n. If n = 1, then e′ = 〈〈a〉〉 and b = ax for some
x ∈ D(−b). It follows that

〈〈b〉〉 = 〈〈ax〉〉 = 〈〈a〉〉+ a〈〈x〉〉 ≡ 〈〈a〉〉 mod Ib(F ).

Now assume that n > 1 and that the lemma holds for (n−1)-fold Pfister forms.
Write e = 〈〈a〉〉 ⊗ d with d an (n − 1)-fold Pfister form. Then b = c + ad, where
c ∈ D̃(b ⊗ d′) and d ∈ D̃(b ⊗ d). If d = 0, then we are done by the induction
hypothesis. So assume that d 6= 0. Then

〈〈ad〉〉 · d = 〈〈a〉〉 · d + a〈〈d〉〉 · d
≡ 〈〈a〉〉 · d mod In−1(F )Ib(F )

by Lemma 35.16. It follows that we may assume that d = 1, hence b = c + a. If
c = 0, then b = a and there is nothing to prove. So assume that c 6= 0. By the
induction hypothesis, we can write

d ≡ 〈〈c〉〉 · g mod In−2(F )Ib(F )

with g an (n− 2)-fold Pfister form. As

〈〈a, c〉〉 = 〈〈b− c, c〉〉 ' 〈〈b, c′〉〉
for some c′ 6= 0 by Lemma 4.15, it follows that

e = 〈〈a〉〉 · d ≡ 〈〈a, c〉〉 ⊗ g

= 〈〈b, c′〉〉 · g mod In−1(F )Ib(F )

as needed. ¤
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Lemma 35.18. Let e be a bilinear n-fold Pfister form and h a bilinear form over
F .

(1) If e ∈ Ib(F ), then e ∈ In−1(F )Ib(F ).
(2) If h · e ∈ Ib(F ), then h · e ∈ In−1(F )Ib(F ).

Proof. (1): The hypothesis implies that b · e = 0 in W (F ). In particular,
b⊗ e = b ⊥ b⊗ e′ is isotropic. It follows that there exists an element b ∈ DF (b) ∩
DF (b⊗ e′). By Lemma 35.17,

e ≡ 〈〈b〉〉 · f ≡ 0 mod In−1(F )Ib(F ).

(2): The hypothesis implies that h · b · e = 0 in W (F ). If b · e = 0 in W (F )
then, by (1), we have e ∈ In−1(F )Ib(F ) and we are done. Otherwise, we have
h ∈ Ib⊗e(F ), which is generated by the forms 〈〈x〉〉, with x ∈ D(b⊗ e). It therefore
suffices to prove the claim in the case h = 〈〈x〉〉. But then, by (1), we even have
h · e ∈ In(F )Ib(F ). ¤

Lemma 35.19. Suppose the bilinear n-fold Pfister forms e, f satisfy

ae ≡ bf mod Ib(F )

with a, b ∈ F×. Then
ae ≡ bf mod In−1(F )Ib(F ).

Proof. We induct on n. As the case n = 1 is trivial, we may assume that
n > 1 and that the claim holds for (n−1)-fold Pfister forms. The hypothesis implies
that ab⊗ e ' bb⊗ f, in particular, b/a ∈ DF (b⊗ e). By Lemma 35.16, we therefore
have

ae ≡ bf mod In−1(F )Ib(F )

(actually, mod In(F )Ib(F )). Hence we may assume that a = b. Dividing by a,
we may even assume that a = b = 1. Write

e = 〈〈c〉〉 ⊗ g and f = 〈〈d〉〉 ⊗ h

with g, h being (n − 1)-fold Pfister forms. The hypothesis now implies that b ⊗
e′ ' b ⊗ f′. In particular, d ∈ D(b ⊗ e′). By Lemma 35.17, we can write e ≡
〈〈d〉〉 · g1 mod In−1(F )Ib(F ) with g1 an (n − 1)-fold Pfister form. It follows that
we may assume that c = d. By the induction hypothesis, we then have g ≡ h
mod In−2(F )Ib⊗〈〈d〉〉(F ), hence

〈〈d〉〉 · g ≡ 〈〈d〉〉 · h mod 〈〈d〉〉In−2(F )Ib⊗〈〈d〉〉(F ).

We are therefore finished if we can show that 〈〈d〉〉Ib⊗〈〈d〉〉(F ) ⊆ I(F )Ib(F ). Now,
Ib⊗〈〈d〉〉(F ) is generated by the 〈〈x〉〉, with x ∈ D

(
b ⊗ 〈〈d〉〉). For such a generator

〈〈x〉〉, we have b · 〈〈d, x〉〉 = 0 in W (F ), hence, by Lemma 35.18, the form 〈〈d, x〉〉 lies
in I(F )Ib(F ). ¤

Proposition 35.20. Let e, f, g be bilinear n-fold Pfister forms. Assume that

ae ≡ bf + cg mod Ib(F ).

Then
ae ≡ bf + cg mod In−1(F )Ib(F ).
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Proof. The hypothesis implies that ab·e = bb·f+cb·g in W (F ). In particular,
the form bb ⊗ f ⊥ cb ⊗ g is isotropic. It follows that there exists d ∈ D(bb ⊗ f) ∩
D(−cb⊗ g). By Lemma 35.16, we then have

bf ≡ df mod In−1(F )Ib(F ) and cg ≡ −dg mod In−1(F )Ib(F )

(actually, mod In(F )Ib(F )). Hence we may assume that c = −b. Dividing by b,
we may even assume that b = 1 and c = −1. Then the hypothesis implies that
ab ·e = b ·f−b ·g in W (F ) and we have to prove that ae ≡ f−g mod In−1(F )Ib(F ).

As ab · e = b · f− b · g in W (F ), it follows that b⊗ f and b⊗ g are linked using
Proposition 6.21 and with b dividing the linkage. Hence there exists an (n − 1)-
fold Pfister form d and elements b′, c′ 6= 0 such that b ⊗ f ' b ⊗ d ⊗ 〈〈b′〉〉 and
b⊗ g ' b⊗ d⊗〈〈c′〉〉 (and hence b⊗ e ' b⊗ d⊗〈〈b′c′〉〉). By Lemma 35.19, we then
have

f ≡ d · 〈〈b′〉〉 and also g ≡ d · 〈〈c′〉〉 mod In−1(F )Ib(F ).
We may therefore assume that f = d ⊗ 〈〈b′〉〉 and g = d ⊗ 〈〈c′〉〉. Then f − g =
d · 〈−b′, c′〉 = −b′d · 〈〈b′c′〉〉 in W (F ). The result now follows from Lemma 35.19. ¤

Remark 35.21. From Lemmas 35.16-35.19 and Proposition 35.20, we easily see
that the corresponding results hold for the torsion part It(F ) of I(F ) instead of
Ib(F ). Indeed, in each case, we only have to use our result for b = 2k〈1〉 for some
k ≥ 0.

We always have 2In(F ) ⊂ In+1(F ) for a field F . For some interesting fields,
we have equality, i.e., 2In(F ) = In+1(F ) for some positive integer n. In particular,
we shall see in Lemma 41.1 below that this is true for some n for any field of finite
transcendence degree over its prime field. (This is easy if the field has positive
characteristic but depends on Fact 16.2 when the characteristic of F is 0.) We shall
now investigate when this phenomenon holds for a field.

Proposition 35.22. Let F be a field. Then 2In(F ) = In+1(F ) if and only if every
anisotropic bilinear (n + 1)-fold Pfister form b is divisible by 2〈1〉, i.e., b ' 2c for
some n-fold Pfister form c.

Proof. If 2〈1〉 is metabolic, the result is trivial so assume not. In particular,
we may assume that charF 6= 2. Suppose 2In(F ) = In+1(F ) and b is an anisotropic
bilinear (n + 1)-fold Pfister form. By assumption, there exist d ∈ In(F ) such that
b = 2d in W (F ). By Remark 34.23, we have b ' 2c for some n-fold Pfister form
c. ¤

It is also useful to study a variant of the property that 2In(F ) = In+1(F )
introduced by Bröcker in [19]. Recall that In

red(F ) is the image of In(F ) under the
canonical homomorphism W (F ) → Wred(F ) = W (F )/Wt(F ). We investigate the
case that 2In

red(F ) = In+1
red (F ) for some positive integer n. Of course, if 2In(F ) =

In+1(F ), then 2In
red(F ) = In+1

red (F ). We shall show that the above proposition
generalizes. Further, we shall show this property is characterized by the cokernel
of the signature map

sgn : W (F ) → C
(
X(F ),Z

)
.

Recall that the cokernel of this map is a 2-primary group by Theorem 33.8.

Proposition 35.23. Suppose the reduced stability str(F ) is finite and equals n.
Then n is the least nonnegative integer such that 2In

red(F ) = In+1
red (F ). Moreover,
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for any bilinear (n + 1)-fold Pfister form b, there exists an n-fold Pfister form c
such that b ≡ 2c mod Wt(F ).

Proof. Let b be an anisotropic bilinear (n+1)-fold Pfister form. In particular,
sgn b ∈ C

(
X(F ), 2n+1Z

)
. By assumption, there exists a bilinear form d satisfying

sgn d = 1
2 sgn b. Thus b − 2d ∈ Wt(F ), hence there exists an integer m such that

2mb = 2m+1d in W (F ) by Theorem 31.18. If 2mb is metabolic the result is trivial,
so we may assume it is anisotropic. By Proposition 6.22, there exists f such that
2mb ' 2m+1f. Therefore, 2mb ' 2m+1c for some bilinear n-fold Pfister form c by
Corollary 6.17. Hence 2In

red(F ) = In+1
red (F ).

Conversely, suppose that 2In
red(F ) = In+1

red (F ). Let f ∈ C
(
X(F ),Z

)
. It suffices

to show that there exists a bilinear form b satisfying sgn b = 2nf . By Theorem
33.15, there exists an integer m and a bilinear form b ∈ Im(F ) satisfying sgn b =
2mf . So we are done if m ≤ n. If m > n, then there exists c ∈ In(F ) such that
sgn b = sgn 2m−nc and 2nf = sgn c. ¤

Remark 35.24. If 2In
red(F ) = In+1

red (F ), then for any bilinear (n + m)-fold Pfister
form b there exists an n-fold Pfister form c such that b ≡ 2mc mod It(F ) and
In+m
red (F ) = 2mIn

red(F ). Similarly, if 2In(F ) = In+1(F ), then for any bilinear
(n + m)-fold Pfister form b there exists an n-fold Pfister form c such that b ' 2mc
and In+m(F ) = 2mIn(F ).

Suppose that 2In
red(F ) = In+1

red (F ). Let b be an n-fold Pfister form over F and
let d ∈ F×. Write

〈〈d〉〉 · b ≡ 2e mod It(F ) and 〈〈−d〉〉 · b ≡ 2f mod It(F )

for some n-fold Pfister forms e and f over F . By adding, we then get 2b ≡ 2e + 2f
mod It(F ), hence also b ≡ e + f mod It(F ). By Proposition 35.20, it follows that
we even have b ≡ e + f mod In−1(F )It(F ).

We generalize this as follows:

Lemma 35.25. Suppose that 2In
red(F ) = In+1

red (F ). Let b be a bilinear n-fold Pfis-
ter form and let d1, . . . , dm ∈ F×. Write

〈〈ε1d1, . . . , εmdm〉〉 · b ≡ 2mcε mod It(F )

with cε a bilinear n-fold Pfister form for every ε = (ε1, . . . , εm) ∈ {±1}m. Then

b ≡
∑

ε

cε mod In−1(F )It(F ).

Proof. We induct on m. The case m = 1 is done above. So assume that
m > 1. Write 〈〈ε2d2, . . . , εmdm〉〉·b ≡ 2m−1dε′ mod It(F ) with dε′ a bilinear n-fold
Pfister form for every ε′ = (ε2, . . . , εm) ∈ {±1}m−1. By the induction hypothesis,
we then have b ≡ ∑

ε′ dε′ mod In−1(F )It(F ). It therefore suffices to show that

dε′ ≡ c(+1,ε′) + c(−1,ε′) mod In−1(F )It(F )

for every ε′. Since

2mdε′ ≡ 2〈〈ε2d2, . . . , εmdm〉〉 · c =
(〈〈d〉〉+ 〈〈−d〉〉) · 〈〈ε2d2, . . . , εmdm〉〉 · e

≡ 2mc(+1,ε′) + 2mc(−1,ε′) mod It(F )

in W (F ), hence also dε′ ≡ c(+1,ε′) + c(−1,ε′) mod It(F ). By Proposition 35.20, it
follows that dε′ ≡ c(+1,ε′) + c(−1,ε′) mod In−1(F )It(F ). ¤
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Krüskemper’s main result in [87] is:

Theorem 35.26. Let 2In
red(F ) = In+1

red (F ). Then

In
t (F ) = In−1(F )It(F ).

Proof. Suppose that
∑r

i=1 aibi ∈ It(F ), where b1, . . . , br are bilinear n-fold
Pfister forms and ai ∈ F×. We prove by induction on r that this implies that∑r

i=1 aibi ∈ In−1(F )It(F ). The case r = 1 is simply Lemma 35.18, so assume that
r > 1.

Write bi = 〈〈ai1, . . . , ain〉〉 for i = 1, . . . , r and let m = rn and

(d1, . . . , dm) = (a11, . . . , a1n, a21, . . . , a2n, . . . , ar1, . . . , arn).

Write
〈〈ε1d1, . . . , εmdm〉〉 · bi ≡ 2mciε mod It(F )

with ciε bilinear n-fold Pfister forms for every i = 1, . . . , r and every

ε = (ε1, . . . , εm) ∈ {±1}m.

By Lemma 35.25,
r∑

i=1

aibi ≡
∑

ε

r∑

i=1

aiciε mod In−1(F )It(F ).

If ε(1) 6= ε(2) in {±1}m, then sgn〈〈ε(1)
1 d1, . . . , ε

(1)
m dm〉〉 and sgn〈〈ε(2)

1 d1, . . . , ε
(2)
m dm〉〉

have disjoint supports on X(F ), hence the same holds for sgn ciε(1) and sgn cjε(2) .
It therefore follows from the hypothesis that

r∑

i=1

aiciε ≡ 0 mod It(F ) for each ε.

Clearly, it suffices to show that
∑r

i=1 aiciε ≡ 0 mod In−1(F )It(F ) for each ε.
Fix ε in {±1}m. Suppose that ε 6= (1, . . . , 1). If −1 occurs as the coordinate of ε

corresponding to aji for some j ∈ [1, r] and i ∈ [1, n], then 〈〈ε1d1, . . . , εmdm〉〉·bj =
0 in W (F ) and we may assume for all such j that cjε = 0 in W (F ). In particular,
if ε 6= (1, . . . , 1), then

r∑

i=1

aiciε =
r∑

i=1
i 6=j

aiciε ≡ 0 mod In−1(F )It(F )

by the induction hypothesis. So we may assume that ε = (1, . . . , 1). Then

〈〈ε1d1, . . . , εmdm〉〉 ⊗ bi ' 〈〈d1, . . . , dm〉〉 ⊗ bi ' 2n〈〈d1, . . . , dm〉〉
is independent of i. We therefore may assume that ciε, for i ∈ [1, r], are all equal
to a single c. Let d = 〈a1, . . . , ar〉, then

d · c =
r∑

i=1

aiciε ≡ 0 mod It(F ).

By Lemma 35.18, we conclude that d·c ∈ In−1(F )It(F ) and the theorem follows. ¤
Corollary 35.27. The following are equivalent for a field F of characteristic dif-
ferent from 2:

(1) In+1
(
F (
√−1)

)
= 0.

(2) F satisfies An+1 and 2In(F ) = In+1(F ).
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(3) F satisfies An+1 and 2In
red(F ) = In+1

red (F ).
(4) In+1(F ) is torsion-free and 2In(F ) = In+1(F ).

Proof. (1) ⇒ (2): By Theorem 35.12, F satisfies An+1. Theorem 34.22 ap-
plied to the quadratic extension F

(√−1
)
/F gives 2In(F ) = In+1(F ).

(2) ⇒ (3) is trivial as 2In
red(F ) = In+1

red (F ) if 2In(F ) = In+1(F ).
(3) ⇒ (4): As the torsion (n + 1)-fold Pfister forms generate the torsion in

In+1(F ) by Theorem 35.26, we have In+1(F ) is torsion-free. Suppose that b is an
(n + 1)-fold Pfister form. Then there exist c ∈ In(F ) and d ∈ Wt(F ) such that
b = 2c + d in W (F ). Hence for some N , we have 2Nb = 2N+1c. As In+1(F ) is
torsion-free, we have b = 2c in W (F ), hence bF (

√−1) is hyperbolic. By Theorem
34.22, there exists an n-fold Pfister form f such that b ' 2f. It follows that 2In(F ) =
In+1(F ).

(4) ⇒ (1) follows from Theorem 34.22 for the quadratic extension F
(√−1

)
/F

as forms in W (K) transfer to torsion forms in W (F ). ¤
Remark 35.28. By Corollary 35.14, the condition that In+1

(
F (
√−1)

)
= 0 is

equivalent to In+1(K) = 0 for some quadratic extension K/F . In particular, if
In+1(K) = 0 for some quadratic extension K/F , then In+1(F ) is torsion-free.
Much more is true. If K/F is a field extension of transcendence degree m, then
In(K) torsion-free implies n ≥ m and In−m(F ) is torsion-free. We shall prove this
in Corollary 43.9 below.

Corollary 35.29. Let F be a real closed field and K/F a finitely generated ex-
tension of transcendence degree n. Then In+1(K) is torsion-free and 2In(K) =
In+1(K).

Proof. As K
(√−1

)
is a Cn-field by Theorem 97.7, we have In+1

(
K(
√−1)

)
=

0 and hence 2In(K) = In+1(K) by Corollary 35.27 applied to the field K. ¤
Corollary 35.30. Let F be a field satisfying In+1(F ) = 2In(F ). Then In+2(F ) is
torsion-free.

Proof. If −1 ∈ F 2, then In+1(F ) = 0 and the result follows. In particular,
we may assume that charF 6= 2. By Theorem 35.26, it suffices to show that F
satisfies An+2. Let b be an (n + 2)-fold Pfister form such that 2b = 0 in W (F ). By
Lemma 35.2, we can write b = 〈〈w〉〉 · c in W (F ) with c an (n + 1)-fold Pfister form
and w ∈ D

(
2〈1〉). By assumption, c = 2d in W (F ) for some n-fold Pfister form d.

Hence b = 2〈〈w〉〉 · d = 0 in W (F ). ¤
Remark 35.31. Any local field F satisfies I3(F ) = 0 (cf. [89, Cor. VI.2.15]). Let
Q2 be the field of 2-adic numbers. Then, up to isomorphism,

(
−1,−1
Q2

)
is the unique

quaternion algebra (cf. [89, Cor. VI.2.24]), hence I2(Q2) = 2I(Q2) = {0, 4〈1〉} 6= 0.
Thus, in general, In+2(F ) cannot be replaced by In+1(F ) in the corollary above.

We shall return to these matters in §41.





CHAPTER VI

u-invariants

36. The ū-invariant

Given a field F , it is interesting to see if there exists a uniform bound on
the dimension of anisotropic forms over F , i.e., if there exists an integer n such
that every quadratic form over F of dimension greater than n is isotropic and
if such an n exists, what is the minimum. For example, a consequence of the
Chevalley-Warning Theorem (cf. [123, I.2, Th. 3]), is that over a finite field every
3-dimensional quadratic form is isotropic and a consequence of the Lang-Nagata
Theorem (cf. Theorem 97.7 below) is that every (2n + 1)-dimensional form over a
field of transcendence degree n over an algebraically closed field is isotropic. When a
field is of characteristic different from 2, anisotropic forms are nondegenerate. This
is no longer the case for fields of characteristic 2. This leads to the consideration
of two invariants. If F is a formally real field, then n〈1〉 can never be isotropic. To
obtain meaningful arithmetic data about formally real fields, we shall strengthen
the condition on our forms. Although this makes computation more delicate, it
is a useful generalization. In this section, we shall, for the most part, look at the
simpler case of fields that are not formally real.

Let F be a field. We call a quadratic form ϕ over F locally hyperbolic if ϕFP

is hyperbolic at each real closure FP of F (if any). If F is formally real, then the
dimension of every locally hyperbolic form is even. If F is not formally real, every
form is locally hyperbolic. For any field F , a locally hyperbolic form is one that is
torsion in the Witt ring W (F ).

Define the u-invariant of F to be the smallest integer u(F ) ≥ 0 such that every
nondegenerate locally hyperbolic quadratic form over F of dimension > u(F ) is
isotropic (or infinity if no such integer exists) and the ū-invariant of F to be the
smallest integer ū(F ) ≥ 0 such that every locally hyperbolic quadratic form over
F of dimension > ū(F ) is isotropic (or infinity if no such integer exists). The
u-invariant above was first defined in [34] and the ū-invariant by Baeza in [16].

Remark 36.1. (1) We have ū(F ) ≥ u(F ).

(2) If charF 6= 2, every anisotropic form is nondegenerate, hence ū(F ) = u(F ).

(3) If F is formally real, the integer ū(F ) = u(F ) is even.

(4) As any (nondegenerate) quadratic form contains (nondegenerate) subforms
of all smaller dimensions, if F is not formally real, we have u(F ) ≤ n if and only if
every nondegenerate quadratic form of dimension n + 1 is isotropic and ū(F ) ≤ n
if and only if every quadratic form of dimension n + 1 is isotropic.

Example 36.2. (1) If F is a formally real field, then ū(F ) = 0 if and only if F is
pythagorean.

161
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(2) Suppose that F is a quadratically closed field. If charF 6= 2, then ū(F ) = 1
as every form is diagonalizable. If char F = 2, then ū(F ) ≤ 2 with equality if F is
not separably closed by Example 7.33.

(3) If F is a finite field, then ū(F ) = 2.
(4) Let F be a field of characteristic not 2 and ρ a quadratic form over the

Laurent series field F ((t)). As ρ is diagonalizable, ρ ∼= ϕ ⊥ tψ for some quadratic
forms ϕ and ψ over F . Using Lemma 19.5, we deduce that ρ is anisotropic if and
only if both ϕ and ψ are. Moreover, one can check that ρ is torsion if and only if
both ϕ and ψ are torsion. If ū(F ) is finite, it follows that ū

(
F ((t))

)
= 2ū(F ). This

equality is also true if charF = 2 (cf. [16]).
(5) If F is a Cn-field, then ū(F ) ≤ 2n.
(6) If F is a local field, then ū(F ) = 4. If charF > 0, then u(F ) = 4 by

Example (4). If char F = 0 this follows as in the argument for Example (4) using
also Lemma 19.4 (cf. also [111]).

(7) If F is a global field, then ū(F ) = 4. If charF = 0, this follows from the
Hasse-Minkowski Theorem [89, VI.3.1]. If charF > 0, then F is a C2-field by
Theorem 97.7.

Proposition 36.3. Let F be a field with I3
q (F ) = 0. If 1 < u(F ) < ∞, then u(F )

is even.

Proof. The hypothesis implies that F is not formally real. Suppose that
u(F ) > 1 is odd and let ϕ be a nondegenerate anisotropic quadratic form with
dim ϕ = u(F ). We claim that ϕ ' ψ ⊥ 〈−a〉 for some ψ ∈ I2

q (F ) and a ∈ F×. If
charF 6= 2, then ϕ ⊥ 〈a〉 ∈ I2

q (F ) for some a ∈ F× by Proposition 4.13. This form is
isotropic, hence ϕ ⊥ 〈a〉 ' ψ ⊥ H for some ψ ∈ I2

q (F ) and therefore ϕ ' ψ ⊥ 〈−a〉.
If charF = 2, write ϕ ' µ ⊥ 〈a〉 for some form µ and a ∈ F×. Choose b ∈ F
such that the discriminant of the form µ ⊥ [a, b] is trivial, i.e., µ ⊥ [a, b] ∈ I2

q (F ).
By assumption the form µ ⊥ [a, b] is isotropic, i.e., µ ⊥ [a, b] ' ψ ⊥ H for a form
ψ ∈ I2

q (F ). It follows from (8.7) that

ϕ ' µ ⊥ 〈a〉 ∼ µ ⊥ [a, b] ⊥ 〈a〉 ∼ ψ ⊥ 〈a〉,
hence ϕ ' ψ ⊥ 〈a〉 as these forms have the same dimension. This proves the claim.

Let b ∈ D(ψ). As 〈〈ab〉〉 ⊗ ψ ∈ I3
q (F ) = 0, we have ab ∈ G(ψ). Therefore,

a = ab/b ∈ D(ψ) and hence the form ϕ is isotropic, a contradiction. ¤

Corollary 36.4. The u-invariant of a field is not equal to 3, 5 or 7.

Let r > 0 be an integer. Define the ūr-invariant of F to be the smallest integer
ūr(F ) ≥ 0 such that every set of r quadratic forms on a vector space over F of
dimension > ūr(F ) has common nontrivial zero.

In particular, if ūr(F ) is finite, then F is not a formally real field. We also have
ū1(F ) = ū(F ) when F is not formally real. The following is due to Leep (cf. [93]):

Theorem 36.5. Let F be a field. Then for every r > 1, we have

ūr(F ) ≤ rū1(F ) + ūr−1(F ).

Proof. We may assume that ūr−1(F ) is finite. Let ϕ1, . . . , ϕr be quadratic
forms on a vector space V over F of dimension n > rū1(F ) + ūr−1(F ). We shall
show that the forms have an isotropic vector in V . Let W be a totally isotropic
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subspace of V of the forms ϕ1, . . . , ϕr−1 of the largest dimension d. Let Vi be the
orthogonal complement of W in V relative to ϕi for each i ∈ [1, r − 1]. We have
dim Vi ≥ n− d.

Let U = V1 ∩ · · · ∩ Vr−1. Then W ⊂ U and dim U ≥ n − (r − 1)d. Choose a
subspace U ′ ⊂ U such that U = W ⊕ U ′. We have

dim U ′ ≥ n− rd > r
(
ū1(F )− d

)
+ ūr−1(F ).

If d ≤ ū1(F ), then dim U ′ > ūr−1(F ), hence the forms ϕ1, . . . , ϕr−1 have an
isotropic vector u ∈ U ′. Then the subspace W ⊕ Fu is totally isotropic for these
forms, contradicting the maximality of W .

It follows that d > ū1(F ). The form ϕr therefore has an isotropic vector in U ′

which is isotropic for all the ϕi’s. ¤

Corollary 36.6. If F is not formally real, then ūr(F ) ≤ 1
2r(r + 1)ū(F ).

This improves the linear bound in [31] to:

Corollary 36.7. Let K/F be a finite field extension of degree r. If F is not for-
mally real, then ū(K) ≤ 1

2 (r + 1)ū(F ).

Proof. Let s1, s2, . . . , sr be a basis for the space of F -linear functionals on K.
Let ϕ be a quadratic form over K of dimension n > 1

2 (r+1)ū(F ). As dim(si)∗(ϕ) =
rn > 1

2r(r + 1)ū(F ) for each i ∈ [1, r], by Corollary 36.6, the forms (si)∗(ϕ) have
a common isotropic vector which is, then an isotropic vector for ϕ. ¤

Let K/F be a finite extension with F not formally real. We shall show that
if ū(K) is finite, then so is ū(F ). We begin with the case that F is a field of
characteristic 2 with an observation by Mammone, Moresi, and Wadsworth (cf.
[96]).

Lemma 36.8. Let F be a field of characteristic 2. Let ϕ be an even-dimensional
nondegenerate quadratic form over F and ψ a totally singular quadratic form over
F . If ϕ ⊥ ψ is anisotropic, then

1
2

dim ϕ + dim ψ ≤ [F : F 2].

Proof. Let ϕ ' [a1, b1] ⊥ · · · ⊥ [am, bm] with ai, bi ∈ F and ψ ' 〈c1, . . . , cn〉
with ci ∈ F×. For each i ∈ [1, m] let di ∈ D

(
[ai, bi]

)
. Then {c1, . . . , cn, d1, . . . , dm}

is F 2-linearly independent. The result follows. ¤

Proposition 36.9. Let F be a field of characteristic 2 and K/F a finite extension.
Then

ū(F ) ≤ 2ū(K) ≤ 4ū(F ).

Proof. If c1, . . . , cn are F 2-linearly independent, then the form 〈c1, . . . , cn〉 is
anisotropic. By the lemma, it follows that we have

[F : F 2] ≤ ū(F ) ≤ 2[F : F 2].

As [F : F 2] = [K : K2] (cf. (35.6)), we have

ū(F ) ≤ 2[F : F 2] = 2[K : K2] ≤ 2ū(K) ≤ 4[K : K2] = 4[F : F 2] ≤ 4ū(F ). ¤
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Remark 36.10. Let F be a field of characteristic 2. The proof above shows that
every anisotropic totally singular quadratic form has dimension at most [F : F 2]
and if [F : F 2] is finite, then there exists an anisotropic totally singular quadratic
form of dimension [F : F 2].

Remark 36.11. Let F be a field of characteristic 2 such that [F : F 2] is infinite
but F separably closed. Then ū(F ) is infinite but u(F ) = 1 by Exercise 7.34.

We now look at finiteness of ū coming down from a quadratic extension follow-
ing the ideas in [34].

Proposition 36.12. Let K/F be a quadratic extension with F not formally real.
If ū(K) is finite, then ū(F ) < 4ū(K).

Proof. If charF = 2, then ū(F ) ≤ 2ū(K) by Proposition 36.9, so we may
assume that charF 6= 2. We first show that ū(F ) is finite. Let ϕ be an anisotropic
quadratic form over F . By Proposition 34.8, there exist quadratic forms ϕ1 and µ0

over F with (µ0)K anisotropic satisfying

ϕ ' 〈〈a〉〉 ⊗ ϕ1 ⊥ µ0

where a ∈ F× satisfies K = F (
√

a). In particular, dim(µ0) ≤ ū(K). Analogously,
there exist quadratic forms ϕ2 and µ1 over F with (µ1)K anisotropic satisfying

ϕ1 ' 〈〈a〉〉 ⊗ ϕ2 ⊥ µ1.

Hence

ϕ ' 〈〈a〉〉 ⊗ (〈〈a〉〉 ⊗ ϕ2 ⊥ µ1

) ⊥ µ0 ' 2〈〈a〉〉 ⊗ ϕ2 ⊥ 〈〈a〉〉 ⊗ µ1 ⊥ µ0

as 〈〈a, a〉〉 = 2〈〈a〉〉. Continuing in this way, we see that

ϕ ' 2k−1〈〈a〉〉 ⊗ ϕk ⊥ 2k−2〈〈a〉〉 ⊗ µk−1 ⊥ · · · ⊥ 〈〈a〉〉 ⊗ µ1 ⊥ µ0

for some forms ϕk and µi over F satisfying dim µi ≤ ū(K) for all i. By Proposition
31.4, there exists an integer n such that 2n〈〈a〉〉 = 0 in W (F ). It follows that

dim ϕ ≤ (2n + · · ·+ 2 + 1)ū(K) ≤ 2n+1ū(K),

hence dimϕ is finite.
We now show that ū(F ) < 4ū(K). As ū(F ) is finite, there exists an anisotropic

form ϕ over F of dimension ū(F ). Let s : K → F be a nontrivial F -linear functional
satisfying s(1) = 0. We can write

ϕ ' µ ⊥ s∗(ψ)

with quadratic forms ψ over K and µ over F satisfying µ⊗NK/F is anisotropic by
Proposition 34.6. Then

dim s∗(ψ) ≤ 2ū(K) and dim µ ≤ ū(F )/2.

If dim s∗(ψ) = 2ū(K), then ψ is a ū(K)-dimensional form over K, hence universal
as every

(
ū(K)+1

)
-dimensional form is isotropic over the nonformally real field K.

In particular, ψ ' 〈x〉K ⊥ ψ1 for some x ∈ F×. Thus s∗(ψ) = s∗(ψ1) in W (F ), so
s∗(ψ) is isotropic, a contradiction. Therefore, we have dim s∗(ψ) < 2ū(K), hence

2ū(K) > dim s∗(ψ) = dim ϕ− dim µ ≥ ū(F )− ū(F )/2 ≥ ū(F )/2.

The result follows. ¤
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Proposition 36.13. Let K/F be a finite extension with F not formally real. Then
ū(F ) is finite if and only if ū(K) is finite.

Proof. If charF = 2, the result follows by Proposition 36.9, so we may assume
that char F 6= 2. By Corollary 36.7, we need only show if ū(K) is finite, then ū(F )
is also finite. Let L be the normal closure of K/F and E0 the fixed field of the
Galois group of L/F . Then E0/F is of odd degree as charF 6= 2. Let E be the
fixed field of a Sylow 2-subgroup of the Galois group of L/F . Then E/F is also
of odd degree. Therefore, if ū(E) is finite so is ū(F ) by Springer’s Theorem 18.5.
Hence we may assume that E = F . By Corollary 36.7, we have ū(L) is finite, so
we may assume that L = K and K/F is a Galois 2-extension. By induction on
[K : F ], we may assume that K/F is a quadratic extension, the case established in
Proposition 36.12. ¤

Let K/F be a normal extension of degree 2mr with r odd and F not formally
real. If ū(K) is finite, the argument in Proposition 36.13 and the bound in Propo-
sition 36.12 shows that ū(F ) ≤ 4rū(K). We shall improve this bound in Remark
37.6 below.

37. The u-invariant for formally real fields

If F is formally real and K/F finite, then ū(K) can be infinite and ū(F ) finite.
Indeed, let F0 be the euclidean field of real constructible numbers. Then there exist
extensions Er/F0 of degree r none of which are both pythagorean and formally
real. In particular, ū(Er) > 0. It is easy to see that ū(Er) ≤ 4. (In fact, it can be
shown that ū(Er) ≤ 2.) For example, E2 is the quadratic closure of the rational
numbers. Let F = F0((t1)) · · · ((tn)) · · · denote the field of iterated Laurent series
in infinitely many variables over F0. Then F is pythagorean by Example 36.2(1)
so ū(F ) = 0. However, the field Er((t1)) · · · ((tn)) · · · has infinite u-invariant by
Example 36.2(4). In fact, in [42] for each positive integer n, formally real fields Fn

are constructed with ū(Fn) = 2n and having a formally real quadratic extension
K/Fn with ū(K) = ∞ and formally fields F ′n are constructed with ū(F ′n) = 2n and
such that every finite nonformally real extension L of F has infinite ū-invariant.

However, we can determine when finiteness of the ū-invariant persists when
going up a quadratic extension and when coming down one. Since we already know
this when the base field is not formally real, we shall mostly be interested in the
formally real case. In particular, we shall assume that the fields in this section
are of characteristic different from 2 and hence the ū-invariant and u-invariant are
identical.

We need some preliminaries.

Lemma 37.1. Let F be a field of characteristic different from 2 and K = F (
√

a) a
quadratic extension of F . Let b ∈ F× \F×2 and ϕ ∈ annW (F )

(〈〈b〉〉) be anisotropic.
Then ϕ = ϕ1 + ϕ2 in W (F ) for some forms ϕ1 and ϕ2 over F satisfying:

(1) ϕ1 ∈ 〈〈a〉〉W (F ) ∩ annW (F )

(〈〈b〉〉) is anisotropic.
(2) ϕ2 ∈ annW (F )

(〈〈b〉〉).
(3) (ϕ2)K is anisotropic.

Proof. By Corollary 6.23 the dimension of ϕ is even. We induct on dim ϕ. If
ϕK is hyperbolic, then ϕ = ϕ1 works by Corollary 34.12 and if ϕK is anisotropic,
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then ϕ = ϕ2 works. So we may assume that ϕK is isotropic but not hyperbolic. In
particular, dim ϕ ≥ 4. By Proposition 34.8, we can write

ϕ ' x〈〈a〉〉 ⊥ µ

for some x ∈ F× and even-dimensional form µ over F . As ϕ ∈ annW (F )

(〈〈b〉〉), we
have 〈〈b〉〉 · µ = −x〈〈b, a〉〉 in W (F ), so dim

(〈〈b〉〉 ⊗ µ
)
an

= 0 or 4. Therefore, by
Proposition 6.25, we can write

µ ' µ1 ⊥ y〈〈c〉〉
for some y, c ∈ F× and even-dimensional form µ1 ∈ annW (F )

(〈〈b〉〉). Substituting
in the previous isometry and taking determinants, we see that ac ∈ D

(〈〈b〉〉) by
Proposition 6.25. Thus c = az for some z ∈ D

(〈〈b〉〉). Consequently,

ϕ ' x〈〈a〉〉 ⊥ y〈〈az〉〉 ⊥ µ1 = x〈〈a,−xyz〉〉+ y〈〈z〉〉+ µ1

in W (F ). Let µ2 '
(
y〈〈z〉〉 ⊥ µ1

)
an

. As y〈〈z〉〉 lies in annW (F )

(〈〈b〉〉), so does µ2

and hence also x〈〈a,−xyz〉〉. By induction on dimϕ, we can write µ2 = ϕ̃1 + ϕ̃2 in
W (F ) where ϕ̃1 satisfies condition (1) and ϕ̃2 satisfies conditions (2) and (3). It
follows that

ϕ1 '
(〈〈a,−xyz〉〉 ⊥ ϕ̃1

)
an

and ϕ2 ' ϕ̃2

work. ¤
Exercise 37.2. Let ϕ and ψ be 2-fold Pfister forms over a field of characteristic
not 2. Prove that the group ϕW (F ) ∩ annW (F )(ψ) ∩ I2(F ) is generated by 2-fold
Pfister forms ρ in annW (F )(ψ) that are divisible by ϕ. This exercise generalizes.
(Cf. Exercise 41.8 below.)

As we are interested in the case of fields of characteristic not 2, we shall show
that to test finiteness of the u-invariant, it suffices to look at annW (F )

(
2〈1〉). For

a field of characteristic not 2, let

u′(F ) := max
{

dim ϕ |ϕ is an anisotropic form over F and 2ϕ = 0 in W (F )
}

or ∞ if no such maximum exists.

Lemma 37.3. Let F be a field of characteristic not 2. Then u′(F ) is finite if
and only if u(F ) is finite. Moreover, if u(F ) is finite, then u(F ) = u′(F ) = 0 or
u′(F ) ≤ u(F ) < 2u′(F ).

Proof. We may assume that u′(F ) > 0, i.e., that F is not a formally real
pythagorean field. Let ϕ be an n-dimensional anisotropic form over F . Suppose
that n ≥ 2u′(F ). By Proposition 6.25, we can write ϕ ' µ1 ⊥ ϕ1 with µ1 ∈
annW (F )

(
2〈1〉) and 2ϕ1 anisotropic. By assumption, dim µ1 ≤ u′(F ). Thus

2u′(F ) ≤ dim ϕ = dim µ1 + dim ϕ1 ≤ u′(F ) + dim ϕ1,

hence 2u′(F ) ≤ dim2ϕ1. As (2ϕ)an ' 2ϕ1, we have dim(2ϕ)an ≥ 2u′(F ). Re-
peating the argument, we see inductively that dim(2mϕ)an ≥ 2u′(F ) for all m. In
particular, ϕ is not torsion. The result follows. ¤

Hoffmann has shown that there exist fields F satisfying u′(F ) < u(F ). (Cf.
[54].)

Let K/F be a quadratic extension. As it is not true that u(F ) is finite if and
only if u(K) is when F is formally real, we need a further condition for this to be
true. This condition is given by a relative u-invariant.
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Let F be a field of characteristic not 2 and L/F a field extension. The relative
u-invariant of L/F is defined as

u(L/F ) := max
{
dim(ϕL)an |ϕ a quadratic form over F

with ϕL torsion in W (L)
}

or ∞ if no such integer exists.
The introduction of this invariant and its study come from Lee in [91] and [40].

We shall prove

Theorem 37.4. Let F be a field of characteristic different than 2 and K a qua-
dratic extension of F . Then u(F ) and u(K/F ) are both finite if and only if u(K)
is finite. Moreover, we have:

(1) If u(F ) and u(K/F ) are both finite, then u(K) ≤ u(F ) + u(K/F ). If, in
addition, K is not formally real, then u(K) ≤ 1

2u(F ) + u(K/F ).
(2) If u(K) is finite, then u(K/F ) ≤ u(K) and u(F ) < 6u(K) or u(F ) =

u(K) = 0. If, in addition, K is not formally real, then u(F ) < 4u(K).

Proof. Let K = F (
√

a) and s∗ : W (K) → W (F ) be the transfer induced by
the F -linear functional defined by s(1) = 0 and s(

√
a) = 1.

Claim: Let ϕ be an anisotropic quadratic form over K such that s∗(ϕ) is torsion
in W (F ). Then there exist a form σ over F and a form ψ over K satisfying:

(a) dim σ = dim ϕ.
(b) ψ is a torsion form in W (K).
(c) dim ψ ≤ 2 dim ϕ and ϕ ' (σK ⊥ ψ)an.
(d) If s∗(ϕ) is anisotropic over F , then dim ϕ ≤ dim ψ.

In particular, if u(F ) is finite and s∗(ϕ) anisotropic and torsion, then dimϕ ≤ 1
2u(F )

and dimψ ≤ u(F ).
Let 2ns∗(ϕ) = 0 in W (F ) for some integer n. By Corollary 34.3 with ρ = 2n〈1〉,

there exists a form σ over F such that dim σ = dim ϕ and 2nϕ ' 2nσK . Let
ψ ' (ϕ ⊥ (−σ))an. Then ψ is a torsion form in W (K) as it has trivial total
signature. Condition (c) holds by construction and (d) holds as s∗(ψ) = s∗(ϕ) in
W (F ).

We now prove (1). Suppose that both u(F ) and u(K/F ) are finite. Let τ be
an anisotropic torsion form over K. By Proposition 34.1, there exists an isometry
τ ' ϕ ⊥ µK for some form τ over K satisfying s∗(ϕ) is anisotropic and some form
µ over F . As s∗(ϕ) = s∗(τ) is torsion, we can apply the claim to ϕ. Let σ over F
and ψ over K be forms as in the claim. By the last statement of the claim, we have
dim ϕ ≤ 1

2u(F ). In particular, we have dim ψ ≤ 2 dim ϕ ≤ u(F ) and ϕ = ψ + σK

in W (K). Since τ and ψ are torsion, so is (σ + µ)K . As τ = ψ +
(
(σ ⊥ µ)K

)
an

in
W (K), it follows that dim τ ≤ u(F ) + u(K/F ) as needed.

Finally, if K is not formally real, then as above, we have τ ' ϕ ⊥ µK with
dim ϕ ≤ 1

2u(F ). As every F -form is torsion in W (K), we have dim µK ≤ u(K/F )
and the proof of (1) is complete.

We now prove (2). Suppose that u(K) is finite. Certainly u(K/F ) ≤ u(K).
We show the rest of the first statement. By Lemma 37.3, it suffices to show that
u′(F ) ≤ 3u′(K). Let ϕ ∈ annW (F )

(
2〈1〉) be anisotropic. By Lemma 37.1 and
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Corollary 34.33, we can decompose ϕ = ϕ1 +ϕ2 in W (F ) with ϕ2 ∈ annW (F )

(
2〈1〉)

satisfying (ϕ2)K is anisotropic and ϕ1 is anisotropic over F and lies in

〈〈a〉〉W (F ) ∩ annW (F )

(
2〈1〉) ⊂ annW (F )

(〈〈a〉〉) ∩ annW (F )

(
2〈1〉)

using Lemma 34.33. In particular, (ϕ2)K ∈ annW (K)

(
2〈1〉) so dim ϕ2 ≤ u′(K).

Consequently, to show that u′(F ) ≤ 3u′(K), it suffices to show dim ϕ1 ≤ 2u′(K).
This follows from (i) of the following (with σ = ϕ1):

Claim: Let σ be a nondegenerate quadratic form over F .
(i) If σ ∈ annW (F )

(〈〈a〉〉) ∩ annW (F )

(
2〈1〉), then dim σan ≤ 2u′(K).

(ii) If σ ∈ annW (F )

(〈〈a〉〉) ∩Wt(F ), then dim σan ≤ 2u(K) with inequality if
K is not formally real.

By Corollary 34.33, in the situation of (i), there exists τ ∈ annW (K)

(
2〈1〉) such

that σ = s∗(τ). Then dim σan ≤ dim s∗(τan) ≤ 2 dim τan ≤ 2u′(K) as needed.
We turn to the proof of (ii) which implies the the bound on u(F ) in statement

(2) for arbitrary K (with σ = ϕ1). In the situation of (ii), we have dimσan ≤ u(K)
by Corollaries 34.12 and 34.32. If K is not formally real, then any u(K)-dimensional
form τ over K is universal. In particular, D(τ) ∩ F× 6= ∅ and (ii) follows.

Now assume that K is not formally real. Let ϕ be an anisotropic torsion form
over F of dimension u(F ). As im(s∗) = annW (F )

(〈〈a〉〉) by Corollary 34.12, using
Proposition 6.25, we have a decomposition ϕ ' ϕ3 ⊥ ϕ4 with ϕ4 a form over F
satisfying 〈〈a〉〉 ⊗ ϕ4 is anisotropic and ϕ3 ' s∗(τ) for some form τ over K. Since
ϕ3 lies in

s∗
(
W (K)

)
= s∗

(
Wt(K)

)
= annW (F )

(〈〈a〉〉) ∩Wt(F )
by Corollaries 34.12 and 34.32, we have dimϕ3 < 2u(K) by the claim above. As
〈〈a〉〉 ·ϕ4 = 〈〈a〉〉 ·ϕ in W (F ), hence is torsion, we have dim ϕ4 ≤ u(F )/2. Therefore,
2u(K) > dim ϕ3 = dim ϕ− dim ϕ4 ≥ u(F )− u(F )/2 and u(F ) < 4u(K). ¤

Of course, by Theorem 36.6 if F is not formally real and K = F (
√

a) is a
quadratic extension, then u(K) ≤ 3

2u(F ).

Corollary 37.5. Let F be a field of transcendence degree n over a real closed field.
Then u(F ) < 2n+2.

Proof. F
(√−1

)
is a Cn-field by Corollary 97.7. ¤

Remark 37.6. Let F be a field of characteristic not 2 and K/F a finite normal
extension. Suppose that u(K) is finite. If K/F is quadratic, then the proof of
Theorem 37.4 shows that u′(F ) ≤ 3u′(K). If K/F is of degree 2rm with m odd,
arguing as in Proposition 36.13, shows that u′(F ) ≤ 3ru′(K), hence u(F ) ≤ 2 ·
3ru(K).

One case where the bound in the remark can be sharpened is the following
which generalizes the case of a pythagorean field of characteristic different from 2.

Proposition 37.7. Let F be a field of characteristic different from 2 and K/F a
finite normal extension. If u(K) ≤ 2, then u(F ) ≤ 2.

Proof. By Proposition 35.1, we know for a field E that I2(E) is torsion-free if
and only if E satisfies A2, i.e., there are no anisotropic 2-fold torsion Pfister forms.
In particular, as u(K) ≤ 2, we have I2(K) is torsion-free. Arguing as in Proposition
36.13, we reduce to the case that K = F (

√
a) is a quadratic extension of F , hence
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I2(F ) is also torsion-free by Theorem 35.12. It follows that every torsion element
ρ in I(F ) lies in annW (F )

(
2〈1〉). In particular, by Proposition 6.25, we can write

ρ ' 〈〈w〉〉 mod I2(F ) for some w ∈ D
(
2〈1〉), hence ρ ' 〈〈w〉〉 some w ∈ D

(
2〈1〉)

and is universal. Consequently, every even-dimensional anisotropic torsion form
over F is of dimension at most two. Suppose that there exists an odd-dimensional
anisotropic torsion form ϕ over F . Then F is not formally real, hence all forms are
torsion. As every 2-dimensional form over F is universal by the above, we must
have dim ϕ = 1. The result follows. ¤
Corollary 37.8. Let F be a field of transcendence degree one over a real closed
field. Then u(F ) ≤ 2.

Exercise 37.9. Let F be a field of arbitrary characteristic and a ∈ F× totally
positive. If K = F (

√
a), then u(K) ≤ 2u(F ).

We next show if K/F is a quadratic extension with K not formally real, then
the relative u-invariant already determines finiteness. We note

Remark 37.10. Suppose that charF 6= 2 and K = F (
√

a) is a quadratic extension
of F that is not formally real. If ϕ is a nondegenerate quadratic form over F , then,
by Proposition 34.8, there exist forms ϕ1 and ψ such that ϕ ' 〈〈a〉〉 ⊗ ψ ⊥ ϕ1 with
dim ϕ1 ≤ u(K/F ).

We need the following simple lemma.

Lemma 37.11. Let F be a field of characteristic different from 2 and K = F (
√

a)
a quadratic extension of F that is not formally real. Suppose that u(K/F ) < 2m.
Then Im+1(F ) is torsion-free, Im+1(K) = 0, and the exponent of Wt(F ) is at most
2m+1.

Proof. If ρ ∈ Pm(F ), then r∗K/F (ρ) = 0 as K is not formally real. So Im(F ) =
〈〈a〉〉Im−1(F ) by Theorem 34.22. It follows that Im+1(K) = 0 by Lemma 34.16.
Hence Im+1

(
F (
√−1)

)
= 0 by Corollary 35.14. The result follows by Corollary

35.27. ¤
If F is a local field in the above, then one can show that u(K/F ) = 2 for any

quadratic extension K of F , but neither I2(F ) nor I2(K) is torsion-free.

Theorem 37.12. Let F be a field of characteristic different from 2. Suppose that
K is a quadratic extension of F with K not formally real. Then u(K/F ) is finite
if and only if u(K) is finite.

Proof. By Theorem 37.4, we may assume that u(K/F ) is finite and must
show that u(F ) is also finite. Let ϕ be an anisotropic form over F satisfying 2ϕ = 0
in W (F ). By the lemma, In−1(F ) is torsion-free for some n ≥ 1. We apply the
Remark 37.10 iteratively. In particular, if dimϕ is large, then ϕ ' xρ ⊥ ψ for some
ρ ∈ Pn(F ) (cf. the proof of Proposition 36.12). Indeed, computation shows that
if u(K/F ) < 2m and dim ϕ > 2m(2m+2 − 1), then n = m + 2 works. As ρ is an
anisotropic Pfister form and In(F ) is torsion-free, 2ρ is also anisotropic. Scaling ϕ,
we may assume that x = 1. Write ψ ' ϕ1 ⊥ ϕ2 with 2ϕ1 = 0 in W (F ) and 2ϕ2

anisotropic. Then we have 2ρ ' 2(−ϕ2). If b ∈ D(−ϕ2), then 2〈〈b〉〉 · ρ is isotropic,
hence is zero in W (F ). As In(F ) is torsion-free, 〈〈b〉〉 ·ρ = 0 in W (F ) and b ∈ D(ρ).
It follows that ϕ cannot be anisotropic if dimϕ > 2m(2m+2 − 1). By Lemma 37.3,
it follows that u(F ) ≤ 2m+1(2m+2− 1) and the result follows by Theorem 37.4. ¤
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The bounds in the proof can be improved but are still very weak. The theorem
does not generalize to the case when K is formally real. Indeed, let F0 be a
formally real subfield of the algebraic closure of the rationals having square classes
represented by ±1,±w where w is a sum of (two) squares. Let F = F0((t1))((t2)) · · ·
and K = F (

√
w). Then, using Corollary 34.12, we see that u(K/F ) = 0 but both

u(F ) and u(K) are infinite.

Corollary 37.13. Let F be a field of characteristic different from 2. Then u(K)
is finite for all finite extensions of F if and only if u

(
F (
√−1)

)
is finite if and only

if u(F (
√−1)/F ) is finite.

Remark 37.14. Using the theory of abstract Witt rings, Schubert proved that if
F is a formally real field, then u(K) is finite for all finite extensions of F if and only
if u(F ) is finite and In+1

red (F ) = 2In
red(F ) for some n if and only if u

(
F (
√−1)

)
is

finite (cf. [122]). Recall that the condition on the reduced Witt ring is equivalent
to the cokernel of the total signature map having finite exponent by Proposition
35.23.

38. Construction of fields with even u-invariant

In 1953 Kaplansky conjectured in [68] that u(F ) if finite was always a power
of two. This was shown to be false in [101] where it was shown there exist fields
having u-invariant six and afterwards in [102] having u-invariant any even integer.
Subsequently, Izhboldin constructed fields having u-invariant 9 in [64] and Vishik
has constructed fields having u-invariant 2r + 1 for every r ≥ 3 in [135].

By taking iterated Laurent series fields over the complex numbers, we can
construct fields whose u-invariant is 2n for any n ≥ 0. (We also know that formally
real pythagorean fields have u-invariant zero.) In this section, given any even integer
m > 0, we construct fields whose u-invariant is m. This construction was first done
in [102].

Lemma 38.1. Let ϕ ∈ I2
q (F ) be a form of dimension 2n ≥ 2. Then ϕ is a sum of

n− 1 general quadratic 2-fold Pfister forms in I2
q (F ) and ind clif(ϕ) ≤ 2n−1.

Proof. We induct on n. If n = 1, we have ϕ = 0 and the statement is
clear. If n = 2, ϕ is a general 2-fold Pfister form and by Proposition 12.4, we
have clif(ϕ) = [Q], where Q is a quaternion algebra such that NrdQ is similar to ϕ.
Hence ind clif(ϕ) ≤ 2.

In the case n ≥ 3 write ϕ = σ ⊥ ψ where σ is a binary form. Choose a ∈ F×

such that the form aσ ⊥ ψ is isotropic, i.e., aσ ⊥ ψ ' H ⊥ µ for some form µ of
dimension 2n− 2. We have in Iq(F ):

ϕ = σ + ψ = 〈〈a〉〉σ + µ

and therefore clif(ϕ) = clif
(〈〈a〉〉σ) · clif(µ) by Lemma 14.2. Applying the induction

hypothesis to µ, we have ϕ is a sum of n− 1 general quadratic 2-fold Pfister forms
and

ind clif(ϕ) ≤ ind clif
(〈〈a〉〉σ) · ind clif(µ) ≤ 2 · 2n−2 = 2n−1. ¤

Corollary 38.2. In the condition of the lemma assume that ind clif(ϕ) = 2n−1.
Then ϕ is anisotropic.
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Proof. Suppose ϕ is isotropic, i.e., ϕ ' H ⊥ ψ for some ψ of dimension
2n − 2. Applying Lemma 38.1 to ψ, we have ind clif(ϕ) = ind clif(ψ) ≤ 2n−2, a
contradiction. ¤

Lemma 38.3. Let D be a tensor product of n − 1 quaternion algebras (n ≥ 1).
Then there is a ϕ ∈ I2

q (F ) of dimension 2n such that clif(ϕ) = [D] in Br(F ).

Proof. We induct on n. The case n = 1 follows from Proposition 12.4. If
n ≥ 2 write D = Q⊗B, where Q is a quaternion algebra and B is a tensor product
of n − 2 quaternion algebras. By the induction hypothesis, there is ψ ∈ I2

q (F )
of dimension 2n − 2 such that clif(ψ) = [B]. Choose a quadratic 2-fold Pfister
form σ with clif(σ) = [Q] and an element a ∈ F× such that aσ ⊥ ψ is isotropic,
i.e., aσ ⊥ ψ ' H ⊥ ϕ for some ϕ of dimension 2n. Then ϕ works as clif(ϕ) =
clif(σ) · clif(ψ) = [Q] · [B] = [D]. ¤

Let A be a set (of isometry classes) of irreducible quadratic forms. For any
finite subset S ⊂ A let XS be the product of all the quadrics Xϕ with ϕ ∈ S.
If S ⊂ T are two subsets of A we have the dominant projection XT → XS and
therefore the inclusion of function fields F (XS) → F (XT ). Set FA = colim FS over
all finite subsets S ⊂ A. By construction, all quadratic forms ϕ ∈ A are isotropic
over the field extension FA/F . A field is called 2-special if every finite extension of
it has degree a power of 2 (cf. §101.B).

Theorem 38.4. Let F be a field and n ≥ 1 an integer. Then there is a field
extension E of F satisfying:

(1) u(E) = 2n.
(2) I3

q (E) = 0.
(3) E is 2-special.

Proof. To every field L, we associate three fields L(1), L(2), and L(3) as follows:
Let A be the set of isometry classes of all nondegenerate quadratic forms over

L of dimension 2n + 1. We set L(1) = LA. Every nondegenerate quadratic form
over L of dimension 2n + 1 is isotropic over L(1).

Let B be the set of isometry classes of all quadratic 3-fold Pfister forms over
L. We set L(2) = LB. By construction, every quadratic 3-fold Pfister form over L
is isotropic over L(2).

Finally, let L(3) be a 2-special closure of L (cf. §101.B).
Let D be a central division L-algebra of degree 2n−1. By Corollaries 30.9,

30.11, and 98.5, the algebra D remains a division algebra when extended to L(1),
L(2), or L(3).

Let L be a field extension of F such that there is a central division algebra D
over L that is a tensor product of n−1 quaternion algebras (cf. Proposition 98.18).
By Lemma 38.3, there is a ϕ ∈ I2

q (L) of dimension 2n such that clif(ϕ) = [D] in
Br(L).

We construct a tower of field extensions E0 ⊂ E1 ⊂ E2 ⊂ . . . by induction.
We set E0 = L. If Ei is defined we set Ei+1 = (((Ei)(1))(2))(3). Note that the field
Ei+1 is 2-special and all nondegenerate quadratic forms of dimension 2n + 1 and
all 3-fold Pfister forms over Ei are isotropic over Ei+1. Moreover, the algebra D
remains a division algebra over Ei+1.

Now set E =
⋃

Ei. Clearly, E has the following properties:
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(i) All (2n + 1)-dimensional Pfister forms over E are isotropic. In particular,
u(E) ≤ 2n.

(ii) The field E is 2-special.
(iii) All quadratic 3-fold Pfister forms over E are isotropic. In particular,

I3
q (E) = 0 .

(iv) The algebra DE is a division algebra.

As clif(ϕE) = [DE ], it follows from Corollary 38.2 that ϕE is anisotropic. In
particular, u(E) = 2n. ¤

39. Addendum: Linked fields and the Hasse number

Theorem 39.1. Let F be a field. Then the following conditions are equivalent:

(1) Every pair of quadratic 2-fold Pfister forms over F are linked.
(2) Every 6-dimensional form in I2

q (F ) is isotropic.
(3) The tensor product of two quaternion algebras over F is not a division

algebra.
(4) Every two division quaternion algebras over F have isomorphic separable

quadratic subfields.
(5) Every two division quaternion algebras over F have isomorphic quadratic

subfields.
(6) The classes of quaternion algebras in Br(F ) form a subgroup.

Proof. (1) ⇒ (2): Let ψ be a 6-dimensional form in I2
q (F ). By Lemma 38.1,

we have ψ = ϕ1+ϕ2, where ϕ1 and ϕ2 are general quadratic 2-fold Pfister forms. By
assumption, ϕ1 and ϕ2 are linked. Therefore, the class of ψ in I2

q (F ) is represented
by a form of dimension 4, hence ψ is isotropic.

(2) ⇒ (1): Let ϕ1 and ϕ2 be two quadratic 2-fold Pfister forms over F . Then
ϕ1 − ϕ2 = ψ for some 6-dimensional form ψ ∈ I2

q (F ). As ψ is isotropic, we have
i0(ϕ1 ⊥ −ϕ2) ≥ 2, i.e., ϕ1 and ϕ2 are linked.

(1) ⇒ (4): Let Q1 and Q2 be division quaternion algebras over F . Let ϕ1 and
ϕ2 be the reduced norm quadratic forms of Q1 and Q2, respectively. By assumption,
ϕ1 and ϕ2 are linked. In particular, ϕ1 and ϕ2 are split by a separable quadratic
field extension L/F . Hence L splits Q1 and Q2 and therefore L is isomorphic to
subfields of Q1 and Q2.

(3) ⇔ (4) ⇔ (5) is proven in Theorem 98.19.

(3) ⇔ (6) is obvious.

(4) ⇒ (1): Let ϕ1 and ϕ2 be two anisotropic 2-fold Pfister forms over F . Let
Q1 and Q2 be two division quaternion algebras with the reduced norm forms ϕ1 and
ϕ2, respectively. By assumption, Q1 and Q2 have quadratic subfields isomorphic
to a separable quadratic extension L/F . By Example 9.7, the forms ϕ1 and ϕ2 are
divisible by the norm form of L/F and hence are linked. ¤

A field F is called linked if F satisfies the conditions of Theorem 39.1.
For a formally real field F , the u-invariant can be thought of as a weak Hasse

Principle, i.e., every locally hyperbolic form of dimension > u(F ) is isotropic. A
variant of the u-invariant introduced in [31] naturally arises. We call a quadratic
form ϕ over F locally isotropic or totally indefinite if ϕFP

is isotropic at each real
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closure FP of F (if any), i.e., ϕ is indefinite at each real closure of F (if any). The
Hasse number of a field F is defined to be

ũ(F ) := max
{

dim ϕ |ϕ is a locally isotropic anisotropic form over F
}

or ∞ if no such maximum exists. For fields that are not formally real this coincides
with the ū-invariant. If a field is formally real, finiteness of its ũ-invariant is a
very strong condition and is a form of a strong Hasse Principle. For example, if
F is a global field, then ũ(F ) = 4 by Meyer’s Theorem [104] (a forerunner of the
Hasse-Minkowski Principle [121]) and if F is the function field of a real curve,
then ũ(F ) = 2 (cf. Example 39.11 below), but if F/R is formally real and finitely
generated of transcendence degree > 1, then, although u(F ) is finite, its Hasse
number ũ(F ) is infinite.

Exercise 39.2. Show, if the Hasse number is finite, then it cannot be 3, 5, or 7.

We establish another characterization of ũ(F ) using a concept introduced in
[38]. We say F satisfies Property Hn with n > 1 if there exist no anisotropic,
locally isotropic forms of dimension n. Thus if ũ(F ) is finite, then

ũ(F ) + 1 = min
{
n |F satisfies Hm for all m ≥ n

}
.

Remark 39.3. Every 6-dimensional form in I2
q (F ) is locally isotropic, since every

element in I2(F ) has signature divisible by 4 at every ordering. Hence if ũ(F ) ≤ 4,
then F is linked by Theorem 39.1.

Lemma 39.4. Let F be a linked field of characteristic not 2. Then
(1) Any pair of n-fold Pfister forms are linked for n ≥ 2.
(2) If ϕ ∈ Pn(F ), then ϕ ' 〈〈−w1, x〉〉 if n = 2 and ϕ = 2n−3〈〈−w1,−w2, x〉〉

if n ≥ 3 for some w1, w2 ∈ D
(
3〈1〉) and x ∈ F×.

(3) For every n ≥ 0 and ϕ ∈ In(F ), there exists an integer m and ρi ∈ GPi(F )
with n ≤ i ≤ m satisfying ϕ =

∑m
i=n ρi in W (F ). Moreover, if ϕ is a

torsion element, then each ρi is torsion.
(4) I4(F ) is torsion-free.

Proof. (1), (2): Any pair of n-fold Pfister forms is easily seen to be linked
by induction, so (1) is true. As any 2-fold Pfister form is linked to 4〈1〉, statement
(2) holds for n = 2. Let ρ = 〈〈a, b, c〉〉 be a 3-fold Pfister form, then applying
the n = 2 case gives ρ = 〈〈w1, x, y〉〉 = 〈〈w1, w2, z〉〉 for some x, y, z ∈ F× and
w1, w2 ∈ D

(
3〈1〉). This establishes the n = 3 case. Let ρ = 〈〈a, b, c, d〉〉 be a 4-fold

Pfister form. By assumption, there exist x, y, z ∈ F× such that 〈〈a, b〉〉 ' 〈〈x, y〉〉
and 〈〈c, d〉〉 ' 〈〈x, z〉〉. Thus

(39.5) ρ = 〈〈a, b, c, d〉〉 ' 〈〈x, y, x, z〉〉 ' 〈〈−1, y, x, z〉〉 = 2〈〈y, x, z〉〉.
Statement (2) follows.

(3): Let ψ and τ be n-fold Pfister forms. As they are linked, ψ − τ = a〈〈b〉〉 · µ
in W (F ) for some (n− 1)-fold Pfister form µ and a, b ∈ F×. Then

xψ + yτ = xψ − xτ + xτ + yτ = ax〈〈b〉〉 · µ + x〈〈−xy〉〉 · τ.
The first part now follows by repeating this argument. If ϕ is torsion, then induc-
tively, each ρi is torsion by the Hauptsatz 23.7, so the second statement follows.

(4): By (3), it suffices to show there are no anisotropic torsion n-Pfister forms
with n > 3. By Proposition 35.3, it suffices to show if ρ ∈ P4(F ) satisfies 2ρ = 0
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in W (F ), then ρ = 0 in W (F ). By Lemma 35.2, we can write ρ ' 〈〈a, b, c, w〉〉
with w ∈ D

(
2〈1〉) and a, b, c ∈ F×. Applying equation (39.5) with d = w, we have

ρ ' 2〈〈y, x, z〉〉 ' 2〈〈y, c, w〉〉 which is hyperbolic. The result follows. ¤
Lemma 39.6. Let charF 6= 2 and n ≥ 2. If F is linked and F satisfies Hn, then
it satisfies Hn+1.

Proof. Let ϕ be an (n+1)-dimensional anisotropic quadratic form with n ≥ 2.
Replacing ϕ by xϕ for an appropriate x ∈ F×, we may assume that ϕ = 〈w, b, wb〉 ⊥
ϕ1 for some w, b ∈ F× and a form ϕ1 over F and by Lemma 39.4 that w ∈ D

(
3〈1〉).

Let ϕ2 = 〈w, b〉 ⊥ ϕ1. As sgnP 〈b〉 = sgnP 〈wb〉 for all P ∈ X(F ), the form ϕ is
locally isotropic if and only if ϕ2 is. The result follows by induction. ¤
Remark 39.7. If charF 6= 2 and n ≥ 4, then F satisfies Property Hn+1 if it
satisfies Property Hn. However, in general, H3 does not imply H4 (cf. [38]).

Exercise 39.8. Let F be a formally real pythagorean field. Then ũ(F ) is finite if
and only if I2(F ) = 2I(F ). Moreover, if this is the case, then ũ(F ) = 0.

The following theorem from [31] strengthens the result in [35].

Theorem 39.9. Let F be a linked field of characteristic not 2. Then u(F ) = ũ(F )
and ũ(F ) = 0, 1, 2, 4, or 8.

Proof. We first show that ũ(F ) = 0, 1, 2, 4, or 8. We know that I4(F ) is
torsion-free by Lemma 39.4. We first show that F satisfies H9, hence ũ(F ) ≤ 8 by
Lemma 39.6. Let ϕ be a 9-dimensional locally isotropic form over F . Replacing ϕ
by xϕ for an appropriate x ∈ F×, we can assume that ϕ = 〈1〉+ ϕ1 in W (F ) with
ϕ1 ∈ I2(F ) using Proposition 4.13. By Lemma 39.4, we have a congruence

(39.10) ϕ ≡ 〈1〉+ ρ2 − ρ3 mod I4(F )

for some ρi ∈ Pi(F ) with i = 2, 3. Write ρ2 ' 〈〈a, b〉〉 and ρ3 ' 〈〈c, d, e〉〉. As F is
linked, we may assume that e = b and −d ∈ DF (ρ′2). Thus we have

ϕ ≡ 〈1〉+ 〈〈a, b〉〉 − 〈〈c, d, b〉〉
≡ 〈1〉 − d

(〈〈a, b〉〉 − 〈〈c, b〉〉)− 〈〈c, b〉〉
≡ −cd〈〈ac, b〉〉 − 〈〈c, b〉〉′ mod I4(F ).

Let µ = ϕ ⊥ cd〈〈ac, b〉〉 ⊥ 〈〈c, b〉〉′ be a locally isotropic form over F lying in I4(F ).
In particular, for all P ∈ X(F ), we have 16 | sgnP µ. As the locally isotropic form µ
is 16-dimensional, | sgnP µ| < 16 for all P ∈ X(F ), so sgnP µ = 0 for all P ∈ X(F )
and µ ∈ I4

t (F ) = 0. Consequently, ϕ = −cd〈〈ac, b〉〉 ⊥ (−〈〈c, b〉〉′) in W (F ), so ϕ is
isotropic and ũ(F ) ≤ 8.

Suppose that ũ(F ) < 8. Then there are no anisotropic torsion 3-fold Pfister
forms over F . It follows that I3(F ) is torsion-free by Lemma 39.4. We show
ũ(F ) ≤ 4. To do this it suffices to show that F satisfies H5 by Lemma 39.6. Let
ϕ be a 5-dimensional, locally isotropic space over F . Arguing as above but going
mod I3(F ), we may assume that

ϕ ≡ 〈1〉 − 〈〈a, b〉〉 = −〈〈a, b〉〉′ mod I3(F ).

Let µ = ϕ ⊥ 〈〈a, b〉〉′ be an 8-dimensional, locally isotropic form over F lying in
I3(F ). As above, it follows that µ is locally hyperbolic, hence µ ∈ I3

t (F ) = 0. Thus
ϕ = −〈〈a, b〉〉′ in W (F ) so it is isotropic and ũ(F ) < 4. In a similar way, we see that
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ũ(F ) = 0, 1, 2 are the only other possibilities. This shows that ũ(F ) = 0, 1, 2, 4, 8.
The argument above and Lemma 39.4 show that u(F ) = ũ(F ). ¤

Note the proof shows that if F is linked and In(F ) is torsion-free, then ũ(F ) ≤
2n−1.

It is still unknown whether Theorem 39.9 is true if charF = 2.

Example 39.11. (1) If F
(√−1

)
is a C1 field, then I2

(
F (
√−1)

)
= 0. It follows

that I2(F ) = 2I(F ) and is torsion-free by Corollary 35.14 and Proposition 35.1 (or
Corollary 35.27). In particular, F is linked and ũ(F ) ≤ 2.

(2) If F is a local or global field, then ũ(F ) = 4.
(3) Let F0 be a local field and F = F0((t)) be a Laurent series field. As

u(F0) = 4, and F is not formally real, we have ũ(F ) = u(F ) = 8. If charF 6= 2,
this field F is linked by the following exercise:

Exercise 39.12. Let F be a field of characteristic not 2. Show that the field F ((t))
is linked if and only if there exist no 4-dimensional anisotropic quadratic forms over
F0 of nontrivial discriminant.

There exist linked formally real fields with Hasse number 8, but the construction
of such fields is more delicate (cf. [42]).

Remark 39.13. Let F be a formally real field. Then it can be shown that ũ(F )
is finite if and only if u(F ) is finite and I2(Fpy) = 2In(Fpy) (cf. [42]). If both of
these invariants are finite, they may be different (cf. [112].)

Remark 39.14. We say that a formally real field F satisfies condition Sn if the
map s∗ : In

red

(
F (
√

w)
) → In

red(F ) induced by s : F (
√

w) → F with s(1) = 0 for
all w ∈ D

(∞〈1〉) is surjective (cf. Exercise 35.4). In [42], it is shown that ũ(F )
is finite if and only if u(F ) is finite, F satisfies S1, and str(F ) ≤ 1. Moreover, it
is also shown in [42] that str(Fpy) ≤ n if and only if str(F ) ≤ n and F satisfies
Sn. This last statement is the real analog of the first three conditions of Corollary
35.27.





CHAPTER VII

Applications of the Milnor Conjecture

40. Exact sequences for quadratic extensions

In this section, we derive the first consequences of the validity of the Milnor
Conjecture for fields of characteristic different from 2. In particular, we show that
the infinite complexes (34.20) and (34.21) of the powers of I and Ī arising from a
quadratic extension of a field of characteristic different from 2 are in fact exact as
shown in the paper [107] of Orlov, Vishik, and Voevodsky. For fields of character-
istic 2, we also show this to be true for separable quadratic extensions as well as
proving the exactness of the corresponding complexes (34.27) and (34.28) for purely
inseparable quadratic extensions. In addition, we show that for all fields, the ideals
In
q (F ) coincide with the ideals Jn(F ) defined in terms of the splitting patterns of

quadratic forms.
We need the following lemmas.

Lemma 40.1. Let K/F be a quadratic field extension and s : K → F a nonzero
F -linear functional. Then for every n ≥ 0, the diagram

kn(K)
cK/F−−−−→ kn(F )

fn

y
yfn

I
n
(K) s∗−−−−→ I

n
(F )

commutes where the vertical homomorphisms are defined in (5.1).

Proof. As all the maps in the diagram are K∗(F )-linear, in view of Lemma
34.16, it is sufficient to check commutativity only when n = 1. The statement
follows now from Corollary 34.19 and Fact 100.8. ¤

Lemma 40.2. Suppose that F is a field of characteristic 2 and K/F a quadratic
field extension. Let s : K → F be a nonzero F -linear functional. Then the diagram

I
n

q (K) s∗−−−−→ I
n

q (F )

ēn

y
yēn

Hn(K)
cK/F−−−−→ Hn(F )

is commutative.

Proof. It follows from Lemma 34.16 that it is sufficient to prove the statement
in the case n = 1. This follows from Lemmas 34.14 and 34.18, since the corestriction
map cK/F : H1(K) → H1(F ) is induced by the trace map TrK/F : K → F (cf.
Example 101.2). ¤

177
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We set In(F ) = W (F ) if n ≤ 0.
We first consider the case charF 6= 2.

Theorem 40.3. Suppose that F is a field of characteristic different from 2 and
K = F (

√
a)/F a quadratic extension with a ∈ F×. Let s : K → F be an F -linear

functional such that s(1) = 0. Then the following infinite sequences are exact:

· · · s∗−→ In−1(F )
·〈〈a〉〉−−−→ In(F )

rK/F−−−→ In(K) s∗−→ In(F )
·〈〈a〉〉−−−→ In+1(F ) → · · · ,

· · · s∗−→ I
n−1

(F )
·〈〈a〉〉−−−→ I

n
(F )

rK/F−−−→ I
n
(K) s∗−→ I

n
(F )

·〈〈a〉〉−−−→ I
n+1

(F ) → · · · .

Proof. Consider the diagram

kn−1(F )
·{a}−−−−→ kn(F )

rK/F−−−−→ kn(K)
cK/F−−−−→ kn(F )

·{a}−−−−→ kn+1(F )y
y

y
y

y

I
n−1

(F )
·〈〈a〉〉−−−−→ I

n
(F )

rK/F−−−−→ I
n
(K) s∗−−−−→ I

n
(F )

·〈〈a〉〉−−−−→ I
n+1

(F )

where the vertical homomorphisms are defined in (5.1). It follows from Lemma 40.1
that the diagram is commutative. By Fact 5.15, the vertical maps in the diagram
are isomorphisms. The top sequence in the diagram is exact by Proposition 101.10.
Therefore, the bottom sequence is also exact.

To prove exactness of the first sequence in the statement consider the commu-
tative diagram

In+1(F )→ In+1(K)→ In+1(F )→ In+2(F )→ In+2(K)
y

y
y

y
y

In−1(F )→ In(F ) → In(K) → In(F ) → In+1(F )→ In+1(K)
y

y
y

y
y

I
n−1

(F )→ I
n
(F ) → I

n
(K) → I

n
(F ) → I

n+1
(F )

with the horizontal sequences considered above and natural vertical maps. By the
first part of the proof the bottom sequence is exact. Therefore, exactness of the
middle sequence implies exactness of the top one. Thus the statement follows by
induction on n (with the base of the induction given by Corollary 34.12). ¤

Remark 40.4. Let charF 6= 2. Then the second exact sequence in Theorem 40.3
can be rewritten as

GW (K)
s∗

%%KKKKKKKKKK

GW (F )

rK/F

99ssssssssss
GW (F )

·〈〈a〉〉
oo

is exact (cf. Corollary 34.12).

Now consider the case of fields of characteristic 2. We consider separately the
cases of separable and purely inseparable quadratic field extensions.
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Theorem 40.5. Suppose that F is a field of characteristic 2 and K/F a separable
quadratic field extension. Let s : K → F be a nonzero F -linear functional such that
s(1) = 0. Then the following sequences are exact:

0 → In(F )
rK/F−−−→ In(K) s∗−→ In(F )

·NK/F−−−−→ In+1
q (F )

rK/F−−−→ In+1
q (K) s∗−→ In+1

q (F ) → 0,

0 → I
n
(F )

rK/F−−−→ I
n
(K) s∗−→ I

n
(F )

·NK/F−−−−→ I
n+1

q (F )
rK/F−−−→ I

n+1

q (K) s∗−→ I
n+1

q (F ) → 0.

Proof. Consider the diagram

0 → kn(F )
rK/F−−−−→ kn(K)

cK/F−−−−→ kn(F )
y

y
y

0 → I
n
(F )

rK/F−−−−→ I
n
(K) s∗−−−−→ I

n
(F )

kn(F )
·[K]−−−−→ Hn+1(F )

rK/F−−−−→ Hn+1(K)
cK/F−−−−→ Hn+1(F ) → 0

y
x

x
x

I
n
(F )

·NK/F−−−−→ I
n+1

q (F )
rK/F−−−−→ I

n+1

q (K) s∗−−−−→ I
n+1

q (F ) → 0

where the vertical homomorphisms are defined in (5.1) and Fact 16.2. The middle
map in the top row is the multiplication by the class [K] ∈ H1(F ). By Proposition
101.12, the top sequence is exact. By Facts 5.15 and 16.2, the vertical maps are
isomorphisms. Therefore, the bottom sequence is exact.

Exactness of the second sequence in the statement follows by induction on n
from the first part of the proof and commutativity of the diagram

0 → In+1(F )→ In+1(K)→ In+1(F )→ In+2
q (F )→ In+2

q (K)→ In+2
q (F ) → 0

y
y

y
y

y
y

0 → In(F ) → In(K) → In(F ) → In+1
q (F )→ In+1

q (K)→ In+1
q (F ) → 0

y
y

y
y

y
y

0 → I
n
(F ) → I

n
(K) → I

n
(F ) → I

n+1

q (F )→ I
n+1

q (K)→ I
n+1

q (F ) → 0.

The base of the induction follows from Corollary 34.15. ¤

Theorem 40.6. Suppose that F is a field of characteristic 2 and K/F a purely
inseparable quadratic field extension. Let s : K → F be an F -linear functional such
that s(1) = 0. Then the following sequences are exact:

· · · s∗−→ In(F )
rK/F−−−→ In(K) s∗−→ In(F )

rK/F−−−→ In(K) s∗−→ · · · ,

· · · s∗−→ I
n
(F )

rK/F−−−→ I
n
(K) s∗−→ I

n
(F )

rK/F−−−→ I
n
(K) s∗−→ · · · .
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Proof. Consider the diagram

kn(F )
rK/F−−−−→ kn(K)

cK/F−−−−→ kn(F )
rK/F−−−−→ kn(K)y

y
y

y
I

n
(F )

rK/F−−−−→ I
n
(K) s∗−−−−→ I

n
(F )

rK/F−−−−→ I
n
(K)

where the vertical homomorphisms are defined in (5.1). The diagram is commuta-
tive by Lemma 40.1. By Fact 5.15, the vertical maps in the diagram are isomor-
phisms. The top sequence in the diagram is exact by Proposition 100.12. Therefore,
the bottom sequence is also exact. The proof of exactness of the second sequence in
the statement of the theorem is similar to the one in Theorems 40.3 and 40.5. ¤

For further applications, we shall also need the following result which follows
immediately from the validity of the Milnor Conjecture proven by Voevodsky in
[136] and Orlov, Vishik, and Voevodsky in [107, Th. 2.1]:

Fact 40.7. Let charF 6= 2 and let ρ be a quadratic n-fold Pfister form over F .
Then the sequence

∐
H∗(L)

∑
cL/F−−−−−→ H∗(F )

∪en(ρ)−−−−→ H∗+n(F )
rF (ρ)/F−−−−−→ H∗+n

(
F (ρ)

)
,

is exact, where the direct sum is taken over all quadratic field extensions L/F such
that ρL is isotropic.

Fact 40.8 (cf. [13, Th. 5.4]). Let charF = 2 and let ρ be a quadratic n-fold Pfister
form over F . Then the kernel of rF (ρ)/F : Hn(F ) → Hn

(
F (ρ)

)
coincides with

{0, en(ρ)}.
Corollary 40.9. Let ρ be a quadratic n-fold Pfister form over an arbitrary field F .
Then the kernel of the natural homomorphism I

n

q (F ) → I
n

q

(
F (ρ)

)
coincides with

{0, ρ̄}.
Proof. Under the isomorphism I

n

q (F ) ∼→ Hn(F ) (cf. Fact 16.2), the homo-
morphism in the statement is identified with Hn(F ) → Hn

(
F (ρ)

)
. The statement

now follows from Fact 40.7 if charF 6= 2 and Fact 40.8 if charF = 2. ¤

The following statement generalizes Proposition 25.13 and was first proven by
Orlov, Vishik, and Voevodsky in [107].

Theorem 40.10. If F is a field, then Jn(F ) = In
q (F ) for every n ≥ 1.

Proof. By Corollary 25.12, we have the inclusion In
q (F ) ⊂ Jn(F ). Let ϕ ∈

Jn(F ). We show by induction on n that ϕ ∈ In
q (F ). As ϕ ∈ Jn−1(F ), by the

induction hypothesis, we have ϕ ∈ In−1
q (F ). The form ϕ is a sum of m general

(n − 1)-fold Pfister forms in In−1
q (F ) for some m. Let ρ be one of them. Let

K = F (ρ). Since ϕK is a sum of m−1 general (n−1)-Pfister forms in In−1
q (K), by

induction on m we have ϕK ∈ In
q (K). By Corollary 40.9, we have either ϕ ∈ In

q (F )
or ϕ ≡ ρ modulo In

q (F ). But the latter case does not occur as ϕ ∈ Jn(F ) and
ρ /∈ Jn(F ). ¤
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41. Annihilators of Pfister forms

The main purpose of this section is to establish the generalization of Corollary
6.23 and Theorem 9.12 on the annihilators of bilinear and quadratic Pfister forms
and show these annihilators respect the grading induced by the fundamental ideal.
We even show that if α is a bilinear or quadratic Pfister form, then the annihilator
annW (F )(α) ∩ In(F ) is not only generated by bilinear Pfister forms annihilated by
α but is, in fact, generated by bilinear n-fold Pfister forms of the type b ⊗ c with
b ∈ annW (F )(α) a 1-fold bilinear Pfister form and c a bilinear (n − 1)-fold Pfister
form. In particular, Pfister forms of the type 〈〈w, a2, . . . , an〉〉 with w ∈ D

(∞〈1〉)
and ai ∈ F× generate In

t (F ), thus solving the problems raised at the end of §33.
These results first appeared in [8].

Let F be a field. The smallest integer n such that In+1(F ) = 2In(F ) and
In+1(F ) is torsion-free is called the stable range of F and is denoted by st(F ). We
say that F has finite stable range if such an n exists and write st(F ) = ∞ if such
an n does not exist. By Corollary 35.30, a field F has finite stable range if and only
if In+1(F ) = 2In(F ) for some integer n. If F is not formally real, then st(F ) is
the smallest integer n such that In+1(F ) = 0. If F is formally real, then it follows
from Corollary 35.27 that st(F ) = st

(
F (
√−1)

)
, i.e., st(F ) is the smallest integer n

such that In+1
(
F (
√−1)

)
= 0.

Lemma 41.1. Suppose that F has finite transcendence degree n over its prime
subfield. Then st(F ) ≤ n + 2 if charF = 0 and st(F ) ≤ n + 1 if charF > 0.

Proof. If the characteristic of F is positive, then F is a Cn+1-field (cf. 97.7)
as finite fields are C1 fields by the Chevalley-Warning Theorem (cf. [123, I.2, Th.
3]) and, therefore, every (n + 2)-fold Pfister form is isotropic, so In+2(F ) = 0, i.e.,
st(F ) ≤ n + 1. If the characteristic of F is 0, then the cohomological 2-dimension
of F (

√−1) is at most n+2 by [124, II.4.1, Prop. 10 and II.4.2, Prop. 11]. By Fact
16.2 and the Hauptsatz 23.7, we have In+3

(
F (
√−1)

)
= 0. Thus st(F ) ≤ n+2. ¤

As many problems in a field F reduce to finitely many elements over its prime
field, we can often reduce to a problem over a given field to another over a field
having finite stable range. We then can try to solve the problem when the stable
range is finite. We shall use this idea repeatedly below.

Exercise 41.2. Let K/F be a finite simple extension of degree r. If In(F ) = 0,
then In+r(K) = 0. In particular, if a field has finite stable range, then any finite
extension also has finite stable range.

Next we study graded annihilators.
Let b be a bilinear n-fold Pfister form. For any m ≥ 0 set

annm(b) = {a ∈ Im(F ) | a · b = 0 ∈ W (F )},
annm(b) = {ā ∈ I

m
(F ) | ā · b̄ = 0 ∈ GW (F )}.

Similarly, for a quadratic n-fold Pfister form ρ and any m ≥ 0 set

annm(ρ) = {a ∈ Im(F ) | a · ρ = 0 ∈ Iq(F )},
annm(ρ) = {ā ∈ I

m
(F ) | ā · ρ̄ = 0 ∈ Iq(F )}.
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It follows from Corollary 6.23 and Theorem 9.12 that ann1(b) and ann1(ρ) are
generated by the binary forms in them. Thus the following theorem determines
completely the graded annihilators.

Theorem 41.3. Let b and ρ be bilinear and quadratic n-fold Pfister forms respec-
tively. Then for any m ≥ 1, we have

annm(b) = Im−1(F ) · ann1(b), annm(b) = I
m−1

(F ) · ann1(b),

annm(ρ) = Im−1(F ) · ann1(ρ), annm(ρ) = I
m−1

(F ) · ann1(ρ).

Proof. The case charF = 2 is proven in [14, Th.1.1 and 1.2]. We assume
that charF 6= 2. It is sufficient to consider the case of the bilinear form b.

It follows from Fact 40.7 and Fact 16.2 that the sequence
∐

I
m

(L)
∑

s∗−−−→ I
m

(F ) ·b−→ I
n+m

(F ),

is exact where the direct sum is taken over all quadratic field extensions L/F with
bL isotropic. By Lemma 34.16, we have Im(L) = Im−1(F )I(L), hence the image
of s∗ : Im(L) → Im(F ) is contained in Im−1(F ) · ann1(b). Therefore, the kernel of
the second map in the sequence coincides with the image of Im−1(F ) · ann1(b) in
I

m
(F ). This proves annm(b) = I

m−1
(F ) · ann1(b).

Let c ∈ annm(b). We need to show that c ∈ Im−1(F ) · ann1(b). We may
assume that F is finitely generated over its prime field and hence F has finite stable
range by Lemma 41.1. Let k be an integer such that k + m > st(F ). Repeatedly
applying exactness of the sequence above, we see that c is congruent to an element
a ∈ Ik+m(F ) modulo Im−1(F ) · ann1(b). Replacing c by a we may assume that
m > st(F ).

We claim that it suffices to prove the result for c an m-fold Pfister form. By
Theorem 33.15, for any c ∈ Im(F ), there is an integer n such that

2n sgn c =
r∑

i=1

ki · sgn ci,

with ki ∈ Z and (n + m)-fold Pfister forms ci with pairwise disjoint supports. As
m > st(F ), it follows from Proposition 35.22 that ci ' 2ndi for some m-fold Pfister
forms di. Since Im(F ) is torsion-free, we have

c =
r∑

i=1

ki · di

in Im(F ) and the supports of the di’s are pairwise disjoint. In particular, if b ⊗ c
is hyperbolic, then supp(b) ∩ supp(c) = ∅, so supp(b) ∩ supp(di) = ∅ for every i.
As Im(F ) is torsion-free, this would mean that b⊗ ci is hyperbolic for every i and
establishes the claim. Therefore, we may assume that c is a Pfister form.

The result now follows from Lemma 35.18(1). ¤
We turn to the generators for In

t (F ), the torsion in In(F ).

Theorem 41.4. For any field F we have In
t (F ) = In−1(F )It(F ).

Proof. Let c ∈ In
t (F ). Then 2mc = 0 for some m. Applying Theorem 41.3 to

the Pfister form b = 2m〈1〉, we have

c ∈ annn(b) = In−1(F ) · ann1(b) ⊂ In−1(F )It(F ). ¤
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Recall that by Proposition 31.27, the group It(F ) is generated by binary torsion
forms. Hence Theorem 41.4 yields

Corollary 41.5. A field F satisfies property An if and only if In(F ) is torsion-free.

Remark 41.6. By Theorem 41.4, every torsion bilinear n-fold Pfister form b can
be written as a Z-linear combination of the (torsion) forms 〈〈a1, a2, . . . , an〉〉 with
a1 ∈ D

(∞〈1〉). Note that b itself may not be isometric to a form like this (cf.
Example 32.4).

Theorem 41.7. Let b and ρ be bilinear and quadratic n-fold Pfister forms respec-
tively. Then for any m ≥ 0, we have

W (F )b ∩ In+m(F ) = Im(F )b,

W (F )ρ ∩ In+m
q (F ) = Im(F )ρ.

Proof. We prove the first equality (the second being similar). Let c ∈ W (F )b∩
In+m(F ). We show by induction on m that c ∈ Im(F )b. Suppose that c = a · b in
W (F ) for some a ∈ Im−1(F ), i.e., ā ∈ annm−1(b). By Theorem 41.3, we have ā = d̄ē
for some d ∈ Im−2(F ) and e ∈ W (F ) satisfying ē ∈ ann1(b). Let f be a binary
bilinear form congruent to e modulo I2(F ). As f̄b̄ = ēb̄ = 0 ∈ I

n+1
(F ), the general

(n + 1)-fold Pfister form f⊗ b belongs to In+2(F ). By the Hauptsatz 23.7, we have
f · b = 0 in W (F ). Since a ≡ df modulo Im(F ) it follows that c = ab ∈ Im(F )b. ¤

Exercise 41.8. Let b and c be bilinear k-fold and n-fold Pfister forms, respectively,
over a field F of characteristic not 2. Prove that for any m ≥ 1 the group

W (F )c ∩ annW (F )(b) ∩ Im+n(F )

is generated by (m + n)-fold Pfister forms d in annW (F )(b) that are divisible by c.

The theorem allows us to answer the problems at the end of §33. The solution
to Lam’s problem in [88] was proven in [8] and independently by Dickmann and
Miraglia (cf. [29]).

Corollary 41.9. Let b be a form over F . If 2nb ∈ In+m(F ), then b ∈ Im(F ) +
Wt(F ). In particular,

sgn(b) ∈ C
(
X(F ), 2mZ

)
if and only if b ∈ Im(F ) + Wt(F ).

Proof. Suppose that sgn b ∈ C
(
X(F ), 2mZ

)
. By Theorem 33.15, there exists

a form a ∈ In+m(F ) such that 2n sgn b = sgn a for some n. In particular, 2nb− a ∈
Wt(F ). Therefore, 2k+nb = 2ka for some k. By Theorem 41.7, applied to the form
2k+n〈1〉, we may write 2ka = 2k+nc for some c ∈ In(F ). Then b− c lies in Wt(F )
as needed. ¤

As a consequence, we obtain a solution to Marshall’s question in [97]. It was
first proved by Dickmann and Miraglia in [28].

Corollary 41.10. Let F be a formally real pythagorean field. Let b be a form
over F . If 2nb ∈ In+m(F ), then b ∈ Im(F ). In particular, sgn

(
Im(F )

)
=

C
(
X(F ), 2mZ

)
.
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If F is a formally real field, let GC
(
X(F ),Z

)
be the graded ring

GC
(
X(F ),Z

)
:=

∐
2nC

(
X(F ),Z

)
/2n+1C

(
X(F ),Z

)
=

∐
C

(
X(F ), 2nZ/2n+1Z

)

and GWt(F ) the graded ideal in GW (F ) induced by It(F ). Then Corollary 41.9
implies that the signature induces an exact sequence

0 → GWt(F ) → GW (F ) → GC
(
X(F ),Z

)

and Corollary 41.10 says if F is a formally real pythagorean field, then the signature
induces an isomorphism GW (F ) → GC

(
X(F ),Z

)
.

We interpret this result in terms of the reduced Witt ring and prove the result
mentioned at the end of §34.

Theorem 41.11. Let K be a quadratic extension and s : K → F a nonzero F -
linear functional such that s(1) = 0. Then the sequence

0 → In
red(K/F ) → In

red(F )
rK/F−−−→ In

red(K) s∗−→ In
red(F )

is exact.

Proof. We need only to show exactness at In
red(K). Let c ∈ In

red(K) satisfy
s∗(c) is trivial in In

red(F ), i.e., the form s∗(c) is torsion. By Theorem 41.4, we have
s∗(c) =

∑
aibi with ai ∈ In−1(F ) and bi ∈ It(F ). It follows by Corollary 34.32 that

bi = s∗(di) for some torsion forms di ∈ I(K). Therefore, the form e := c−∑
(ai)Kdi

belongs to the kernel of s∗ : In(K) → In(F ). It follows from Theorems 40.3 and 40.5
that e = rK/F (f) for some f ∈ In(F ). Therefore, c ≡ rK/F (f) modulo torsion. ¤

42. Presentation of In(F )

In this section, using the validity of the Milnor Conjecture, we show that the
presentation established for I2(F ) in Theorem 4.22 generalizes to a presentation
for In(F ). This was first proven in [8] in the case of characteristic not 2. The
characteristic 2 case was also proven independently by Arason and Baeza from that
given below in [6].

Let n ≥ 2 and let In(F ) be the abelian group generated by all the isometry
classes [b] of bilinear n-fold Pfister forms b subject to the generating relations:

(1)
[〈〈1, 1, . . . , 1〉〉] = 0.

(2)
[〈〈ab, c〉〉⊗d

]
+

[〈〈a, b〉〉⊗d
]

=
[〈〈a, bc〉〉⊗d

]
+

[〈〈b, c〉〉⊗d
]

for all a, b, c ∈ F×

and bilinear (n− 2)-fold Pfister forms d.
Note that the group I2(F ) was defined earlier in Section §4.C.
There is a natural surjective group homomorphism gn : In(F ) → In(F ) taking

the class [b] of a bilinear n-fold Pfister form b to b in In(F ). The map g2 is an
isomorphism by Theorem 4.22.

As in the proof of Lemma 4.18, applying both relations repeatedly, we find that[〈〈a1, a2, . . . , an〉〉
]

= 0 if a1 = 1. It follows that for any bilinear m-fold Pfister form
b, the assignment a 7→ a⊗ b gives rise to a well-defined homomorphism

In(F ) → In+m(F )

taking [a] to [a⊗ b].

Lemma 42.1. Let b be a metabolic bilinear n-fold Pfister form. Then [b] = 0 in
In(F ).
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Proof. We prove the statement by induction on n. Since g2 is an isomorphism,
the statement is true if n = 2. In the general case, we write b = 〈〈a〉〉 ⊗ c for some
a ∈ F× and bilinear (n− 1)-fold Pfister form c. We may assume by induction that
c is anisotropic. It follows from Corollary 6.14 that c ' 〈〈b〉〉 ⊗ d for some b ∈ F×

and bilinear (n− 2)-fold Pfister form d such that 〈〈a, b〉〉 is metabolic. By the case
n = 2, we have

[〈〈a, b〉〉] = 0 in I2(F ), hence [b] = [〈〈a, b〉〉 ⊗ d] = 0 in In(F ). ¤

For each n, let αn : In+1(F ) → In(F ) be the map given by

[〈〈a, b〉〉 ⊗ c] 7→ [〈〈a〉〉 ⊗ c] + [〈〈b〉〉 ⊗ c]− [〈〈ab〉〉 ⊗ c].

We show that this map is well-defined. Let 〈〈a, b〉〉⊗ c and 〈〈a′, b′〉〉⊗ c′ be isometric
bilinear n-fold Pfister forms. We need to show that

(42.2) [〈〈a〉〉 ⊗ c] + [〈〈b〉〉 ⊗ c]− [〈〈ab〉〉 ⊗ c] = [〈〈a′〉〉 ⊗ c′] + [〈〈b′〉〉 ⊗ c′]− [〈〈a′b′〉〉 ⊗ c′]

in In(F ). By Theorem 6.10, the forms 〈〈a, b〉〉 ⊗ c and 〈〈a′, b′〉〉 ⊗ c′ are chain p-
equivalent. Thus we may assume that one of the following cases hold:

(1) a = a′, b = b′ and c ' c′.
(2) 〈〈a, b〉〉 ' 〈〈a′, b′〉〉 and c = c′.
(3) a = a′, c = 〈〈c〉〉 ⊗ d, and c′ = 〈〈c′〉〉 ⊗ d for some c ∈ F× and bilinear

(n− 2)-fold Pfister form d and 〈〈b, c〉〉 ' 〈〈b′, c′〉〉.
It follows that it is sufficient to prove the statement in the case n = 2. The

equality (42.2) holds if we compose the morphism α2 with the homomorphism
g2 : I2(F ) → I2(F ). But g2 is an isomorphism, hence αn is well-defined. It is easy
to check that αn is a homomorphism.

The homomorphism αn fits in the commutative diagram

In+1(F ) αn−−−−→ In(F )

gn+1

y
ygn

In+1(F ) −−−−→ In(F )

with the bottom map the inclusion.

Lemma 42.3. The natural homomorphism

γ : Coker(αn) → I
n
(F )

is an isomorphism.

Proof. Consider the map

τ : (F×)n → Coker(αn)

given by (a1, a2, . . . , an) 7→ [〈〈a1, a2, . . . , an〉〉
]

+ im(αn). Clearly τ is symmetric
with respect to permutations of the ai’s.

By definition of αn we have
[〈〈a〉〉 ⊗ c

]
+

[〈〈b〉〉 ⊗ c
] ≡ [〈〈ab〉〉 ⊗ c

]
mod im(αn)

for any bilinear (n− 1)-fold Pfister form c. It follows that τ is multilinear.
The map τ also satisfies the Steinberg relation. Indeed, if a1 + a2 = 1, then[〈〈a1, a2〉〉

]
= 0 in I2(F ) as g2 is an isomorphism and therefore

[〈〈a1, a2, . . . , an〉〉
]

=
0 in In(F ).
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As the group Coker(αn) has exponent 2, the map τ induces a group homomor-
phism

kn(F ) = Kn(F )/2Kn(F ) → Coker(αn)

which we also denote by τ . The composition γ ◦ τ takes a symbol {a1, a2, . . . , an}
to 〈〈a1, a2, . . . , an〉〉+ In+1(F ). By Fact 5.15, the map γ ◦ τ is an isomorphism. As
τ is surjective, we have γ is an isomorphism. ¤

It follows from Lemma 42.3 that we have a commutative diagram

In+1(F ) αn−−−−→ In(F ) −−−−→ I
n
(F ) −−−−→ 0

gn+1

y gn

y
∥∥∥

0 −−−−→ In+1(F ) −−−−→ In(F ) −−−−→ I
n
(F ) −−−−→ 0

with exact rows. It follows that if gn+1 is an isomorphism, then gn is also an
isomorphism.

Theorem 42.4. If n ≥ 2, the abelian group In(F ) is generated by the isometry
classes of bilinear n-fold Pfister forms subject to the generating relations

(1) 〈〈1, 1, . . . , 1〉〉 = 0.
(2) 〈〈ab, c〉〉 · d + 〈〈a, b〉〉 · d = 〈〈a, bc〉〉 · d + 〈〈b, c〉〉 · d for all a, b, c ∈ F× and

bilinear (n− 2)-fold Pfister forms d.

Proof. We shall show that the surjective map gn : In(F ) → In(F ) is an
isomorphism. Any element in the kernel of gn = gn,F belongs to the image of the
natural map gn,F ′ → gn,F where F ′ is a subfield of F , finitely generated over the
prime subfield of F . Thus we may assume that F is finitely generated. It follows
from Lemma 41.1 that F has finite stable range. The discussion preceding the
theorem shows that we may also assume that n > st(F ).

If F is not formally real, then In(F ) = 0, i.e., every bilinear n-fold Pfister form
is metabolic. By Lemma 42.1, the group In(F ) is trivial and we are done.

In what follows we may assume that F is formally real, in particular, charF 6= 2.
We let M be the abelian group given by generators {b}, the isometry classes

of bilinear n-fold Pfister forms b over F , and relations {b} = {c} + {d} where the
bilinear n-fold Pfister forms b, c and d satisfy b = c + d in W (F ). In particular,
{b} = 0 in M if b = 0 in W (F ).

We claim that the homomorphism

δ : M → In(F ) given by {b} 7→ [b]

is well-defined. To see this, it suffices to check that if b, c and d satisfy b = c + d
in W (F ), then [b] = [c] + [d] in In(F ). As charF 6= 2, it follows from Proposition
24.5 that there are c, d ∈ F× and a bilinear (n− 1)-fold Pfister form a such that

c ' 〈〈c〉〉 ⊗ a, d ' 〈〈d〉〉 ⊗ a, b ' 〈〈cd〉〉 ⊗ a.

The equality b = c + d implies that 〈〈c, d〉〉 · a = 0 in W (F ). Therefore,

0 = αn

(
[〈〈c, d〉〉 ⊗ a]

)
= [c] + [d]− [b]

in In(F ), hence the claim.
Let b be a bilinear n-fold Pfister form and d ∈ F×. As In+1(F ) = 2In(F ), we

can write 〈〈d〉〉 · b = 2c and 〈〈−d〉〉 · b = 2d in W (F ) with c, d bilinear n-fold Pfister
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forms. Adding, we then get 2b = 2c + 2d in W (F ), hence b = c + d since In(F ) is
torsion-free. It follows that [b] = [c] + [d] in M . We generalize this as follows:

Lemma 42.5. Let F be a formally real field having finite stable range. Suppose
that n is a positive integer ≥ st(F ). Let b ∈ Pn(F ) and d1, . . . , dm ∈ F×. For every
ε = (ε1, . . . , εm) ∈ {±1}m write 〈〈ε1d1, . . . , εmdm〉〉 ⊗ b ' 2mcε with cε ∈ Pn(F ).
Then [b] =

∑
ε[cε] in M .

Proof. We induct on m: The case m = 1 was done above. So we assume that
m > 1. For every ε′ = (ε2, . . . , εm) ∈ {±1}m−1 write

〈〈ε2d2, . . . , εmdm〉〉 ⊗ b ' 2m−1dε′

with dε′ ∈ Pn(F ). By the induction hypothesis, we then have [b] =
∑

ε′ [dε′ ] in M .
It therefore suffices to show that [dε′ ] = [c(1,ε′)] + [c(−1,ε′)] for every ε′. But

2mdε′ = 2〈〈ε2d2, . . . , εmdm〉〉 · b
=

(〈〈d1〉〉+ 〈〈−d1〉〉
) · 〈〈ε2d2, . . . , εmdm〉〉 · b

= 2mc(1,ε′) + 2mc(−1,ε′)

in W (F ), hence dε′ = c(1,ε′) + c(−1,ε′) in W (F ). Consequently, [dε′ ] = [c(1,ε′)] +
[c(−1,ε′)] in M . ¤

Proposition 42.6. Let F be a formally real field having finite stable range. Sup-
pose that n is a positive integer ≥ st(F ). Then every element in M can be written as
a Z-linear combination

∑s
j=1 lj · [cj ] with forms c1, . . . , cs ∈ Pn(F ) having pairwise

disjoint supports in X(F ).

Proof. Let a =
∑r

i=1 ki · [bi] ∈ M . Write bi ' 〈〈ai1, . . . , ain〉〉 for i = 1, . . . , r.

For every matrix ε = (εik)r,n
i=1,k=1 in {±1}r×n let fε '

⊗r
j=1

⊗n
l=1〈〈εjlajl〉〉 and

write fε ⊗ bi ' 2rnci,ε with ci,ε bilinear n-fold Pfister forms for i ∈ [1, r]. By
Lemma 42.5, we have [bi] =

∑
ε[ci,ε] in M for i ∈ [1, r], hence

a =
r∑

i=1

ki · [bi] =
r∑

i=1

ki ·
∑

ε

[ci,ε] =
∑

ε

r∑

i=1

ki · [ci,ε]

in M .
For each ε, write fε ' 2nr−ndε with dε a bilinear n-fold Pfister form. Clearly,

the fε have pairwise disjoint supports, hence also the dε. Now look at a pair (i, ε).
If all the εik, k ∈ [1, r], are 1, then fε ⊗ bi = 2nfε = 2nrdε, hence ci,ε = dε. If,
however, some εik, k ∈ [1, r], is −1, then fε⊗ bi = 0, hence ci,ε = 0. It follows that
for each ε we have

∑r
i=1 ki · [ci,ε] = lε · dε for some integer lε. Consequently,

a =
∑

ε

r∑

i=1

ki · [ci,ε] =
∑

ε

lε · dε. ¤

Applying Proposition 42.6 to an element in the kernel of the composition

M
δ−→ In(F )

gn−→ In(F )
sgn−−→ C

(
X(F ),Z

)
,

we see that all the coefficients lj are 0. Hence the composition is injective. Since
δ is surjective, it follows that gn is injective and therefore an isomorphism. The
proof of Theorem 42.4 is complete. ¤
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Remark 42.7. In [6], Arason and Baeza also establish a presentation of In
q (F ).

They show that as an additive group In
q (F ) for n ≥ 2 is isomorphic to the equiva-

lence classes {ϕ} of n-fold quadratic Pfister forms ϕ over F subject to the relations:
(1q)

{
α⊗ [1, d1+d2]

}
=

{
α⊗ [1, d1]

}
+

{
α⊗ [1, d2]

}
for any (n−1)-fold bilinear

Pfister form α and d1, d2 ∈ F .
(2q)

{〈〈a〉〉 ⊗ ρ
}

+
{〈〈b〉〉 ⊗ ρ

}
=

{〈〈a + b〉〉 ⊗ ρ
}

+
{〈〈ab(a + b)〉〉 ⊗ ρ

}
for any

(n− 1)-fold quadratic Pfister form ρ and a, b ∈ F× satisfying a + b 6= 0.

43. Going down and torsion-freeness

We show in this section that if K/F is a finite extension with In(K) torsion-
free, then In(F ) is torsion-free. Since we already know this to be true if charF = 2
by Lemma 35.5, we need only show this when charF 6= 2. In this case, we show that
the solution of the Milnor Conjecture that the norm residue map is an isomorphism
implies the result as shown in [7] and, in fact, leads to the more general Corollary
43.10 below.

Let F be a field of characteristic not 2. For any integer k, n ≥ 0 consider Galois
cohomology groups (cf. §101)

Hn(F, k) := Hn,n−1(F,Z/2kZ).

In particular, Hn(F, 1) = Hn(F ).
By Corollary 101.7, there is an exact sequence

0 → Hn(F, r) → Hn(F, r + s) → Hn(F, s).

For a field extension L/F set

Hn(L/F, k) := Ker
(
Hn(F, k)

rL/F−−−→ Hn(L, k)
)
.

For all r, s ≥ 0, we have an exact sequence

(43.1) 0 → Hn(L/F, r) → Hn(L/F, r + s) → Hn(L/F, s).

Proposition 43.2. Let charF 6= 2. Suppose In
t (F ) = 0. Then Hn(Fpy/F, k) = 0

for all k.

Proof. Let α ∈ Hn(Fpy/F ). As Fpy is the union of admissible extensions
over F (cf. Definition 31.13), there is an admissible sub-extension L/F of Fpy/F
such that αL = 0. We induct on the degree [L : F ] to show αL = 0. Let E be
a subfield of L such that E/F is admissible and L = E(

√
d) with d ∈ D(2〈1〉E).

It follows from the exactness of the cohomology sequence (cf. Theorem 99.13) for
the quadratic extension L/E that αE ∈ Hn−1(E) ∪ (d). By Proposition 35.7, the
field E satisfies An. Hence all the torsion Pfister forms 〈〈a1, . . . , an−1, d〉〉 over E
are trivial, consequently, Hn−1(E) ∪ (d) = 0 by Fact 16.2 and therefore αE = 0.
By the induction hypothesis, α = 0.

We have shown that Hn(Fpy/F ) = 0. Triviality of the group Hn(Fpy/F, k)
follows then by induction on k from exactness of the sequence (43.1). ¤

Exercise 43.3. Let char F 6= 2. Show that if Hn(Fpy/F ) = 0, then In(F ) is
torsion-free.

Lemma 43.4. A field F of characteristic different from 2 is pythagorean if and
only if F has no cyclic extensions of degree 4.
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Proof. Consider the exact sequence

H1(F, 2)
g−→ H1(F ) b−→ H2(F ),

where b is the Bockstein homomorphism, b
(
(a)

)
= (a) ∪ (−1) (cf. Proposition

101.14). The field F is not pythagorean if and only if there is nonsquare a ∈ F×

such that a ∈ D
(
2〈1〉). The latter is equivalent to (a)∪(−1) = 0 in H2(F ) = Br2(F )

which in its turn is equivalent to (a) ∈ im(g), i.e., the quadratic extension F (
√

a)/F
can be embedded into a cyclic extension of degree 4. ¤

Let F be a field of characteristic different from 2 such that µ2n ⊂ F with n > 1
and m ≤ n. Then Kummer theory implies that the natural map

(43.5) F×/F×2n

= H1(F, n) → H1(F,m) = F×/F×2m

is surjective.

Lemma 43.6. Let F be a pythagorean field of characteristic different from 2. Then

cF (
√−1)/F : H1

(
F (
√−1), s

) → H1(F, s)

is trivial for every s.

Proof. If F is nonreal, then it is quadratically closed, so H1(F, s) = 0. There-
fore, we may assume that F is formally real. In particular, F

(√−1
) 6= F .

Let β ∈ H1(F, s + 1) = Hom cont(ΓF ,Z/2s+1Z). Then the kernel of β is an
open subgroup U of ΓF with ΓF /U cyclic of 2-power order. As F is pythagorean,
F has no cyclic extensions of a 2-power order greater than 2 by Lemma 43.4. It
follows that [ΓF : U ] ≤ 2, hence β lies in the image of H1(F ) → H1(F, s + 1).
Consequently, β lies in the kernel of H1(F, s + 1) → H1(F, s). This shows that the
natural map H1(F, s + 1) → H1(F, s) is trivial. The statement now follows from
the commutativity of the diagram

H1
(
F (
√−1), s + 1

) cF (
√−1)/F )−−−−−−−→ H1(F, s + 1)y

y0

H1
(
F (
√−1), s

) cF (
√−1)/F )−−−−−−−→ H1(F, s)

together with the surjectivity of H1
(
F (
√−1), s+1

) → H1
(
F (
√−1), s

)
which holds

by (43.5) as µ2∞ ⊂ Qpy

(√−1
) ⊂ F

(√−1
)
. ¤

Lemma 43.7. Let F be a field of characteristic different from 2 satisfying µ2s ⊂
F (
√−1). Then for every d ∈ D

(
2〈1〉) the class (d) belongs to the image of the

natural map H1(Fpy/F, s) → H1(Fpy/F ).

Proof. By (43.5), the natural map g : H1
(
F (
√−1), s

) → H1
(
F (
√−1)

)
is sur-

jective. As d ∈ NF (
√−1)/F

(
F (
√−1)

)
, there exists a γ ∈ H1

(
F (
√−1), s

)
satisfying

(d) = g
(
cF (

√−1)/F (γ)
)
. By Lemma 43.6, we have cF (

√−1)/F (γ) ∈ H1(Fpy/F, s)
and the image of cF (

√−1)/F (γ) in H1(Fpy/F ) coincides with (d). ¤

Theorem 43.8. Let charF 6= 2 and K/F a finite field extension. If In(K) is
torsion-free for some n, then In(F ) is also torsion-free.
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Proof. Let 2r be the largest power of 2 dividing [K : F ]. Suppose first that
the field F (

√−1) contains µ2r+1 .
By Corollary 41.5, we know that In(F ) is torsion-free if and only if F sat-

isfies An. By Lemma 35.2, it suffices to show any bilinear n-fold Pfister form
〈〈a1, . . . , an−1, d〉〉 with a1, . . . , an−1 ∈ F× and d ∈ D

(
2〈1〉) is hyperbolic. By

Lemma 43.7, there is an α ∈ H1(Fpy/F, r + 1) such that the natural map

H1(Fpy/F, r + 1) → H1(Fpy/F )

takes α to (d).
Recall that the graded group H∗(Fpy/F, r + 1) has the natural structure of a

module over the Milnor ring K∗(F ) (cf. 101.5). Consider the element

β = {a1, . . . , an−1} · α ∈ Hn(Fpy/F, r + 1).

As In
t (K) = 0, we have Hn(Kpy/K, r + 1) = 0 by Proposition 43.2. Therefore,

[K : F ] · β = cK/F ◦ rK/F (β) = 0,

hence 2rβ = 0. The composition

Hn(F, r + 1) → Hn(F ) → Hn(F, r + 1)

coincides with the multiplication by 2r. Since the second homomorphism is injective
by (43.1), the image {a1, . . . , an−1} · (d) = (a1, . . . , an−1, d) of β in Hn(F ) is trivial.
Therefore, 〈〈a1, . . . , an−1, d〉〉 is hyperbolic by Fact 16.2.

Consider the general case. As µ2∞ ⊂ Fpy(
√−1) there is a subfield E ⊂ Fpy

such that µ2r+1 ⊂ E(
√−1) and E/F is an admissible extension. Then L := KE

is an admissible extension of K. In particular, In(L) is torsion-free by Proposition
35.7 and Corollary 41.5. Note also that the degree [L : E] divides [K : F ]. By the
first part of the proof applied to the extension L/E we have In

t (E) = 0. It follows
from Theorem 35.12 and Corollary 41.5 that In

t (F ) = 0. ¤
Corollary 43.9. Let K be a finite extension of a nonformally real field F . If
In(K) = 0, then In(F ) = 0.

Proof. If charF = 2, this was shown in Lemma 35.5. If charF 6= 2, this
follows from Theorem 43.8. ¤

Define the torsion-free index of a field F to be

ν(F ) := min
{
n | In(F ) is torsion-free

}

(or infinity if no such integer exists). Then we have

Corollary 43.10. Let K/F a finitely generated field extension. Then

ν(F ) + tr.deg(K/F ) ≤ ν(K).

Proof. If K/F is finite, then ν(F ) ≤ ν(K) by Theorem 43.8. It follows from
this and induction that we may assume that K = F (t). If b ∈ In

t (F ) where
ν(K) ≤ n + 1, then 〈〈t〉〉 · b = 0 in W (K) as it is torsion in In+1(K). It follows by
Example 19.13 that b = 0 in W (F ). ¤
Remark 43.11. Let F be a field of characteristic not 2.

(1) Define the absolute stability index sta(F ) to be the minimum n (if it exists)
such that In+1(F ) = 2In(F ). Corollary 35.27 implies that

ν
(
F (
√−1)

) ≤ n + 1 if and only if ν(F ) ≤ n + 1 and sta(F ) ≤ n.
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(which, by Remark 35.28, is equivalent to In+1(L) = 0 for some quadratic extension
L/F .) By Fact 16.2 this is equivalent to Hn+1

(
F (
√−1)

)
= 0.

(2) Let K/F be a finitely generated field extension of transcendental degree
m. In [41] it is shown that if m > 0, then Hn+1

(
F (
√−1)

)
= 0 is equivalent to

cd2

(
K(
√−1)

) ≤ n + 1. This is not true for K/F algebraic, e.g., let F be the
quadratic closure of Q and K = F

(
3
√

2
)
.

(3) The “going up” problem of the relationship of ν(F ) and ν(K) even when
K/F is finite is unclear. In [37] it was shown that ν(K) ≤ ν(F )+ [K : F ]−1 when
F is not formally real and that ν(K) ≥ 1 + ν(F ) is possible, but no uniform bound
is known even when F is quadratically closed. Leep (unpublished) has improved
this bound to ν(K) ≤ ν(F ) + [log2([K : F ]/3)] + 1 (for F 6= K). Similarly, it
can be shown that sta(K) ≤ sta(F ) + [K : F ] − 1, but again no uniform bound
is known. This compares to the relative case where Bröcker showed in [19] using
valuation theory that the reduced stability satisfied str(F )+m ≤ strK ≤ str(F )+
tr. deg(K/F ) + 1.





CHAPTER VIII

On the Norm Residue Homomorphism of Degree
Two

44. The main theorem

In this chapter we prove the degree two case of the Milnor Conjecture (cf. Fact
101.6).

Theorem 44.1. For every field F of characteristic not 2, the norm residue homo-
morphism

hF := h2
F : K2(F )/2K2(F ) → Br2(F ),

taking {a, b} + 2K2(F ) to the class of the quaternion algebra
(

a,b
F

)
is an isomor-

phism.

Corollary 44.2. Let F be a field of characteristic not 2. Then

(1) The group Br2(F ) is generated by the classes of quaternion algebras.
(2) The following is the list of the defining relations between classes of quater-

nion algebras:
(i)

(
aa′,b

F

)
=

(
a,b
F

)
·
(

a′,b
F

)
;

(
a,bb′

F

)
=

(
a,b
F

)
·
(

a,b′

F

)
,

(ii)
(

a,b
F

)
·
(

a,b
F

)
= 1,

(iii)
(

a,b
F

)
= 1 if a + b = 1.

The main idea of the proof is to compare the norm residue homomorphisms hF

and hF (C), where C is a smooth conic curve over F . The function field F (C) is a
generic splitting field for a symbol in k2(F ) := K2(F )/2K2(F ), so passing from F
to F (C) allows us to carry out inductive arguments.

Theorem 44.1 was originally proven in [100]. The proof used a specialization
argument reducing the problem to the study of the function field of a conic curve
and a comparison theorem of Suslin [128] on the behavior of the norm residue
homomorphism over the function field of a conic curve.

The “elementary” proof presented in this chapter relies neither on a special-
ization argument nor on higher K-theory. The key point of the proof is Theorem
46.1. It is also a consequence of Quillen’s computation of higher K-theory of a
conic curve [113, §8, Th. 4.1] and a theorem of Rehmann and Stuhler on the group
K2 of a quaternion algebra given in [114].

Other “elementary” proofs of the bijectivity of hF , avoiding higher K-theory,
but still using a specialization argument, were given by Arason in [5] and Wadsworth
in [138].
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45. Geometry of conic curves

In this section we establish interrelations between projective conic curves and
their corresponding quaternion algebras over a field F of arbitrary characteristic.

45.A. Quaternion algebras and conic curves. Let Q be a quaternion alge-
bra over a field F . Recall (cf. Appendix 98.E) that Q carries a canonical involution
a 7→ ā, the reduced trace linear map

Trd : Q → F, a 7→ a + ā

and the reduced norm quadratic map

Nrd : Q → F, a 7→ aā.

Every element a ∈ Q satisfies the quadratic equation

a2 − Trd(a)a + Nrd(a) = 0.

Set
VQ := Ker

(
Trd

)
= {a ∈ Q | ā = −a},

so VQ is a 3-dimensional subspace of Q. Note that x2 = −Nrd(x) ∈ F for any
x ∈ VQ, and the map ϕQ : VQ → F given by ϕQ(x) = x2 is a quadratic form on
VQ. The space VQ is the orthogonal complement to 1 in Q with respect to the
nondegenerate bilinear form on Q:

(a, b) 7→ Trd(ab).

The quadric CQ of the form ϕQ(x) in the projective plane P(VQ) is a smooth
projective conic curve. In fact, every smooth projective conic curve (1-dimensional
quadric) is of the form CQ for some quaternion algebra Q (cf. Exercise 12.6).

Proposition 45.1. The following conditions are equivalent:
(1) Q is split.
(2) CQ is isomorphic to the projective line P1.
(3) CQ has a rational point.

Proof. (1) ⇒ (2): The algebra Q is isomorphic to the matrix algebra M2(F ).
Hence VQ is the space of trace 0 matrices and CQ is given by the equation t20+t1t2 =
0. The morphism CQ → P1, given by [t0 : t1 : t2] 7→ [t0 : t1] = [−t2 : t0] is an
isomorphism.

(2) ⇒ (3) is obvious.
(3) ⇒ (1): There is a nonzero element x ∈ Q such that x2 = 0. In particular,

Q is not a division algebra and therefore Q is split. ¤
Corollary 45.2. Let Q be a quaternion algebra. Then

(1) Every divisor on CQ of degree zero is principal.
(2) If Q is a division algebra, the degree of every closed point of CQ is even.

Proof. (1): Let w be a divisor on CQ of degree zero. Let K/F be a separable
quadratic splitting field of Q and σ the nontrivial automorphism of K over F .
By Proposition 45.1, the conic CQ is isomorphic to the projective line over K.
As deg σ(wK) = deg wK , there is a function f ∈ K(CQ)× with div(f) = wK .
Let s = f · σ(f−1). Since div(s) = wK − σ(wK) = 0 we have s ∈ K× and
NK/F (s) = s · σ(s) = 1. By the Hilbert Theorem 90, there is t ∈ K× with
s = σ(t) · t−1. Setting g = tf we have σ(g) = g, i.e., g ∈ F (CQ)× and div(g) = w.
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(2): Let x ∈ CQ be a closed point. As CQ has a rational point over F (x), by
Proposition 45.1, the algebra Q is split over F (x). It follows from Corollary 98.5
that the degree [F (x) : F ] is even. ¤

Example 45.3. If charF 6= 2, there is a basis 1, i, j, k of Q such that a := i2 ∈ F×,
b := j2 ∈ F×, k = ij = −ji (cf. Example 98.10). Then VQ = Fi ⊕ Fj ⊕ Fk and
CQ is given by the equation at20 + bt21 − abt22 = 0.

Example 45.4. If charF = 2, there is a basis 1, i, j, k of Q such that a := i2 ∈ F ,
b := j2 ∈ F , k = ij = ji + 1 (cf. Example 98.11). Then VQ = F1⊕ Fi ⊕ Fj and
CQ is given by the equation t20 + at21 + bt22 + t1t2 = 0.

For every a ∈ Q define the F -linear function la on VQ by the formula

la(x) = Trd(ax).

The reduced trace form Trd is a nondegenerate bilinear form on Q. Indeed, to see
this it is sufficient to check over a splitting field of Q where Q is isomorphic to a
matrix algebra, and it is clear in this case. Hence every F -linear function on VQ is
equal to la for some a ∈ Q.

Lemma 45.5. Let a, b ∈ Q and α, β ∈ F . Then:
(1) la = lb if and only if a− b ∈ F .
(2) lαa+βb = αla + βlb.
(3) la = −la.
(4) la−1 = −(Nrd a)−1 · la if a is invertible.

Proof. (1): This follows from the fact that VQ is orthogonal to F with respect
to the bilinear form Trd.

(2) is obvious.
(3): For any x ∈ VQ, we have

la(x) = Trd(āx) = Trd(āx) = Trd(x̄a) = −Trd(xa) = −Trd(ax) = −la(x).

(4): It follows from (2) and (3) that (Nrd a)la−1 = la = −la. ¤

Every element a ∈ Q\F generates a quadratic subalgebra F [a] = F ⊕Fa of Q.
Conversely, every quadratic subalgebra K of Q is of the form F [a] for any a ∈ K\F .
By Lemma 45.5, the linear form la on VQ is independent, up to a multiple in F×,
of the choice of a ∈ K \F . Hence the line in P(VQ) given by the equation la(x) = 0
is determined by K. The intersection of this line with the conic CQ is an effective
divisor on CQ of degree two. Thus, we have the following maps:

Quadratic
subalgebras

of Q
→

Rational
points

in P(V ∗
Q)

= Lines
in P(VQ) →

Degree 2
effective
divisors
on CQ

Proposition 45.6. The two maps above are bijections.

Proof. The first map is a bijection since every line in P(VQ) is given by an
equation la = 0 for some a ∈ Q \ F and a generates a quadratic subalgebra of Q.
The last map is a bijection since the embedding of CQ as a closed subscheme of
P(VQ) is given by a complete linear system. ¤
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Remark 45.7. Effective divisors on CQ of degree 2 are rational points of the sym-
metric square S2(CQ). Proposition 45.6 essentially asserts that S2(CQ) is isomor-
phic to the projective plane P(V ∗

Q).

Suppose Q is a division algebra. Then the conic curve CQ has no rational
points and quadratic subalgebras of Q are quadratic (maximal) subfields of Q. An
effective cycle on CQ of degree 2 is a closed point of degree 2. Thus, by Proposition
45.6, we have bijections

Quadratic
subfields of Q

∼→ Rational points
in P(V ∗

Q) =
Lines

in P(VQ)
∼→ Points of

degree 2 in CQ

In what follows, we shall frequently use the bijection constructed above between
the set of quadratic subfields of Q and the set of degree 2 closed points of CQ.

45.B. Key identity. In the following proposition, we write a multiple of the
quadratic form ϕQ on VQ as a degree two polynomial of linear forms.

Proposition 45.8. Let Q be a quaternion algebra over F . For any a, b, c ∈ Q,

lab · lc + lbc · la + lca · lb =
(
Trd(cba)− Trd(abc)

) · ϕQ.

Proof. We write T for Trd in this proof. For every x ∈ VQ we have:

lab(x) · lc(x) = T (abx)T (cx)

= T
(
a(T (b)− b)x

)
T (cx)

= T (ax)T (b)T (cx)− T (abx)T (cx)

= T (ax)T (b)T (cx)− T
(
abT (cx)x

)

= T (ax)T (b)T (cx)− T (abc)x2 + T (abxcx),

lbc(x) · la(x) = T (bcx)T (ax)

= T
(
(T (b)− b)cx

)
T (ax)

= T (cx)T (b)T (ax)− T (bcx)T (ax)

= −T (ax)T (b)T (cx)− T
(
bcx(ax + x̄ā)

)

= −T (ax)T (b)T (cx)− T (bcxax) + T (bca)x2

= −T (ax)T (b)T (cx)− T (axbcx) + T (cba)x2

lca(x) · lb(x) = T (cax)T (bx)

= −T (acx)T (bx)

= −T
(
aT (bx)cx

)

= −T (abxcx) + T (axbcx).

Adding the equalities yields the result. ¤
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45.C. Residue fields of points of CQ and quadratic subfields of Q.
Suppose that the quaternion algebra Q is a division algebra. Recall that quadratic
subfields of Q correspond bijectively to degree 2 points of CQ. We shall show how
to identify a quadratic subfield of Q with the residue field of the corresponding
point in CQ of degree 2.

Choose a quadratic subfield K ⊂ Q. For every a ∈ Q\K, one has Q = K⊕aK.
We define a map

µa : V ∗
Q → K

by the rule: if c = u + av for u, v ∈ K, then µa(lc) = v. Clearly,

µa(lc) = 0 if and only if c ∈ K.

By Lemma 45.5, the map µa is well-defined and F -linear. If b ∈ Q \K is another
element, we have

(45.9) µb(lc) = µb(la)µa(lc),

hence the maps µa and µb differ by the multiple µb(la) ∈ K×. The map µa extends
to an F -algebra homomorphism

µa : S•(V ∗
Q) → K

in the usual way (where S• denotes the symmetric algebra).
Let x ∈ CQ ⊂ P(VQ) be the point of degree 2 corresponding to the quadratic

subfield K. The local ring OP(VQ),x is the subring of the quotient field of the
symmetric algebra S•(V ∗

Q) generated by the fractions lc/ld for all c ∈ Q and d ∈
Q \K.

Fix an element a ∈ Q \ F . We define an F -algebra homomorphism

µ : OP(VQ),x → K

by the formula
µ(lc/ld) = µa(lc)/µa(ld).

Note that µa(ld) 6= 0 since d /∈ K and the map µ is independent of the choice of
a ∈ Q \K by (45.9).

We claim that the map µ vanishes on the quadratic form ϕQ defining CQ in
P(VQ). Proposition 45.8 gives a formula for a multiple of the quadratic form ϕQ

with the coefficient α := Trd(cba)− Trd(abc).

Lemma 45.10. There exist a ∈ Q \K, b ∈ K, and c ∈ Q such that α 6= 0.

Proof. Pick any b ∈ K \ F and any a ∈ Q such that ab 6= ba. Clearly,
a ∈ Q \K. Then α = Trd

(
(ba− ab)c

)
is nonzero for some c ∈ Q since the bilinear

form Trd is nondegenerate on Q. ¤
Choose a, b and c as in Lemma 45.10. We have µa(lb) = 0 since b ∈ K. Also,

µa(la) = 1 and µa(lab) = b̄. Write c = u + av for u, v ∈ K, then µa(lc) = v. As

bc̄ = bū + bv̄ā = bū + Trd(bv̄ā)− avb̄,

we have µa(lbc) = −vb̄ and by Proposition 45.8,

αµ(ϕQ) = µa(lab)µa(lc) + µa(lbc)µa(la) + µa(lca)µa(lb) = b̄v − vb̄ = 0.

Since Q is a division algebra and α 6= 0, we have µ(ϕQ) = 0 as claimed.
The local ring OCQ,x coincides with the factor ring

OP(VQ),x/ϕQOP(VQ),x.
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Therefore, µ factors through an F -algebra homomorphism

µ : OCQ,x → K.

Let e ∈ K \F . The function le/la is a local parameter of the local ring OCQ,x, i.e.,
it generates the maximal ideal of OCQ,x. Since µ(le/la) = 0, the map µ induces a
field isomorphism

(45.11) F (x) ∼→ K

of degree 2 field extensions of F . We have proved

Proposition 45.12. Let Q be a division quaternion algebra. Let K ⊂ Q be a
quadratic subfield and x ∈ CQ the corresponding point of degree 2. Then the residue
field F (x) is canonically isomorphic to K over F . Let a ∈ Q and b ∈ Q \K. Write
a = u + bv for unique u, v ∈ K. Then the value (la/lb)(x) in F (x) of the function
la/lb at the point x corresponds to the element v ∈ K under the isomorphism
(45.11).

46. Key exact sequence

In this section we prove exactness of a sequence comparing the groups K2(F )
and K2

(
F (C)

)
over a field F of arbitrary characteristic.

Let C be a smooth curve over a field F . For every (closed) point x ∈ C, there
is a residue homomorphism

∂x : K2

(
F (C)

) → K1

(
F (x)

)
= F (x)×

induced by the discrete valuation of the local ring OC,x (cf. §49.A).
In this section we prove the following:

Theorem 46.1. Let C be a conic curve over a field F . Then the sequence

K2(F ) → K2

(
F (C)

) ∂−→
∐

x∈C

F (x)× c−→ F×,

with ∂ = (∂x) and c = (NF (x)/F ), is exact.

46.A. Filtration on K2

(
F (C)

)
. Let C be a conic over F . If C has a rational

point, i.e., C ' P1
F , the statement of Theorem 46.1 is Milnor’s computation of

K2

(
F (t)

)
given in Theorem 100.7. So we may (and will) assume that C has no

rational point. By Corollary 45.2, the degree of every closed point of C is even.
Fix a closed point x0 ∈ C of degree 2. As in §29, for any n ∈ Z let Ln be the

F -subspace {
f ∈ F (C)× | div(f) + nx0 ≥ 0

} ∪ {
0
}

of F (C). Clearly, Ln = 0 if n < 0. Recall that L0 = F and Ln · Lm ⊂ Ln+m. It
follows from Lemma 29.7 that dim Ln = 2n + 1 if n ≥ 0.

We write L×n for Ln \{0}. Note that the value g(x) in F (x) is defined for every
g ∈ L×n and point x 6= x0.

Since any divisor on C of degree zero is principal by Corollary 45.2, for every
point x ∈ C of degree 2n we can choose a function px ∈ L×n satisfying div(px) =
x − nx0. In particular, px0 ∈ F×. Note that px is uniquely determined up to a
scalar multiple. Clearly, px(x) = 0 if x 6= x0. Every function in L×n can be written
as the product of a nonzero constant and finitely many px for some points x of
degree at most 2n.
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Lemma 46.2. Let x ∈ C be a point of degree 2n different from x0. If g ∈ Lm

satisfies g(x) = 0, then g = pxq for some q ∈ Lm−n. In particular, g = 0 if m < n.

Proof. Consider the F -linear map

ex : Lm → F (x), ex(g) = g(x).

If m < n, the map ex is injective since x does not belong to the support of the divisor
of a function in L×m. Suppose that m = n and g ∈ Ker ex. Then div(g) = x− nx0

and hence g is a multiple of px. Thus, the kernel of ex is 1-dimensional. By
dimension count, ex is surjective.

Therefore, for arbitrary m ≥ n, the map ex is surjective and

dim Ker(ex) = dim Lm − deg(x) = 2m + 1− 2n.

The image of the injective linear map Lm−n → Lm given by multiplication by px

is contained in Ker(ex) and of dimension dim Lm−n = 2m + 1 − 2n. Therefore,
Ker(ex) = pxLm−n. ¤

For every n ∈ Z, let Mn be the subgroup of K2

(
F (C)

)
generated by the symbols

{f, g} with f, g ∈ L×n , i.e., Mn = {L×n , L×n }. We have the following filtration:

(46.3) 0 = M−1 ⊂ M0 ⊂ M1 ⊂ · · · ⊂ K2

(
F (C)

)
.

Note that M0 coincides with the image of the homomorphism K2(F ) → K2

(
F (C)

)
and K2

(
F (C)

)
is the union of all the Mn as the group F (C)× is the union of the

subsets L×n .
If f ∈ L×n , the degree of every point in the support of div(f) is at most 2n.

In particular, ∂x(Mn−1) = 0 for every point x of degree 2n. Therefore, for every
n ≥ 0, we have a well-defined homomorphism

∂n : Mn/Mn−1 →
∐

deg x=2n

F (x)×

induced by ∂x over all points x ∈ C of degree 2n.
We refine the filtration (46.3) by adding an extra term M ′ between M0 and

M1. Set M ′ := {L×1 , L×0 } = {L×1 , F×}, so the group M ′ is generated by M0 and
symbols of the form {px, α} for all points x ∈ C of degree 2 and all α ∈ F×.

Denote by A′ the subgroup of
∐

deg x=2 F (x)× consisting of all families (αx)
such that αx ∈ F× for all x and

∏
x αx = 1. Clearly, ∂1(M ′/M0) ⊂ A′.

Theorem 46.1 is a consequence of the following three propositions.

Proposition 46.4. If n ≥ 2, the map

∂n : Mn/Mn−1 →
∐

deg x=2n

F (x)×

is an isomorphism.

Proposition 46.5. The restriction ∂′ : M ′/M0 → A′ of ∂1 is an isomorphism.

Proposition 46.6. The sequence

0 → M1/M
′ ∂1−→


 ∐

deg x=2

F (x)×


 /A′ c−→ F×

is exact.



200 VIII. ON THE NORM RESIDUE HOMOMORPHISM OF DEGREE TWO

Proof of Theorem 46.1. Since K2

(
F (C)

)
is the union of Mn, it is sufficient

to prove that the sequence

0 → Mn/M0
∂−→

∐

deg x≤2n

F (x)× c−→ F×

is exact for every n ≥ 1. We induct on n. The case n = 1 follows from Propositions
46.5 and 46.6. The induction step is guaranteed by Proposition 46.4. ¤

46.B. Proof of Proposition 46.4. To effect the proof, we shall construct
the inverse map of ∂n. We need the following two lemmas.

Lemma 46.7. Let x ∈ C be a point of degree 2n > 2. Then for every u ∈ F (x)×,
there exist f ∈ L×n−1 and h ∈ L×1 such that (f/h)(x) = u.

Proof. The F -linear map ex : Ln−1 → F (x), ex(f) = f(x), is injective by
Lemma 46.2. Hence

dimCoker(ex) = deg(x)− dim Ln−1 = 2n− (2n− 1) = 1.

Consider the F -linear map

g : L1 → Coker(ex), g(h) = u · h(x) + Im(ex).

Since dim L1 = 3, the kernel of g contains a nonzero function h ∈ L×1 . We have
u · h(x) = f(x) for some f ∈ L×n−1. Since deg x > 2 the value h(x) is nonzero.
Hence u = (f/h)(x). ¤

Let x ∈ C be a point of degree 2n > 2. Define a map

ψx : F (x)× → Mn/Mn−1

as follows: By Lemma 46.7, for each element u ∈ F (x)×, we can choose f ∈ L×n−1

and h ∈ L×1 such that (f/h)(x) = u. We set

ψx(u) =
{

px,
f

h

}
+ Mn−1.

Lemma 46.8. The map ψx is a well-defined homomorphism.

Proof. Let f ′ ∈ L×n−1 and h′ ∈ L×1 be two functions with (f ′/h′)(x) = u.
Then f ′h−fh′ ∈ Ln and (f ′h−fh′)(x) = 0. By Lemma 46.2, we have f ′h−fh′ =
λpx for some λ ∈ F . If λ = 0, then f/h = f ′/h′.

Suppose λ 6= 0. Since (λpx)/(f ′h) + (fh′)/(f ′h) = 1, we have

0 =
{λpx

f ′h
,
fh′

f ′h

}
≡

{
px,

f

h

}
−

{
px,

f ′

h′

}
mod Mn−1.

Hence {
px,

f

h

}
+ Mn−1 =

{
px,

f ′

h′

}
+ Mn−1,

so that the map ψ is well-defined.
Let u3 = u1u2 ∈ F (x)×. Choose fi ∈ L×n−1 and hi ∈ L×1 satisfying (fi/hi)(x) =

ui for i = 1, 2, 3. The function f1f2h3−f3h1h2 belongs to L2n−1 and has zero value
at x. We have f1f2h3 − f3h1h2 = pxq for some q ∈ Ln−1 by Lemma 46.2. Since
(pxq)/(f1f2h3) + (f3h1h2)/(f1f2h3) = 1,

0 =
{ pxq

f1f2h3
,
f3h1h2

f1f2h3

}
≡

{
px,

f3

h3

}
−

{
px,

f1

h1

}
−

{
px,

f2

h2

}
mod Mn−1.

Thus, ψx(u3) = ψx(u1) + ψx(u2). ¤
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By Lemma 46.8, we have a homomorphism

ψn =
∑

ψx :
∐

deg x=2n

F (x)× → Mn/Mn−1.

We claim that ∂n and ψn are isomorphisms inverse to each other. If x is a point of
degree 2n > 2 and u ∈ F (x)×, choose f ∈ L×n−1 and h ∈ L×1 such that (f/h)(x) = u.
We have

∂x

({
px,

f

h

})
=

(f

h

)
(x) = u

and the symbol {px, f/h} has no nontrivial residues at other points of degree 2n.
Therefore, ∂n ◦ ψn is the identity.

To finish the proof of Proposition 46.4, it suffices to show that ψn is surjec-
tive. The group Mn/Mn−1 is generated by classes of the form {px, g}+ Mn−1 and
{px, py}+Mn−1, where g ∈ L×n−1 and x, y are distinct points of degree 2n. Clearly,

{px, g}+ Mn−1 = ψx

(
g(x)

)
,

hence {px, g}+ Mn−1 ∈ Im ψn.
By Lemma 46.7, there are elements f ∈ L×n−1 and h ∈ L×1 such that px(y) =

(f/h)(y). The function pxh−f belongs to L×n+1 and has zero value at y. Therefore,
pxh− f = pyq for some q ∈ L×1 by Lemma 46.2. Since (pyq)/(pxh) + f/(pxh) = 1
we have

0 =
{ pyq

pxh
,

f

pxh

}
≡ {px, py} mod Im(ψn). ¤

46.C. Proof of Proposition 46.5. Define a homomorphism

ρ : A′ → M ′/M0

by the rule
ρ
( ∐

αx

)
=

∑

deg x=2

{px, αx}+ M0.

Since ∂x{px, α} = α and ∂x0{px, α} = α−1 for every x 6= x0 and the product of all
αx is equal to 1, the composition ∂′ ◦ ρ is the identity. Clearly, ρ is surjective. ¤

46.D. Generators and relations of A(Q)/A′. It remains to prove Proposi-
tion 46.6. Let Q be a quaternion division algebra satisfying C

∼→ CQ. By Proposi-
tion 45.12, the norm homomorphism

∐

deg x=2

F (x)× → F×

is canonically isomorphic to the norm homomorphism

(46.9)
∐

K× → F×,

where the coproduct is taken over all quadratic subfields K ⊂ Q. Note that the
norm map NK/F : K× → F× is the restriction of the reduced norm Nrd on K. Let
A(Q) be the kernel of the norm homomorphism (46.9). Under the above canonical
isomorphism the subgroup A′ of

∐
F (x)× corresponds to the subgroup of A(Q)

(that we still denote by A′) consisting of all families (aK) satisfying aK ∈ F× and∏
aK = 1, i.e., A′ is the intersection of A(Q) and

∐
F×. Therefore, Proposition

46.6 asserts that the canonical homomorphism

(46.10) ∂1 : M1/M
′ → A(Q)/A′
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is an isomorphism. In the proof of Proposition 46.6, we shall construct the inverse
isomorphism. In order to do so, it is convenient to have a presentation of the group
A(Q)/A′ by generators and relations.

We define a map (not a homomorphism!)

Q× →
( ∐

K×
)
/A′, a 7→ ã

as follows: If a ∈ Q× is not a scalar, it is contained in a unique quadratic subfield
K of Q. Therefore, a defines an element of the coproduct

∐
K×. We denote by

ã the corresponding class in
(∐

K×)
/A′. If a ∈ F×, of course, a belongs to all

quadratic subfields. Nevertheless, a defines a unique element ã of the factor group(∐
K×)

/A′ (we place a in any quadratic subfield). Clearly,

(46.11) (̃ab) = ã · b̃ if a and b commute.

(Note that we are using multiplicative notation for the operation in the factor
group.) Obviously, the group (

∐
K×)

/A′ is an abelian group generated by the ã
for all a ∈ Q× with the set of defining relations given by (46.11).

The group A(Q)/A′ is generated (as an abelian group) by the products

ã1ã2 · · · ãn with ai ∈ Q× and Nrd(a1a2 · · · an) = 1,

with the following set of defining relations:
(1) (ã1ã2 · · · ãn) · (ãn+1ãn+2 · · · ãn+m) = (ã1ã2 · · · ãn+m).
(2) ãb̃

(
ã−1

)(
b̃−1

)
= 1.

(3) If ai−1 and ai commute, then ã1 · · · ãi−1ãi · · · ãn = ã1 · · · ãi−1ai · · · ãn.
The set of generators is too large for our purposes. In the next subsection, we

shall find another presentation of A(Q)/A′ (cf. Corollary 46.27). More precisely,
we shall define an abstract group G by generators and relations (with a “better”
set of generators) and prove that G is isomorphic to A(Q)/A′.

46.E. The group G. Let Q be a division quaternion algebra over a field F .
Consider the abelian group G defined by generators and relations as follows: The
sign ∗ will denote the operation in G with 1 its identity element.
Generators: Symbols (a, b, c) for all ordered triples with a, b, c elements of Q×

satisfying abc = 1. Note that if (a, b, c) is a generator of G, then so are the cyclic
permutations (b, c, a) and (c, a, b).
Relations:

(R1) : (a, b, cd)∗(ab, c, d) = (b, c, da)∗(
bc, d, a) for all a, b, c, d ∈ Q× satisfying

abcd = 1;
(R2) : (a, b, c) = 1 if a and b commute.

For an (ordered) sequence a1, a2, . . . , an (n ≥ 1) of elements in Q× satisfying
a1a2 . . . an = 1, we define a symbol

(a1, a2, . . . , an) ∈ G

by induction on n as follows. The symbol is trivial if n = 1 or 2. If n ≥ 3, we set

(a1, a2, . . . , an) := (a1, a2, . . . , an−2, an−1an) ∗ (a1a2 · · · an−2, an−1, an).

Note that if a1a2 . . . an = 1, then a2 . . . ana1 = 1.

Lemma 46.12. The symbols do not change under cyclic permutations, i.e.,
(a1, a2, . . . , an) = (a2, . . . , an, a1) if a1a2 . . . an = 1.
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Proof. We induct on n. The statement is clear if n = 1 or 2. If n = 3,

(a1, a2, a3) = (a1, a2, a3) ∗ (a1a2, a3, 1) (relation R2)

= (a2, a3, a1) ∗ (a2a3, 1, a1) (relation R1)

= (a2, a3, a1) (relation R2).

Suppose that n ≥ 4. We have

(a1, a2, . . . , an) = (a1, . . . , an−2, an−1an) ∗ (a1a2 · · · an−2, an−1, an) (definition)

=(a2, . . . , an−2, an−1an, a1) ∗ (a1a2 · · · an−2, an−1, an) (induction)

=(a2, . . . , an−2, an−1ana1) ∗ (a2a3 · · · an−2, an−1an, a1)

∗ (a1a2 · · · an−2, an−1, an) (definition)

=(a2, . . . , an−2, an−1ana1) ∗ (a1, a2a3 · · · an−2, an−1an)

∗ (a1a2 · · · an−2, an−1, an) (case n = 3)

=(a2, . . . , an−2, an−1ana1) ∗ (a2a3 · · · an−2, an−1, ana1)

∗ (a2a3 · · · an−1, an, a1) (relation R1)

=(a2, . . . , an−2, an−1, ana1) ∗ (a2a3 · · · an−1, an, a1) (definition)

=(a2, . . . , an, a1) (definition). ¤
Lemma 46.13. If a1a2 . . . an = 1 and ai−1 commutes with ai for some i, then

(a1, . . . , ai−1, ai, . . . , an) = (a1, . . . , ai−1ai, . . . , an).

Proof. We may assume that n ≥ 3 and i = n by Lemma 46.12. We have

(a1, . . . , an−2, an−1, an)

= (a1, . . . , an−2, an−1an) ∗ (a1a2 · · · an−2, an−1, an) (definition)

= (a1, . . . , an−2, an−1an) (relation R2). ¤

Lemma 46.14. (a1, . . . , an) ∗ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).

Proof. We induct on m. By Lemma 46.13, we may assume that m ≥ 3. We
have

L.H.S. = (a1, . . . , an) ∗ (b1, . . . , bm−1bm) ∗ (b1b2 · · · bm−2, bm−1, bm) (definition)

= (a1, . . . , an, b1, . . . , bm−1bm) ∗ (b1b2 · · · bm−2, bm−1, bm) (induction)

= (a1, . . . , an, b1, . . . , bm) (definition). ¤

As usual, we write [a, b] for the commutator aba−1b−1.

Lemma 46.15. Let a, b ∈ Q×.
(1) For every nonzero b′ ∈ Fb + Fba, one has [a, b] = [a, b′]. Similarly, [a, b] =

[a′, b] for every nonzero a′ ∈ Fa + Fab.
(2) For every nonzero b′ ∈ Fb + Fba + Fbab there exists a′ ∈ Q× such that

[a, b] = [a′, b] = [a′, b′].

Proof. (1): We have b′ = bx, where x ∈ F + Fa. Hence x commutes with a,
so [a, b] = [a, b′]. The proof of the second statement is similar.

(2): There is nonzero a′ ∈ Fa + Fab such that b′ ∈ Fb + Fba′. By the first
part, [a, b] = [a′, b] = [a′, b′]. ¤
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Corollary 46.16. (1) Let [a, b] = [c, d]. Then there are a′, b′ ∈ Q× such that
[a, b] = [a′, b] = [a′, b′] = [c, b′] = [c, d].

(2) Every pair of commutators in Q× can be written in the form [a, b] and [c, d]
with b = c.

Proof. (1): If [a, b] = 1 = [c, d], we can take a′ = b′ = 1. Otherwise, both
sets {b, ba, bab} and {d, dc} are linearly independent. Let b′ be a nonzero element
in the intersection of the subspaces Fb+Fba+Fbab and Fd+Fdc. The statement
follows from Lemma 46.15.

(2): Let [a, b] and [c, d] be two commutators. We may clearly assume that
[a, b] 6= 1 6= [c, d], so that both sets {b, ba, bab} and {c, cd} are linearly independent.
Choose a nonzero element b′ in the intersection of Fb + Fba + Fbab and Fc + Fcd.
By Lemma 46.15, we have [a, b] = [a′, b′] for some a′ ∈ Q× and [c, d] = [b′, d]. ¤

Lemma 46.17. Let h ∈ Q×. The following conditions are equivalent:

(1) h = [a, b] for some a, b ∈ Q×.
(2) h ∈ [Q×, Q×].
(3) Nrd(h) = 1.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (1): Let K be a separable quadratic subfield containing h. (If h is purely

inseparable, then h2 ∈ F and therefore h = 1.) Since NK/F (h) = Nrd(h) = 1, by
the Hilbert Theorem 90, we have h = b̄b−1 for some b ∈ K×. By the Noether-
Skolem Theorem, b̄ = aba−1 for some a ∈ Q×, hence h = [a, b]. ¤

Let h ∈ Q× satisfy Nrd(h) = 1. Then h = [a, b] = aba−1b−1 for some a, b ∈ Q×

by Lemma 46.17. Consider the following element

ĥ = (b, a, b−1, a−1, h) ∈ G.

Lemma 46.18. The element ĥ does not depend on the choice of a and b.

Proof. Let h = [a, b] = [c, d]. By Corollary 46.16(1), we may assume that
either a = c or b = d. Consider the first case (the latter case is similar). We can
write d = bx, where x commutes with a. We have

(d, a, d−1,a−1, h) = (bx, a, x−1b−1, a−1, h)

= (bx, x−1, b−1) ∗ (b, x, a, x−1b−1, a−1, h) (Lemmas 46.13, 46.14)

= (bx, x−1, b−1) ∗ (a−1, h, b, x, a, x−1b−1) (Lemma 46.12)

= (a−1, h, b, x, a, x−1b−1, bx, x−1, b−1) (Lemma 46.14)

= (a−1, h, b, a, b−1) (Lemma 46.13)

= (b, a, b−1, a−1, h) (Lemma 46.12). ¤

Lemma 46.19. For every h1, h2 ∈ [Q×, Q×] we have

ĥ1h2 = ĥ1 ∗ ĥ2 ∗ (h1h2, h
−1
2 , h−1

1 ).
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Proof. By Corollary 46.16(2), we have h1 = [a1, c] and h2 = [c, b2] for some
a1, b2, c ∈ Q×. Then h1h2 = [a1b

−1
2 , b2cb

−1
2 ] and

ĥ1 ∗ ĥ2 ∗ (h1h2,h
−1
2 , h−1

1 )

= (c, a1, c
−1, a−1

1 , h1, h2, b2, c, b
−1
2 , c−1) ∗ (h1h2, h

−1
2 , h−1

1 )

= (b2, c, b
−1
2 , c−1, c, a1, c

−1, a−1
1 , h1, h2) ∗ (h−1

2 , h−1
1 h1h2)

= (b2, c, b
−1
2 , a1, c

−1, a−1
1 , h1h2)

= (b2, c, b
−1
2 , b2c

−1b−1
2 ) ∗ (b2cb

−1
2 , a1, c

−1, a−1
1 , h1h2)

= (b−1
2 , b2c

−1b−1
2 , b2, c) ∗ (c−1, a−1

1 , h1h2, b2cb
−1
2 , a1)

= (b−1
2 , b2c

−1b−1
2 , b2, c, c

−1, a−1
1 , h1h2, b2cb

−1
2 , a1)

= (b−1
2 , b2c

−1b−1
2 , b2, a

−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2a

−1
1 , a1)

= (b2, a
−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2c

−1b−1
2 ) ∗ (b2a

−1
1 , a1, b

−1
2 )

= (b2a
−1
1 , a1, b

−1
2 , b2, a

−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2c

−1b−1
2 )

= (b2a
−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2c

−1b−1
2 )

= (b2cb
−1
2 , a1b

−1
2 , b2c

−1b−1
2 , b2a

−1
1 , h1h2)

= ĥ1h2. ¤

Let a1, a2, . . . , an ∈ Q× satisfying Nrd(h) = 1 where h = a1a2 . . . an. We set

(46.20) ((a1, a2, . . . , an)) := (a1, a2, . . . , an, h−1) ∗ ĥ ∈ G.

Lemma 46.21. ((a1, a2, . . . , an)) ∗ ((b1, b2, . . . , bm)) = ((a1, . . . , an, b1, . . . , bm)).

Proof. Set h := a1 · · · an and h′ := b1 · · · bm. We have

L.H.S. = (a1, a2, . . . , an, h−1) ∗ (b1, b2, . . . , bm, (h′)−1) ∗ ĥ ∗ ĥ′

= (a1, a2, . . . , an, b1, b2, . . . , bm, (h′)−1, h−1) ∗ ĥ ∗ ĥ′

= (a1, a2, . . . , an, b1, b2, . . . , bm, (hh′)−1) ∗ (hh′, (h′)−1, h) ∗ ĥ ∗ ĥ′

= (a1, a2, . . . , an, b1, b2, . . . , bm, (hh′)−1) ∗ ĥh′ (Lemma 46.19)
= R.H.S. ¤

The following lemma is a consequence of the definition (46.20) and Lemma
46.13.

Lemma 46.22. If ai−1 commutes with ai for some i, then

((a1, . . . , ai−1, ai, . . . , an)) = ((a1, . . . , ai−1ai, . . . , an)).

Lemma 46.23. ((a, b, a−1, b−1)) = 1.

Proof. Set h = [a, b]. We have

L.H.S. = (a, b, a−1, b−1, h−1) ∗ ĥ = (a, b, a−1, b−1, h−1) ∗ (b, a, b−1, a−1, h) = 1. ¤
We want to establish an isomorphism between G and A(Q)/A′. To do so we

define a map π : G → A(Q)/A′ by the formula

π
(
(a, b, c)

)
= ãb̃c̃ ∈ A(Q)/A′,

where a, b, c ∈ Q× satisfy abc = 1. Clearly, π is well-defined.
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Let a1, a2, . . . , an ∈ Q× with a1a2 · · · an = 1. By induction on n, we have

π
(
(a1, a2, . . . , an)

)
= ã1ã2 · · · ãn ∈ A(Q)/A′.

Hence π is a homomorphism by Lemma 46.14.
Let h ∈ [Q×, Q×]. Write h = [a, b] for a, b ∈ Q×. We have

π(ĥ) = π
(
(b, a, b−1, a−1, h)

)
= h̃.

If a1, a2, . . . , an ∈ Q× satisfies Nrd(h) = 1 with h = a1a2 · · · an, then

(46.24) π
(
((a1, a2, . . . , an))

)
= π

(
(a1, a2, . . . , an, h−1)

) ∗ π(ĥ) = ã1ã2 · · · ãn.

Define a homomorphism θ : A(Q)/A′ → G as follows: Let a1, a2, . . . , an ∈ Q×

satisfy Nrd(a1a2 · · · an) = 1. Define θ by

(46.25) θ(ã1ã2 · · · ãn) = ((a1, a2, . . . , an)).

The relation at the end of subsection 46.D and Lemmas 46.21, 46.22, and 46.23
show that θ is a well-defined homomorphism. Formulas (46.24) and (46.25) yield

Proposition 46.26. The maps π and θ are isomorphisms inverse to each other.

Corollary 46.27. The group A(Q)/A′ is generated by products ãb̃c̃ for all ordered
triples a, b, c of elements in Q× satisfying abc = 1 with the following set of defining
relations:

(R1′) :
(
ãb̃(c̃d)

) ·((ãb)c̃d̃
)

=
(
b̃c̃(d̃a)

) ·((d̃a)b̃c̃
)

for all a, b, c, d ∈ Q× such that
abcd = 1;

(R2′) : ãb̃c̃ = 1 if a and b commute.

46.F. Proof of Proposition 46.6. To prove Proposition 46.6, we need to
prove that the homomorphism ∂1 in (46.10) is an isomorphism.

We shall view the fraction la/lb for a, b ∈ Q \ F as a nonzero rational function
on C, i.e., la/lb ∈ F (C)×.

Lemma 46.28. Let K0 be the quadratic subfield of Q corresponding to the fixed
closed point x0 of degree 2 on C and let b ∈ K0 \ F . Then the space L1 consists of
all the fractions la/lb with a ∈ Q.

Proof. Obviously, la/lb ∈ L1. It follows from Lemma 45.5 that the space of
all fractions la/lb is 3-dimensional. On the other hand, dim L1 = 3. ¤

By Lemma 46.28, the group M ′ is generated by symbols of the form {la/lb, α}
for all a, b ∈ Q \ F and α ∈ F× and the group M1 is generated by symbols
{la/lb, lc/ld} for all a, b, c, d ∈ Q \ F .

Let a, b, c ∈ Q satisfy abc = 1. We define an element

[a, b, c] ∈ M1/M
′

as follows: If at least one of a, b and c belongs to F×, we set [a, b, c] = 0. Otherwise,
the linear forms la, lb and lc are nonzero and we set

[a, b, c] :=
{ la

lc
,
lb
lc

}
+ M ′.

Lemma 45.5 and the equality {u,−u} = 0 in K2

(
F (C)

)
yield:

Lemma 46.29. Let a, b, c ∈ Q× be such that abc = 1 and let α ∈ F×. Then
(1) [a, b, c] = [b, c, a];
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(2) [αa, α−1b, c] = [a, b, c];
(3) [a, b, c] + [c−1, b−1, a−1] = 0;
(4) If a and b commute, then [a, b, c] = 0.

Lemma 46.30. ∂1([a, b, c]) = ãb̃c̃.

Proof. We may assume that none of a, b, or c is a constant. Let x, y, and z
be the points of C of degree 2 corresponding to quadratic subfields F [a], F [b], and
F [c] that we identify with F (x), F (y) and F (z), respectively.

Consider the following element in the class [a, b, c]:

w =
{ la

lc
,
lb
lc

}
+

{ lb
lc

, Nrd(a)
}

+
{ lb

la
,−Nrd(b)

}
.

By Proposition 45.12 (identifying residue fields with the corresponding qua-
dratic extensions) and Lemma 45.5,

∂x(w) =
lb
lc

(x)
(−Nrd(b)

)−1 = −Nrd(b)
lb−1

lb−1a−1
(x)

(−Nrd(b)
)−1 = a,

∂y(w) =
lc
la

(y)
(−Nrd(ab)

)
= −Nrd(a)−1 lb−1a−1

la−1
(x)

(−Nrd(ab)
)

= −Nrd(a)−1b̄−1
(−Nrd(ab)

)
= b,

∂z(w) = − la
lb

(z)Nrd(a)−1 = Nrd(a)
lbc

lb
(x)Nrd(a)−1 = c. ¤

Lemma 46.31. Let a, b, c, d ∈ Q \ F be such that cd, da /∈ F and abcd = 1. Then
{ lalc

lcdlda
,

lbld
lcdlda

}
∈ M ′.

Proof. In Proposition 45.8 plugging in the elements c−1, ab and b for a, b and
c, respectively, and using Lemma 45.5, we get elements α, β, γ ∈ F× such that on
the conic C,

αlalc + βlbld + γlcdlda = 0.

Then

− αlalc
γlcdlda

− βlbld
γlcdlda

= 1

and

0 =
{
− αlalc

γlcdlda
,− βlbld

γlcdlda

}
≡

{ lalc
lcdlda

,
lbld

lcdlda

}
mod M ′. ¤

Proposition 46.32. Let a, b, c, d ∈ Q× be such that abcd = 1. Then

[a, b, cd] + [ab, c, d] = [b, c, da] + [bc, d, a].

Proof. We first note that if one of the elements a, b, ab, c, d, cd belongs to F×,
the equality holds. For example, if a ∈ F×, then the equality reads [ab, c, d] =
[b, c, da] and follows from Lemma 46.29 and if α = ab ∈ F×, then again by Lemma
46.29,

L.H.S. = 0 = [b, c, da] + [(da)−1, α−1c−1, αb−1] = R.H.S.

So we may assume that none of the elements belong to F×. It follows from
Lemma 45.5(4) that lcd/lab and lda/lbc belong to F×. By Lemmas 46.29 and 46.31,
we have in M1/M

′:
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0 =
{ lalc

lcdlda
,

lbld
lcdlda

}
+ M ′

=
{ la

lcd
,

lb
lcd

}
+

{ lc
lda

,
lb
lda

}
+

{ la
lcd

,
ld
lda

}
+

{ lc
lda

,
ld
lcd

}
+ M ′

= [a, b, cd]− [b, c, da] +
({ la

lda
,

ld
lda

}
+

{ lda

lcd
,

ld
lda

})
+

{ lc
lda

,
ld
lcd

}
+ M ′

= [a, b, cd]− [b, c, da] +
{ la

lbc
,

ld
lbc

}
+

({ lda

lcd
,

ld
lcd

}
+

{ lc
lda

,
ld
lcd

})
+ M ′

= [a, b, cd]− [b, c, da]− [bc, d, a] +
{ lc

lcd
,

ld
lcd

}
+ M ′

= [a, b, cd]− [b, c, da]− [bc, d, a] +
{ lc

lab
,

ld
lab

}
+ M ′

= [a, b, cd]− [b, c, da]− [bc, d, a] + [ab, c, d]. ¤

We shall use the presentation of the group A(Q)/A′ by generators and relations
given in Corollary 46.27. We define a homomorphism

µ : A(Q)/A′ → M1/M
′

by the formula
µ(ãb̃c̃) := [a, b, c]

for all a, b, c ∈ Q such that abc = 1. It follows from Lemma 46.29(4) and Proposition
46.32 that µ is well-defined. Lemma 46.30 implies that ∂1 ◦ µ is the identity.

To show that µ is the inverse of ∂1 it suffices to prove that µ is surjective.
The group M1/M

′ is generated by elements of the form w = {la′/lc′ , lb′/lc′}+
M ′ for a′, b′, c′ ∈ Q\F . We may assume that 1, a′, b′ and c′ are linearly independent
(otherwise, w = 0). In particular, 1, a′, b′ and a′b′ form a basis of Q, hence

c′ = α + βa′ + γb′ + δa′b′

for some α, β, γ, δ ∈ F with δ 6= 0. We have

(γδ−1 + a′)(β + δb′) = ε + c′

for ε = βγδ−1 − α. Set

a := γδ−1 + a′, b := β + δb′, c := (ε + c′)−1.

We have abc = 1. It follows from Lemma 45.5 that

w =
{ la′

lc′
,
lb′

lc′

}
+ M ′ =

{ la
lc

,
lb
lc

}
+ M ′ = [a, b, c].

By definition of µ, we have µ(ãb̃c̃) = [a, b, c] = w, hence µ is surjective. The proof
of Proposition 46.6 is complete. ¤

47. Hilbert Theorem 90 for K2

In this section we prove the K2-analog of the classical Hilbert Theorem 90.
Throughout this section let L/F be a Galois quadratic field extension with the

Galois group G = {1, σ}. For every field extension E/F linearly disjoint from L/F ,
the field LE = L ⊗F E is a quadratic Galois extension of E with Galois group
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isomorphic to G. The group G acts naturally on K2(LE). We write (1 − σ)u for
u− σ(u) with u ∈ K2(LE) and set

V (E) := K2(LE)/(1− σ)K2(LE).

If E → E′ is a homomorphism of field extensions of F linearly disjoint from
L/F , there is a natural homomorphism

V (E) → V (E′).

Proposition 47.1. Let C be a conic curve over F and L/F a Galois quadratic field
extension such that C has a rational point over L. Then the natural homomorphism
V (F ) → V

(
F (C)

)
is injective.

Proof. Let u ∈ K2(L) satisfy uL(C) = (1− σ)v for some v ∈ K2

(
L(C)

)
. For

a closed point x ∈ C the L-algebra L(x) := L⊗F F (x) is isomorphic to the direct
product of residue fields L(y) for all closed points y ∈ CL over x ∈ C. We denote
the product of all the ∂y(v) ∈ L(y)× with y over x by ∂x(v) ∈ L(x)×.

Set ax := ∂x(v) ∈ L(x)×. Then

ax/σ(ax) = ∂x(v)/σ
(
∂x(v)

)
= ∂x

(
(1− σ)v

)
= ∂x

(
uL(C)

)
= 1,

i.e., ax ∈ F (x)×. Applying Theorem 46.1 to CL, we have
∏

x∈C

NF (x)/F (ax) = NL/F

( ∏

y∈CL

NL(y)/L(ay)
)

= NL/F

( ∏

y∈CL

NL(y)/L(∂y(v))
)

= 1.

Hence applying Theorem 46.1 to C, there is a w ∈ K2

(
F (C)

)
satisfying ∂x(w) = ax

for all x ∈ C. Set v′ := v − wL(X) ∈ K2

(
L(C)

)
. As

∂x(v′) = ∂x(v)∂x(w)−1 = axa−1
x = 1,

applying Theorem 46.1 to CL, there exists an s ∈ K2(L) with sL(C) = v′. We have

(1− σ)sL(C) = (1− σ)v′ = (1− σ)v = uL(C),

i.e., (1−σ)s−u splits over L(C). Since L(C)/L is a purely transcendental extension,
we must have (1− σ)s− u = 0 (cf. Example 100.6), hence

u = (1− σ)s ∈ Im(1− σ). ¤

Corollary 47.2. For any finitely generated subgroup H ⊂ F×, there is a field
extension F ′/F linearly disjoint from L/F such that the natural homomorphism
V (F ) → V (F ′) is injective and H ⊂ NL′/F ′(L′

×) where L′ = LF ′.

Proof. By induction it suffices to assume that H is generated by one element
b. Set F ′ = F (C), where C = CQ is the conic curve associated with the quaternion
algebra Q = (L/F, b) (cf. §98.E). Since Q splits over F ′, we have b ∈ NL′/F ′(L′

×)
by Facts 98.13(4) and 98.14(5). The conic C has a rational point over L, therefore,
the homomorphism V (F ) → V (F ′) is injective by Proposition 47.1. ¤

For any two elements x, y ∈ L×, we write 〈x, y〉 for the class of the symbol
{x, y} in V (F ). Let f be the group homomorphism

f = fF : NL/F (L×)⊗ F× → V (F ), f
(
NL/F (x)⊗ a

)
= 〈x, a〉.

The map f is well-defined. Indeed, if NL/F (x) = NL/F (y) for x, y ∈ L×, then
y = xzσ(z)−1 for some z ∈ L× by the classical Hilbert Theorem 90. Hence {y, a} =
{x, a}+ (1− σ){z, a} and consequently 〈y, a〉 = 〈x, a〉.
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Lemma 47.3. Let b ∈ NL/F (L×). Then f
(
b⊗ (1− b)

)
= 0.

Proof. If b = d2 for some d ∈ F×, then

f
(
b⊗ (1− b)

)
= 〈d, 1− d2〉 = 〈d, 1− d〉+ 〈d, 1 + d〉 = 〈−1, 1 + d〉 = 0

since −1 = zσ(z)−1 for some z ∈ L×.
So we may assume that b is not a square in F . Set

F ′ = F [t]/(t2 − b), L′ = L[t]/(t2 − b).

Note that L′ is either a field or product of two copies of the field F ′. Let u ∈ F ′

be the class of t, so that u2 = b. Choose x ∈ L× with NL/F (x) = b. Note that
NL′/F ′(x/u) = b/u2 = 1 and NL′/L(1− u) = 1− b.

The automorphism σ extends to an automorphism of L′ over F ′. Applying the
classical Hilbert Theorem 90 to the extension L′/F ′, there is a v ∈ L′× such that
vσ(v)−1 = x/u. We have

f
(
b⊗(1−b)

)
= 〈x, 1−b〉 = 〈x, NL′/L(1−u)〉 = cF ′/F 〈x, 1−u〉 = cF ′/F (〈x/u, 1−u〉)

= cF ′/F (〈vσ(v)−1, 1− u〉) = (1− σ)cF ′/F (〈v, 1− u〉) = 0,

where cF ′/F : V (F ′) → V (F ) is induced by the norm map cL′/L : K2(L′) →
K2(L). ¤

Theorem 47.4 (Hilbert Theorem 90 for K2). Let L/F be a Galois quadratic ex-
tension and σ the generator of Gal(L/F ). Then the sequence

K2(L) 1−σ−−−→ K2(L)
cL/F−−−→ K2(F )

is exact.

Proof. Let u ∈ K2(L) satisfy cL/F (u) = 0. By Proposition 100.2, the group
K2(L) is generated by symbols of the form {x, a} with x ∈ L× and a ∈ F×.
Therefore, we can write

u =
m∑

j=1

{xj , aj}

for some xj ∈ L× and aj ∈ F×, and

cL/F (u) =
m∑

j=1

{NL/F (xj), aj} = 0.

Hence by definition of K2(F ), we have in F× ⊗ F×:

(47.5)
m∑

j=1

NL/F (xj)⊗ aj =
n∑

i=1

± (
bi ⊗ (1− bi)

)

for some bi ∈ F×. Clearly, the equality (47.5) holds in H ⊗ F× for some finitely
generated subgroup H ⊂ F× containing all the NL/F (xj) and bi.

By Corollary 47.2, there is a field extension F ′/F linearly disjoint from L/F
such that the natural homomorphism V (F ) → V (F ′) is injective and

H ⊂ NL′/F ′(L′
×)
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with L′ = LF ′. The equality (47.5) then holds in NL′/F ′(L′
×) ⊗ F ′×. Now apply

the map fF ′ to both sides of (47.5). By Lemma 47.3, the class of uL′ in V (F ′) is
equal to

m∑

j=1

〈xj , aj〉 = fF ′
( m∑

j=1

NL/F (xj)⊗ aj

)
=

n∑

i=1

±fF ′
(
bi ⊗ (1− bi)

)
= 0,

i.e., uL′ ∈ (1 − σ)K2(L′). Since the map V (F ) → V (F ′) is injective, we conclude
that u ∈ (1− σ)K2(L). ¤

Theorem 47.6. Let u ∈ K2(F ) satisfy 2u = 0. Then u = {−1, a} for some
a ∈ F×. In particular, u = 0 if char(F ) = 2.

Proof. Let G = {1, σ} be a cyclic group of order two. Consider a G-action
on the field L = F ((t)) of a Laurent power series defined by

σ(t) =
{ −t if charF 6= 2,

t/(1 + t) if charF = 2.

We have a Galois quadratic extension L/E with E = LG.
Consider the diagram

K2(L) 1−σ−−−−→ K2(L)

∂

y
ys

F×
{−1}−−−−→ K2(F ),

where ∂ is the residue homomorphism of the canonical discrete valuation of L, the
map s = st is the specialization homomorphism of the parameter t (cf. §100.D), and
the bottom homomorphism is multiplication by {−1}. We claim that the diagram
is commutative. The group K2(L) is generated by elements of the form {f, g} and
{t, g} with f and g in F [[t]] having nonzero constant term. If charF 6= 2, we have

s ◦ (1− σ)({f, g}) = s({f, g} − {σ(f), σ(g)})
= {f(0), g(0)} − {σ(f)(0), σ(g)(0)}
= 0 = {−1} · ∂({f, g})

and

s ◦ (1− σ)({t, g}) = s({t, g} − {−t, σ(g)})
= {−1, g(0)}
= {−1} · ∂({t, g}).

If charF = 2, we obviously have s(u) = s
(
σ(u)

)
for every u ∈ K2(L), hence

s ◦ (1− σ) = 0.
Since cL/E(uL) = 2uE = 0, by Theorem 47.4, we have u = (1 − σ)v for some

v ∈ K2(L). The commutativity of the diagram yields

u = s(uL) = s
(
(1− σ)v

)
= {−1, ∂(v)}. ¤

48. Proof of the main theorem

In this section we prove Theorem 44.1. Let F be a field of characteristic different
from 2.
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48.A. Injectivity of hF . Suppose that hF

(
u + 2K2(F )

)
= 1 for an element

u ∈ K2(F ). Let u be a sum of n symbols. We prove by induction on n that
u ∈ 2K2(F ).

First consider the case n = 1, i.e., u = {a, b} with a, b ∈ F×. Since
(

a,b
F

)
is a

split quaternion algebra, there are x, y ∈ F such that b = x2 − ay2. It follows from
Lemma 100.3 that {a, b} ∈ 2K2(F ).

Next consider the case n = 2, i.e. u = {a, b} + {c, d}. By assumption, the
algebra

(
a,b
F

)
⊗

(
c,d
F

)
is split, or equivalently,

(
a,b
F

)
and

(
c,d
F

)
are isomorphic. By

the Chain Lemma 98.15, we may assume that a = c and hence u = {a, bd}, so the
statement follows from the case n = 1.

Now consider the general case. Write u in the form u = {a, b}+ v for a, b ∈ F×

and an element v ∈ K2F that is a sum of n − 1 symbols. We may assume that
{a, b} /∈ 2K2(F ), i.e., the quaternion algebra Q :=

(
a,b
F

)
does not split. Let C = CQ

be the conic curve over F corresponding to Q and set L = F (C). The conic C is
given by the equation

at20 + bt21 = abt22
in projective coordinates (cf. Example 45.3). Set x = t0/t2 and y = t1/t2. As
b−1x2 + a−1y2 = 1, we have

0 = {b−1x2, a−1y2} = 2{x, a−1y2} − 2{b, y} − {a, b}
and therefore {a, b} = 2r in K2(L) with r = {x, a−1y2} − {b, y}. Let p ∈ C be the
point of degree 2 given by Z = 0. The element r has only one nontrivial residue at
the point p and ∂p(r) = −1.

Since the quaternion algebra
(

a,b
F

)
is split over L, we have hL

(
vL +2K2L

)
= 1.

By induction, vL = 2w for some element w ∈ K2(L).
Set cx := ∂x(w) for every point x ∈ C. Since

c2
x = ∂x(2w) = ∂x(vL) = 1,

we have cx = (−1)nx for nx = 0 or 1. By Corollary 45.2(2), the degree of every
point of C is even, hence ∑

x∈C

nx deg(x) = 2m

for some m ∈ Z. As every degree zero divisor on C is principal by Corollary 45.2(1),
there is a function f ∈ L× with div(f) =

∑
nxx−mp. Set

w′ := w + {−1, f}+ kr ∈ K2(L)

where k = m + np. If x ∈ C is a point different from p, then

∂x(w′) = ∂x(w) · (−1)nx = 1.

Since, also,
∂p(w′) = ∂p(w) · (−1)m · (−1)k = (−1)np+m+k = 1,

we have ∂x(w′) = 1 for all x ∈ C. By Theorem 46.1, it follows that w′ = sL for
some s ∈ K2(F ). Thus

vL = 2w = 2w′ − 2kr = 2sL − {ak, b}L.

Set v′ := v − 2s + {ak, b} ∈ K2(F ); we have v′L = 0. The conic C has a rational
point over the quadratic extension E = F (

√
a). Since the field extension E(C)/E
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is purely transcendental and v′E(C) = 0, we have v′E = 0 by Example 100.6 and
therefore 2v′ = NE/F (v′E) = 0. It follows from Theorem 47.6 that v′ = {−1, d} for
some d ∈ F×. Hence modulo 2K2(F ), the element v is the sum of two symbols
{ak, b} and {−1, d}. Consequently, we are reduced to the case n = 2 that has
already been considered.

48.B. Surjectivity of hF . Recall that we are writing k2(F ) for K2F/2K2(F ).

Proposition 48.1. Let L/F be a quadratic extension. Then the sequence

k2(F )
rL/F−−−→ k2(L)

cL/F−−−→ k2(F )

is exact.

Proof. Let u ∈ K2(L) satisfy cL/F (u) = 2v for some v ∈ K2(F ). Then

cL/F (u− vL) = 2v − 2v = 0

and, by Theorem 47.4, we have u− vL = (1− σ)w for some w ∈ K2(L). Hence

u = vL + (1− σ)w =
(
v + cL/F (w)

)
L
− 2σw. ¤

We now finish the proof of Theorem 44.1. Let s ∈ Br2(F ). First suppose that
the field F is 2-special (cf. §101.B). By induction on the index of s, we prove that
s ∈ Im(hF ). By Proposition 101.15, there exists a quadratic extension L/F with
ind(sL) < ind(s). By induction, sL = hL(u) for some u ∈ k2(L). It follows from
Proposition 101.9 that

hF

(
cL/F (u)

)
= cL/F

(
hL(u)

)
= cL/F (sL) = 1.

The injectivity of hF implies that cL/F (u) = 0 so by Proposition 48.1, we have
u = vL for some v ∈ k2(F ). Therefore,

hF (v)L = hL(vL) = hL(u) = sL,

hence s−hF (v) splits over L and must be the class of a quaternion algebra. Conse-
quently, s−hF (v) = hF (w) for some symbol w in k2(F ), so s = hF (v+w) ∈ Im(hF ).

In the general case, applying the first part of the proof to a maximal odd degree
extension of F (cf. §101.B and Proposition 101.16), we see that there exists an odd
degree extension E/F such that sE = hE(v) for some v ∈ k2(E). Then again by
Proposition 101.9,

s = cE/F (sE) = cE/F

(
hE(v)

)
= hF

(
cE/F (v)

)
.
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Algebraic cycles





CHAPTER IX

Homology and Cohomology

The word “scheme” in this book (with the exception of §49) will mean a sep-
arated scheme of finite type over a field and a “variety” will mean an integral
scheme.

In this chapter we develop the K-homology and K-cohomology theories of
schemes over a field that generalizes the theory of Chow groups. We follow the
approach of [117] given by Rost. There are two advantages of having such general
theories rather than just that of Chow groups. First we have a long (infinite)
localization exact sequence. This tool together with the 5-lemma allows us to give
simple proofs of some basic results in the theory such as the Homotopy Invariance
and Projective Bundle Theorems. Secondly, the construction of the deformation
map (called the specialization homomorphism in [45]), used in the definition of the
pull-back homomorphisms, is much easier; it does not require intersections with
Cartier divisors.

We view the K-homology as a covariant functor from the category of schemes
of finite type over a field to the category of abelian groups and the K-cohomology
as a contravariant functor from the category of smooth schemes of finite type over
a field. The fact that K-homology groups for smooth schemes coincide with K-
cohomology groups should be viewed as Poincaré duality.

49. The complex C∗(X)

The purpose of this section is to construct complexes C∗(X) giving the homol-
ogy and cohomology theories that we need.

Throughout this section (and only in this section), we need to extend the class
of separated schemes of finite type over a field and consider the class of excellent
schemes (cf. [48, §7.8]). The class of excellent schemes contains:

1. Schemes of finite type over a field.
2. Closed and open subschemes of excellent schemes.
3. Spec

(OX,x

)
where x is a point of a scheme X of finite type over a field.

4. Spec(R) where R is a complete noetherian local ring.

We shall use the following properties of excellent schemes:

A. If X is excellent integral, then the normalization morphism X̃ → X is finite
and X̃ is excellent.

B. An excellent scheme X is catenary, i.e., given irreducible closed subschemes
Z ⊂ Y ⊂ X, all maximal chains of closed irreducible subsets between Z and Y
have the same length.

If x is a point of a scheme X, we write κ(x) for the residue field of x (and we
shall use the standard notation F (x) when X is a scheme over a field F ). We write

217
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dim x for the dimension of the closure {x} and X(p) for the set of point of X of
dimension p.

The word “scheme” in this section will mean an excellent scheme of finite
dimension.

49.A. Residue homomorphism for local rings. Let R be a 1-dimensional
local excellent domain with quotient field L and residue field E. Let R̃ denote the
integral closure of R in L. The ring R̃ is semilocal, 1-dimensional, and finite as R-
algebra. Let M1,M2, . . . , Mn be all of the maximal ideals of R̃. Each localization
R̃Mi

is integrally closed, noetherian and 1-dimensional, hence a DVR. Let vi denote
the discrete valuation of R̃Mi

and Ei its residue field. The field extension Ei/E
is finite. Let K∗ denote the Milnor K-groups (cf. §100) and define the residue
homomorphism

∂R : K∗(L) → K∗−1(E),
by the formula

∂R =
n∑

i=1

cEi/E ◦ ∂vi
,

where
∂vi : K∗(L) → K∗−1(Ei)

is the residue homomorphism associated with the discrete valuation vi on L (cf.
§100.B) and

cEi/E : K∗−1(Ei) → K∗−1(E)
is the norm homomorphism (cf. §100.E).

Let X be a scheme. For every pair of points x, x′ ∈ X, we define a homomor-
phism

∂x
x′ : K∗

(
κ(x)

) → K∗−1

(
κ(x′)

)

as follows: Let Z be the closure of {x} in X considered as an integral closed
subscheme (subvariety) of X. If x′ ∈ Z (in this case we say that x′ is a specialization
of x) and dim x = dim x′ + 1, then the local ring R = OZ,x′ is a 1-dimensional
excellent local domain with quotient field κ(x) and residue field κ(x′). We set
∂x

x′ = ∂R. Otherwise, set ∂x
x′ = 0.

Lemma 49.1. Let X be a scheme. For each x ∈ X and every α ∈ K∗
(
κ(x)

)
the

residue ∂x
x′(α) is nontrivial for only finitely many points x′ ∈ X.

Proof. We may assume that X = Spec(A) where A is an integrally closed
noetherian domain, x the generic point of X and α the symbol {a1, a2, . . . , an}
with nonzero ai ∈ A. For every point x′ ∈ X of codimension 1, let vx′ be the
corresponding discrete valuation of the quotient field of A. For each i, there is a
bijection between the set of all x′ satisfying vx′(ai) 6= 0 and the set of minimal
prime ideals of the (noetherian) ring A/aiA and hence this set is finite. Thus, for
all but finitely many x′ we have vx′(ai) = 0 for all i and therefore ∂x

x′(α) = 0. ¤

It follows from Lemma 49.1 that for a scheme X there is a well-defined endo-
morphism d = dX of the direct sum

C(X) :=
∐

x∈X

K∗
(
κ(x)

)

such that the (x, x′)-component of d is equal to ∂x
x′ .
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Example 49.2. Let Z ⊂ X be a closed subscheme and let z1, z2, . . . be all of the
generic points of Z. We set

[Z] :=
∑

mizi ∈
∐

x∈X

K0

(
κ(x)

) ⊂ C(X),

where mi = l(OZ,zi) is the length of the local ring OZ,zi . The element [Z] is called
the cycle of Z on X.

Example 49.3. Let X be a scheme, x ∈ X, and f ∈ κ(x)×. We view f as an
element of K1

(
κ(x)

) ⊂ C(X). Then the element

dX(f) ∈
∐

x∈X

K0

(
κ(x)

) ⊂ C(X)

is called the divisor of f and is denoted by div(f) .

The group C(X) is graded: we write for any p ≥ 0,

Cp(X) :=
∐

x∈X(p)

K∗
(
κ(x)

)
.

The endomorphism dX of C∗(X) has degree −1 with respect to this grading. We
also set

Cp,n(X) :=
∐

x∈X(p)

Kp+n

(
κ(x)

)
,

hence Cp(X) is the coproduct of Cp,n(X) over all n. Note that the graded group
C∗,n(X) is invariant under dX for every n.

Let X be a scheme over a field F . Then the group Cp(X) has a natural
structure of a left and right K∗(F )-module for all p and dX is a homomorphism of
right K∗(F )-modules.

If X is the disjoint union of two schemes X1 and X2, we have

(49.4) C∗(X) = C∗(X1)⊕ C∗(X2)

and dX = dX1 ⊕ dX2 .

49.B. Multiplication with an invertible function. Let a be an invertible
regular function on a scheme X. For every α ∈ C∗(X), we write {a} · α for the
element of C∗(X) satisfying

({a} · α)x = {a(x)} · αx

for every x ∈ X. We denote by {a} the endomorphism of C∗(X) given by α 7→
{a} · α.

The product α · {a} is defined similarly.
Let a1, a2, . . . , an be invertible regular functions on a scheme X. We write

{a1, a2, . . . , an} ·α for the product {a1} · {a2} · . . . · {an} ·α and {a1, a2, . . . , an} for
the endomorphism of C∗(X) given by α 7→ {a1, a2, . . . , an} · α.

Proposition 49.5. Let a be an invertible function on a scheme X and α ∈ C∗(X).
Then

dX

(
α · {a}) = dX(α) · {a} and dX

({a} · α)
= −{a} · dX(α).

Proof. The statement follows from Fact 100.4(1) and the projection formula
for the norm map in Proposition 100.8(3). ¤



220 IX. HOMOLOGY AND COHOMOLOGY

By Fact 100.1, it follows that

{a1, a2} = −{a2, a1} and {a1, a2} = 0 if a1 + a2 = 1.

49.C. Push-forward homomorphisms. Let f : X → Y be a morphism of
schemes. We define the push-forward homomorphism

f∗ : C∗(X) → C∗(Y )

as follows: Let x ∈ X and y ∈ Y . If y = f(x) ∈ Y and the field extension κ(x)/κ(y)
is finite, we set

(f∗)x
y := cκ(x)/κ(y) : K∗

(
κ(x)

) → K∗
(
κ(y)

)

and set (f∗)x
y = 0 otherwise. It follows from transitivity of the norm map that if

g : Y → Z is another morphism, then (g ◦ f)∗ = g∗ ◦ f∗.
If either
(1) f is a morphism of schemes of finite type over a field or
(2) f is a finite morphism,

the push-forward f∗ is a graded homomorphism of degree 0. Indeed, if y = f(x),
then dim y = dim x if and only if κ(x)/κ(y) is a finite extension for all x ∈ X.

If f is a morphism of schemes over a field F , then f∗ is a homomorphism of
left and right K∗(F )-modules.

Example 49.6. If f : X → Y is a closed embedding, then f∗ is a monomorphism
satisfying f∗ ◦dX = dY ◦f∗. Moreover, if in addition f is a bijection on points (e.g.,
if f is the canonical morphism Yred → Y ), then f∗ is an isomorphism.

Remark 49.7. Let X be a localization of a scheme Y (e.g., X is an open subscheme
of Y ) and f : X → Y the natural morphism. For every point x ∈ X, the natural ring
homomorphism OY,f(x) → OX,x is an isomorphism. It follows from the definitions
that for any x, x′ ∈ X, we have

(f∗ ◦ dX)x
y′ = (f∗)x′

y′ ◦ (dX)x
x′ = (dY )y

y′ ◦ (f∗)x
y = (dY ◦ f∗)x

y′

where y = f(x) and y′ = f(x′). Note that if y′′ ∈ Y does not belong to the image
of f , then (f∗ ◦ dX)x

y′′ = 0, but in general (dY ◦ f∗)x
y′′ may be nonzero.

The following rule is a consequence of the projection formula for Milnor’s K-
groups (cf. Fact 100.8(3)).

Proposition 49.8. Let f : X → Y be a morphism of schemes and a an invertible
regular function on Y . Then

f∗ ◦ {a′} = {a} ◦ f∗
where a′ = f∗(a) = a ◦ f .

Proposition 49.9. Let f : X → Y be either
(1) a proper morphism of schemes of finite type over a field or
(2) a finite morphism.

Then the diagram
Cp(X) dX−−−−→ Cp−1(X)

f∗

y
yf∗

Cp(Y ) dY−−−−→ Cp−1(Y )
is commutative.
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Proof. Let x ∈ X(p) and y′ ∈ Y(p−1). The (x, y′)-component of both com-
positions in the diagram can be nontrivial only if y′ belongs to the closure of the
point y = f(x), i.e., if y′ is a specialization of y. We have

p = dim x ≥ dim y ≥ dim y′ = p− 1,

therefore, dim y can be either equal to p or p − 1. Note that if f is finite, then
dim y = p.
Case 1: dim(y) = p.

In this case, the field extension κ(x)/κ(y) is finite. Replacing X by the closure
of {x} and Y by the closure of {y} we may assume that x and y are the generic
points of X and Y respectively.

First suppose that X and Y are normal. Since the morphism f is proper, the
points x′ ∈ Xp−1 satisfying f(x′) = y′ are in a bijective correspondence with the
extensions of the valuation vy′ of the field κ(y) to the field κ(x). Hence by Fact
100.8(4),

(dY ◦ f∗)x
y′ = ∂y

y′ ◦ cκ(x)/κ(y)

=
∑

f(x′)=y′
cκ(x′)/κ(y′) ◦ ∂x

x′

=
∑

f(x′)=y′
(f∗)x′

y′ ◦ (dX)x
x′

= (f∗ ◦ dX)x
y′ .

In the general case let g : X̃ → X and h : Ỹ → Y be the normalizations and
let x̃ and ỹ be the generic points of X̃ and Ỹ respectively. Note that κ(x̃) ' κ(x)
and κ(ỹ) ' κ(y). There is a natural morphism f̃ : X̃ → Ỹ over f .

Consider the following diagram:

K∗
(
κ(x̃)

)

cκ(x̃)/κ(ỹ)

²²

∼

++WWWWWWWWWWWWWWWWWWWWWWWWWW
d

X̃ // Cp−1(X̃)

f̃∗

²²

g∗

++WWWWWWWWWWWWWWWWWWWWWWWWWW

K∗
(
κ(x)

)

cκ(x)/κ(y)

²²

dX // Cp−1(X)

f∗

²²

K∗
(
κ(ỹ)

)

∼

++WWWWWWWWWWWWWWWWWWWWWWWWWW
dỸ // Cp−1(Ỹ )

h∗

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

K∗
(
κ(y)

) dY // Cp−1(Y )

By the first part of the proof, the back face of the diagram is commutative. The left
face is obviously commutative. The right face is commutative by functoriality of
the push-forward. The upper and the bottom faces are commutative by definition
of the maps dX and dY . Hence the front face is also commutative, i.e., the (x, y′)-
components of the compositions f∗ ◦ dX and dY ◦ f∗ coincide.

Note that we have proved the proposition in the case when f is finite. Before
proceeding to Case 2, as a corollary we also deduce



222 IX. HOMOLOGY AND COHOMOLOGY

Theorem 49.10 (Weil’s Reciprocity Law). Let X be a complete integral curve over
a field F . Then the composition

K∗+1

(
F (X)

) dX−−→
∐

x∈X(0)

K∗
(
F (x)

) ∑
cκ(x)/F−−−−−−→ K∗(F )

is trivial.

Proof. The case X = P1
F follows from Theorem 100.7. The general case can

be reduced to the case of the projective line as follows. Let f be a nonconstant
rational function on X. We view f as a finite morphism f : X → P1

F over F . By
the first case of the proof of Proposition 49.9, the left square of the diagram

K∗+1

(
F (X)

) dX−−−−→ ∐
x∈X(0)

K∗
(
F (x)

) ∑
cκ(x)/F−−−−−−→ K∗(F )

yf∗

yf∗

∥∥∥

K∗+1

(
F (P1)

) dP1−−−−→ ∐
y∈P1(0) K∗

(
F (y)

) ∑
cκ(y)/F−−−−−−→ K∗(F )

is commutative. The right square is commutative by the transitivity property of
the norm map (cf. Fact 100.8(1)). Finally, the statement of the theorem follows
from the commutativity of the diagram. ¤

Weil’s Reciprocity Law can be reformulated as follows:

Corollary 49.11. Proposition 49.9 holds for the structure morphism X→ Spec(F ).

We return to the proof of Proposition 49.9.
Case 2: dim(y) = p− 1.

In this case y′ = y. We replace Y by Spec
(
κ(y)

)
and X by the fiber X ×Y

Spec
(
κ(y)

)
of f over y. We can further replace X by the closure of x in X. Thus,

X is a proper integral curve over the field κ(y) and the result follows from Corollary
49.11. ¤

49.D. Pull-back homomorphisms. Let g : Y → X be a flat morphism of
schemes. We say that g is of relative dimension d if for every x ∈ X in the image
of g and for every generic point y of g−1({x}) we have dim y = dim x + d.

In this book all flat morphisms will be assumed of constant relative dimension.
Let g : Y → X be a flat morphism of relative dimension d. For every point

x ∈ X, let Yx denote the fiber scheme

Y ×X Spec
(
κ(x)

)

over κ(x). We identify the underlying topological space of Yx with a subspace of
Y .

The following statement is a direct consequence of the going-down theorem
[99, Ch. 1, Th. 4].

Lemma 49.12. For every x ∈ X we have:
(1) dim y ≤ dim x + d for every y ∈ Yx.
(2) A point y ∈ Yx is generic in Yx if and only if dim y = dim x + d.
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If y is a generic point of Yx, the local ring OYx,y is noetherian 0-dimensional,
hence is artinian. We define the ramification index of y by

ey(g) := l(OYx,y),

where l denotes the length (cf. §102).
The pull-back homomorphism

g∗ : C∗(X) → C∗+d(Y )

is defined as follows: Let x ∈ X and y ∈ Y . If g(y) = x and y is a generic point of
Yx, we set

(g∗)x
y := ey(g) · rκ(y)/κ(x) : K∗

(
κ(x)

) → K∗
(
κ(y)

)

where rκ(y)/κ(x) is the restriction homomorphism (cf. §100.A) and (g∗)x
y = 0 oth-

erwise.
Suppose that Z is of pure dimension d over a field F . The structure morphism

p : Z → Spec(F ) is flat of relative dimension d. The image of the identity under
the composition

p∗ : Z = K0(F ) = C0,0(Spec F )
p∗−→ Cd,−d(Z) i∗−→ Cd,−d(X),

where i : Z → X is the closed embedding, is equal to the cycle [Z] of Z.

Example 49.13. Let p : E → X be a vector bundle of rank r. Then p is a flat
morphism of relative dimension r and p∗

(
[X]

)
= [E].

Example 49.14. Let X be a scheme of finite type over F and let L/F be an
arbitrary field extension. The natural morphism g : XL → X is flat of relative
dimension 0. The pull-back homomorphism

g∗ : Cp(X) → Cp(XL)

is called the change of field homomorphism.

Example 49.15. An open embedding j : U → X is a flat morphism of relative
dimension 0. The pull-back homomorphism

j∗ : Cp(X) → Cp(U)

is called the restriction homomorphism.

The following proposition is an immediate consequence of the definitions.

Proposition 49.16. Let g : Y → X be a flat morphism and a an invertible func-
tion on X. Then

g∗ ◦ {a} = {a′} ◦ g∗,
where a′ = g∗(a) = a ◦ g.

Let g be a morphism of schemes over a field F . It follows from Proposition
49.16 that g∗ is a homomorphism of left and right K∗(F )-modules.

Let g : Y → X and h : Z → Y be flat morphisms. Let z ∈ Z and y = h(z),
x = g(y). It follows from Lemma 49.12 that z is a generic point of Zx if and only
if z is a generic point of Zy and y is a generic point of Yx.

Lemma 49.17. Let z be a generic point of Zx. Then ez(g ◦ h) = ez(h) · ey(g).

Proof. The statement follows from Corollary 102.2 with B = OYx,y and C =
OZx,z. Note that C/QC = OZy,z where Q is the maximal ideal of B. ¤
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Proposition 49.18. Let g : Y → X and h : Z → Y be flat morphisms of constant
relative dimension. Then (g ◦ h)∗ = h∗ ◦ g∗.

Proof. Let x ∈ X and z ∈ Z. We compute the (z, x)-components of both
sides of the equality. We may assume that x = (g ◦h)(z). Let y = h(z). By Lemma
49.17, we have

(
(g ◦ h)∗

)x

z
= ez(g ◦ h) · rκ(z)/κ(x)

= ez(h) · ey(g) · rκ(z)/κ(y) ◦ rκ(y)/κ(x)

= (h∗)y
z ◦ (g∗)x

y

= (h∗ ◦ g∗)x
z . ¤

Next consider the fiber product diagram

(49.19)

X ′ g′−−−−→ X

f ′
y

yf

Y ′ g−−−−→ Y.

Proposition 49.20. Let g and g′ in (49.19) be flat morphisms of relative dimen-
sion d. Suppose that either

(1) f is a morphism of schemes of finite type over a field or
(2) f is a finite morphism.

Then the diagram

Cp(X)
g′∗−−−−→ Cp+d(X ′)

f∗

y
yf ′∗

Cp(Y )
g∗−−−−→ Cp+d(Y ′)

is commutative.

Proof. Let x ∈ X(p) and y′ ∈ Y ′
(p+d). We shall compare the (x, y′)-components

of both compositions in the diagram. These components are trivial unless g(y′) =
f(x). Denote this point by y. By Lemma 49.12,

p + d = dim y′ ≤ dim y + d ≤ dim x + d = p + d,

hence dim y = dim x = p and y′ is a generic point of Y ′
y . In particular, the field

extension κ(x)/κ(y) is finite.
Let S be the set of all x′ ∈ X ′ satisfying f ′(x′) = y′ and g′(x′) = x. Again by

Lemma 49.12,
p + d = dim y′ ≤ dim x′ ≤ dim x + d = p + d,

hence dim x′ = dim y′ = p+d and x′ is a generic point of X ′
x. In particular, the field

extension κ(x′)/κ(y′) is finite. The set S is in a natural bijective correspondence
with the finite set Spec

(
κ(y′)⊗κ(y) κ(x)

)
.

The local ring C = OX′
x,x′ is a localization of the ring OY ′y ,y′ ⊗κ(y) κ(x) and

hence is flat over B = OY ′y ,y′ . Let Q be the maximal ideal of B. The factor ring
C/QC is the localization of the tensor product κ(y′)⊗κ(y) κ(x) at the prime ideal
corresponding to x′. Denote by lx′ the length of C/QC.
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By Corollary 102.2,

(49.21) ex′(g′) = lx′ · ey′(g)

for every x′ ∈ S. It follows from (49.21) and Fact 100.8(5) that

(f ′∗ ◦ g′∗)x
y′ =

∑

x′∈S

(f ′∗)
x′
y′ ◦ (g′∗)x

x′

=
∑

x′∈S

ex′(g′) · cκ(x′)/κ(y′) ◦ rκ(x′)/κ(x)

= ey′(g) ·
∑

x′∈S

lx′ · cκ(x′)/κ(y′) ◦ rκ(x′)/κ(x)

= ey′(g) · rκ(y′)/κ(y) ◦ cκ(x)/κ(y)

= (g∗)y
y′ ◦ (f∗)x

y

= (g∗ ◦ f∗)x
y′ . ¤

Remark 49.22. It follows from the definitions that Proposition 49.20 holds also
for arbitrary f if Y ′ is a localization of Y (cf. Remark 49.7).

Proposition 49.23. Let g : Y → X be a flat morphism of relative dimension d.
Then the diagram

Cp(X) dX−−−−→ Cp−1(X)

g∗
y

yg∗

Cp+d(Y ) dY−−−−→ Cp+d−1(Y )
is commutative.

Proof. Let x ∈ X(p) and y′ ∈ Y(p+d−1). We compare the (x, y′)-components
of both compositions in the diagram. Let y1, . . . , yk be all generic points of Yx ⊂ Y
satisfying y′ ∈ {yi}. We have

(49.24) (dY ◦ g∗)x
y′ =

k∑

i=1

(dY )yi

y′ ◦ (g∗)x
yi

=
k∑

i=1

eyi(g) · (dY )yi

y′ ◦ rκ(yi)/κ(x).

Set x′ = g(y′). If x′ /∈ {x}, then both components (g∗ ◦ dX)x
y′ and (dY ◦ g∗)x

y′

are trivial.
Suppose x′ ∈ {x}. We have

p = dim x ≥ dim x′ ≥ dim y′ − d = p− 1.

Therefore, dim x′ is either p or p− 1.
Case 1: dim(x′) = p, i.e., x′ = x.

The component (g∗ ◦ dX)x
y′ is trivial since (g∗)x̃

y′ = 0 for every x̃ 6= x′. By as-
sumption, every discrete valuation of κ(yi) with center y′ is trivial on κ(x). There-
fore, the map (dY )yi

y′ is trivial on the image of rκ(yi)/κ(x). It follows from formula
(49.24) that (dY ◦ g∗)x

y′ = 0.
Case 2: dim(x′) = p− 1.

We have y′ is a generic point of Yx′ and

(49.25) (g∗ ◦ dX)x
y′ = (g∗)x′

y′ ◦ (dX)x
x′ = ey′(g) · rκ(y′)/κ(x′) ◦ ∂x

x′ .
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Replacing X by {x} and Y by g−1({x}), we may assume that X = {x}. By
Propositions 49.9 and 49.20, we can replace X by its normalization X̃ and Y by
the fiber product Y ×X X̃, so we may assume that X is normal.

Let Y1, . . . , Yk be all irreducible components of Y containing y′, so that yi is
the generic point of Yi for all i. Let Ỹi be the normalization of Yi and let ỹi be
the generic points of Ỹi. We have κ(ỹi) = κ(yi). Let t be a prime element of the
discrete valuation ring R = OX,x′ .

The local ring A = OY,y′ is 1-dimensional; its minimal prime ideals are in
bijective correspondence with the set of points y1, . . . , yk.

Fix i ∈ [1, k]. We write Ai for the factor ring of A by the corresponding
minimal prime ideal. Since A is flat over R, the prime element t is not a zero
divisor in A, hence the image of t in Ai is not zero for every i. Let Ãi be the
normalization of the ring Ai.

Let Si be the set of all points w ∈ Ỹi such that g(w) = x′. There is a natural
bijection between Si and the set of all maximal ideals of Ãi. Moreover, if Q is a
maximal ideal of Ãi corresponding to a point w ∈ Si, then the local ring OỸi,w

coincides with the localization of Ãi with respect to Q.
Denote by li,w the length of the ring OỸi,w

/tOỸi,w
. Applying Lemma 102.3 to

the A-algebra Ãi and M = Ãi/tÃi, we have

(49.26) lA
(
Ãi/tÃi

)
=

∑

w∈Si

li,w ·
[
κ(w) : κ(y′)

]
.

On the other hand, li,w is the ramification index of the discrete valuation ring
OỸi,w

over R. It follows from Fact 100.4(2) that

(49.27) ∂ỹi
w ◦ rκ(yi)/κ(x) = li,w · rκ(w)/κ(x′) ◦ ∂x

x′

for every w ∈ Si.
By (49.26), (49.27), and Fact 100.8(3), for every i, we have

(dY )yi

y′ ◦ rκ(yi)/κ(x) =
∑

cκ(w)/κ(y′) ◦ ∂ỹi
w ◦ rκ(yi)/κ(x)

=
∑

cκ(w)/κ(y′) · li,w · rκ(w)/κ(x′) ◦ ∂x
x′

=
∑

li,w · cκ(w)/κ(y′) ◦ rκ(w)/κ(y′) ◦ rκ(y′)/κ(x′) ◦ ∂x
x′

=
∑

li,w ·
[
κ(w) : κ(y′)

] · rκ(y′)/κ(x′) ◦ ∂x
x′

= lA
(
Ãi/tÃi

) · rκ(y′)/κ(x′) ◦ ∂x
x′

(where all summations are taken over all w ∈ Si).
The factor A-module Ãi/Ai is of finite length, hence by Lemma 102.4, we have

h(t, Ai) = h(t, Ãi) where h is the Herbrand index. Since t is not a zero divisor in
either Ai or in Ãi, we have lA(Ãi/tÃi) = lA(Ai/tAi) = l(Ai/tAi). Therefore,

(49.28) (dY )yi

y′ ◦ rκ(yi)/κ(x) = l(Ai/tAi) · rκ(y′)/κ(x′) ◦ ∂x
x′ .

The local ringOYx,yi = OY,yi is the localization of A with respect to the minimal
prime ideal corresponding to yi. The ring OYx′ ,y′ is canonically isomorphic to A/tA.
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Applying Lemma 102.5 to the ring A and the module M = A we get the
equality

(49.29) ey′(g) = h(t, A) =
k∑

i=1

l(OYx,yi
) · l(Ai/tAi) =

k∑

i=1

eyi
(g) · l(Ai/tAi).

It follows from (49.25), (49.28), and (49.29) that

(dY ◦ g∗)x
y′ =

k∑

i=1

eyi
(g) · (dY )yi

y′ ◦ rκ(yi)/κ(x)

=
k∑

i=1

eyi(g) · l(Ai/tAi) · rκ(y′)/κ(x′) ◦ ∂x
x′

= ey′(g) · rκ(y′)/κ(x′) ◦ ∂x
x′

= (g∗ ◦ dX)x
y′ . ¤

The following proposition was proven by Kato in [79].

Proposition 49.30. For every scheme X over a field, the map dX is a differential
of C∗(X), i.e., (dX)2 = 0.

Proof. We will prove the statement in several steps.
Step 1: X = Spec(R), where R = F [[s, t]] and F is a field.

A polynomial tn+a1t
n−1+a2t

n−2+· · ·+an over the ring F [[s]] is called marked
if ai ∈ sF [[s]] for all i. We shall use the following properties of marked polynomials
derived from the Weierstrass Preparation Theorem [18, Ch.VII, §3, no. 8]:

A. Every height 1 ideal of the ring R is either equal to sR or is generated by a
unique marked polynomial.

B. A marked polynomial f is irreducible in R if and only if f is irreducible in
F ((s))[t].

It follows that the multiplicative group F ((s, t))× is generated by R×, s, t and
the set H of all power series of the form t−n · f where f is a marked polynomial of
degree n.

If r ∈ R× and α ∈ K∗
(
F ((s, t))

)
, then by Proposition 49.5,

(dX)2
({r} · α)

= −dX

({r̄} · dX(α)
)

= {r̄} · (dX)2(α),

where r̄ ∈ F is the residue of r. Thus it suffices to prove the following:
(i) (dX)2

({s, t}) = 0,
(ii) (dX)2

({f, g1, . . . , gn}
)

= 0 where f ∈ H and all gi belong to the subgroup
generated by s, t and H.

For every point x ∈ X(1) set ∂x = ∂y
x, where y is the generic point of X and

∂x = ∂x
z , where z is the closed point of X. Thus,

(
(dX)2

)y

z
=

∑

x∈X(1)

∂x ◦ ∂x : K∗
(
F ((s, t))

) → K∗−2(F ).

To prove (i) let xs and xt be the points of X(1) given by the ideals sR and tR,
respectively. We have

∑

x∈X(1)

∂x ◦ ∂x

({s, t}) = ∂xs
({t})− ∂xt

({s}) = 1− 1 = 0.
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To prove (ii) consider the field L = F ((s)) and the natural morphism

h : X ′ = Spec
(
R[s−1]

) → Spec
(
L[t]

)
= A1

L.

By the properties of marked polynomials, the map h identifies the set X ′
(0) =

X(1) −{xs} with the subset of the closed points of A1
L given by irreducible marked

polynomials. For every x ∈ X ′ we write x̄ for the point h(x) ∈ A1
L. Note that for

x ∈ X ′
(0) = X(1)−{xs}, the residue fields κ(x) and L(x̄) are canonically isomorphic.

In particular, the field κ(x) can be viewed as a finite extension of L. By Fact
100.8(4), we have ∂x = ∂ ◦ cκ(x)/L, where ∂ : K∗(L) → K∗−1(F ) is given by the
canonical discrete valuation of L.

Let x ∈ X ′
(0) = X(1) − {xs}. We write ∂x̄ for ∂ȳ

x̄. Under the identification of
κ(x) with L(x̄), we have ∂x̄ = ∂x ◦ i where i : K∗

(
L(t)

) → K∗
(
F ((s, t))

)
is the

canonical homomorphism. Therefore,
∑

x∈X(1)

∂x ◦ ∂x ◦ i = ∂xs ◦ ∂xs
◦ i + ∂ ◦

∑

x∈X′
(0)

cκ(x)/L ◦ ∂x ◦ i

= ∂xs ◦ ∂xs
◦ i + ∂ ◦

∑

x∈X′
(0)

cL(x̄)/L ◦ ∂x̄.

Let α = {f, g1, . . . , gn} ∈ Kn+1

(
L(t)

)
with f and gi as in (ii). Note that the

divisors in A1
L of the functions f and gi are supported in the image of h. Hence

∂p(α) = 0 for every closed point A1
L not in the image of h. Moreover, for the point

q of P1
L at infinity, f(q) = 1 and therefore, ∂q(α) = 0. Hence, by Weil’s Reciprocity

Law 49.10, applied to P1
L,

∑

x∈X′
(0)

cL(x̄)/L ◦ ∂x̄(α) =
∑

p∈P1L

cL(p)/L ◦ ∂p(α) = 0.

Notice also that f(xs) = 1, hence ∂xs ◦ i(α) = 0 and therefore,

(dX)2
({f, g1, . . . , gn}

)
=

∑

x∈X(1)

∂x ◦ ∂x ◦ i(α) = 0.

Step 2: X = Spec(S), where S is a (noetherian) local complete 2-dimensional ring
containing a field.

Let M ⊂ S be the maximal ideal. By Cohen’s theorem [140, Ch. VIII, Th.27],
there is a subfield F ⊂ S such that the natural ring homomorphism F → S/M is
an isomorphism.

Choose local parameters s, t ∈ M and consider the subring R = F [[s, t]] ⊂ S.
Denote by P the maximal ideal of R. There is an integer r such that Mr ⊂ PS.
We claim that the R-algebra S is finite. Indeed, note that

⋂
n>0

PnS ⊂
⋂
n>0

Mn = 0.

Since S/Mr is of finite length and there is a natural surjection S/Mr → S/PS, the
ring S/PS is a finitely generated R/P -module. As the ring R is complete, S is a
finitely generated R-module as claimed.

It follows from the claim that the natural morphism f : X → Y = Spec(R) is
finite. By Proposition 49.9 and Step 1,

f∗ ◦ (dX)2 = (dY )2 ◦ f∗ = 0.
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The rings R and S have isomorphic residue fields, hence (dX)2 = 0.

Step 3: X = Spec(S) where S is a 2-dimensional (noetherian) local ring containing
a field.

Let Ŝ be the completion of S. The natural morphism f : Y = Spec(Ŝ) → X is
flat of relative dimension 0. By Proposition 49.23 and Step 2,

g∗ ◦ (dX)2 = (dY )2 ◦ g∗ = 0.

The rings Ŝ and S have isomorphic residue fields, hence (dX)2 = 0.

Step 4: X is a scheme over a field.
Let x and x′ be two points of X such x′ is of codimension 2 in {x}. We

need to show that the (x, x′)-component of (dX)2 is trivial. We may assume that
X = {x}. The ring S = OX,x′ is local 2-dimensional. The natural morphism
f : Y = Spec(S) → X is flat of constant relative dimension. By Proposition 49.23
and Step 3,

f∗ ◦ (dX)2 = (dY )2 ◦ f∗ = 0.

The field κ(x′) and the residue field of S are isomorphic, therefore, the (x, x′)-
component of (dX)2 is trivial. ¤

Definition 49.31. Let X be a scheme. The complex
(
C∗(X), dX

)
is called the

Rost complex of X.

49.E. Boundary map. Let X be a scheme of finite type over a field and
Z ⊂ X a closed subscheme. Set U = X \ Z. For every p ≥ 0, the set X(p) is the
disjoint union of Z(p) and U(p), hence

Cp(X) = Cp(Z)⊕ Cp(U).

Consider the closed embedding i : Z → X and the open immersion j : U → X.
The sequence of complexes

0 → C∗(Z) i∗−→ C∗(X)
j∗−→ C∗(U) → 0

is exact. This sequence is not split in general as a sequence of complexes, but it
splits canonically termwise. Let v : C∗(U) → C∗(X) and w : C∗(X) → C∗(Z) be
the canonical inclusion and projection. Note that v and w do not commute with
the differentials in general. We have j∗ ◦ v = id and w ◦ i∗ = id.

We define the boundary map

∂U
Z : Cp(U) → Cp−1(Z)

by ∂U
Z := w ◦ dX ◦ v.

Example 49.32. Let X = A1
F , Z = {0}, and U = Gm := A1

F \ {0}. Then

∂U
Z

({t} · [U ]
)

= [Z],

where t is the coordinate function on A1
F .

Proposition 49.33. Let X be a scheme and Z ⊂ X a closed subscheme. Set
U = X \ Z. Then dZ ◦ ∂U

Z = −∂U
Z ◦ dU .
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Proof. By the definition of ∂ = ∂U
Z , we have i∗ ◦ ∂ = dX ◦ v − v ◦ dU . Hence

by Propositions 49.9 and 49.30,

i∗ ◦ dZ ◦ ∂ = dX ◦ i∗ ◦ ∂

= dX ◦ (dX ◦ v − v ◦ dU )
= − dX ◦ v ◦ dU

= (v ◦ dU − dX ◦ v) ◦ dU

= − i∗ ◦ ∂ ◦ dU .

Since i∗ is injective, we have dZ ◦ ∂ = −∂ ◦ dU . ¤

Proposition 49.34. Let a be an invertible function on X and let a′, a′′ be the
restrictions of a on U and Z, respectively. Then

∂U
Z

(
α · {a′}) = ∂U

Z (α) · {a′′} and ∂U
Z

({a′} · α)
= −{a′′} · ∂U

Z (α)

for every α ∈ C∗(U).

Proof. The homomorphisms v and w commute with the products. The state-
ment follows from Proposition 49.5. ¤

Let

(49.35)

Z ′ i′−−−−→ X ′ j′←−−−− U ′

g

y f

y h

y
Z

i−−−−→ X
j←−−−− U

be a commutative diagram with i and i′ closed embeddings, j and j′ open embed-
dings and U = X \ Z, U ′ = X ′ \ Z ′.

Proposition 49.36. Suppose that we have the diagram (49.35).

(1) If f , g and h are proper morphisms of schemes of finite type over a field,
then the diagram

Cp(U ′)
∂U′

Z′−−−−→ Cp−1(Z ′)

h∗

y
yg∗

Cp(U)
∂U

Z−−−−→ Cp−1(Z)

is commutative.
(2) Suppose that both squares in the diagram (49.35) are fiber squares. If f is

flat of constant relative dimension d, then so are g and h and the diagram

Cp(U)
∂U

Z−−−−→ Cp−1(Z)

h∗
y

yg∗

Cp+d(U ′)
∂U′

Z′−−−−→ Cp+d−1(Z ′)

is commutative.
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Proof. (1) Consider the diagram

Cp(U ′) v′−−−−→ Cp(X ′)
dX′−−−−→ Cp−1(X ′) w′−−−−→ Cp−1(Z ′)

h∗

y f∗

y
yf∗

yg∗

Cp(U) v−−−−→ Cp(X) dX−−−−→ Cp−1(X) w−−−−→ Cp−1(Z).

The left and the right squares are commutative by the local nature of the defini-
tion of the push-forward homomorphisms. The middle square is commutative by
Proposition 49.9.

The proof of (2) is similar — one uses Proposition 49.23. As both squares of
the diagram are fiber squares, for any point z ∈ Z (respectively, u ∈ U), the fibers
Z ′z and X ′

i(z) (respectively, U ′
u and X ′

j(u)) are naturally isomorphic. ¤

Let Z1 and Z2 be closed subschemes of a scheme X. Set

T1 = Z1 \ Z2, T2 = Z2 \ Z1, Ui = X \ Zi, U = U1 ∩ U2, Z = Z1 ∩ Z2.

We have the following fiber product diagram of open and closed embeddings:

Z −−−−→ Z2 ←−−−− T2y
y

y
Z1 −−−−→ X ←−−−− U1x

x
x

T1 −−−−→ U2 ←−−−− U.

Denote by ∂t, ∂b, ∂l, ∂r the boundary homomorphisms for the top, bottom, left and
right triples of the diagram respectively.

Proposition 49.37. The morphism

∂l ◦ ∂b + ∂t ◦ ∂r : C∗(U) → C∗−2(Z)

is homotopic to zero.

Proof. The differential of C∗(X) relative to the decomposition

C∗(X) = C∗(U)⊕ C∗(T1)⊕ C∗(T2)⊕ C∗(Z)

is given by the matrix

dX =




dU ∗ ∗ ∗
∂b ∗ ∗ ∗
∂r ∗ ∗ ∗
h ∂l ∂t dZ




where h : C∗(U) → C∗−1(Z) is some morphism. The equality (dX)2 = 0 gives

h ◦ dU + dZ ◦ h + ∂l ◦ ∂b + ∂t ◦ ∂r = 0.

In other words, −h is a contracting homotopy for ∂l ◦ ∂b + ∂t ◦ ∂r. ¤
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50. External products

From now on the word “scheme” means a separated scheme of finite type over
a field.

Let X and Y be two schemes over F . We define the external product

Cp(X)× Cq(Y ) → Cp+q(X × Y ), (α, β) 7→ α× β

as follows: For a point v ∈ (X × Y )(p+q), we set (α × β)v = 0 unless the point v
projects to a point x in X(p) and y in Y(q). In the latter case

(α× β)v = lv · rF (v)/F (x)(αx) · rF (v)/F (y)(βy),

where lv is the length of the artinian local ring of v on Spec
(
F (x)

)× Spec
(
F (y)

)
.

The external product is graded symmetric with respect to X and Y . More
precisely, if α ∈ Cp,n(X) and β ∈ Cq,m(Y ), then

(50.1) β × α = (−1)(p+n)(q+m)(α× β).

For every point x ∈ X, we write Yx for Y ×Spec
(
F (x)

)
and hx for the canonical

flat morphism Yx → Y of relative dimension 0. Note that Yx is a scheme over F (x),
in particular, C∗(Yx) is a module over K∗

(
F (x)

)
. Denote by ix : Yx → X × Y the

canonical morphism. Let α ∈ Cp(X) and β ∈ Cq(Y ). Unfolding the definitions, we
see that

α× β =
∑

x∈X(p)

(ix)∗
(
αx · (hx)∗(β)

)
.

Symmetrically, for every point y ∈ Y , we write Xy for X × Spec
(
F (y)

)
and ky

for the canonical flat morphism Xy → X of relative dimension 0. Note that Xy is
a scheme over F (y), in particular, C∗(Xy) is a module over K∗

(
F (y)

)
. Denote by

jy : Xy → X × Y the canonical morphism. Let α ∈ Cp(X) and β ∈ Cq(Y ). Then

α× β =
∑

y∈Y(q)

(jy)∗
(
(ky)∗(α) · βy

)
.

Proposition 50.2. For every α ∈ C∗(X), β ∈ C∗(Y ), and γ ∈ C∗(Z), we have

(α× β)× γ = α× (β × γ).

Proof. It is sufficient to show that for every point w ∈ (X × Y × Z)(p+q+r)

projecting to x ∈ X(p), y ∈ Y(q) and z ∈ Z(r) respectively, the w-components of
both sides of the equality are equal to

rF (w)/F (x)(αx) · rF (w)/F (y)(βy) · rF (w)/F (z)(γz)

times the multiplicity that is the length of the local ring C of the point w on
Spec

(
F (x)

) × Spec
(
F (y)

) × Spec
(
F (z)

)
. Let v ∈ (X × Y )(p+q) be the projection

of w. The multiplicity of the v-component of α × β is equal to the length of the
local ring B of the point v on Spec

(
F (x)

)× Spec
(
F (y)

)
. Clearly, C is flat over B.

Let Q be the maximal ideal of B. The factor ring C/QC is the local ring of w on
Spec

(
F (v)

) × Spec
(
F (z)

)
. Then the multiplicity of the w-component of the left

hand side of the equality is equal to l(B) · l(C/QC). By Corollary 102.2, the latter
number is equal to l(C). The multiplicity of the right hand side of the equality can
be computed similarly. ¤
Proposition 50.3. For every α ∈ Cp,n(X) and β ∈ Cq,m(Y ) we have

dX×Y (α× β) = dX(α)× β + (−1)p+nα× dY (β).
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Proof. We may assume that α ∈ Kp+n

(
F (x)

)
and β ∈ Kq+m

(
F (y)

)
for some

points x ∈ X(p) and y ∈ Y(q). For a point z ∈ (X × Y )(p+q−1) the z-components of
all three terms in the formula are trivial unless the projections of z to X and Y are
specializations of x and y respectively. By dimension count, z projects either to x
or to y.

Consider the first case. We have
(
dX(α) × β

)
z

= 0. The point z belongs to
the image of ix and the morphism ix factors as Yx → {x} × Y ↪→ X × Y . The
scheme Yx is a localization of {x} × Y . By Remark 49.7 and Proposition 49.9, the
z-components of dX×Y ◦ (ix)∗ and (ix)∗ ◦ dYx are equal.

By Propositions 49.5 and 49.23, we have
[
dX×Y (α× β)

]
z

=
[
dX×Y ◦ (ix)∗

(
α · (hx)∗(β)

)]
z

=
[
(ix)∗ ◦ dYx

(
α · (hx)∗(β)

)]
z

= (−1)p+n
[
(ix)∗

(
α · dYx

◦ (hx)∗(β)
)]

z

= (−1)p+n
[
(ix)∗

(
α · (hx)∗(dY β)

)]
z

= (−1)p+n
[
α× dY (β)

]
z
.

In the second case, symmetrically, we have
(
α× dY (β)

)
z

= 0 and

dX×Y (α× β)z = (dX(α)× β)z. ¤

Proposition 50.4. Let f : X → X ′ and g : Y → Y ′ be morphisms. Then for
every α ∈ Cp(X) and β ∈ Cq(Y ) we have

(f × g)∗(α× β) = f∗(α)× g∗(β).

Proof. Clearly, it suffices to consider the case that f is the identity of X. Let
x ∈ X(p) and let i′x : Y ′

x → X × Y ′, h′x : Y ′
x → Y ′, and gx : Yx → Y ′

x be canonical
morphisms. We have

(1X × g) ◦ ix = i′x ◦ gx and g ◦ hx = h′x ◦ gx.

By Propositions 49.8 and 49.20, we have

(1X × g)∗(α× β) = (1X × g)∗ ◦
∑

(ix)∗
(
αx · (hx)∗(β)

)

=
∑

(i′x)∗ ◦ (gx)∗
(
αx · (hx)∗(β)

)

=
∑

(i′x)∗
(
αx · (gx)∗(hx)∗(β)

)

=
∑

(i′x)∗
(
αx · (h′x)∗g∗(β)

)

= α× g∗(β). ¤

Proposition 50.5. Let f : X ′ → X and g : Y ′ → Y be flat morphisms. Then for
every α ∈ Cp(X) and β ∈ Cq(Y ) we have

(f × g)∗(α× β) = f∗(α)× g∗(β).

Proof. Clearly, it suffices to consider the case that f is the identity of X. Let
x ∈ X(p) and let i′x : Y ′

x → X × Y ′, h′x : Y ′
x → Y ′ and gx : Y ′

x → Yx be canonical
morphisms. We have

(1X × g) ◦ i′x = ix ◦ gx and g ◦ h′x = hx ◦ gx.
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Note that the scheme Yx is a localization of {x} × Y . By Proposition 49.20 and
Remark 49.22,

(1X × g)∗ ◦ (ix)∗ = (i′x)∗ ◦ (gx)∗.

By Propositions 49.16 and 49.18, we have

(1X × g)∗(α× β) = (1X × g)∗ ◦
∑

(ix)∗
(
αx · (hx)∗(β)

)

=
∑

(i′x)∗ ◦ (gx)∗
(
αx · (hx)∗(β)

)

=
∑

(i′x)∗
(
αx · (gx)∗(hx)∗(β)

)

=
∑

(i′x)∗
(
αx · (h′x)∗g∗(β)

)

= α× g∗(β). ¤

Corollary 50.6. Let f : X×Y → X be the projection. Then for every α ∈ C∗(X),
we have f∗(α) = α× [Y ].

Proof. We apply Proposition 50.5 and Example 49.2 to f = 1X × g, where
g : Y → Spec(F ) is the structure morphism. ¤

Proposition 50.7. Let X and Y be schemes over F . Let Z ⊂ X be a closed
subscheme and U = X \ Z. Then for every α ∈ Cp(U) and β ∈ Cq(Y ), we have

∂U
Z (α)× β = ∂U×Y

Z×Y (α× β).

Proof. We may assume that β ∈ K∗
(
F (y)

)
for some y ∈ Y . By Propositions

49.36(1) and 50.4 we may also assume that Y = {y}. For any scheme V denote
by kV : Vy → V and jV : Vy → V × Y the canonical morphisms. Let v ∈
(Z × Y )(p+q−1). The v-component of both sides of the equality are trivial unless
v belongs to the image of jZ . By Remark 49.7, the v-component of jZ

∗ ◦ ∂
Uy

Zy
and

∂U×Y
Z×Y ◦ jU

∗ are equal. It follows from Propositions 49.34 and 49.36(2) that

[
∂U

Z (α)× β
]
v

=
[
jZ
∗

(
(kZ)∗(∂U

Z α) · β)]
v

=
[
jZ
∗

(
∂

Uy

Zy
(kU )∗(α) · β)]

v

=
[
jZ
∗ ◦ ∂

Uy

Zy

(
(kU )∗(α) · β)]

v

=
[
∂U×Y

Z×Y ◦ jU
∗

(
(kU )∗(α) · β)]

v

=
[
∂U×Y

Z×Y (α× β)
]
v
. ¤

Proposition 50.8. Let X and Y be two schemes and let a be an invertible regular
function on X. Then for every α ∈ Cp(X) and β ∈ Cq(Y ) we have

({a} · α)× β = {a′} · (α× β),

where a′ is the pull-back of a on X × Y .
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Proof. Let ā be the pull-back of a on Xy. It follows from Propositions 49.8
and 49.16 that

({a} · α)× β =
∑

(jy)∗
(
(ky)∗({a}α) · βy

)

=
∑

(jy)∗
({ā}(ky)∗(α) · βy

)

=
∑

{a′}(jy)∗
(
(ky)∗(α) · βy

)

= {a′} · (α× β). ¤

51. Deformation homomorphisms

In this section we construct deformation homomorphisms . We shall use them
later to define Gysin and pull-back homomorphisms. We follow Rost’s approach
in [117] for the definition of deformation homomorphisms. (Deformation homo-
morphisms are called specialization homomorphism in [45].) Recall that we only
consider separated schemes of finite type over a field.

Let f : Y → X be a closed embedding, Df the deformation scheme and Cf the
normal cone of f . Recall that Df \ Cf is canonically isomorphic to Gm × X (cf.
§104.E). We define the deformation homomorphism as the composition

σf : C∗(X)
p∗−→ C∗+1(Gm ×X)

{t}−−→ C∗+1(Gm ×X) ∂−→ C∗(Cf )

where p : Gm ×X → X is the projection, the coordinate t of Gm is considered as
an invertible function on Gm × X and ∂ := ∂Gm×X

Cf
is taken with respect to the

open and closed subsets of the deformation scheme Df .

Example 51.1. Let f = 1X for a scheme X. Then Df = A1 × X and Cf = X.
We claim that σf is the identity. Indeed, it suffices to prove that the composition

C∗(X)
p∗−→ C∗+1(Gm ×X)

{t}−−→ C∗+1(Gm ×X) ∂−→ C∗(X)

is the identity. By Propositions 50.5, 50.7, 50.8, and Example 49.32, for every
α ∈ C∗(X), we have

∂
({t} · p∗(α)

)
= ∂

({t} · ([Gm]× α)
)

= ∂
(
({t} · [Gm])× α

)

= ∂
({t} · [Gm]

)× α

=
[{0}]× α

= α.

The following statement is a consequence of Propositions 49.5, 49.23 and 49.33.

Proposition 51.2. Let f : Y → X be a closed embedding. Then σf ◦dX = dCf
◦σf .

Consider the fiber product diagram

(51.3)

Y ′ f ′−−−−→ X ′

g

y
yh

Y
f−−−−→ X
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with f and f ′ closed embeddings. Then we have the fiber product diagram (cf.
§104.E)

(51.4)

Cf ′ −−−−→ Df ′ ←−−−− Gm ×X ′

k

y l

y
y1×h

Cf −−−−→ Df ←−−−− Gm ×X.

Proposition 51.5. If the morphism h in diagram (51.3) is flat of relative dimen-
sion d then the morphism k in (51.4) is flat of relative dimension d and the diagram

Cp(X)
σf−−−−→ Cp(Cf )

h∗
y

yk∗

Cp+d(X ′)
σf′−−−−→ Cp+d(Cf ′)

is commutative.

Proof. By Proposition 104.23, we have Df ′ = Df×XX ′, hence the morphisms
l and k in the diagram (51.4) are flat of relative dimension d. It follows from
Propositions 49.16, 49.18, and 49.36(2) that the diagram

C∗(X)
p∗−−−−→ C∗+1(Gm ×X)

{t}−−−−→ C∗+1(Gm ×X) ∂−−−−→ C∗(Cf )

h∗
y (1×h)∗

y (1×h)∗
y

yk∗

C∗+d(X ′)
p∗−−−−→C∗+d+1(Gm ×X ′)

{t}−−−−→C∗+d+1(Gm ×X ′) ∂−−−−→C∗+d(Cf ′)

is commutative. ¤

Proposition 51.6. If the morphism h in (51.3) is a proper morphism, then the
diagram

C∗(X ′)
σf′−−−−→ C∗(Cf ′)

h∗

y
yk∗

C∗(X)
σf−−−−→ C∗(Cf )

is commutative.

Proof. The natural morphism Df ′ → Df ×X X ′ is a closed embedding by
Proposition 104.23, hence the morphism l in the diagram (51.4) is proper. It follows
from Propositions 49.8, 49.20, and 49.36(1) that the diagram

C∗(X ′)
p∗−−−−→ C∗+1(Gm ×X ′)

{t}−−−−→ C∗+1(Gm ×X ′) ∂−−−−→ C∗(Cf ′)

h∗

y (1×h)∗

y (1×h)∗

y
yk∗

C∗(X)
p∗−−−−→ C∗+1(Gm ×X)

{t}−−−−→ C∗+1(Gm ×X) ∂−−−−→ C∗(Cf )

is commutative. ¤

Corollary 51.7. Let f : Y → X be a closed embedding. Then the composition
σf ◦ f∗ coincides with the push-forward map C∗(Y ) → C∗(Cf ) for the zero section
Y → Cf .
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Proof. The statement follows from Proposition 51.6, applied to the fiber prod-
uct square

Y Y
∥∥∥ f

y
Y

f−−−−→ X
and Example 51.1. ¤

Lemma 51.8. Let f : X → A1×W be a morphism. Suppose that the composition
X → A1×W → A1 and the restriction of f on both f−1(Gm×W ) and f−1

({0}×W
)

is flat. Then f is flat.

Proof. Let x ∈ X, y = f(x), and z ∈ A1 the projection of y. Set A = OA1,z,
B = OA1×W,y, and C = OX,x. We need to show that C is flat over B. If z 6= 0,
this follows from the flatness of the restriction of f on f−1(Gm ×W ).

Suppose that z = 0. Let M be the maximal ideal of A. The rings B/MB and
C/MC are the local rings of y on {0}×W and of x on f−1

({0}×W
)

respectively.
By assumption, C/MC is flat over B/MB and C is flat over A. It follows from
[99, 20G] that C is flat over B. ¤

Lemma 51.9. Let f : U → V be a closed embedding and g : V → W a flat
morphism. Suppose that the composition

q : Cf → U
f−→ V

g−→ W

is flat. Then σf ◦ g∗ = q∗.

Proof. Consider the composition u : Df → A1 × V
1×g−−→ A1 × W . The

restriction of u on u−1(Gm ×W ) is isomorphic to 1× g : Gm × V → Gm ×W and
is therefore flat. The restriction of u on u−1

(
W × {0}) coincides with q and is flat

by assumption. The projection Df → A1 is also flat. It follows from Lemma 51.8
that the morphism u is flat.

Consider the fiber product diagram
Cf −−−−→ Df ←−−−− Gm × V

q

y u

y 1×g

y
W −−−−→ A1 ×W ←−−−− Gm ×W.

By Propositions 49.16, 49.18, and 49.36(2), the following diagram is commutative:

C∗(W )
p∗−−−−→ C∗+1(Gm ×W )

{t}−−−−→ C∗+1(Gm ×W ) ∂−−−−→ C∗(W )

g∗
y 1×g∗

y 1×g∗
y

yq∗

C∗+d(V ) −−−−→ C∗+d+1(Gm × V )
{t}−−−−→ C∗+d+1(Gm × V ) ∂−−−−→ C∗+d(Cf ),

where d is the relative dimension of g. As the composition in the top row of the
diagram is the identity by Example 51.1, the result follows. ¤

If f : Y → X is a regular closed embedding, we shall write Nf for the normal
bundle Cf .

Let g : Z → Y and f : Y → X be regular closed embeddings. Then f ◦ g : Z →
X is also a regular closed embedding by Proposition 104.15. The normal bundles
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of the regular closed embeddings i : Nf |Z → Nf and j : Ng → Nf◦g are canonically
isomorphic; we denote them by N (cf. §104.E).

Lemma 51.10. In the setup above, the morphisms of complexes σi ◦ σf and σj ◦
σf◦g : C∗(X) → C∗(N) are homotopic.

Proof. Let D = Df,g be the double deformation scheme (cf. §104.F). We
have the following fiber product diagram of open and closed embeddings:

N −−−−→ Di ←−−−− Nf ×Gmy
y

y
Dj −−−−→ D ←−−−− Df ×Gmx

x
x

Gm ×Nf◦g −−−−→ Gm ×Dfg ←−−−− Gm ×X ×Gm.

We shall use the notation ∂t, ∂b, ∂l, ∂r for the boundary morphisms as in §49.E.
For every scheme V , denote by pV either of the projections V × Gm → V or
Gm × V → V . Write p for the projection Gm ×X ×Gm → X.

By Proposition 49.34 and 51.5, we have

σi ◦ σf = ∂t ◦ {s} ◦ p∗Nf
◦ σf

= ∂t ◦ {s} ◦ σf×Gm ◦ p∗X
= ∂t ◦ {s} ◦ ∂r ◦ {t} ◦ p∗

= − ∂t ◦ ∂r ◦ {s, t} ◦ p∗,

and similarly,

σj ◦ σfg = ∂l ◦ {t} ◦ p∗Nf◦g
◦ σfg

= ∂l ◦ {t} ◦ σGm×f◦g ◦ p∗X
= ∂l ◦ {t} ◦ ∂b ◦ {s} ◦ p∗

= − ∂l ◦ ∂b ◦ {t, s} ◦ p∗.

As {s, t} = −{t, s} (cf. §49.B) and the compositions ∂t ◦ ∂r and −∂l ◦ ∂b are
homotopic by Proposition 49.37, the result follows. ¤

52. K-homology groups

Let X be a separated scheme of finite type over a field F . The complex C∗(X)
is the coproduct of complexes C∗q(X) over all q ∈ Z. Denote the pth homology
group of the complex C∗q(X) by Ap(X,Kq) and call it the K-homology group of
X. In other words, Ap(X, Kq) is the homology group of the complex

∐

dim x=p+1

Kp+q+1

(
F (x)

) dX−−→
∐

dim x=p

Kp+q

(
F (x)

) dX−−→
∐

dim x=p−1

Kp+q−1

(
F (x)

)
.

It follows from the definition that Ap(X,Kq) = 0 if p+q < 0, p < 0, or p > dim X.
The group Ap(X, K−p) is a factor group of

∐
dim x=p K0

(
F (x)

)
. If Z ⊂ X is a

closed subscheme, the coset of the cycle [Z] of Z in Ap(X,K−p) (cf. Example 49.2)
will be also denoted by [Z].
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If X is the disjoint union of two schemes X1 and X2, then by (49.4), we have

Ap(X, Kq) = Ap(X1,Kq)⊕Ap(X2,Kq).

Example 52.1. We have

Ap

(
Spec(F ),Kq

)
=

{
Kq(F ) if p = 0,
0 otherwise.

It follows from Fact 100.5 that

Ap(A1
F ,Kq) =

{
Kq+1(F ) if p = 1,
0 otherwise.

52.A. Push-forward homomorphisms. If f : X → Y is a proper morphism
of schemes, the push-forward homomorphism f∗ : C∗q(X) → C∗q(Y ) is a morphism
of complexes by Proposition 49.9. This induces the push-forward homomorphism
of K-homology groups

(52.2) f∗ : Ap(X, Kq) → Ap(Y,Kq).

Thus, the assignment X 7→ A∗(X, K∗) gives rise to a functor from the category
of schemes and proper morphisms to the category of bigraded abelian groups and
bigraded homomorphisms.

Example 52.3. Let f : X → Y be a closed embedding such that f is a bijection
on points. It follows from Example 49.6 that the push-forward homomorphism f∗
in (52.2) is an isomorphism.

52.B. Pull-back homomorphism. If g : Y → X is a flat morphism of rel-
ative dimension d, the pull-back homomorphism g∗ : C∗q(X) → C∗+d,q−d(Y ) is a
morphism of complexes by Proposition 49.23. This induces the pull-back homomor-
phism of the K-homology groups

g∗ : Ap(X, Kq) → Ap+d(Y,Kq−d).

The assignment X 7→ A∗(X,K∗) gives rise to a contravariant functor from the
category of schemes and flat morphisms to the category of abelian groups.

Example 52.4. If X is a variety of dimension d over F , then the flat structure
morphism p : X → Spec(F ) of relative dimension d induces a natural pull-back
homomorphism

p∗ : KqF = A0

(
Spec(F ),Kq

) → Ad(X, Kq−d)

giving A∗(X,K∗) a structure of a K∗(F )-module.

Example 52.5. It follows from Example 52.1 that the pull-back homomorphism

f∗ : Ap

(
Spec(F ),Kq

) → Ap+1(A1
F ,Kq−1)

given by the flat structure morphism f : A1
F → Spec(F ) is an isomorphism.

52.C. Product. Let X and Y be two schemes over F . It follows from Propo-
sition 50.3 that there is a well-defined pairing

Ap(X,Kn)⊗Aq(Y,Km) → Ap+q(X × Y, Kn+m)

taking the classes of cycles α and β to the class of the external product α× β (cf.
§50).
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52.D. Localization. Let X be a scheme and Z ⊂ X a closed subscheme. Set
U := X \Z and consider the closed embedding i : Z → X and the open immersion
j : U → X. The exact sequence of complexes

0 → C∗(Z) i∗−→ C∗(X)
j∗−→ C∗(U) → 0

induces the long localization exact sequence of K-homology groups

(52.6) . . .
δ−→ Ap(Z, Kq)

i∗−→ Ap(X, Kq)
j∗−→ Ap(U,Kq)

δ−→ Ap−1(Z, Kq)
i∗−→ . . .

The map δ is called the connecting homomorphism. It is induced by the boundary
map of complexes ∂U

Z : C∗(U) → C∗−1(Z) (cf. Proposition 49.33).

52.E. Deformation. Let f : Y → X be a closed embedding. It follows from
Proposition 51.2 that the deformation homomorphism σf of complexes induces the
deformation homomorphism of homology groups

σf : Ap(X,Kq) → Ap(Cf ,Kq),

where Cf is the normal cone of f .

Proposition 52.7. Let Z be a closed equidimensional subscheme of a scheme X
and g : f−1(Z) → Z the restriction of f . Then σf

(
[Z]

)
= h∗

(
[Cg]

)
, where h : Cg →

Cf is the closed embedding of cones.

Proof. Let i : Z → X be the closed embedding and q : Z → Spec(F ),
r : Cf → Spec(F ) the structure morphisms. Consider the diagram

A0

(
Spec(F ),K0

) q∗−−−−→ Ad(Z,K−d)
i∗−−−−→ Ad(X, K−d)∥∥∥ σg

y σf

y
A0

(
Spec(F ),K0

) r∗−−−−→ Ad(Cg,K−d)
h∗−−−−→ Ad(Cf ,K−d),

where d = dim Z. The left square is commutative by Lemma 51.9 and the right
one by Proposition 51.6. Consequently, σf

(
[Z]

)
= σf ◦ i∗ ◦ q∗(1) = h∗ ◦ r∗(1) =

h∗
(
[Cg]

)
. ¤

52.F. Continuity. Let X be a variety of dimension n and f : Y → X a
dominant morphism. Let x denote the generic point of X and Yx the generic fiber
of f . For every nonempty open subscheme U ⊂ X, the natural flat morphism
gU : Yx → f−1(U) is of relative dimension −n. Hence we have the pull-back
homomorphism

(52.8) g∗U : C∗
(
f−1(U)

) → C∗−n(Yx).

The following proposition is a straightforward consequence of the definition of the
complexes C∗.

Proposition 52.9. The pull-back homomorphism g∗U of (52.8) induces isomor-
phisms

colim Cp

(
f−1(U)

) ∼→ Cp−n(Yx) and colim Ap

(
f−1(U), Kq

) ∼→ Ap−n(Yx,Kq+n)

for all p and q, where the colimits are taken over all nonempty open subschemes U
of X.
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52.G. Homotopy invariance. Let g : Y → X be a morphism of schemes
over F . Recall that for every x ∈ X, we denote by Yx the fiber scheme g−1(x) =
Y ×X Spec

(
F (x)

)
over the field F (x).

Proposition 52.10. Let g : Y → X be a flat morphism of relative dimension d.
Suppose that for every x ∈ X, the pull-back homomorphism

Ap

(
Spec

(
F (x)

)
, Kq

) → Ap+d(Yx,Kq−d)

is an isomorphism for every p and q. Then the pull-back homomorphism

g∗ : Ap(X,Kq) → Ap+d(Y, Kq−d)

is an isomorphism for every p and q.

Proof. Step 1: X is a variety.
We induct on n = dim X. The case n = 0 is obvious. In general, let U ⊂ X be

a nonempty open subset and Z = X \U with the structure of a reduced scheme. Set
V = g−1(U) and T = g−1(Z). We have closed embeddings i : Z → X, k : T → Y
and open immersions j : U → X, l : V → Y . By induction, the pull-back
homomorphism (g|T )∗ in the diagram

Ap+1(U,Kq)
δ−−−−→ Ap(Z, Kq)

i∗−−−−→ Ap(X, Kq)

(g|V )∗
y (g|T )∗

y g∗
y

Ap+d+1(V, Kq−d)
δ−−−−→ Ap+d(T,Kq−d)

k∗−−−−→ Ap+d(Y, Kq−d)

Ap(X,Kq)
j∗−−−−→ Ap(U,Kq)

δ−−−−→ Ap−1(Z, Kq)

g∗
y (g|V )∗

y (g|T )∗
y

Ap+d(Y, Kq−d)
l∗−−−−→ Ap+d(V, Kq−d)

δ−−−−→ Ap+d−1(T, Kq−d)

is an isomorphism. The diagram is commutative by Propositions 49.18, 49.20, and
49.36(2).

Let x ∈ X be the generic point. By Proposition 52.9, the colimit of the homo-
morphisms

(g|V )∗ : Ap(U,Kq) → Ap+d(V, Kq−d)

over all nonempty open subschemes U of X is isomorphic to the pull-back homo-
morphism

Ap−n

(
Spec

(
F (x)

)
,Kq+n

) → Ap−n+d(Yx,Kq+n−d).

By assumption, it is an isomorphism. Taking the colimits of all terms of the dia-
gram, we conclude by the 5-lemma that g∗ is an isomorphism.

Step 2: X is reduced.
We induct on the number m of irreducible components of X. The case m = 1

is Step 1. Let Z be a (reduced) irreducible component of X and let U = X \ Z.
Consider the commutative diagram as in Step 1. By Step 1, we have (g|T )∗ is
an isomorphism. The pull-back (g|V )∗ is also an isomorphism by the induction
hypothesis. By the 5-lemma, g∗ is an isomorphism.

Step 3: X is an arbitrary scheme.
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Let X ′ be the reduced scheme Xred. Consider the fiber product diagram

Y ′ g′−−−−→ X ′

f

y
yh

Y
g−−−−→ X,

with f and h closed embeddings. By Proposition 49.20, we have g∗◦h∗ = f∗◦g′∗. It
follows from Example 52.3 that the maps f∗ and h∗ are isomorphisms. Finally, g′∗

is an isomorphism by Step 2, hence we conclude that g∗ is also an isomorphism. ¤
Corollary 52.11. The pull-back homomorphism

g∗ : Ap(X, Kq) → Ap+d(X × Ad
F ,Kq−d)

induced by the projection g : X × Ad
F → X is an isomorphism. In particular,

Ap(Ad, Kq) =
{

Kq+d(F ) if p = d,
0 otherwise.

Proof. Example 52.5 and Proposition 52.10 yield the statement in the case
d = 1. The general case follows by induction. ¤

A morphism g : Y → X is called an affine bundle of rank d if g is flat and
the fiber of g over any point x ∈ X is isomorphic to the affine space Ad

F (x). For
example, a vector bundle of rank d is an affine bundle of rank d.

The following statement is a useful criterion establish a morphism is an affine
bundle. We shall use it repeatedly in the sequel.

Lemma 52.12. A morphism f : Y → X over F is an affine bundle of rank d if
for any local commutative F -algebra R and any morphism Spec(R) → X over F ,
the fiber product Y ×X Spec(R) is isomorphic to Ad

R over R.

Proof. Applying the condition to the local ring R = OX,x for each x ∈ X, we
see that f is flat and the fiber of f over x is the affine space Ad

F (x). ¤

The following theorem implies that affine spaces are essentially negligible for
K-homology computation.

Theorem 52.13 (Homotopy Invariance). Let g : Y → X be an affine bundle of
rank d. Then the pull-back homomorphism

g∗ : Ap(X,Kq) → Ap+d(Y, Kq−d)

is an isomorphism for every p and q.

Proof. For every x ∈ X, we have Yx ' Ad
F (x). Applying Corollary 52.11 to

X = Spec
(
F (x)

)
, we see that the pull-back homomorphism

Ap

(
Spec

(
F (x)

)
, Kq

) → Ap+d(Yx,Kq−d)

is an isomorphism for every p and q. By Proposition 52.10, the map g∗ is an
isomorphism. ¤
Corollary 52.14. Let f : E → X be a vector bundle of rank d. Then the pull-back
homomorphism

f∗ : Ap(X, K∗) → Ap+d(E, K∗−d)
is an isomorphism for every p.
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53. Euler classes and projective bundle theorem

In this section, we compute the K-homology for projective spaces and more
generally for projective bundles.

53.A. Euler class. Let p : E → X be a vector bundle of rank r. Let s : X →
E denote the zero section. Note that p is a flat morphism of relative dimension r
and s is a closed embedding. By Corollary 52.14, the pull-back homomorphism p∗

is an isomorphism. We call the composition

e(E) = (p∗)−1 ◦ s∗ : A∗(X, K∗) → A∗−r(X, K∗+r)

the Euler class of E. Note that isomorphic vector bundles over X have equal Euler
classes.

Proposition 53.1. Let 0 → E′ f−→ E
g−→ E′′ → 0 be an exact sequence of vector

bundles over X. Then e(E) = e(E′′) ◦ e(E′).

Proof. Consider the fiber product diagram

E′ f−−−−→ E

p′
y g

y

X
s′′−−−−→ E′′.

By Proposition 49.20, we have g∗ ◦ s′′∗ = f∗ ◦ p′∗, hence

e(E′′) ◦ e(E′) =(p′′∗)−1 ◦ s′′∗ ◦ (p′∗)−1 ◦ s′∗

=(p′′∗)−1 ◦ g∗−1 ◦ f∗ ◦ s′∗

=(p′′ ◦ g)∗−1 ◦ (f ◦ s′)∗

=p∗−1 ◦ s∗
=e(E). ¤

Corollary 53.2. The Euler classes of any two vector bundles E and E′ over X
commute: e(E′) ◦ e(E) = e(E) ◦ e(E′).

Proof. By Proposition 53.1, we have

e(E′) ◦ e(E) = e(E′ ⊕ E) = e(E ⊕ E′) = e(E) ◦ e(E′). ¤

Proposition 53.3. Let f : Y → X be a morphism and E a vector bundle over X.
Then the pull-back E′ = f∗(E) is a vector bundle over Y and

(1) If f is proper, then e(E) ◦ f∗ = f∗ ◦ e(E′).
(2) If f is flat, then f∗ ◦ e(E) = e(E′) ◦ f∗.

Proof. We have two fiber product diagrams

E′ g−−−−→ E Y
f−−−−→ X

q

y
yp and j

y
yi

Y
f−−−−→ X E′ g−−−−→ E

where p and q are the natural morphisms and i and j are the zero sections.
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(1): By Proposition 49.20, we have p∗ ◦ f∗ = g∗ ◦ q∗. Hence

e(E) ◦ f∗ = (p∗)−1 ◦ i∗ ◦ f∗

= (p∗)−1 ◦ g∗ ◦ j∗

= f∗ ◦ (q∗)−1 ◦ j∗
= f∗ ◦ e(E′).

(2): Again by Proposition 49.20, we have g∗ ◦ i∗ = j∗ ◦ f∗. Hence

f∗ ◦ e(E) = f∗ ◦ (p∗)−1 ◦ i∗

= (q∗)−1 ◦ g∗ ◦ i∗

= (q∗)−1 ◦ j∗ ◦ f∗

= e(E′) ◦ f∗. ¤

Proposition 53.4. Let p : E → X and p′ : E′ → X ′ be vector bundles. Then

e(E × E′)(α× α′) = e(E)(α)× e(E′)(α′)

for every α ∈ A∗(X,K∗) and α′ ∈ A∗(X ′,K∗).

Proof. Let s : X → E and s′ : X ′ → E′ be zero sections. It follows from
Propositions 50.4 and 50.5 that

e(E × E′)(α× α′) = (p× p′)∗−1 ◦ (s× s′)∗(α× α′)

= (p∗−1 × p′∗
−1

) ◦ (s∗ × s′∗)(α× α′)

=
(
p∗−1 ◦ s∗(α)

)× (
p′∗

−1 ◦ s′∗(α
′)

)

= e(E)(α)× e(E′)(α′). ¤

Proposition 53.5. The Euler class e(1) is trivial.

Proof. It suffices to proof that the push-forward homomorphism s∗ for the
zero section s : X → A1 ×X is trivial. Let t be the coordinate function on A1. We
view {t} as an element of C1(A1) = K1

(
F (A1)

)
. Clearly, dA1

({t}) = div(t) = [0].
It follows from Proposition 50.3 that for every α ∈ A∗(X, K∗), one has

s∗(α) = [0]× α = dA1

({t})× α = dA1×X

({t} × α
)

= 0

in A∗(A1 ×X,K∗) ¤

53.B. K-homology of projective spaces. Let V be a vector space of di-
mension d + 1 over F , X the projective space PF (V ) and Vp a subspace of V of
dimension p + 1 for p = 0, . . . , d. We view P(Vp) as a subvariety of X. Let xp ∈ X
be the generic point of P(Vp). Consider the generator 1p of K0

(
F (xp)

)
= Z viewed

as a subgroup of Cp,−p(X). We claim that the class lp of the generator 1p in
Ap(X, K−p) does not depend on the choice of Vp.

The statement is trivial if p = d. Suppose p < d and let V ′
p be another subspace

of dimension p + 1. We may assume that Vp and V ′
p are subspaces of a subspace

W ⊂ V of dimension p+2. Let h and h′ be linear forms on W satisfying Ker(h) = Vp

and Ker(h′) = V ′
p . View the ratio f = h/h′ as a rational function on PF (W ), so

div(f) = 1p − 1p′ . By definition of the K-homology group Ap(X, K−p), the classes
lp and lp′ of 1p and 1p′ respectively in Ap(X, K−p) coincide.
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Let X be a scheme over F and set Pd
X = Pd

F × X. For every i = 0, . . . , d
consider the external product homomorphism

A∗−i(X,K∗+i) → A∗
(
Pd

X ,K∗
)
, α 7→ li × α.

The following proposition computes the K-homology of the projective space
Pd

X .

Proposition 53.6. For any scheme X, the homomorphism
d∐

i=0

A∗−i(X, K∗+i) → A∗
(
Pd

X ,K∗
)

taking
∑

αi to
∑

li × αi is an isomorphism.

Proof. We induct on d. The case d = 0 is obvious since Pd
X = X. If d > 0 we

view Pd−1
X as a closed subscheme of Pd

X with open complement Ad
X . Consider the

closed and open embeddings f : Pd−1
X → Pd

X and g : Ad
X → Pd

X . In the diagram

0 −−−−→ ∐d−1
i=0 A∗−i(X, K∗+i) −−−−→

∐d
i=0 A∗−i(X, K∗+i)y

y
. . .

δ−−−−→ A∗
(
Pd−1

X ,K∗
) f∗−−−−→ A∗

(
Pd

X ,K∗
)

∐d
i=0 A∗−i(X,K∗+i) −−−−→ A∗−d(X, K∗+d) −−−−→ 0

y h∗
y

A∗
(
Pd

X , K∗
) g∗−−−−→ A∗

(
Ad

X ,K∗
) δ−−−−→ . . .

the bottom row is the localization exact sequence and h : Ad
X → X is the canonical

morphism. The left square is commutative by Proposition 50.4 and the right square
by Proposition 50.5.

Let q : Pd
X → X be the projection. Since h = q ◦ g, we have h∗ = g∗ ◦ q∗. By

Corollary 52.11, we have h∗ is an isomorphism, hence g∗ is surjective. Therefore, all
connecting homomorphisms δ in the bottom localization exact sequence are trivial.
It follows that the map f∗ is injective, i.e., the bottom sequence of the two maps f∗
and g∗ is short exact. By the induction hypothesis, the left vertical homomorphism
is an isomorphism. By the 5-lemma so is the middle one. ¤

Corollary 53.7. Ap(Pd
F ,Kq) =

{
Kp+q(F ) · lp if 0 ≤ p ≤ d,
0 otherwise.

Example 53.8. Let L be the canonical line bundle over X = Pd
F . We claim that

e(L)(lp) = lp−1 for every p = 1, . . . , d. First consider the case p = d. By §104.C,
we have L = Pd+1 \{0}, where 0 = [0 : . . . 0 : 1] and the morphism f : L → X takes
[S0 : · · · : Sn : Sn+1] to [S0 : · · · : Sn]. The image Z of the zero section s : X → L
is given by Sn+1 = 0. Let H ⊂ X be the hyperplane given by S0 = 0. We have
div(Sn+1/S0) = [Z]− [f−1(H)] and therefore, in Ad−1(X,K1−d):

e(L)(ld) = (f∗)−1
(
s∗([X])

)
= (f∗)−1

(
[Z]

)
= (f∗)−1

(
[f−1(H)]

)
= [H] = ld−1.

In the general case consider a linear closed embedding g : Pp
F → Pd

F . The pull-
back L′ := g∗(L) is the canonical bundle over Pp

F . By the first part of the proof
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and Proposition 53.3(1),

e(L)(lp) = e(L)
(
g∗(lp)

)
= g∗

(
e(L′)(lp)

)
= g∗(lp−1) = lp−1.

Example 53.9. Let L′ be the tautological line bundle over X = Pd
F . Similar to

Example 53.8, we get e(L′)(lp) = −lp−1 for every p ∈ [1, d].

53.C. Projective bundle theorem. Let E → X be a vector bundle of rank
r > 0. Consider the associated projective bundle morphism q : P(E) → X. Note
that q is a flat morphism of relative dimension r − 1. Let L → P(E) be either the
canonical or the tautological line bundle and e the Euler class of L.

Theorem 53.10 (Projective Bundle Theorem). Let E → X be a vector bundle of
rank r > 0. Then the homomorphism

ϕ(E) :=
r∐

i=1

er−i ◦ q∗ :
r∐

i=1

A∗−i+1(X, K∗+i−1) → A∗
(
P(E),K∗

)

is an isomorphism. In other words, every α ∈ A∗
(
P(E),K∗

)
can be written in the

form

α =
r∑

i=1

er−i
(
q∗(αi)

)

for uniquely determined elements αi ∈ A∗−i+1(X,K∗+i−1).

Proof. Suppose that L is the canonical line bundle; the case of the tautological
bundle is treated similarly. If E is a trivial vector bundle, we have P(E) = X×Pr−1

F .
Let L′ be the canonical line bundle over Pr−1

F . It follows from Example 53.8 that

e(L)r−i
(
q∗(α)

)
= e(L)r−i(lr−1 × α)

= e(L′)r−i(lr−1)× α

= li−1 × α.

Hence the map ϕ(E) coincides with the one in Proposition 53.6, consequently is an
isomorphism.

In general, we induct on d = dim X. If d = 0, the vector bundle is trivial. If
d > 0 choose an open subscheme U ⊂ X such that dimension of Z = X \ U is less
than d and the vector bundle E|U is trivial. In the diagram

. . . −−−−→ ∐r
i=1 A∗−i+1(Z,K∗+i−1) −−−−→

∐r
i=1 A∗−i+1(X,K∗+i−1)

ϕ(E|Z)

y ϕ(E)

y
. . . −−−−→ A∗

(
P(E|Z),K∗

) −−−−→ A∗
(
P(E),K∗

)

∐r
i=1 A∗−i+1(X, K∗+i−1) −−−−→

∐r
i=1 A∗−i+1(U,K∗+i−1) −−−−→ . . .

ϕ(E)

y ϕ(E|U )

y
A∗

(
P(E),K∗

) −−−−→ A∗
(
P(E|U ), K∗

) −−−−→ . . .

with rows the localization long exact sequences, the homomorphisms ϕ(E|Z) are
isomorphisms by the induction hypothesis and ϕ(E|U ) are isomorphisms as E|U is
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trivial. The diagram is commutative by Proposition 53.3. The statement follows
by the 5-lemma. ¤

Remark 53.11. It follows from Propositions 49.18, 49.20, and 53.3 that the iso-
morphisms ϕ(E) are natural with respect to push-forward homomorphisms for
proper morphisms of the base schemes and with respect to pull-back homomor-
phisms for flat morphisms.

Corollary 53.12. The pull-back homomorphism

q∗ : A∗−r+1(X, K∗+r−1) → A∗
(
P(E),K∗

)

is a split injection.

Proposition 53.13 (Splitting Principle). Let E → X be a vector bundle. Then
there is a flat morphism f : Y → X of constant relative dimension, say d, such
that:

(1) The pull-back homomorphism f∗ : A∗(X,K∗) → A∗+d(Y,K∗−d) is injec-
tive.

(2) The vector bundle f∗(E) has a filtration by subbundles with quotients line
bundles.

Proof. We induct on the rank r of E. Consider the projective bundle q :
P(E) → X. The pull-back homomorphism q∗ is injective by Corollary 53.12. The
tautological line bundle L over P(E) is a sub-bundle of the vector bundle q∗(E).
Applying the induction hypothesis to the factor bundle q∗(E)/L over P(E), we
find a flat morphism g : Y → P(E) of constant relative dimension satisfying the
conditions (1) and (2). The composition f = q ◦ g works. ¤

To prove various relations between K-homology classes, the splitting principle
allows us to assume that all the vector bundles involved have filtration by sub-
bundles with line factors.

54. Chern classes

In this section we construct Chern classes of vector bundles as operations on
K-homology.

Let E → X be a vector bundle of rank r > 0 and q : P(E) → X the associated
projective bundle. By Theorem 53.10, for every α ∈ A∗(X, K∗) there exist unique
αi ∈ A∗−i(X,K∗+i), i = 0, . . . , r such that

−er
(
q∗(α)

)
=

r∑

i=1

(−1)ier−i
(
q∗(αi)

)
,

where e is the Euler class of the tautological line bundle L over P(E), i.e.,

(54.1)
r∑

i=0

(−1)ier−i
(
q∗(αi)

)
= 0,

where α0 = α. Thus we have obtained group homomorphisms

(54.2) ci(E) : A∗(X, K∗) → A∗−i(X,K∗+i), α 7→ αi = ci(E)(α)
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for every i = 0, . . . , r. These are called the Chern classes of E. By definition, c0(E)
is the identity. We also set ci = 0 if i > r or i < 0 and define the total Chern class
of E by

c(E) := c0(E) + c1(E) + · · ·+ cr(E)
viewed as an endomorphism of A∗(X, K∗). If E is the zero bundle (of rank 0), we
set c0(E) = 1 and ci(E) = 0 if i 6= 0.

Proposition 54.3. If E is a line bundle then c1(E) = e(E).

Proof. We have P(E) = X and L = E by Example 104.19. Therefore the
equality (54.1) reads e(E)(α)− α1 = 0, hence c1(E)(α) = α1 = e(E)(α). ¤

Example 54.4. If L is a line bundle, then c(L) = 1+e(L). In particular, c(1) = 1
by Proposition 53.5.

Proposition 54.5. Let f : Y → X be a morphism and E a vector bundle over X.
Set E′ = f∗(E). Then

(1) If f is proper then c(E) ◦ f∗ = f∗ ◦ c(E′).
(2) If f is flat then f∗ ◦ c(E) = c(E′) ◦ f∗.

Proof. Let rank E = r. Consider the fiber product diagram

P(E′) h−−−−→ P(E)

q′
y

yq

Y
f−−−−→ X

with flat morphisms q and q′ of constant relative dimension r− 1. Denote by e and
e′ the Euler classes of the tautological line bundle L over P(E) and L′ over P(E′),
respectively. Note that L′ = h∗(L).

(1): By Proposition 49.20, we have h∗ ◦ (q′)∗ = q∗ ◦ f∗. By the definition of
Chern classes, for every α′ ∈ A∗(Y, K∗) and α′i = ci(E′)(α′), we have:

r∑

i=0

(−1)i(e′)r−i
(
q′∗(α′i)

)
= 0.

Applying h∗, by Propositions 49.20 and 53.3(1), we have

0 = h∗

(
r∑

i=0

(−1)i(e′)r−i
(
q′∗(α′i)

)
)

=
r∑

i=0

(−1)ier−i
(
h∗q′

∗(α′i)
)

=
r∑

i=0

(−1)ier−i
(
q∗f∗(α′i)

)
.

Hence ci(E)
(
f∗(α′)

)
= f∗(α′i) = f∗ci(E′)(α′).

(2): By the definition of the Chern classes, for every α ∈ A∗(X, K∗) and
αi = ci(E)(α) we have

r∑

i=0

(−1)ier−i(q∗αi) = 0.
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Applying h∗, by Proposition 53.3(2), we have

0 = h∗
( r∑

i=0

(−1)ier−i
(
q∗(αi)

))

=
r∑

i=0

(−1)i(e′)r−i
(
h∗q∗(αi)

)

=
r∑

i=0

(−1)i(e′)r−i
(
q′∗f∗(αi)

)
.

Hence ci(E′)
(
f∗(α)

)
= f∗(αi) = f∗ci(E)(α). ¤

Proposition 54.6. Let E be a vector bundle over X possessing a filtration by sub-
bundles with factors line bundles L1, L2, . . . , Lr. Then for every i = 1, . . . , r, we
have

ci(E) = σi

(
e(L1), . . . , e(Lr)

)

where σi is the ith elementary symmetric function, i.e.,

c(E) =
r∏

i=1

(
1 + e(Li)

)
=

r∏

i=1

c(Li).

Proof. Let q : P(E) → X be the canonical morphism and let e be the Euler
class of the tautological line bundle L over P(E). It follows from formula (54.1)
and Proposition 54.5 that it suffices to prove that

r∏

i=1

(
e− e(q∗Li)

)
= 0

as an operation on A∗(P(E),K∗). We induct on r. The case r = 1 follows from the
fact that the tautological bundle L coincides with E over P(E) = X (cf. Example
104.19). In the general case, let E′ be a subbundle of E having a filtration by sub-
bundles with factors line bundles L1, L2, . . . , Lr−1 and with E/E′ ' Lr. Consider
the natural morphism f : U = P(E) \ P(E′) → P(Lr). Under the identification
of P(Lr) with X, the bundle Lr is the tautological line bundle over P(Lr). Hence
f∗(Lr) is isomorphic to the restriction of L to U . In other words, L|U ' q∗(Lr)|U
and therefore e(L|U ) = e(q∗(Lr)|U ). It follows from Proposition 53.3 that for every
α ∈ A∗(P(E),K∗), we have

(
e− e(q∗Lr)

)
(α)|U =

(
e(L|U )− e(q∗(Lr)|U )

)
(α|U ) = 0.

By the exactness of the localization sequence (52.6), there is an element β ∈
A∗(P(E′),K∗) satisfying

i∗(β) =
(
e− e(q∗Lr)

)
(α),

where i : P(E′) → P(E) is the closed embedding. Let L′ be the the tautological line
bundle over P(E′) and q′ : P(E′) → X the canonical morphism. We have q′ = q ◦ i.
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By induction and Proposition 53.3,

r∏

i=1

(
e− e(q∗Li)

)
(α) =

r−1∏

i=1

(
e− e(q∗Li)

)
(i∗β)

= i∗

(
r−1∏

i=1

(
e(L′)− e(i∗q∗Li)

)
(β)

)

= i∗

(
r−1∏

i=1

(
e(L′)− e(q′∗Li)

)
(β)

)

= 0. ¤

Proposition 54.7 (Whitney Sum Formula). Let 0 → E′ f−→ E
g−→ E′′ → 0 be an

exact sequence of vector bundles over X. Then c(E) = c(E′) ◦ c(E′′), i.e.,

cn(E) =
∑

i+j=n

ci(E′) ◦ cj(E′′)

for every n.

Proof. By the Splitting Principle 53.13 and Proposition 54.5(2), we may as-
sume that E′ and E′′ have filtrations by subbundles with quotients line bundles
L′1, . . . , L

′
r and L′′1 , . . . , L′′s , respectively. Consequently, E has a filtration with fac-

tors L′1, . . . , L
′
r, L′′1 , . . . , L′′s . It follows from Proposition 54.6 that

c(E′) ◦ c(E′′) =
r∏

i=1

c(L′i) ◦
s∏

j=1

c(L′′i ) = c(E). ¤

The same proof as for Corollary 53.2 yields:

Corollary 54.8. The Chern classes of any two vector bundles E and E′ over X
commute: c(E′) ◦ c(E) = c(E) ◦ c(E′).

By Example 54.4, we have

Corollary 54.9. If E is a vector bundle over X, then c(E⊕1) = c(E). In partic-
ular, if E is a trivial vector bundle, then c(E) = 1.

The Whitney Sum Formula 54.7 allows us to define Chern classes not only for
vector bundles over a scheme X but also for elements of the Grothendieck group
K0(X) of the category of vector bundles over X. Note that for a vector bundle
E over X the endomorphisms ci(E) are nilpotent for i > 0; therefore, the total
Chern class c(E) is an invertible endomorphism. By the Whitney Sum Formula,
the assignment E 7→ c(E) ∈ Aut

(
A∗(X,K∗)

)
gives rise to the total Chern class

homomorphism
c : K0(X) → Aut

(
A∗(X, K∗)

)
.

55. Gysin and pull-back homomorphisms

In this section we consider contravariant properties of K-homology.
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55.A. Gysin homomorphisms. Let f : Y → X be a regular closed embed-
ding of codimension r and let pf : Nf → Y be the canonical morphism (cf. §104.B).
We define the Gysin homomorphism as the composition

fF : A∗(X,K∗)
σf−→ A∗(Nf , K∗)

(p∗f )−1

−−−−→ A∗−r(Y, K∗+r).

Proposition 55.1. Let Z
g−→ Y

f−→ X be regular closed embeddings. Then
(f ◦ g)F = gF ◦ fF.

Proof. The normal bundles of the regular closed embeddings i : Nf |Z → Nf

and j : Ng → Nf◦g are canonically isomorphic, denote them by N . Consider the
diagram

C∗(X)
σf◦g−−−−→ C∗(Nf◦g)

p∗fg←−−−− C∗(Z)

σf

y σj

y
∥∥∥

C∗(Nf ) σi−−−−→ C∗(N)
(pgpj)

∗
←−−−−− C∗(Z)

p∗f

x p∗j

x
∥∥∥

C∗(Y )
σg−−−−→ C∗(Ng)

p∗g←−−−− C∗(Z).

The bottom right square is commutative by Proposition 49.18. The bottom left
and upper right squares are commutative by Proposition 51.5 and Lemma 51.9,
respectively. The upper left square is commutative up to homotopy by Lemma
51.10. The statement follows from commutativity of the diagram up to homotopy.

¤

Let

(55.2)

Y ′ f ′−−−−→ X ′

g

y
yh

Y
f−−−−→ X

be a fiber product diagram with f and f ′ regular closed embeddings. The natural
morphisms i : Nf ′ → g∗(Nf ) of normal bundles over Y ′ are closed embeddings.
The factor bundle E = g∗(Nf )/Nf ′ over Y ′ is called the excess vector bundle.

Proposition 55.3 (Excess Formula). Let h be a proper morphism. Then in the
notation of diagram (55.2),

fF ◦ h∗ = g∗ ◦ e(E) ◦ f ′F.

Proof. Let

p : Nf → Y, p′ : Nf ′ → Y ′, i : Nf ′ → g∗(Nf ),

r : g∗(Nf ) → Nf and t : g∗(Nf ) → Y ′
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be the canonical morphisms. It suffices to prove that the diagram

C∗(X ′)

h∗

²²

σf′
// C∗(Nf ′)

i∗

&&MMMMMMMMMM

(ri)∗

²²

C∗(Y ′)
p′∗

oo

e(E)

&&LLLLLLLLLLL

C∗
(
g∗(Nf )

)

r∗

xxqqqqqqqqqq
C∗(Y ′)t∗oo

g∗

xxrrrrrrrrrrr

C∗(X)
σf

// C∗(Nf ) C∗(Y )
p∗

oo

commutes.
The commutativity everywhere but at the top parallelogram follows by Propo-

sitions 49.20 and 51.6. Hence it suffices to show that t∗ ◦ e(E) = i∗ ◦ p′∗. Consider
the fiber product diagram

Nf ′
i−−−−→ g∗(Nf )

p′
y

yj

X
s−−−−→ E,

where j is the natural morphism of vector bundles and s is the zero section. Let
q : E → Y ′ be the natural morphism. It follows from the equality q ◦ j = t and
Proposition 49.20 that

t∗ ◦ e(E) = t∗ ◦ q∗−1 ◦ s∗ = j∗ ◦ s∗ = i∗ ◦ p′∗. ¤

Corollary 55.4. Suppose under the conditions of Proposition 55.3 that f and f ′

are regular closed embeddings of the same codimension. Then fF ◦ h∗ = g∗ ◦ f ′F.

Proof. In this case, E = 0 so e(E) is the identity. ¤

A consequence of Propositions 49.18 and 51.5 is the following:

Proposition 55.5. Suppose in the diagram (55.2) that h is a flat morphism. Then
the diagram

A∗(X,K∗)
fF

−−−−→ A∗(Y, K∗)

h∗
y

yg∗

A∗(X ′,K∗)
f ′F−−−−→ A∗(Y ′,K∗)

is commutative.

Proposition 55.6. Let f : Y → X be a regular closed embedding of equidimen-
sional schemes. Then fF(

[X]
)

= [Y ].

Proof. By Example 49.13 and Proposition 52.7,

fF(
[X]

)
= (p∗f )−1 ◦ σf

(
[X]

)
= (p∗f )−1

(
[Nf ]

)
= [Y ]. ¤

Lemma 55.7. Let i : U → V and g : V → W be a regular closed embedding and a
flat morphism, respectively, and let h = g ◦ i. If h is flat, then h∗ = iF ◦ g∗.

Proof. Let p : Ni → U be the canonical morphism. By Lemma 51.9, we have
σi ◦ g∗ = (h ◦ p)∗ = p∗ ◦ h∗, hence iF ◦ g∗ = (p∗)−1 ◦ σi ◦ g∗ = h∗. ¤
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We turn to the study of the functorial behavior of Euler and Chern classes
under Gysin homomorphisms. The next proposition is a consequence of Corollary
55.4 and Proposition 55.5 (cf. the proof of Proposition 53.3).

Proposition 55.8. Let f : Y → X be a regular closed embedding and L a line
bundle over X. Set L′ = f∗(L). Then fF ◦ e(L) = e(L′) ◦ fF.

As is in the proof of Proposition 54.5, we get

Proposition 55.9. Let f : Y → X be a regular closed embedding and E a vector
bundle over X. Set E′ = f∗(E). Then fF ◦ c(E) = c(E′) ◦ fF.

Proposition 55.10. Let f : Y → X be a regular closed embedding. Then fF◦f∗ =
e(Nf ).

Proof. Let p : Nf → Y and s : Y → Nf be the canonical morphism and the
zero section of the normal bundle respectively. By Corollary 51.7,

fF ◦ f∗ = (p∗)−1 ◦ σf ◦ f∗ = (p∗)−1 ◦ s∗ = e(Nf ). ¤

Proposition 55.11. Let f : Y → X be a closed embedding given by a sheaf of
locally principal ideals I ⊂ OX . Let f ′ : Y ′ → X be the closed embedding given
by the sheaf of ideals In for some n > 0 and g : Y → Y ′ the canonical morphism.
Then

f ′F = n(g∗ ◦ fF).

Proof. We define a natural finite morphism h : Df → Df ′ of deformation
schemes as follows: We may assume that X is affine, X = Spec(A), and Y =
Spec(A/I). Then Df = Spec(Ã) and Df ′ = Spec(Ã′) where

Ã =
∐

k∈Z
I−ktk, Ã′ =

∐

k∈Z
I−kn(t′)k

(cf. §104.E).
The morphism h is induced by the ring homomorphism Ã′ → Ã taking a

component I−knt′k identically to I−kntkn. In particular, the image of t′ is equal to
tn.

The morphism h yields a commutative diagram (cf. §104.E)

Nf −−−−→ Df ←−−−− Gm ×X

r

y h

y q

y
Nf ′ −−−−→ Df ′ ←−−−− Gm ×X,

where q is the identity on X and the nth power morphism on Gm. Let ∂ (re-
spectively, ∂′) be the boundary map with respect to the top row (respectively, the
bottom row) of the diagram. It follows from Proposition 49.36(1) that

(55.12) r∗ ◦ ∂ = ∂′ ◦ q∗.

For any α ∈ C∗(X) we have

(55.13) q∗
({t} · ([Gm]× α)

)
= {±t′} · ([Gm]× α)
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since the norm of t in the field extension F (t)/F (t′) is equal to ±t′. By (55.12) and
(55.13), we have

(r∗ ◦ σf )(α) = (r∗ ◦ ∂)
({t} · ([Gm]× α)

)

= (∂′ ◦ q∗)
({t} · ([Gm]× α)

)

= ∂′
({±t′} · ([Gm]× α)

)

= σf ′(α),

hence

(55.14) r∗ ◦ σf = σf ′ .

The morphism p factors into the composition of morphisms in the first row of
the commutative diagram

Nf
i−−−−→ (Nf )⊗n j−−−−→ Nf ′

p

y s

y p′
y

Y Y
g−−−−→ Y ′

of vector bundles. As the morphism i is finite flat of degree n, the composition
i∗ ◦ i∗ is multiplication by n. The right square of the diagram is a fiber square.
Hence by Proposition 49.20, we have

r∗ ◦ p∗ = j∗ ◦ i∗ ◦ i∗ ◦ s∗ = n(j∗ ◦ s∗) = n(p′∗ ◦ g∗).

It follows from (55.14) that

f ′F = (p′∗)−1 ◦ σf ′ = (p′∗)−1 ◦ r∗ ◦ σf = n
(
g∗ ◦ (p∗)−1 ◦ σf

)
= n(g∗ ◦ fF)

as needed. ¤

55.B. The pull-back homomorphisms. Let f : Y → X be a morphism of
equidimensional schemes with X smooth. By Corollary 104.14, the morphism

i = (1Y , f) : Y → Y ×X

is a regular closed embedding of codimension dX = dim X with the normal bundle
Ni = f∗(TX), where TX is the tangent bundle of X (cf. Corollary 104.14). The
projection p : Y × X → X is a flat morphism of relative dimension dY . Set
d = dX − dY . We define the pull-back homomorphism

(55.15) f∗ : A∗(X,K∗) → A∗−d(Y,K∗+d)

as the composition iF ◦ p∗.
We use the same notation for the pull-back homomorphism just defined and

the flat pull-back. The following proposition justifies this notation.

Proposition 55.16. Let f : Y → X be a flat morphism of equidimensional schemes
and let X be smooth. Then the pull-back f∗ in (55.15) coincides with the flat pull-
back homomorphism.

Proof. This follows by applying Lemma 55.7 to the closed embedding i =
(1Y , f) : Y → Y ×X and to the projection g : Y ×X → X. ¤

We have the following two propositions about the compositions of the pull-back
maps.
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Proposition 55.17. Let Z
g−→ Y

f−→ X be morphisms of equidimensional schemes
with X smooth and g flat. Then (f ◦ g)∗ = g∗ ◦ f∗.

Proof. Consider the fiber product diagram

Z
g−−−−→ Y

iZ

y
yiY

Z ×X
h−−−−→ Y ×X,

where iY = (1Y , f), iZ = (1Z , fg), h = (g, 1X) and two projections pY : Y ×X →
X and pZ : Z ×X → X. We have pZ = pY ◦ h. By Propositions 49.18 and 55.5,

(f ◦ g)∗ = iFZ ◦ p∗Z

= iFZ ◦ h∗ ◦ p∗Y

= g∗ ◦ iFY ◦ p∗Y
= g∗ ◦ f∗. ¤

Proposition 55.18. Let Z
g−→ Y

f−→ X be morphisms of equidimensional schemes
with both Y and X smooth. Then (f ◦ g)∗ = g∗ ◦ f∗.

Proof. Consider the commutative diagram

Z

k
&&NNNNNNNNNNNN

(1Z ,g)
//

(1Z ,fg)

²²

Z × Y //

h

²²

Y

(1Y ,f)

²²

Z × Y ×X

&&NNNNNNNNNNNN
// Y ×X

²²

Z ×X

l

88pppppppppp
// X

where

k = (1Z , g, fg), h(z, y) =
(
z, y, f(y)

)
, l(z, x) =

(
z, g(z), x

)
,

and all unmarked arrows are the projections. Applying the Gysin homomorphisms
or the flat pull-backs for all arrows in the diagram, we get a diagram of homomor-
phisms of the K-homology groups that is commutative by Propositions 49.18, 55.1,
55.5, and Lemma 55.7. ¤

We next show that the pull-back homomorphism for a regular closed embedding
coincides with the Gysin homomorphism:

Proposition 55.19. Let f : Y → X be a regular closed embedding of equidimen-
sional schemes with X smooth. Then f∗ = fF.

Proof. The commutative diagram

Y
d //

1Y
""FFFFFFFFF Y × Y

h //

p

²²

Y ×X

q

²²

Y
f

// X,
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with d the diagonal embedding and h = 1Y × f gives rise to the diagram

A∗(X, K∗)
fF

//

q∗

²²

A∗(Y, K∗)

p∗

²²

1

((PPPPPPPPPPPP

A∗(Y ×X, K∗)
hF

// A∗(Y × Y,K∗)
dF

// A∗(Y, K∗).

The square is commutative by Proposition 55.5 and the triangle by Lemma 55.7.
Let g = h ◦ d. Then

f∗ = gF ◦ q∗ = dF ◦ hF ◦ q∗ = fF. ¤

The pull-back homomorphisms commute with external products:

Proposition 55.20. Let f : X ′ → X and g : Y ′ → Y be morphisms of equidimen-
sional schemes with X and Y smooth. Then for every α ∈ C∗(X) and β ∈ C∗(Y ),
we have

(f × g)∗(α× β) = f∗(α)× g∗(β).

Proof. It suffices to do the case with g = 1Y and by Proposition 50.5 with f
a regular closed embedding. Denote by qX : Gm ×X → X and pf : Nf → X ′ the
canonical morphisms. Note that Nf×1Y = Nf × Y . Consider the diagram

C∗(X)
q∗X−−−−→ C∗(Gm ×X)

{t}−−−−→ C∗(Gm ×X)y
y

y

C∗(X × Y )
q∗X×Y−−−−→ C∗(Gm ×X × Y )

{t}−−−−→ C∗(Gm ×X × Y )

C∗(Gm ×X) ∂−−−−→ C∗(Nf )
p∗f←−−−− C∗(X ′)y

y
y

C∗(Gm ×X × Y ) ∂−−−−→ C∗(Nf×1Y
)

(pf×1Y )∗←−−−−−− C∗(X ′ × Y )

where all vertical homomorphisms are given by the external product with β. The
commutativity of all squares follow from Propositions 50.5, 50.7, and 50.8. ¤

Proposition 55.21. Let f : Y → X be a morphism of equidimensional schemes
with X smooth. Then f∗

(
[X]

)
= [Y ].

Proof. Let i = (1Y , f) : Y → Y ×X be the graph of f and let p : Y ×X → X
be the projection. It follows from Corollary 50.6 and Proposition 55.6 that

f∗
(
[X]

)
= iF ◦ p∗

(
[X]

)
= iF

(
[Y ×X]

)
= [Y ]. ¤

The following statement on the commutativity of the pull-back maps and the
Chern classes is a consequence of Propositions 54.5(2) and 55.9.

Proposition 55.22. Let f : Y → X be a morphism of equidimensional schemes
with X smooth and E a vector bundle over X. Set E′ = f∗(E). Then f∗ ◦ c(E) =
c(E′) ◦ f∗.
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56. K-cohomology ring of smooth schemes

We now consider the case that our scheme X is smooth. This allows us to
introduce the K-cohomology groups A∗(X, K∗) which we do as follows: If X is
irreducible of dimension d, we set

Ap(X, Kq) := Ad−p(X,Kq−d).

In the general case, let X1, X2, . . . , Xs be (disjoint) irreducible components of X.
We set

Ap(X, Kq) :=
s∐

i=1

Ap(Xi,Kq).

In particular, if X is an equidimensional smooth scheme of dimension d, then
Ap(X, Kq) = Ad−p(X, Kq−d).

Let f : Y → X be a morphism of smooth schemes. We define the pull-back
homomorphism

f∗ : Ap(X, Kq) → Ap(Y, Kq)
as follows: If X and Y are both irreducible and of dimension dX and dY , respec-
tively, we define f∗ as in §55.B:

f∗ : Ap(X, Kq) = AdX−p(X, Kq−dX )
f∗−→ AdY −p(X,Kq−dY ) = Ap(Y, Kq).

If just Y is irreducible, we have f(Y ) ⊂ Xi for an irreducible component Xi of X.
We define the pull-back as the composition

Ap(X, Kq) → Ap(Xi, Kq)
f∗−→ Ap(Y, Kq),

where the first map is the canonical projection. Finally, in the general case, we
define f∗ as the direct sum of the homomorphisms Ap(X, Kq) → Ap(Yj , Kq) over
all irreducible components Yj of Y .

It follows from Proposition 55.18 that if Z
g−→ Y

f−→ X are morphisms of smooth
schemes, then (f ◦ g)∗ = g∗ ◦ f∗.

Let X be a smooth scheme. Denote by

d = dX : X → X ×X

the diagonal closed embedding. The composition

(56.1) Ap(X, Kq)⊗Ap′(X, Kq′)
×−→ Ap+p′(X ×X,Kq+q′)

d∗−→ Ap+p′(X, Kq+q′)

defines a product on A∗(X,K∗).

Remark 56.2. If X = X1

∐
X2, then A∗(X,K∗) = A∗(X1,K∗) ⊕ A∗(X2,K∗).

Since the image of the diagonal morphism dX does not intersect X1 × X2, the
product of two classes from A∗(X1,K∗) and A∗(X2,K∗) is zero.

Proposition 56.3. The product in (56.1) is associative.

Proof. Let α, β, γ ∈ A∗(X, K∗). By Proposition 55.20, we have

(α× β)× γ =d∗
(
d∗(α× β)× γ

)

= d∗ ◦ (d× 1X)∗(α× β × γ)

=
(
(d× 1X) ◦ d

)∗(α× β × γ)

= c∗(α× β × γ),
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where c : X → X × X × X is the diagonal embedding. Similarly, α × (β × γ) =
c∗(α× β × γ). ¤

Proposition 56.4. For every smooth scheme X, the product in A∗(X,K∗) is bi-
graded commutative, i.e., if α ∈ Ap(X,Kq) and α′ ∈ Ap′(X,Kq′), then

α · α′ = (−1)(p+q)(p′+q′)α′ · α.

Proof. It follows from (50.1) that

α · α′ = d∗(α× α′) = (−1)(p+q)(p′+q′)d∗(α′ × α) = (−1)(p+q)(p′+q′)α′ · α. ¤

Let X be a smooth scheme and let X1, X2, . . . be the irreducible components
of X. Then [X] =

∑
[Xi] in A0(X, K0).

Proposition 56.5. The class [X] is the identity in A∗(X, K∗) under the product.

Proof. We may assume that X is irreducible. Let f : X × X → X be the
first projection. Since f ◦ d = 1X , it follows from Corollary 50.6 and Proposition
55.16 that

α · [X] = d∗
(
α× [X]

)
= d∗f∗(α) = α. ¤

We have proven:

Theorem 56.6. Let X be a smooth scheme. Then A∗(X,K∗) is a bigraded com-
mutative associative ring with the identity [X].

Remark 56.7. If X1, . . . , Xn are the irreducible components of a smooth scheme
X, the ring A∗(X,K∗) is the product of the rings A∗(X1, K∗), . . . , A∗(Xn,K∗).

Proposition 56.8. Let f : Y → X be a morphism of smooth schemes. Then

f∗(α · β) = f∗(α) · f∗(β)

for all α, β ∈ A∗(X, K∗) and f∗
(
[X]

)
= [Y ].

Proof. Since (f × f) ◦ dY = dX ◦ f , it follows from Propositions 55.18 and
55.20 that

f∗(α · β) = f∗ ◦ d∗X(α× β)

= d∗Y ◦ (f × f)∗(α× β)

= d∗Y
(
f(α)× f(β)

)

= f∗(α) · f∗(β).

The second equality follows from Proposition 55.21. ¤

It follows from Proposition 56.8 that the correspondence X 7→ A∗(X, K∗) gives
rise to a cofunctor from the category of smooth schemes and arbitrary morphisms
to the category of bigraded rings and homomorphisms of bigraded rings.

Proposition 56.9 (Projection Formula). Let f : Y → X be a proper morphism of
smooth schemes. Then

f∗
(
α · f∗(β)

)
= f∗(α) · β

for every α ∈ A∗(Y, K∗) and β ∈ A∗(X, K∗).
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Proof. Let g = (1Y × f) ◦ dY . Then we have the fiber product diagram

(56.10)

Y
g−−−−→ Y ×X

f

y
yf×1X

X
dX−−−−→ X ×X.

It follows from Propositions 49.20 and 55.20 that

f∗
(
α · f∗(β)

)
=f∗ ◦ d∗Y

(
α× f∗(β)

)

= f∗ ◦ d∗Y ◦ (1Y × f)∗(α× β)

= f∗ ◦ g∗(α× β)

= d∗X ◦ (f × 1Y )∗(α× β)

= d∗X(f∗(α)× β)

= f∗(α) · β. ¤
The projection formula asserts that the push-forward homomorphism f∗ is

A∗(X, K∗)-linear if we view A∗(Y, K∗) as a A∗(X,K∗)-module via f∗.
The following statement is an analog of the projection formula.

Proposition 56.11. Let f : Y → X be a morphism of equidimensional schemes
with X smooth. Then

f∗
(
f∗(β)

)
= f∗

(
[Y ]

) · β
for every β ∈ A∗(X,K∗).

Proof. The closed embeddings g and dX in the diagram (56.10) are regular
of the same codimension (cf. Corollary 104.14). Let p : X ×X → X be the second
projection. Then the composition q = p ◦ (f × 1X) : Y × X → X is also the
projection. By Propositions 50.4, 50.5, 55.17, 55.21, and Corollaries 50.6, 55.4, we
have

f∗
(
f∗(β)

)
=f∗ ◦ gF ◦ q∗(β)

= f∗ ◦ gF ◦ (f × 1X)∗ ◦ p∗(β)

= dF
X ◦ (f × 1X)∗ ◦ (f × 1X)∗ ◦ p∗(β)

= dF
X ◦ (f∗ × id) ◦ (f∗ × id)

(
[X]× β

)

= dF
X

(
f∗ ◦ f∗

(
[X]

)× β
)

= dF
X

(
f∗([Y ])× β

)

= f∗
(
[Y ]

) · β. ¤





CHAPTER X

Chow Groups

In this chapter we study Chow groups as special cases of K-homology and
K-cohomology theories, so we can apply results from the previous chapter. Chow
groups will remain the main tool in the rest of the book. We also develop the theory
of Segre classes that will be used in the chapter on the Steenrod operations that
follows.

57. Definition of Chow groups

Recall that a scheme is a separated scheme of finite type over a field and a
variety is an integral scheme.

57.A. Two equivalent definitions of Chow groups.

Definition 57.1. Let X be a scheme over F and p ∈ Z. We call the group

CHp(X) := Ap(X,K−p)

the Chow group of dimension p classes of cycles on X.

By definition,

CHp(X) = Coker


 ∐

x∈X(p+1)

K1

(
F (x)

) dX−−→
∐

x∈X(p)

K0

(
F (x)

)

 .

Note that K1

(
F (x)

)
= F (x)× and K0

(
F (x)

)
= Z. Thus the Chow group CHp(X)

is the factor group of the free abelian group

Zp(X) =
∐

x∈X(p)

Z,

called the group of p-dimensional cycles on X, by the subgroup generated by the
divisors dX(f) = div(f) for all f ∈ F (x)× and x ∈ X(p+1).

A point x ∈ X of dimension p gives rise to a prime cycle in Zp(X), denoted by
[x]. Thus, an element of Zp(X) is a finite formal linear combination

∑
nx[x] with

nx ∈ Z and dim x = p. We will often write {x} instead of x, so that an element of
Zp(X) is a finite formal linear combination

∑
nZ [Z] where the sum is taken over

closed subvarieties Z ⊂ X of dimension p. We will use the same notation for the
classes of cycles in CHp(X). Note that a closed subscheme W ⊂ X (not necessarily
integral) defines the cycle [W ] ∈ Z(X) (cf. Example 49.2).

Example 57.2. Let X be a scheme of dimension d. The group CHd(X) = Zd(X)
is free with basis the classes of irreducible components (generic points) of X of
dimension d.

261
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The divisor of a function can be computed in a simpler way. Let R be a 1-
dimensional Noetherian local domain with quotient field L. We define the order
homomorphism

ordR : L× → Z
by the formula ordR(r) = l(R/rR) for every nonzero r ∈ R.

Let Z be a variety over F of dimension d. For any point x ∈ Z of dimension
d− 1, the local ring OZ,x is 1-dimensional. Hence the order homomorphism

ordx = ordOZ,x
: F (Z)× → Z

is well-defined.

Proposition 57.3. Let Z be a variety over F of dimension d and f ∈ F (Z)×.
Then div(f) =

∑
ordx(f) · x, where the sum is taken over all points x ∈ Z of

dimension d− 1.

Proof. Let R be the local ring OZ,x, where x is a point of dimension d − 1.
Let R̃ denote the integral closure of R in F (Z). For every nonzero f ∈ R, the
x-component of div(f) is equal to

∑
l(R̃Q/fR̃Q) · [R̃/Q : F (x)],

where the sum is taken over all maximal ideals Q of R̃. Applying Lemma 102.3 to
the R̃-module M = R̃/fR̃, we have the x-component equals lR(R̃/fR̃). Since R̃/R

is an R-module of finite length, lR(R̃/fR̃) = lR(R/fR) = ordx(f). ¤

We wish to give an equivalent definition of Chow groups. To do so we need
some preliminaries.

Let Z be a variety over F of dimension d and f : Z → P1 a dominant morphism.
Thus f is a flat morphism of relative dimension d−1. For any rational point a ∈ P1,
the pull-back scheme f−1(a) is an equidimensional subscheme of Z of dimension
d− 1. Note that we can view f as a rational function on Z.

Lemma 57.4. Let f be as above. Then div(f) = [f−1(0)]− [f−1(∞)] on Z.

Proof. Let x ∈ Z be a point of dimension d − 1 with the x-component of
div(f) nontrivial. Then f(x) = 0 or f(x) = ∞.

Consider the first case, so f ∈ OZ,x. By Proposition 57.3, the x-component
of div(f) is equal to ordx(f). The local ring Of−1(0),x coincides with OZ,x/fOZ,x,
therefore, the x-component of [f−1(0)] is equal to

l(Of−1(0),x) = l(OZ,x/fOZ,x) = ordx(f).

Similarly (applying the above argument to the function f−1), we see that in the
second case the x-component of [f−1(∞)] is equal to ordx(f−1) = − ordx(f). ¤

Let X be a scheme and Z ⊂ X × P1 a closed subvariety of dimension d with
Z dominant over P1. Hence the projection f : Z → P1 is flat of relative dimension
d − 1. For every rational point a ∈ P1, the projection p : X × P1 → X maps the
subscheme f−1(a) isomorphically onto a closed subscheme of X that we denote by
Z(a). It follows from Lemma 57.4 that

(57.5) p∗
(
div(f)

)
= [Z(0)]− [Z(∞)].

In particular, the classes of [Z(0)] and [Z(∞)] coincide in CH(X).
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Let Z(X;P1) denote the subgroup of Z(X×P1) generated by the classes of closed
subvarieties of X × P1 that are dominant over P1. For any cycle β ∈ Z(X;P1) and
any rational point a ∈ P1, the cycle β(a) ∈ Z(X) is well-defined.

If α =
∑

nZ [Z] ∈ Z(X), we write α×[P1] for the cycle
∑

nZ [Z×P1] ∈ Z(X;P1).
Clearly,

(
α× [P1]

)
(a) = α for any rational point a ∈ P1.

Let α and α′ be two cycles on a scheme X. We say that α and α′ are rationally
equivalent if the classes of α and α′ are equal in CH(X).

Proposition 57.6. Two cycles α and α′ on a scheme X are rationally equivalent
if and only if there is a cycle β ∈ Z(X;P1) satisfying α = β(0) and α′ = β(∞).

Proof. It was shown in (57.5) that the classes of the cycles β(0) and β(∞)
are equal in CH(X). Conversely, suppose that the classes of α and α′ are equal in
CH(X). By the definition of the Chow group, there are closed subvarieties Zi ⊂ X
and nonconstant rational functions gi on Zi such that

α− α′ =
∑

div(gi).

Let Vi be closure of the graph of gi in Zi × P1 ⊂ X × P1 and let fi : Vi → P1 be
the induced morphism. Since gi is nonconstant, the morphism fi is dominant and
[Vi] ∈ Z(X;P1).

The projection p : X × P1 → X maps Vi birationally onto Zi, hence by Propo-
sition 49.9,

div(gi) = div
(
p∗(fi)

)
= p∗ div(fi) = [Vi(0)]− [Vi(∞)].

Let β′ =
∑

[Vi] ∈ Z(X;P1). We have

α− α′ = β′(0)− β′(∞).

Consider the cycle
γ = α− β′(0) = α′ − β′(∞)

and set β′′ = γ× [P1] and β = β′+ β′′. Then β(0) = β′(0) + β′′(0) = β′(0) + γ = α
and similarly β(∞) = α′. ¤

It follows from the above that an equivalent definition of the Chow group
CH(X) is given as the factor group of the the group of cycles Z(X) modulo the
subgroup of cycles of the form β(0)− β(∞) for all β ∈ Z(X;P1).

57.B. Functorial properties of the Chow groups. We now specialize the
functorial properties developed in the previous chapter to Chow groups.

A proper morphism f : X → Y gives rise to the push-forward homomorphism

f∗ : CHp(X) → CHp(Y ).

Example 57.7. Let X be a complete scheme over F . The push-forward homo-
morphism deg : CH(X) → CH(Spec F ) = Z induced by the structure morphism
X → Spec(F ) is called the degree homomorphism. For any x ∈ X, we have

deg([x]) =
{

deg(x) = [F (x) : F ] if x is a closed point,
0 otherwise.

A flat morphism g : Y → X of relative dimension d defines the pull-back
homomorphism

g∗ : CHp(X) → CHp+d(Y ).
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Proposition 57.8. Let g : Y → X be a flat morphism of schemes over F of
relative dimension d and W ⊂ X a closed subscheme of pure dimension k. Then
g∗

(
[W ]

)
=

[
g−1(W )

]
in Zd+k(Y ).

Proof. Consider the fiber product diagram of natural morphisms

g−1(W )
f−−−−→ W

p−−−−→ Spec(F )

j

y
yi

Y
g−−−−→ X.

By Propositions 49.18 and 49.20,

g∗
(
[W ]

)
= g∗ ◦ i∗ ◦ p∗(1) = j∗ ◦ f∗ ◦ p∗(1) = j∗ ◦ (p ◦ f)∗(1) =

[
g−1(W )

]
. ¤

The localization property (cf. §52.D) yields:

Proposition 57.9 (Localization Sequence). Let X be a scheme, Z ⊂ X a closed
subscheme and U = X \ Z. Let i : Z → X and j : U → X be the closed embedding
and the open immersion respectively. Then the sequence

CHp(Z) i∗−→ CHp(X)
j∗−→ CHp(U) → 0

is exact.

The following proposition shows that the restriction on the generic fiber of a
morphism is surjective on Chow groups.

Proposition 57.10. Let X be a variety of dimension n and f : Y → X a dominant
morphism. Let x denote the generic point of X and Yx the generic fiber of f . Then
the pull-back homomorphism CHp(Y ) → CHp−n(Yx) is surjective.

Proof. By the continuity property (cf. Proposition 52.9), the pull-back ho-
momorphism CHp(Y ) → CHp−n(Yx) is the colimit of surjective restriction homo-
morphisms CHp(Y ) → CHp

(
f−1(U)

)
over all nonempty open subschemes U of X

and therefore is surjective. ¤

Corollary 57.11. For every variety X of dimension n and scheme Y over F , the
pull-back homomorphism CHp(X × Y ) → CHp−n

(
YF (X)

)
is surjective.

Let X and Y be two schemes. It follows from §52.C that there is a product
map of Chow groups

CHp(X)⊗ CHq(Y ) → CHp+q(X × Y ).

Proposition 57.12. Let Z ⊂ X and W ⊂ Y be two closed equidimensional sub-
schemes of dimensions d and e, respectively. Then

[Z ×W ] = [Z]× [W ] in Zd+e(X × Y ).

Proof. Let p : Z → Spec(F ) and q : W → Spec(F ) be the structure mor-
phisms and i : Z → X and j : W → Y the closed embeddings. By Example 49.2
and Propositions 50.4, 50.5, we have

[Z ×W ] = (i× j)∗ ◦ (p× q)∗(1) =
(
i∗ ◦ p∗(1)

)× (
j∗ ◦ q∗(1)

)
= [Z]× [W ]. ¤
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Theorem 57.13 (Homotopy Invariance; cf. Theorem 52.13). Let g : Y → X be a
flat morphism of schemes over F of relative dimension d. Suppose that for every
x ∈ X, the fiber Yx is isomorphic to the affine space Ad

F (x). Then the pull-back
homomorphism

g∗ : CHp(X) → CHp+d(Y )

is an isomorphism for every p.

Theorem 57.14 (Projective Bundle Theorem; cf. Theorem 53.10). Let E → X be
a vector bundle of rank r, q : P(E) → X the associated projective bundle morphism,
and e the Euler class of the canonical or tautological line bundle over P(E). Then
the homomorphism

r∐

i=1

er−i ◦ q∗ :
r∐

i=1

CH∗−i+1(X) → CH∗
(
P(E)

)

is an isomorphism, i.e., every α ∈ CH∗
(
P(E)

)
can be written in the form

α =
r∑

i=1

er−i
(
q∗(αi)

)

for uniquely determined elements αi ∈ CH∗−i+1(X).

Example 57.15. Let X = P(V ), where V is a vector space of dimension d+1 over
F . For every p ∈ [0, d], let lp ∈ CHp

(
P(V )

)
be the class of the subscheme P(Vp) of

X, where Vp is a subspace of V of dimension p + 1. By Corollary 53.7,

CHp

(
P(V )

)
=

{
Z · lp if 0 ≤ p ≤ d,
0 otherwise.

Let f : Y → X be a regular closed embedding of codimension r. As usual we
write Nf for the normal bundle of f . The Gysin homomorphism

fF : CH∗(X) → CH∗−r(Y )

is defined by the formula fF = (p∗)−1 ◦ σf , where p : Nf → Y is the canonical
morphism and σf is the deformation homomorphism.

Let Z ⊂ X be a closed subscheme of pure dimension k and set W = f−1(Z).
The cone Cg of the restriction g : W → Z of f is of pure dimension k. Proposition
52.7 yields:

Corollary 57.16. Under the conditions of Proposition 52.7, we have fF(
[Z]

)
=

(p∗)−1h∗
(
[Cg]

)
.

Lemma 57.17. Let C ′ be an irreducible component of Cg. Then C ′ is an integral
cone over a closed subvariety W ′ ⊂ W with dim W ′ ≥ k − r.

Proof. Let N ′ be the restriction of the normal bundle Nf on W ′. Since C ′ is
a closed subvariety of N ′ of dimension k (cf. Example 104.3), we have

k = dim C ′ ≤ dim N ′ = dim W ′ + r. ¤

Corollary 57.18. Let V ⊂ W be an irreducible component. Then there is an
irreducible component of Cg that is a cone over V . In particular, dim V ≥ k − r.
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Proof. Let v ∈ V be the generic point. Since the canonical morphism q :
Cg → W is surjective (that is, split by the zero section), there is an irreducible
component C ′ ⊂ Cg such that v ∈ Im q. Clearly, Im q = V , i.e., C ′ is a cone over
V . ¤

We say that the scheme Z has a proper inverse image with respect to f if every
irreducible component of W = f−1(Z) has dimension k − r.

Proposition 57.19. Let f : Y → X be a regular closed embedding of schemes over
F of codimension r and Z ⊂ X a closed equidimensional subscheme having proper
inverse image with respect to f . Let V1, V2, . . . , Vs be all the irreducible components
of W = f−1(Z), so [W ] =

∑
ni[Vi] for some ni > 0. Then

fF(
[Z]

)
=

s∑

i=1

mi[Vi],

for some integers mi with 1 ≤ mi ≤ ni.

Proof. Let g : W → Z be the restriction of f and Ci the restriction of the
cone Cg on Vi. Let Ni be the restriction to Vi of the normal cone Nf . As Ni is
a vector bundle of rank r over the variety Vi of dimension k − r, the variety Ni

is of dimension k. Moreover, the Ni are all of the irreducible components of the
restriction N of Nf to W and [N ] =

∑
ni[Ni].

The cone Cg is a closed subscheme of N of pure dimension k. Hence Ci is a
closed subscheme of Ni of pure dimension k for each i. Since Ni is a variety of
dimension k, the closed embedding of Ci into Ni is an isomorphism. In particular,
the Ci are all of the irreducible components of Cg, so [Cg] =

∑
mi[Ci] with mi =

l(OCg,xi) and where xi ∈ Cg is the generic point of Ci. In view of Example 49.13,
we have

h∗
(
[Ci]

)
= [Ni] = p∗

(
[Vi]

)

and by Corollary 57.16,

fF(
[Z]

)
= (p∗)−1h∗

(
[Cg]

)
= (p∗)−1

∑
mih∗

(
[Ci]

)
=

∑
mi[Vi].

Finally, the closed embedding h : Cg → N induces a surjective ring homomorphism
ON,yi → OCg,xi , where yi ∈ N is the generic point of Ni. Therefore,

1 ≤ mi = l(OCg,xi) ≤ l(ON,yi) = ni. ¤

Corollary 57.20. Suppose the conditions of Proposition 57.19 hold and, in addi-
tion, the scheme W is reduced. Then fF(

[Z]
)

=
∑

[Vi], i.e., all the mi = 1.

Proof. Indeed, all ni = 1, hence all mi = 1. ¤

Let Y and Z be closed subvarieties of a smooth scheme X of codimensions p
and q, respectively. We say that Y and Z intersect properly if every component of
Y ∩ Z has codimension p + q.

Applying Proposition 57.19 to the regular diagonal embedding X → X × X
and the subscheme Y × Z yields the following:

Proposition 57.21. Let Y and Z be two closed subvarieties of a smooth scheme X
that intersect properly. Let V1, V2, . . . , Vs be all irreducible components of W = Y ∩Z
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and [W ] =
∑

ni[Vi] for some ni > 0. Then

[Y ] · [Z] =
s∑

i=1

mi[Vi],

for some integers mi with 1 ≤ mi ≤ ni.

Corollary 57.22. Suppose the conditions of Proposition 57.21 hold and in addition
the scheme W is reduced. Then [Y ] · [Z] =

∑
[Vi], i.e., all the mi = 1.

If X is smooth, we write CHp(X) for the group Ap(X, Kp) and call it the Chow
group of codimension p classes of cycles on X. We now apply the results from
§56 to this group. The graded group CH∗(X) has the structure of a commutative
associative ring with the identity 1X . A morphism f : Y → X of smooth schemes
induces a pull-back graded ring homomorphism f∗ : CH∗(X) → CH∗(Y ).

Example 57.23. Let h ∈ CH1
(
P(V )

)
be the class of a hyperplane of the projective

space P(V ), where V is a vector space of dimension d + 1, and lp ∈ CHp

(
P(V )

)
as

in Example 57.15. Then
h · lp = lp−1

for all p ∈ [1, d]. Indeed, h = [P(U)] and lp = [P(Vp)] where U and Vp are subspaces
of V of dimensions n and p+1 respectively. We can choose these subspaces so that
the subspace Vp−1 = U ∩Vp has dimension p. Then P(U)∩P(Vp) = P(Vp−1) and we
have equality by Corollary 57.22. It follows that CHp

(
P(V )

)
= Z ·hp for p ∈ [0, d].

In particular, the ring CH∗
(
P(V )

)
is generated by h with the one relation hd+1 = 0.

57.C. Cartier divisors and the Euler class. Let D be a Cartier divisor
on a variety X of dimension d and L(D) its associated line bundle over X. Let [D]
denote the associated divisor in Zd−1(X). Recall that if D is a principal Cartier
divisor given by a nonzero rational function f on X, then [D] = div(f).

Lemma 57.24. In the notation above, e
(
L(D)

)(
[X]

)
= [D] in CHd−1(X).

Proof. Let p : L(D) → X and s : X → L(D) be the canonical morphism and
the zero section respectively. Let X =

⋃
Ui be an open covering and fi rational

functions on Ui giving the Cartier divisor D. Let L(D) be the locally free sheaf of
sections of L(D). The group of sections L(D)(Ui) consists of all rational functions
f on X such that f ·fi is regular on Ui. Thus we can view fi as a section of the dual
bundle L(D)∨ over Ui. The line bundle L(D) is the spectrum of the symmetric
algebra

OX ⊕ L(D)∨ · t⊕ (L(D)∨
)⊗2 · t2 ⊕ . . .

of the sheaf L(D)∨. The rational functions (fi · t)/fi on p−1(Ui) agree on inter-
sections, so they give a well-defined rational function on L(D). We denote this
function by t.

We claim that div(t) = s∗
(
[X]

)− p∗
(
[D]

)
. The statement is of a local nature,

so we may assume that X is affine, say X = Spec(A) and D is a principal Cartier
divisor given by a rational function f on X. We have L(D) = Spec

(
A[ft]

)
and by

Proposition 49.23,

div(t) = div(ft)− div(p∗f) = s∗
(
[X]

)− p∗
(
div(f)

)
= s∗

(
[X]

)− p∗
(
[D])

proving the claim. By the claim, the classes s∗
(
[X]

)
and p∗

(
[D]

)
are equal in

CHd

(
L(D)

)
. Hence, e

(
L(D)

)(
[X]

)
= (p∗)−1 ◦ s∗

(
[X]

)
= [D]. ¤
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Example 57.25. Let C = Spec
(
S•

)
be an integral cone with S• a sheaf of graded

OX -algebras as in §104.A. Consider the cone C ⊕ 1 = Spec
(
S•[t]

)
. The family of

functions t/s with s ∈ S1 on the principal open subscheme D(s) of the projective
bundle P(C ⊕ 1) gives rise to a Cartier divisor D on P(C ⊕ 1) with L(D) the
canonical line bundle. The associated divisor D̃ coincides with P(C). It follows
from Lemma 57.24 that e

(
L(D)

)(
[P(C ⊕ 1)]

)
= [P(C)].

Proposition 57.26. Let L and L′ be line bundles over a scheme X. Then e(L⊗
L′) = e(L) + e(L′) on CH(X).

Proof. It suffices to prove that both sides of the equality coincide on the class
[Z] of a closed subvariety Z in X. Denote by i : Z → X the closed embedding.
Choose Cartier divisors D and D′ on Z so that L|Z ' L(D) and L′|Z ' L(D′).
Then L|Z ⊗ L′|Z ' L(D + D′). By Proposition 53.3(1),

e(L⊗ L′)
(
[Z]

)
= i∗ ◦ e(L|Z ⊗ L′|Z)

(
[Z]

)

= i∗ ◦ e
(
L(D + D′)

)(
[Z]

)

= i∗[D̃ + D′]

= i∗[D̃] + i∗[D̃′]

= i∗ ◦ e
(
L(D)

)
+ i∗ ◦ e

(
L(D′)

)

= e(L)
(
[Z]

)
+ e(L′)

(
[Z]

)
. ¤

Corollary 57.27. For any line bundle L over X, we have e(L∨) = −e(L).

58. Segre and Chern classes

In this section, we define Segre classes and consider their relations with Chern
classes. The Segre class for a vector bundle is the inverse of the Chern class. The
advantage of Segre classes is that they can be defined for arbitrary cones (not just
for vector bundles like Chern classes). We follow the book [45] for the definition of
Segre classes.

58.A. Segre classes. Let C = Spec(S•) be a cone over X (cf. §104.A). Let
q : P(C ⊕ 1) → X be the natural morphism and L the canonical line bundle over
P(C ⊕ 1) (cf. §104). Let e(L)• denote the total Euler class

∑
k≥0 e(L)k viewed as

an operation on CH
(
P(C ⊕ 1)

)
.

We define the Segre homomorphism

sgC : CH
(
P(C ⊕ 1)

) → CH(X) by

sgC = q∗ ◦ e(L)•.

The class Sg(C) := sgC
(
[P(C ⊕ 1)]

)
in CH(X) is known as the total Segre class of

C.

Proposition 58.1. If C is a cone over X, then Sg(C ⊕ 1) = Sg(C).

Proof. If [C] =
∑

mi[Ci], where the Ci are the irreducible components of C,
then

[P(C ⊕ 1k)] =
∑

mi[P(Ci ⊕ 1k)]
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for k ≥ 1. Therefore, we may assume that C is a variety. Let L and L′ be canonical
line bundles over P(C⊕12) and P(C⊕1), respectively. We have L′ = i∗(L), where
i : P(C ⊕ 1) → P(C ⊕ 12) is the closed embedding. By Example 57.25, we have

e(L)
(
[P(C ⊕ 12)]

)
= [P(C ⊕ 1)],

Let q : P(C ⊕ 12) → X be the canonical morphism. It follows from Proposition
53.3(1) that

Sg(C ⊕ 1) = q∗ ◦ e(L)•([P(C ⊕ 12)])

= q∗ ◦ e(L)•
(
i∗([P(C ⊕ 1)])

)

= q∗i∗ ◦ e
(
i∗(L)

)•([P(C ⊕ 1)])

= (q ◦ i)∗ ◦ e(L′)•([P(C ⊕ 1)])

= Sg(C). ¤
Proposition 58.2. Let C be a cone over a scheme X over F and i : Z → X a
closed embedding. Let D be a closed subcone of the restriction of C on Z. Then
the diagram

CH
(
P(D ⊕ 1)

) sgD

−−−−→ CH(Z)

j∗

y
yi∗

CH
(
P(C ⊕ 1)

) sgC

−−−−→ CH(X)

is commutative, where j : P(D ⊕ 1) → P(C ⊕ 1) is the closed embedding. In
particular, i∗

(
Sg(D)

)
= sgC

(
P(D ⊕ 1)

)
.

Proof. The canonical line bundle LD over P(D ⊕ 1) is the pull-back j∗(LC).
It follows from the projection formula (cf. Proposition 53.3(1)) that

sgC ◦j∗ = (qC)∗ ◦ e(LC)• ◦ j∗

= (qC)∗ ◦ j∗ ◦ e
(
j∗(LC)

)•

= i∗ ◦ (qD)∗ ◦ e(LD)•

= i∗ ◦ sgD . ¤
If C = E is a vector bundle over X, the projection q is a flat morphism of

relative dimension r = rank E, and we define the total Segre operation s(E) on
CH(X) by

s(E) : CH(X) → CH(X), s(E) = sgE ◦ q∗ = q∗ ◦ e(L)• ◦ q∗.

In particular, Sg(E) = s(E)
(
[X]

)
.

For every k ∈ Z denote the degree k component of the operation s(E) by sk(E),
so it is the operation

sk(E) : CHn(X) → CHn−k(X) given by

(58.3) sk(E) = q∗ ◦ e(L)k+r ◦ q∗.

Proposition 58.4. Let f : Y → X be a morphism of schemes over F and E a
vector bundle over X. Set E′ = f∗(E). Then

(1) If f is proper, then s(E) ◦ f∗ = f∗ ◦ s(E′).
(2) If f is flat, then f∗ ◦ s(E) = s(E′) ◦ f∗.
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Proof. Consider the fiber product diagram

P(E′) h−−−−→ P(E)

q′
y

yq

Y
f−−−−→ X

with flat morphisms q and q′ of constant relative dimension r−1 where r = rank E.
Denote by e and e′ the Euler classes of the canonical line bundle L over P(E) and
L′ over P(E′), respectively. Note that L′ = h∗(L).

By Propositions 49.20 and 53.3, we have

s(E) ◦ f∗ = q∗ ◦ e(L)• ◦ q∗ ◦ f∗

= q∗ ◦ e(L)• ◦ h∗ ◦ q′∗

= q∗ ◦ h∗ ◦ e(L′)• ◦ q′∗

= f∗ ◦ q′∗ ◦ e(L′)• ◦ q′∗

= f∗ ◦ s(E′),

and

f∗ ◦ s(E) = f∗ ◦ q∗ ◦ e(L)• ◦ q∗

= q′∗ ◦ h∗ ◦ e(L)• ◦ q∗

= q′∗ ◦ e(L′)• ◦ h∗ ◦ q∗

= q′∗ ◦ e(L′)• ◦ q′∗ ◦ f∗

= s(E′) ◦ f∗. ¤
Proposition 58.5. Let E be a vector bundle over a scheme X over F . Then

si(E) =
{

0 if i < 0,
id if i = 0.

Proof. Let α ∈ CH(X). We need to prove that si(E)(α) = 0 if i < 0 and
s0(E)(α) = α. We may assume that α = [Z], where Z ⊂ X is a closed subvariety.
Let i : Z → X be the closed embedding. By Proposition 58.4(1), we have

s(E)(α) = s(E) ◦ i∗
(
[Z]

)
= i∗ ◦ s(E′)

(
[Z]

)
,

where E′ = i∗(E). Hence it is sufficient to prove the statement for the vector
bundle E′ over Z and the cycle [Z]. Therefore, we may assume that X is a variety
of dimension d and α = [X] in CHd(X). Since si(E)(α) ∈ CHd−i(X), by dimension
count, si(E)(α) = 0 if i < 0.

To prove the second identity, by Proposition 58.4(2), we may replace X by
an open subscheme. Therefore, we can assume that E is a trivial vector bundle,
i.e., P(E) = X × Pr−1. Applying Example 53.8 and Proposition 53.3(2) to the
projection X × Pr−1 → Pr−1, we have

s0(E)
(
[X]

)
= q∗ ◦ e(L)r−1 ◦ q∗

(
[X]

)

= q∗ ◦ e(L)r−1
(
[X]× Pr−1

)
= q∗

(
[X]× P0

)
= [X]. ¤

Let E → X be a vector bundle of rank r. The restriction of Chern classes
defined in §54 on Chow groups provides operations

ci(E) : CH∗(X) → CH∗−i(X), α 7→ αi = ci(E)(α)
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Example 58.6. In view of Examples 53.8 and 57.23, the class e(L) of the canonical
line bundle L over Pd acts on CH

(
Pd

)
= Z[h]/(hd+1) by multiplication by the class

h of a hyperplane in Pd.
By Example 104.20, the class of the tangent bundle of the projective space Pd

in K0

(
Pd

)
is equal to (d + 1)[L]− 1, hence c(TPd) is multiplication by (1 + h)d+1.

Example 58.7. For a vector bundle E, we have ci(E∨) = (−1)ici(E). Indeed, by
the Splitting Principle 53.13, we may assume that E has a filtration by subbundles
with factors line bundles L1, L2, . . . , Lr. The dual bundle E∨ then has a filtration
by subbundles with factors line bundles L∨1 , L∨2 , . . . , L∨r . As e(L∨k ) = −e(Lk) by
Corollary 57.27, it follows from Proposition 54.6 that

ci(E∨) = σi

(
e(L∨1 ), . . . , e(L∨r )

)
= (−1)iσi

(
e(L1), . . . , e(Lr)

)
= (−1)ici(E)

where σi is the ith elementary symmetric function.

Let e and ẽ be the Euler classes of the tautological and the canonical line
bundles over P(E), respectively. By Corollary 57.27, we have ẽ = −e. Therefore,
the formula (54.1) can be rewritten as

(58.8)
r∑

i=0

ẽ r−i ◦ q∗ ◦ ci(E) = 0,

where q : P(E) → X is the canonical morphism.

Proposition 58.9. Let E be a vector bundle over X. Then s(E) = c(E)−1.

Proof. Applying q∗ ◦ ẽ k−1 to the equality (58.8) for the vector bundle E ⊕ 1
of rank r + 1, we get for every k ≥ 1:

0 =
∑

i≥0

q∗ ◦ ẽ r+k−i ◦ q∗ ◦ ci(E ⊕ 1) =
∑

i≥0

sk−i(E) ◦ ci(E ⊕ 1)

in view of (58.3). By Corollary 54.9, we have ci(E⊕1) = ci(E). As s0(E) = 1 and
si(E) = 0 if i < 0 by Proposition 58.5, we have s(E) ◦ c(E) = 1. ¤

Proposition 58.10. Let E → X be a vector bundle and E′ ⊂ E a subbundle of
corank r. Then

(58.11) [P(E′)] =
r∑

i=0

ẽr−i ◦ q∗ ◦ ci(E/E′)
(
[X]

)

in CH
(
P(E)

)
.

Proof. Applying (58.8) to the factor bundle E/E′, we have
r∑

i=0

e′ r−i ◦ q′∗ ◦ ci(E/E′) = 0,

where q′ : P(E/E′) → X is the canonical morphism and e′ is the Euler class of
the canonical line bundle over P(E/E′). Applying the pull-back homomorphism
with respect to the canonical morphism P(E) \ P(E′) → P(E/E′), we see that the
restriction of the right hand side of the formula in (58.11) to P(E)\P(E′) is trivial.
By the localization property (cf. §52.D), the right hand side in (58.11) is equal to
k[P(E′)] for some k ∈ Z.
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To determine k, we can replace X by an open subscheme of X and assume that
E and E′ are trivial vector bundles of rank n and n − r, respectively. The right
hand side in (58.11) is then equal to

ẽr ◦ q∗
(
[X]

)
= ẽr

(
[Pn−1 ×X]

)
= [Pn−r−1 ×X] = [P(E′)],

therefore k = 1. ¤
Proposition 58.12. Let E and E′ be vector bundles over schemes X and X ′,
respectively. Then

c(E × E′)(α× α′) = c(E)(α)× c(E′)(α′)

for any α ∈ CH(X) and α′ ∈ CH(X ′).

Proof. Let p and p′ be the projections of X ×X ′ to X and X ′, respectively.
We claim that for any β ∈ CH(X) and β′ ∈ CH(X ′), we have

(58.13) c
(
p∗(E)

)
(β × β′) = c(E)(β)× β′,

(58.14) c
(
p′∗(E′)

)
(β × α′) = β × c(E′)(β′).

To prove the claim, by Proposition 54.5, we may assume that β = [X] and β′ = [X ′].
Then (58.13) and (58.14) follow from Proposition 54.5(2).

Since E × E′ = p∗(E) ⊕ p′∗(E′), by the Whitney Sum Formula 54.7 and by
(58.13), (58.14), we have

c(E × E′)(α× α′) = c
(
p∗(E)⊕ p′∗(E′)

)
(α× α′)

= c
(
p∗(E)

) ◦ c
(
p′∗(E′)

)
(α× α′)

= c
(
p∗(E)

)(
α× c(E′)(α′)

)

= c(E)(α)× c(E′)(α′). ¤
Proposition 58.15. Let E be a vector bundle over a smooth scheme X. Then
c(E)(α) = c(E)

(
[X]

) · α for every α ∈ CH(X).

Proof. Consider the vector bundle E′ = E×X over X×X. Let d : X → X×X
be the diagonal embedding. We have E = d∗(E′). By Propositions 58.12 and 55.9,

c(E)(α) = c
(
d∗(E′)

)(
dF([X]× α)

)

= dFc(E ×X)
(
[X]× α

)

= dF(
c(E)([X])× α

)

= c(E)
(
[X]

) · α. ¤
Proposition 58.15 shows that for a vector bundle E over a smooth scheme X,

the Chern class operation c(E) is multiplication by the class β = c(E)
(
[X]

)
. We

shall sometimes write c(E) = β to mean that c(E) is multiplication by β.
Let f : Y → X be a morphism of schemes, i.e., Y is a scheme over X. Assume

that X is a smooth variety. We shall see that CH(Y ) has a natural structure of a
module over the ring CH(X). Indeed, as we saw in §55.B, the morphism

i = (1Y , f) : Y → Y ×X

is a regular closed embedding of codimension dimX. For every α ∈ CH(Y ) and
β ∈ CH(X), we set

(58.16) α · β = iF(α× β).
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Proposition 58.17. Let X be a smooth variety and Y a scheme over X. Then
CH(Y ) is a module over CH(X) under the product defined in (58.16). Let g :
Y ′ → Y be a proper (respectively flat) morphism of schemes over X. Then the
homomorphism g∗ (respectively g∗) is CH(X)-linear.

Proof. The composition of i and the projection p : Y ×X → Y is the identity
on Y . It follows from Lemma 55.7 that α · [X] = iF

(
α × [X]

)
= iF ◦ p∗(α) =

1∗Y (α) = α, i.e., the identity [X] of CH(X) acts on CH(Y ) trivially.
Consider the fiber product diagram

Y
i−−−−→ Y ×X

i

y
yh

Y ×X
k−−−−→ Y ×X ×X,

where k = 1Y × dX and h = i × 1X . It follows from Corollary 55.4 that for any
α ∈ CH(Y ) and β, γ ∈ CH(X), we have

α · (β · γ) = iF
(
α× (β · γ)

)
= iFkF(α× β × γ)

= iFhF(α× β × γ) = iF
(
(α · β)× γ

)
= (α · β) · γ.

Consider the fiber product diagram

Y ′ i′−−−−→ Y ′ ×X

g

y
yg×1X

Y
i−−−−→ Y ×X.

Suppose first that the morphism g is proper. By Corollary 55.4,

g∗(α′ · β) = g∗ ◦ i′F(α′ × β) = iF(g × 1X)∗(α′ × β) = i′F
(
g∗(α′)× β

)
= g∗(α′) · β

for all α′ ∈ CH(Y ′) and β ∈ CH(X).
If g is flat, it follows from Proposition 55.5 that

g∗(α · β) = g∗ ◦ iF(α× β) = i′F ◦ (g × 1X)∗(α× β) = i′F
(
g∗(α)× β

)
= g∗(α) · β

for all α ∈ CH(Y ) and β ∈ CH(X). ¤

Proposition 58.18. Let f : Y → X be a morphism of schemes with X smooth and
g : Y → Y ′ a flat morphism. Suppose that for every point y′ ∈ Y ′, the pull-back
homomorphism CH(X) → CH(Yy′) induced by the natural morphism of the fiber
Yy′ to X is surjective. Then the homomorphism

h : CH(Y ′)⊗ CH(X) → CH(Y ), α⊗ β 7→ g∗(α) · β
is surjective.

Proof. The proof is similar to the one given for Proposition 52.10. Obviously,
we may assume that Y ′ is reduced.
Step 1: Y ′ is a variety.

We induct on n = dim Y ′. The case n = 0 is obvious. In general, let U ′ ⊂ Y ′ be
a nonempty open subset and Z ′ = Y ′ \ U ′ have the structure of a reduced scheme.
Set U = g−1(U ′) and Z = g−1(Z ′). We have closed embeddings i : Z → Y ,
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i′ : Z ′ → Y ′ and open immersions j : U → Y , j′ : U ′ → Y ′. By induction, the
homomorphism hZ is surjective in the diagram

CH(Z ′)⊗ CH(X)
i′∗⊗1−−−−→ CH(Y ′)⊗ CH(X)

j∗⊗1−−−−→ CH(U ′)⊗ CH(X) −−−−→ 0

hZ

y hY

y hU

y

CH(Z) i∗−−−−→ CH(Y )
j′∗−−−−→ CH(U) −−−−→ 0

The diagram is commutative by Proposition 58.17.
Let y′ ∈ Y ′ be the generic point. By Proposition 52.9, the colimit of the

homomorphisms
(hU )∗ : CH(U ′)⊗ CH(X) → CH(U)

over all nonempty open subschemes U ′ of Y ′ is isomorphic to the pull-back ho-
momorphism CH(X) → CH(Yy′) which is surjective by assumption. Taking the
colimits of all terms of the diagram, we conclude by the 5-lemma that hY is also
surjective.
Step 2: Y ′ is an arbitrary scheme.

We induct on the number m of irreducible components of Y ′. The case m = 1
is Step 1. Let Z ′ be a (reduced) irreducible component of Y ′ and let U ′ = Y ′ \ Z ′.
Consider the commutative diagram as in Step 1. By Step 1, the map hZ is surjective.
The map hU is also surjective by the induction hypothesis. By the 5-lemma, hY is
surjective. ¤

Proposition 58.19. Let C and C ′ be cones over schemes X and X ′, respectively.
Then

Sg(C × C ′) = Sg(C)× Sg(C ′) ∈ CH(X ×X ′).

Proof. Set C̃ = C⊕1 and C̃ ′ = C ′⊕1. Let L and L′ be the tautological line
bundles over P(C̃) and P(C̃ ′), respectively (cf. §104.D). We view L×L′ as a vector
bundle over P(C̃) × P(C̃ ′). The canonical morphism L × L′ → C̃ × C̃ ′ induces a
morphism

f : P(L× L′) → P(C̃ × C̃ ′).

If D is a cone, we write D◦ for the complement of the zero section in D. By §104.C,
we have L◦ = C̃◦ and L′◦ = C̃

′◦
. The open subsets C̃◦ × C̃

′◦
in C̃ × C̃ ′ and

L◦×L′◦ in L×L′ are dense. Hence f maps any irreducible component of P(L×L′)
birationally onto an irreducible component of P(C̃ × C̃ ′). In particular,

f∗
(
[P(L× L′)]

)
= [P(C̃ × C̃ ′)].

Let L̃ be the canonical line bundle over P(C̃× C̃ ′). Then f∗(L̃) is the canonical
line bundle over P(L×L′). Let q : P(C̃ × C̃ ′) → X ×X ′ be the natural morphism.
By Proposition 58.1 and the Projection Formula 56.9, we have

Sg(C × C ′) = Sg
(
(C × C ′)⊕ 1)

= q∗ ◦ e(L̃)•
(
[P(C̃ × C̃ ′)]

)

= q∗ ◦ e(L̃)•f∗
(
[P(L× L′)]

)

= q∗ ◦ f∗ ◦ e(f∗L̃)•
(
[P(L× L′)]

)
.
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The normal bundle N of the closed embedding P(C̃)× P(C̃ ′) → L× L′, given
by the zero section, coincides with L×L′. By definition of the Segre class and the
Segre operation, we have

p∗ ◦ e(f∗L̃)•
(
[P(L× L′)]

)
= Sg(N) = s(N)

(
[P(C̃)× P(C̃ ′)]

)
,

where p : P(L × L′) → P(C̃) × P(C̃ ′) is the natural morphism. By Propositions
58.12 and 58.9,

s(N)
(
[P(C̃)× P(C̃ ′)]

)
= s(L)

(
[P(C̃)]

)× s(L′)
(
[P(C̃ ′)]

)
.

Let g : P(C̃) → X and g′ : P(C̃ ′) → X ′ be the natural morphisms and set
h = g × g′. By Proposition 50.4,

h∗ ◦ s(L)
(
[P(C̃)]× s(L′)([P(C̃ ′)])

)

=
(
g∗ ◦ s(L)([P(C̃)])

)× (
g′∗ ◦ s(L′)([P(C̃ ′)])

)
= Sg(C)× Sg(C ′).

To finish the proof it is sufficient to notice that q ◦ f = h ◦ p and therefore q∗ ◦ f∗ =
h∗ ◦ p∗. ¤
Exercise 58.20. (Strong Splitting Principle) Let E be a vector bundle over X.
Prove that there is a flat morphism f : Y → X such that the pull-back homo-
morphism f∗ : CH∗(X) → CH∗(Y ) is injective and f∗(E) is a direct sum of line
bundles.

Exercise 58.21. Let E be a vector bundle of rank r. Prove that e(E) = cr(E).





CHAPTER XI

Steenrod Operations

In this chapter we develop Steenrod operations on Chow groups modulo 2.
There are two reasons why we do not consider the operations modulo an arbitrary
prime integer. First, this case is sufficient for our applications as the number 2 is
the only “critical” prime for projective quadrics. Second, our approach does not
immediately generalize to the case of an arbitrary prime integer.

Unfortunately, we need to assume that the characteristic of the base field is
different from 2 in this chapter as we do not know how to define Steenrod operations
in characteristic 2.

In this chapter, the word scheme means a quasi-projective scheme over a field
F of characteristic not 2. We write Ch(X) for CH(X)/2CH(X).

Let X be a scheme. Consider the homomorphism Z(X) → Ch(X) taking the
class [Z] of a closed subvariety Z ⊂ X to j∗

(
Sg(TZ)

)
modulo 2, where Sg is the

total Segre class (cf. §58.A), TZ is the tangent cone over Z (cf. Example 104.5) and
j : Z → X is the closed embedding. We shall prove that this map factors through
rational equivalence yielding the Steenrod operation modulo 2 of X (of homological
type)

SqX : Ch(X) → Ch(X).

Thus we shall have

SqX
(
[Z]

)
= j∗

(
Sg(TZ)

)

modulo 2. We shall see that the operation SqX commutes with the push-forward
homomorphisms, so it can be viewed as a functor from the category of schemes to
the category of abelian groups.

For a smooth scheme X, we can then define the Steenrod operation modulo 2
of X (of cohomological type) by the formula

SqX := c(TX) ◦ SqX .

This formula can be viewed as a Riemann-Roch type relation between the operations
SqX and SqX . We shall show that the operation SqX commutes with pull-back
homomorphisms, so it can be viewed as a contravariant functor from the category
of smooth schemes to the category of abelian groups.

In this chapter, we shall also prove the standard properties of the Steenrod
operations.

Steenrod operations for motivic cohomology modulo a prime integer p of a
smooth scheme X were originally constructed by Voevodsky in [137]. The reduced
power operations (but not the Bockstein operation) restrict to the Chow groups of
X. An “elementary” construction of the reduced power operations modulo p on
Chow groups (requiring equivariant Chow groups) was given by Brosnan in [20].
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59. Definition of the Steenrod operations

Consider a cyclic group G = {1, σ} of order 2. Let Y be a G-scheme such that
p : Y → Y/G is a G-torsor over a field F (cf. §105.A). In particular, p is flat of
relative dimension 0 by Proposition 105.5(1). For a point z ∈ Y/G, let Yz be the
fiber of p over z. By Example 105.6, we have Yz = Spec(K), where K is an étale
quadratic algebra over F (z). Then either K is a field (and the fiber Yz has only
one point y) or K = F (z)× F (z) (and the fiber has two points y1 and y2). In any
case, every point in Yz is unramified (cf. Proposition 105.5(2)). It follows that for
the pull-back homomorphism p∗ : Z(Y/G) → Z(Y ), we have

p∗([z]) =
{

[y] if K is a field,
[y1]+[y2] otherwise.

Similarly, for a point y in the fiber Yz, we have:

p∗([y]) =
{

2[z] if K is a field,
[z] otherwise.

In particular, p∗ ◦ p∗ is multiplication by 2.
We have σ(y) = y if K is a field and σ(y1) = y2 otherwise. In particular,

(59.1) p∗ ◦ p∗ = 1 + σ∗,

where σ∗ : Z(Y ) → Z(Y ) is the (pull-back) isomorphism induces by σ.
The cycles [y] and [y1] + [y2] generate the group Z(Y )G of G-invariant cycles.

We have proved

Proposition 59.2. Let p : Y → Y/G be a G-torsor. Then the pull-back homomor-
phism

p∗ : Z(Y/G) → Z(Y )G

is an isomorphism.

Suppose char F 6= 2. Let X be a scheme over F . The group G acts on X2×A1 =
X ×X ×A1 by σ(x, x′, t) = (x′, x,−t). We have (X2×A1)G = ∆(X)×{0}, where
∆ : X → X2 is the diagonal morphism (cf. §105.B). Set

(59.3) UX := (X2 × A1) \ (
∆(X)× {0}).

The group G acts naturally on UX . The morphism p : UX → UX/G is a G-torsor
(cf. Example 105.4).

Let α ∈ Z(X) be a cycle. The cycle α2 × A1 := α × α × A1 in Z(X2 × A1)
is invariant under the above G-action as is the restriction of the cycle α2 × A1

on UX . It follows from Proposition 59.2 that the pull-back homomorphism p∗

identifies Z(UX/G) with Z(UX)G. Let α2
G ∈ Z(UX/G) denote the cycle satisfying

p∗(α2
G) = (α2 × A1)|UX .
We then have a map

(59.4) Z(X) → Z(UX/G), α 7→ α2
G.

Lemma 59.5. If α and α′ are rationally equivalent cycles in Z(X), then α2
G and

α′2G are rationally equivalent cycles in Z(UX/G).

Proof. As in §57.A, let Z(X;P1) denote the subgroup of Z(X×P1) generated
by the classes of closed subvarieties in X × P1 dominant over P1. Let W ⊂ X × P1

and W ′ ⊂ X ′ × P1 be two closed subvarieties dominant over P1. The projections
W → P1 and W ′ → P1 are flat and hence so is the fiber product W ×P1 W ′ → P1.



59. DEFINITION OF THE STEENROD OPERATIONS 279

Therefore, every irreducible component of W ×P1 W ′ is dominant over P1, i.e., the
cycle [W ×P1 W ′] belongs to Z(X ×X ′;P1). By linearity, this construction extends
to an external product over P1 given by

Z(X;P1)× Z(X ′;P1) → Z(X ×X ′;P1), (β, β′) 7→ β ×P1 β′.

By Proposition 57.12,

(59.6)
[
(W ×P1 W ′)(a)

]
=

[
W (a)×W ′(a)

]
=

[
W (a)

]× [
W ′(a)

]

for any rational point a of P1. If X ′ = X and β′ = β, write β̃2 for β ×P1 β.
By Proposition 57.6, there is a cycle β ∈ Z(X;P1) such that α = β(0) and

α′ = β(∞). Consider the cycle β̃2 × [A1] ∈ Z(X2 × A1;P1).
Let G act on X2 ×A1 × P1 by σ(x, x′, t, s) = (x′, x,−t, s). The cycle β̃2 × [A1]

is G-invariant. Since UX × P1 is a G-torsor over (UX/G) × P1, the restriction of
the cycle β̃2 × [A1] on UX × P1 gives rise to a well-defined cycle

β̃2
G ∈ Z(UX/G;P1)

satisfying

(59.7) q∗(β̃2
G) =

(
β̃2 × [A1]

)|UX×P1 ,

where q : UX × P1 → (UX/G)× P1 is the canonical morphism.
Let Z ⊂ (UX/G) × P1 be a closed subvariety dominant over P1. We have

p−1
(
Z(a)

)
= q−1(Z)(a) for any rational point a of P1, where p : UX → UX/G is

the canonical morphism. It follows from Proposition 57.8 that

(59.8) p∗
(
γ(a)

)
=

(
q∗(γ)

)
(a)

for every cycle γ ∈ Z(UX/G;P1).
Let β =

∑
ni[Wi]. Then applying (59.8) to γ = β̃2

G, we see by (59.6) and (59.7)
that

p∗
(
β̃2

G(a)
)

=
(
q∗(β̃2

G)
)
(a) =

(
β̃2 × [A1]

)|UX×P1(a)

=
∑

ninj

[
Wi ×P1 Wj × A1

]|UX×P1(a)

=
∑

ninj

[
Wi(a)×Wj(a)× A1

]|UX

= p∗
(
β(a)2G

)

in Z(UX). It follows that β̃2
G(a) = β(a)2G in Z(UX/G) since p∗ is injective on cycles.

In particular, β̃2
G(0) = β(0)2G = α2

G and β̃2
G(∞) = β(∞)2G = α′2G, i.e., the cycles α2

G

and α′2G are rationally equivalent by Proposition 57.6. ¤

By Lemma 59.5, we have a well-defined map (but not a homomorphism!)

(59.9) vX : CH(X) → CH(UX/G), [α] 7→ [α2
G].

Consider the blowup BX of X2×A1 along ∆(X)×{0}. The exceptional divisor
is the projective cone P(TX ⊕ 1), where TX is the tangent cone of X. The open
complement BX \P(TX⊕1) is naturally isomorphic to UX and the group G = {1, σ}
acts naturally on BX (cf. §105.B).

By Proposition 105.7, the composition

i : P(TX ⊕ 1) ↪→ BX → BX/G
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is a locally principal divisor with normal line bundle L⊗2 where L is the canonical
line bundle over P(TX ⊕ 1).

We define a map

uX : Ch(UX/G) → Ch
(
P(TX ⊕ 1)

)

as follows: Let δ ∈ Ch(UX/G). By the localization property (Proposition 57.9),
there is β ∈ Ch(BX/G) such that β|(UX/G) = δ. We set

uX(δ) = iF(β).

We claim that the result is independent of the choice of β. Indeed, if β′ ∈
Ch(BX/G) is another element with β′|(UX/G) = δ, then by the localization, β′ =
β + i∗(γ) for some γ ∈ Ch(TX ⊕ 1). By Proposition 55.10, we have (iF ◦ i∗)(γ) =
e(L⊗2)(γ) = 2e(L)(γ) = 0 modulo 2, hence

iF(β′) = iF(β) + (iF ◦ i∗)(γ) = iF(β)

as needed.
Let q : BX → BX/G be the projection.

Lemma 59.10. The composition iF ◦ q∗ : Ch(BX) → Ch
(
P(TX ⊕ 1)

)
is zero.

Proof. The scheme Y := q−1
(
P(TX ⊕ 1)

)
is a locally principal closed sub-

scheme of BX . The sheaf of ideals in OBX
defining Y is the square of the sheaf

of ideals of P(TX ⊕ 1) as a subscheme of BX . Let j : Y → BX be the closed
embedding and p : Y → P(TX ⊕ 1) the natural morphism. By Corollary 55.4, we
have iF ◦ q∗ = p∗ ◦ jF. It follows from Proposition 55.11 that jF is trivial modulo
2. ¤

Proposition 59.11. For every scheme X, the map uX is a homomorphism.

Proof. Let p : UX → UX/G be the projection. For any two cycles α =∑
ni[Zi] and α′ =

∑
n′i[Zi] on X, we have

p∗(α + α′)2G − p∗(α2
G)− p∗(α′G

2) = (1 + σ∗)(γ),

where
γ =

∑

i<j

nin
′
j

[
Zi × Zj × A1

]|UX
∈ Z(UX).

Since p∗ ◦ p∗ = 1 + σ∗ by (59.1) and p∗ is injective on cycles by Proposition 59.2,
we have

(α + α′)2G − α2
G − α′G

2 = p∗(γ).
Let β, β′, β′′ ∈ Ch(BX/G) and δ ∈ Ch(UX) be cycles restricting to α, α′, α + α′

and γ, respectively, satisfying

β′′ − β − β′ = q∗(δ).

By Lemma 59.10,

uX(α + α′)− uX(α)− uX(α′) = iF(β′′)− iF(β)− iF(β′) = (iF ◦ q∗)(δ) = 0. ¤

Definition 59.12. Let X be a scheme. We define the Steenrod operation of ho-
mological type as the composition

SqX : Ch(X) vX−−→ Ch(UX/G) uX−−→ Ch
(
P(TX ⊕ 1)

) sgTX−−−→ Ch(X),

where sgTX is the Segre homomorphism defined in §58.A.
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For every integer k we write

SqX
k : Ch∗(X) → Ch∗−k(X),

for the component of SqX decreasing dimension by k.

Proposition 59.13. Let Z be a closed subvariety of a scheme X. Then SqX([Z]) =
j∗

(
Sg(TZ)

)
, where j : Z → X is the closed embedding and Sg is the total Segre class.

Proof. Let α = [Z] ∈ CH(X). We have vX(α) = α2
G =

[
UZ/G

]
. Set β =[

BZ/G
] ∈ CH(BZ/G). By Proposition 55.6, we have iFZ (β) =

[
P(TZ ⊕ 1)

]
, where

iZ : P(TZ ⊕ 1) → BZ/G is the closed embedding.
Consider the diagram

Ch(BZ/G)
iF
Z−−−−→ Ch

(
P(TZ ⊕ 1)

) sgTZ−−−−→ Ch(Z)

k∗

y
y j∗

y

Ch(BX/G)
iF
X−−−−→ Ch

(
P(TX ⊕ 1)

) sgTX−−−−→ Ch(X)

with vertical maps the push-forward homomorphisms. The diagram is commutative
by Corollary 55.4 and Proposition 58.2. The commutativity yields

SqX([Z]) = (sgTX ◦iFX)
(
k∗(β)

)

= (j∗ ◦ sgTZ ◦iFZ )(β)

= (j∗ ◦ sgTZ )
(
[P(TZ ⊕ 1)]

)

= j∗
(
Sg(TZ)

)
. ¤

Remark 59.14. The maps vX , uX and sgTX commute with arbitrary field exten-
sions, hence so do Steenrod operations. More precisely, if L/F is a field extension,
then the diagram

Ch(X)
SqX

−−−−→ Ch(X)y
y

Ch(XL)
SqXL−−−−→ Ch(XL)

commutes.

60. Properties of the Steenrod operations

In this section, we establish the standard properties of Steenrod operations of
homological type.

60.A. Formula for a smooth cycle. Let Z be a smooth closed subvariety
of a scheme X. By Proposition 58.9, the total Segre class Sg(TZ) coincides with
s(TZ)

(
[Z]

)
= c(TZ)−1

(
[Z]

)
= c(−TZ)

(
[Z]

)
, where c is the total Chern class. Hence

by Proposition 59.13,

(60.1) SqX
(
[Z]

)
= j∗ ◦ c(−TZ)

(
[Z]

)
,

where j : Z → X is the closed embedding.
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60.B. External products.

Theorem 60.2. Let X and Y be two schemes over a field F of characteristic not
2. Then SqX×Y (α × β) = SqX(α) × SqY (β) for any α ∈ Ch(X) and β ∈ Ch(Y ).
Equivalently,

SqX×Y
n (α× β) =

∑

k+m=n

SqX
k (α)× SqY

m(β)

for all n.

Proof. We may assume that α = [V ] and β = [W ] where V and W are closed
subvarieties of X and Y , respectively. Let i : V → X and j : W → Y be the closed
embeddings. By Propositions 50.4, 58.19, and Corollary 104.8,

SqX×Y (α× β) = (i× j)∗ ◦ Sg(TV×W )

= (i∗ × j∗) ◦ Sg(TV × TW )

= (i∗ × j∗) ◦
(
Sg(TV )× Sg(TW )

)

= i∗ ◦ Sg(TV )× j∗ ◦ Sg(TW )

= SqX(α)× SqY (β). ¤

60.C. Functoriality of SqX .

Lemma 60.3. Let i : Y → X be a closed embedding. Then i∗ ◦ SqY = SqX ◦i∗.
Proof. Let Z ⊂ Y be a closed subscheme and let j : Z → Y be the closed

embedding. By Proposition 59.13, we have

i∗ ◦ SqY
(
[Z]

)
= i∗ ◦ j∗ ◦ Sg(TZ) = (ij)∗ ◦ Sg(TZ) = SqX

(
i∗[Z]

)
. ¤

Lemma 60.4. Let p : Pr×X → X be the projection. Then p∗◦SqP
r×X = SqX ◦p∗.

Proof. The group CH(Pr × X) is generated by cycles α = [Pk × Z] for all
closed subvarieties Z ⊂ X and k ≤ r by Theorem 57.14. It follows from Lemma
60.3 that we may assume Z = X and k = r. The statement is obvious if r = 0, so we
may assume that r > 0. Since p∗(α) = 0, we need to prove that p∗ SqP

r×X(α) = 0.
By Theorem 60.2, we have

SqP
r×X(α) = SqP

r(
[Pr]

)× SqX
(
[X]

)
.

It follows from Example 58.6 and (60.1) that

SqP
r(

[Pr]
)

= c(TPr )−1
(
[Pr]

)
= (1 + h)−r−1,

where h = c1(L) is the class of a hyperplane in Pr. By Proposition 50.4,

p∗
(
SqP

r×X(α)
)

= deg(1 + h)−r−1 · SqX
(
[X]

)
.

We have

deg(1 + h)−r−1 =
(−r − 1

r

)
= (−1)r

(
2r

r

)

and the latter binomial coefficient is even if r > 0. ¤
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Theorem 60.5. Let f : Y → X be a projective morphism. Then the diagram

Ch(Y )
SqY

−−−−→ Ch(Y )

f∗

y f∗

y

Ch(X)
SqX

−−−−→ Ch(X)

is commutative.

Proof. The projective morphism f factors as the composition of a closed
embedding Y → Pr ×X and the projection Pr ×X → X, so the statement follows
from Lemmas 60.3 and 60.4. ¤

Theorem 60.6. SqX
k = 0 if k < 0 and SqX

0 is the identity.

Proof. First suppose that X is a variety of dimension d. By dimension count,
the class SqX

k ([X]) = Sgd−k(TX) is trivial if k < 0. To compute SqX
0 ([X]), we can

extend the base field to a perfect one and replace X by a smooth open subscheme.
Then by (60.1),

SqX
0

(
[X]

)
= c0(−TX)

(
[X]

)
= [X],

i.e., SqX
0 is the identity on Chd(X).

In general, let Z ⊂ X be a closed subvariety and let j : Z → X be the
closed embedding. Then by Lemma 60.3 and the first part of the proof, the class
SqX

k

(
[Z]

)
= j∗

(
SqZ

k ([Z])
)

is trivial for k < 0 and is equal to [Z] ∈ Ch(X) if
k = 0. ¤

61. Steenrod operations for smooth schemes

In this section, we define Steenrod operations of cohomological type and prove
their basic properties.

Lemma 61.1. Let f : Y → X be a regular closed embedding of schemes of codi-
mension r and g : UY /G → UX/G the closed embedding induced by f . Then g is a
regular closed embedding of codimension 2r and the following diagram is commuta-
tive:

CH(X) vX−−−−→ CH(UX/G)

fF
y

ygF

CH(Y ) vY−−−−→ CH(UY /G)

Proof. The closed embedding UY → UX is regular of codimension 2r and
the morphism UX → UX/G is faithfully flat. Hence g is also a regular closed
embedding by Proposition 104.11. Let p : N → Y be the normal bundle of f . The
Gysin homomorphism fF is the composition of the deformation homomorphism
σf : CH(X) → CH(N) and the inverse to the pull-back isomorphism p∗f : CH(Y ) →
CH(N) (cf. §55.A).

The normal bundle Nh of the closed embedding h : UY → UX is the restriction
of the vector bundle N2 × A1 on UY .

Consider the diagram
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(61.2)

Z(X) −−−−→ Z(X2 × A1)G −−−−→ Z(UX)G Z(UX/G)
yσf

yσf2×1

yσh

yσg

Z(N) −−−−→ Z(N2 × A1)G −−−−→ Z(Nh)G Z(Nh/G)x
x

x
x

Z(Y ) −−−−→ Z(Y 2 × A1)G −−−−→ Z(UY )G Z(UY /G)

where the first homomorphism in every row takes a cycle α to α2 × [A1], the other
unmarked maps are pull-back homomorphisms with respect to flat morphisms and
the equalities follow from Proposition 59.2.

The deformation homomorphism is defined by σf

(∑
ni[Zi]

)
= [Cki ], where

ki : Y ∩ Zi → Zi is the restriction of f by Proposition 52.7, so the commutativity
of the upper left square follows from the equality of cycles [Cki

× Ckj
] = [Cki×kj

]
(cf. Proposition 104.7). The two other top squares are commutative by Proposition
51.5. The commutativity of the left bottom square follows from Propositions 57.8
and 57.12. The two other squares are commutative by Proposition 49.18.

The normal bundle Nh is an open subscheme of UN and of N2 × A1. Let
j : Nh → UN and l : Nh/G → UN/G be the open embeddings. The following
diagram of the pull-back homomorphisms

Z(N) −−−−→ Z(N2 × A1)G −−−−→ Z(UN )G Z(UN/G)∥∥∥
∥∥∥ j∗

y
yl∗

Z(N) −−−−→ Z(N2 × A1)G −−−−→ Z(Nh)G Z(Nh/G)

is commutative by Proposition 49.18. It follows from Lemma 59.5 that the com-
position in the top row factors through the rational equivalence, hence so does the
composition in the bottom row and then in the middle row of the diagram (61.2).
Therefore the diagram (61.2) yields a commutative diagram:

CH(X)

σf

²²

vX // CH(UX/G)
σg

''OOOOOOOOOOO

CH(N) // CH(UN/G)
l∗ // CH(Nh/G)

CH(Y )

p∗f o
OO

vY // CH(UY /G)
p∗g

∼
77ooooooooooo

The lemma follows from the commutativity of this diagram. ¤

Let f : Y → X be a closed embedding of smooth schemes with the normal
bundle N → Y . Consider the diagram

P(TY ⊕ 1)
j−−−−→ P(TX ⊕ 1)

p

y q

y
Y

f−−−−→ X.
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Lemma 61.3. We have c(N) ◦ f∗ ◦ sgTX = sgTY ◦j∗.
Proof. By the Projective Bundle Theorem 57.14, the group CH

(
P(TX ⊕ 1)

)
is generated by the elements β = e(LX)k

(
q∗(α)

)
with k ≥ 0 and α ∈ CH(X). We

have

(61.4) e(LX)•(β) = e(LX)•
(
q∗(α)

)
.

Since j∗(LX) = LY and j∗ ◦ q∗ = p∗ ◦ f∗, we have j∗β = e(LTY
)k

(
p∗(f∗(α))

)
by

Proposition 53.3(2), and therefore,

(61.5) e(LY )•
(
j∗(β)

)
= e(LY )• ◦ p∗

(
f∗(α)

)
.

By Proposition 104.16, c(N)◦s(f∗(TX)
)

= c(N)◦c(f∗(TX)
)−1 = c(TY )−1 = s(TY ).

It follows from (61.4), (61.5), Propositions 54.7 and 58.4(2) that

c(N) ◦ f∗ ◦ sgTX (β) = c(N) ◦ f∗ ◦ q∗ ◦ e(LX)•(β)

= c(N) ◦ f∗ ◦ q∗ ◦ e(LX)•
(
q∗(α)

)

= c(N) ◦ f∗ ◦ s(TX)(α)

= c(N) ◦ s(f∗TX)
(
f∗(α)

)

= s(TY )
(
f∗(α)

)

= p∗ ◦ e(LY )• ◦ p∗
(
f∗(α)

)

= p∗ ◦ e(LY )•
(
j∗(β)

)

= sgTY ◦j∗(β). ¤

Proposition 61.6. Let f : Y → X be a closed embedding of smooth schemes with
the normal bundle N . Then c(N) ◦ f∗ ◦ SqX = SqY ◦f∗.

Proof. By Proposition 105.8, the schemes BY /G and BX/G are smooth. Let

j : P(TY ⊕ 1) → P(TX ⊕ 1) and h : BY /G → BX/G

be the closed embeddings induced by f . Let α ∈ Ch(X). Choose β ∈ Ch(BX/G)
satisfying β|(UX/G) = α2

G (cf. (59.4)). It follows from Proposition 55.19 and Lemma
61.1 that (

h∗(β)
)|UY /G =

(
f∗(α)

)2

G
.

By Proposition 55.19 and Lemma 61.3,

c(N) ◦ f∗ ◦ SqX(α) = c(N) ◦ f∗ ◦ sgTX ◦iFX(β)

= sgTY ◦j∗ ◦ iFX(β)

= sgTY ◦iFY ◦ h∗(β)

= SqY ◦f∗(α). ¤

Definition 61.7. Let X be a smooth scheme. We define the Steenrod operations
of cohomological type by the formula

SqX = c(TX) ◦ SqX .

We write Sqk
X for kth homogeneous part of SqX . Thus Sqk

X is an operation

Sqk
X : Ch∗(X) → Ch∗+k(X).



286 XI. STEENROD OPERATIONS

Proposition 61.8 (Wu Formula). Let Z be a smooth closed subscheme of a smooth
scheme X. Then SqX

(
[Z]

)
= j∗ ◦ c(N)

(
[Z]

)
, where N is the normal bundle of the

closed embedding j : Z → X.

Proof. By Proposition 54.5 and (60.1),

SqX

(
[Z]

)
= c(TX) ◦ SqX

(
[Z]

)

= c(TX) ◦ j∗ ◦ c(−TZ)
(
[Z]

)

= j∗ ◦ c
(
i∗(TX)

) ◦ c(−TZ)
(
[Z]

)

= j∗ ◦ c(N)
(
[Z]

)

since c(TZ) ◦ c(N) = c
(
j∗(TX)

)
. ¤

Theorem 61.9. Let f : Y → X be a morphism of smooth schemes. Then the
diagram

Ch(X)
SqX−−−−→ Ch(X)

f∗
y

yf∗

Ch(Y )
SqY−−−−→ Ch(Y )

is commutative.

Proof. Suppose first that f is a closed embedding with normal bundle N . It
follows from Propositions 54.5(2) and 61.6 that

f∗ ◦ SqX = f∗ ◦ c(TX) ◦ SqX

= c
(
f∗(TX)

) ◦ f∗ ◦ SqX

= c(TY ) ◦ c(N) ◦ f∗ ◦ SqX

= c(TY ) ◦ SqY ◦f∗
= SqY ◦f∗.

Second, consider the case of the projection g : Y × X → X. Let Z ⊂ X
be a closed subvariety. By (60.1), Propositions 58.12, 57.12, Corollary 104.8, and
Theorem 60.2, we have g∗([Z]) = [Y × Z] = [Y ]× [Z] and

SqY×X

(
g∗([Z])

)
= c

(
TY×X

) ◦ SqY×X
(
[Y × Z]

)

=
(
c(TY )× c(TX)

)(
SqY ([Y ])× SqX([Z])

)

=
(
c(TY ) ◦ SqY ([Y ])

)× (
c(TX) ◦ SqX([Z])

)

= [Y ]× SqX

(
[Z]

)

= g∗
(
SqX([Z])

)
.

In the general case, write f = g ◦ h where h = (idX , f) : Y → Y × X is the
closed embedding and g : Y ×X → X is the projection. Then by the above,

f∗ ◦ SqX = h∗ ◦ g∗ ◦ SqX = h∗ ◦ SqY×X ◦g∗ = SqY ◦h∗ ◦ g∗ = SqY ◦f∗. ¤

Proposition 61.10. Let f : Y → X be a smooth projective morphism of smooth
schemes. Then

SqX ◦f∗ = f∗ ◦ c(−Tf ) ◦ SqY ,

where Tf is the relative tangent bundle of f .
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Proof. It follows from the exactness of the sequence

0 → Tf → TY → f∗(TX) → 0

that c(TY ) = c(Tf ) ◦ c(f∗TX). By Proposition 54.5(1) and Theorem 60.5,

SqX ◦f∗ = c(TX) ◦ SqX ◦f∗
= c(TX) ◦ f∗ ◦ SqY

= c(TX) ◦ f∗ ◦ c(−TY ) ◦ SqY

= f∗ ◦ c(f∗TX) ◦ c(−TY ) ◦ SqY

= f∗ ◦ c(−Tf ) ◦ SqY . ¤

Let X be a smooth variety of dimension d and let Z ⊂ X be a closed subvariety.
Consider the closed embedding j : P(TZ⊕1) → P(TX⊕1). By the Projective Bundle
Theorem 57.14 applied to the vector bundle TX ⊕1 over X of rank d+1, there are
unique elements α0, α1, . . . , αd ∈ Ch(X) such that

j∗
(
[P(TZ ⊕ 1)]

)
=

d∑

k=0

e(L)k
(
q∗(αk)

)

in Ch
(
P(TX ⊕ 1)

)
, where L is the canonical line bundle over P(TX ⊕ 1) and q :

P(TX ⊕1) → X is the natural morphism. We set α := α0 +α1 + · · ·+αd ∈ Ch(X).

Lemma 61.11. SqX
(
[Z]

)
= s(TX)(α).

Proof. Let p : P(TZ ⊕ 1) → Z be the projection and i : Z → X the closed
embedding, so that i ◦ p = q ◦ j. The canonical line bundle L′ over P(TZ ⊕ 1)
coincides with j∗(L) and by Proposition 53.3,

SqX
(
[Z]

)
= i∗ Sg(TZ)

= i∗ ◦ p∗ ◦ e(L′)•
(
[P(TZ ⊕ 1)]

)

= q∗ ◦ j∗ ◦ e
(
j∗(L)

)•([P(TZ ⊕ 1)]
)

= q∗ ◦ e(L)• ◦ j∗([P(TZ ⊕ 1)]
)

= q∗ ◦ e(L)• ◦
d∑

k=0

e(L)k
(
q∗(αk)

)

= q∗ ◦ e(L)• ◦ q∗(α)

= s(TX)(α). ¤

Corollary 61.12. SqX

(
[Z]

)
= α in Ch(X).

Proof. By Lemma 61.11 and Proposition 58.9,

SqX

(
[Z]

)
= c(TX)

(
SqX([Z])

)
= c(TX)s(TX)(α) = α. ¤

Theorem 61.13. Let X be a smooth scheme. Then for any β ∈ Chk(X),

Sqr
X(β) =





β if r = 0,
β2 if r = k,
0 if r < 0 or r > k.
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Proof. By definition and Theorem 60.6, we have Sqk
X = 0 if k < 0 and Sq0

X

is the identity operation.
We may assume that X is a variety and β = [Z] where Z ⊂ X is a closed

subvariety of codimension k. Since αi ∈ Ch2k−i(X), we have Sqr
X(β) = αk−r by

Corollary 61.12. Therefore, Sqr
X(β) = 0 if r > k.

As Sqk
X(β) = α0, it remains to prove that β2 = α0. Consider the diagonal

embedding d : X → X2 and the closed embedding h : TZ → TX . By the definition
of the product in Ch(X) and Proposition 52.7,

p∗(β2) = p∗ ◦ d∗X
(
[Z2]

)
= σd

(
[Z2]

)
= h∗

(
[TZ ]

) ∈ Ch(TX),

where p : TX → X is the canonical morphism. Let j : TX → P(TX ⊕1) be the open
embedding. Since the pull-back j∗(L) of the canonical line bundle L over P(TX⊕1)
is a trivial line bundle over TX , we have

j∗ ◦ e(L)s
(
q∗(α)

)
= e

(
j∗(L)

)s(
j∗ ◦ q∗(α)

)
=

{
p∗(α) if s = 0,

0 if s > 0

for every α ∈ Ch(X). Hence

p∗(β2) =
[
TZ

]
= j∗(

[
P(TZ ⊕ 1)

]
) = p∗(α0),

therefore, β2 = α0 since p∗ is an isomorphism. ¤

Theorem 61.14. Let X and Y be two smooth schemes. Then

SqX×Y = SqX ×SqY .

Proof. By Corollary 104.8, we have TX×Y = TX × TY . It follows from Theo-
rem 60.2 and Proposition 58.12 that

SqX×Y = c(TX×Y ) ◦ SqX×Y

=
(
c(TX) ◦ SqX

)× (
c(TY ) ◦ SqY

)

= SqX ×SqY . ¤

Corollary 61.15 (Cartan Formula). Let X be a smooth scheme. Then SqX(α ·
β) = SqX(α) · SqX(β) for all α, β ∈ Ch(X). Equivalently,

Sqn
X(α · β) =

∑

k+m=n

Sqk
X(α) · Sqm

X(β)

for all n.

Proof. Let i : X → X ×X be the diagonal embedding. Then by Theorems
61.9 and 61.14,

SqX(α · β) = SqX

(
i∗(α× β)

)

= i∗ SqX×Y (α× β)

= i∗
(
SqX(α)× SqX(β)

)

= SqX(α) · SqX(β). ¤
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Example 61.16. Let X = Pd be projective space and h ∈ Ch1(X) the class of a
hyperplane. By Theorem 61.13, we have SqX(h) = h + h2 = h(1 + h). It follows
from Corollary 61.15 that

SqX(hi) = hi(1 + h)i, Sqr
X(hi) =

(
i

r

)
hi+r.

By Example 104.20, the class of the tangent bundle TX is equal to (d + 1)[L]− 1,
where L is the canonical line bundle over X. Hence

c(TX) = c(L)d+1 = (1 + h)d+1

and
SqX(hi) = c(TX)−1 ◦ SqX(hi) = hi(1 + h)i−d−1.





CHAPTER XII

Category of Chow Motives

In this chapter we study Chow motives. The notion of a Chow motive is due
to Grothendieck. Many (co)homology theories defined on the category Sm(F ) of
smooth complete schemes, such as Chow groups and more generally K-(co)homology
groups take values in the category of abelian groups. But the category Sm(F ) itself
does not have the structure of an additive category as we cannot add morphisms
of schemes.

In this chapter, for an arbitrary commutative ring Λ, we shall construct the
additive categories of correspondences CR(F, Λ), CR∗(F, Λ) and motives CM(F, Λ),
CM∗(F, Λ) together with functors

Sm(F ) −−−−→ CR(F, Λ) −−−−→ CM(F, Λ)
y

y
CR∗(F, Λ) −−−−→ CM∗(F, Λ)

so that the theories with values in the category of abelian groups mentioned above
factor through them. All of these the new categories do have the additional struc-
ture of additive category. This makes them easier to work with than the category
Sm(F ). Applications of these categories can be found in Chapter XVII later in this
book.

Some classical theorems also have motivic analogs. For example, the Projective
Bundle Theorem 53.10 has such an analog (cf. Theorem 63.10) below. We shall see
that the motive of a projective bundle splits into a direct sum of certain motives
already in the category of correspondences CR(F, Λ). From this the classical Pro-
jective Bundle Theorem 53.10 can be obtained by applying an appropriate functor
to the decomposition in CR(F, Λ).

In this chapter, scheme means a separated scheme of finite type over a field.

62. Correspondences

Definition 62.1. Let X and Y be two schemes over F . A correspondence between
X and Y is an element of CH(X × Y ).

For example, the graph of a morphism between X and Y is a correspondence.
In this section we study functorial properties of correspondences.

For a scheme Y over F , we have two canonical morphisms: the structure mor-
phism pY : Y → Spec(F ) and the diagonal closed embedding dY : Y → Y × Y . If
Y is complete, the map pY is proper, and if Y is smooth, the closed embedding dY

is regular.
Let X,Y and Z be schemes over F with Y complete and smooth. We consider

morphisms
XpZ

Y := 1X × pY × 1Z : X × Y × Z → X × Z

291
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and
XdZ

Y := 1X × dY × 1Z : X × Y × Z → X × Y × Y × Z.

If X = Spec(F ), we shall simply write pZ
Y and dZ

Y .
Define a bilinear pairing of K-homology groups (cf. §52)

A∗(Y × Z, K∗)×A∗(X × Y, K∗) → A∗(X × Z, K∗)

by

(62.2) (β, α) 7→ β ◦ α :=
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F(α× β).

For an element α ∈ A∗(X × Y, K∗) we write αt for its image in A∗(Y ×X, K∗)
under the exchange isomorphism X × Y ' Y × X. The element αt is called the
transpose of α. By the definition of the pairing,

(β ◦ α)t = αt ◦ βt.

Proposition 62.3. The pairing (62.2) is associative. More precisely, for any four
schemes X, Y, Z, T over F with Y and Z smooth and complete and any
α ∈ A∗(X × Y,K∗), β ∈ A∗(Y × Z, K∗), and γ ∈ A∗(Z × T, K∗), we have

(γ ◦ β) ◦ α =
(
XpT

Y×Z

)
∗ ◦

(
XdT

Y×Z

)F(α× β × γ) = γ ◦ (β ◦ α).

Proof. We prove the first equality. It follows from Corollary 55.4 that
(
XdT

Y

)F ◦ (
X×Y×YpT

Z

)
∗ =

(
X×YpT

Z

)
∗ ◦

(
XdZ×T

Y

)F
.

By Propositions 50.4, 50.5, and 55.1, we have

(γ ◦ β) ◦ α =
(
XpT

Y

)
∗ ◦

(
XdT

Y

)F(
α× (

YpT
Z

)
∗
(
YdT

Z

)F(β × γ)
)

=
(
XpT

Y

)
∗ ◦

(
XdT

Y

)F ◦ (
X×Y×YpT

Z

)
∗ ◦

(
X×Y×YdT

Z

)F(α× β × γ)

=
(
XpT

Y

)
∗ ◦

(
X×YpT

Z

)
∗ ◦

(
XdZ×T

Y

)F ◦ (
X×Y×YdT

Z

)F(α× β × γ)

=
(
XpT

Y×Z

)
∗ ◦

(
XdT

Y×Z

)F(α× β × γ). ¤

Let f : X → Y be a morphism of schemes. The isomorphic image of X under
the closed embedding (1X , f) : X → X × Y is called the graph of f and is denoted
by Γf . Thus, Γf is a closed subscheme of X × Y isomorphic to X under the
projection X × Y → X. The class [Γf ] belongs to CH(X × Y ).

Proposition 62.4. Let X, Y, Z be schemes over F with Y smooth and complete.
(1) For every morphism g : Y → Z and α ∈ A∗(X × Y, K∗),

[Γg] ◦ α = (1X × g)∗(α).

(2) For every morphism f : X → Y and β ∈ A∗(Y × Z, K∗),

β ◦ [Γf ] = (f × 1Z)∗(β).

Proof. (1): Consider the commutative diagram

X × Y
X×YpY←−−−− X × Y × Y

XdY←−−−− X × Y

r

y t

y

X × Y × Y × Z
XdZ

Y←−−−− X × Y × Z
XpZ

Y−−−−→ X × Z

where r = 1X×Y × (1Y , g) and t = 1X × (1Y , g).
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The composition X×YpY ◦XdY is the identity on X × Y and XpZ
Y ◦ t = 1X × g.

It follows from Corollary 55.4 that
(
XdZ

Y

)F ◦ r∗ = t∗ ◦
(
XdY

)F. We have

[Γg] ◦ α =
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F(
α× [Γg]

)

=
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F ◦ r∗
(
α× [Y ]

)

=
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F ◦ r∗ ◦ (X×YpY )∗(α)

=
(
XpZ

Y

)
∗ ◦ t∗ ◦

(
XdY

)F ◦ (
X×YpY

)∗(α)

= (1X × g)∗(α).

(2): Consider the commutative diagram

Y × Z
pY×Z

X←−−−− X × Y × Z
v←−−−− X × Z

u

y v

y

X × Y × Y × Z
XdZ

Y←−−−− X × Y × Z
XpZ

Y−−−−→ X × Z

where u = (1X , f)× 1Y×Z and v = (1X , f)× 1Z .
The composition XpZ

Y ◦ v is the identity on X × Z and pY×Z
X ◦ v = f × 1Z . It

follows from Corollary 55.4 that
(
XdZ

Y

)F ◦ u∗ = v∗ ◦ v∗. We have

β ◦ [Γf ] = (XpZ
Y )∗ ◦ (XdZ

Y )F(
[Γf ]× β

)

=
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F ◦ u∗
(
[X]× β

)

=
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F ◦ u∗ ◦
(
pY×Z

X

)∗(β)

=
(
XpZ

Y

)
∗ ◦ v∗ ◦ v∗ ◦ (

pY×Z
X

)∗(β)

=
(
f × 1Z)∗(β). ¤

Corollary 62.5. Let X and Y be schemes over F and α ∈ A∗(X × Y, K∗). Then
(1) If Y is smooth and complete, then [Γ1Y ] ◦ α = α.
(2) If X is smooth and complete, then α ◦ [Γ1X

] = α.

Corollary 62.6. Let f : X → Y and g : Y → Z be two morphisms. If Y is smooth
and complete, then [Γg] ◦ [Γf ] = [Γgf ].

Proof. By Proposition 62.4(1),

[Γg] ◦ [Γf ] = (1X × g)∗
(
[Γf ]

)

= (1X × g)∗(1X , f)∗
(
[X]

)

= (1X , gf)∗
(
[X]

)

= [Γgf ]. ¤

Let X, Y and Z be arbitrary schemes and α ∈ A∗(X × Y,K∗). If X is smooth
and complete, we have a well-defined homomorphism

α∗ : A∗(Z ×X, K∗) → A∗(Z × Y,K∗), β 7→ α ◦ β.

If α = [Γf ] with f : X → Y a morphism, it follows from Proposition 62.4(1) that
α∗ = (1Z × f)∗.



294 XII. CATEGORY OF CHOW MOTIVES

If X is smooth and Z = Spec(F ), we get a homomorphism α∗ : A∗(X, K∗) →
A∗(Y, K∗). We have simpler formula for α∗ in the following case:

Proposition 62.7. Let α = [T ] with T ⊂ X × Y a closed subscheme with X
smooth and complete. Then α∗ = q∗ ◦ p∗, where p : T → X and q : T → Y are the
projections.

Proof. Let r : X × Y → Y be the projection, i : T → X × Y the closed
embedding, and f : T → X × T the graph of the projection p. Consider the
commutative diagram

X × T
f←−−−− T

q−−−−→ Y

1X×i

y i

y
∥∥∥

X ×X × Y
dY

X←−−−− X × Y
r−−−−→ Y.

It follows from Corollary 55.4 that i∗ ◦ f∗ = (dY
X)F ◦ (1X × i)∗. Therefore, for every

β ∈ A∗(X,K∗), we have

α∗(β) = r∗ ◦ (dY
X)F(β × α)

= r∗ ◦ (dY
X)F ◦ (1X × i)∗

(
β × [T ]

)

= r∗ ◦ i∗ ◦ f∗
(
β × [T ]

)

= q∗ ◦ f∗
(
β × [T ]

)

= q∗ ◦ p∗(β). ¤

If Y is smooth and complete, we have a well-defined homomorphism

α∗ : A∗(Y × Z, K∗) → A∗(X × Z, K∗), β 7→ β ◦ α.

If α = [Γf ] for a flat morphism f : X → Y , it follows from Proposition 62.4(2) that
α∗ = (f × 1Z)∗.

Let X, Y and Z be arbitrary schemes, α ∈ A∗(X × Y, K∗) and g : Y → Z a
proper morphism. We define the composition of g and α by

g ◦ α := (1X × g)∗(α) ∈ A∗(X × Z, K∗).

If g ◦ α = [Γh] for some morphism h : X → Z, we abuse notation and just write
g ◦ α = h. If Y is smooth and complete, we have g ◦ α = [Γg] ◦ α by Proposition
62.4(1).

Similarly, if β ∈ A∗(Y × Z, K∗) and f : X → Y is a flat morphism, we define
the composition of β and f by

β ◦ f := (f × 1Z)∗(β) ∈ A∗(X × Z, K∗).

If Y is smooth and complete, we have β ◦ f = β ◦ [Γf ] by Proposition 62.4(2).
The following statement is an analogue of Proposition 62.3 with fewer assump-

tions on the schemes.

Proposition 62.8. Let X, Y , Z and T be arbitrary schemes.
(1) Let α ∈ A∗(X × Y,K∗), γ ∈ A∗(T × X, K∗), and g : Y → Z a proper

morphism. If X is smooth and complete, then

(g ◦ α) ◦ γ = g ◦ (α ◦ γ), i.e., (g ◦ α)∗ = g∗ ◦ α∗.
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(2) Let β ∈ A∗(Y × Z, K∗), δ ∈ A∗(Z × T, K∗), and f : X → Y a flat
morphism. If Z is smooth and complete, then

δ ◦ (β ◦ f) = (δ ◦ β) ◦ f, i.e., (β ◦ f)∗ = f∗ ◦ β∗.

Proof. (1): Consider the commutative diagram with fiber product squares

T ×X ×X × Y
TdY

X←−−−− T ×X × Y
TpY

X−−−−→ T × Y

1T×X×X×g

y 1T×X×g

y
y1T×g

T ×X ×X × Z
TdZ

X←−−−− T ×X × Z
TpZ

X−−−−→ T × Z.

It follows from Proposition 50.4 and Corollary 55.4 that

g ◦ (α ◦ γ) = (1T × g)∗(α ◦ γ)

= (1T × g)∗ ◦
(
TpY

X

)
∗ ◦

(
TdY

X

)F(γ × α)

=
(
TpZ

X

)
∗ ◦

(
TdZ

X

)F ◦ (1T×X×X × g)∗(γ × α)

= (1X × g)∗(α) ◦ γ

= (g ◦ α) ◦ γ.

(2): The proof is similar using Propositions 49.20, 50.5 and 55.5 instead. ¤

If γ ∈ A∗(Y ×X,K∗) and g : Y → Z is a proper morphism, we write γ ◦ gt for
(g ◦ γt)t ∈ A∗(Z ×X,K∗). Similarly, if δ ∈ A∗(Z × Y, K∗) and f : X → Y is a flat
morphism, we define the composition f t ◦ δ ∈ A∗(Z ×X, K∗) to be (δt ◦ f)t.

63. Categories of correspondences

Let Λ be a commutative ring. For a scheme Z, we write CH(Z; Λ) for the
Λ-module CH(Z)⊗ Λ.

Let X and Y be smooth complete schemes over F . Let X1, X2, . . . , Xn be the
irreducible components of X of dimension d1, d2, . . . , dn, respectively. For every
i ∈ Z, we set

Corri(X, Y ; Λ) :=
n∐

k=1

CHi+dk
(Xk × Y ; Λ).

An element α ∈ Corri(X, Y ; Λ) is called a correspondence between X and Y of
degree i with coefficients in Λ. We write α : X Ã Y .

Let Z be another smooth complete scheme. By Proposition 62.3, the bilinear
pairing (β, α) 7→ β ◦ α on Chow groups yields an associative pairing (composition)

(63.1) Corri(Y, Z; Λ)× Corrj(X, Y ; Λ) → Corri+j(X, Z; Λ).

The following proposition gives an alternative formula for this composition
involving only projection morphisms.

Proposition 63.2. β ◦ α =
(
XpZ

Y

)
∗

((
X×YpZ

)∗(α) · (pY×Z
X

)∗(β)
)
.
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Proof. Let f : X × Y × Y × Z → X × Y × Z × X × Y × Z be defined by
f(x, y, y′, z) = (x, y, z, x, y′, z). We have f ◦XdZ

Y = dX×Y×Z , therefore,

β ◦ α =
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F(α× β)

=
(
XpZ

Y

)
∗ ◦

(
XdZ

Y

)F ◦ f∗
(
α× [Z]× [X]× β

)

=
(
XpZ

Y

)
∗ ◦ (dX×Y×Z)F

((
X×YpZ

)∗(α)× (
pY×Z

X

)∗(β)
)

=
(
XpZ

Y

)
∗

((
X×YpZ

)∗(α) · (pY×Z
X

)∗(β)
)
. ¤

Define the category CR∗(F, Λ) of correspondences with coefficients in Λ over F
as follows: Objects of CR∗(F, Λ) are smooth complete schemes over F . A morphism
between X and Y is an element of the graded group

∐

k∈Z
Corrk(X, Y ; Λ).

Composition of morphisms is given by (63.1). The identity morphism of X in
CR∗(F, Λ) is Γ1X

⊗ 1, where Γ1X
is the class of the graph of the identity morphism

1X (cf. Corollary 62.5). The direct sum in CR∗(F, Λ) is given by the disjoint union
of schemes. As the composition law in CR∗(F, Λ) is bilinear and associative by
Proposition 62.3, the category CR∗(F, Λ) is additive. Abusing notation, we write
Λ for the object Spec(F ) in this category.

An object of CR∗(F, Λ) is called a Chow motive or simply a motive. If X is a
smooth complete scheme, we write M(X) for it as an object in CR∗(F, Λ).

We define another category C(F, Λ) as follows. Objects of C(F, Λ) are pairs
(X, i), where X is a smooth complete scheme over F and i ∈ Z. A morphism
between (X, i) and (Y, j) is an element of Corri−j(X, Y ; Λ). The composition of
morphisms is given by (63.1). The morphisms between two objects form an abelian
group and the composition is bilinear and associative by Proposition 62.3, therefore,
C(F, Λ) is a preadditive category.

There is an additive functor C(F, Λ) → CR∗(F, Λ) taking an object (X, i) to
X, and that is the natural inclusion on morphisms.

Let A be a preadditive category. Define the additive completion of A to be the
following category Ã: its objects are finite sequences of objects A1, . . . , An of A
written in the form

∐n
i=1 Ai. A morphism between

∐n
i=1 Ai and

∐m
j=1 Bj is given

by an n×m-matrix of morphisms Ai → Bj . The composition of morphisms is the
matrix multiplication. The category Ã has finite products and coproducts and is
therefore an additive category. The category A is a full subcategory of Ã.

Let CR(F, Λ) denote the additive completion of C(F, Λ). We call it the category
of graded correspondences with coefficients in Λ over F . An object of CR(F, Λ) is
also called a Chow motive or simply a motive. We will write M(X)(i) for (X, i)
and simply M(X) for (X, 0). The functor C(F, Λ) → CR∗(F, Λ) extends naturally
to an additive functor

(63.3) CR(F, Λ) → CR∗(F, Λ).

taking M(X)(i) to M(X). Write Λ(i) for the motive (Spec F, i) in CR(F, Λ). The
motives Λ(i) in CR(F, Λ) and Λ in CR∗(F, Λ) are called the Tate motives.

Functor (63.3) is faithful but not full. Nevertheless, it has the following nice
property.
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Proposition 63.4. Let f be a morphism in CR(F, Λ). If the image of f in the
category CR∗(F, Λ) is an isomorphism, then f itself is an isomorphism.

Proof. Let f be a morphism between the objects
n∐

i=1

Xi(ai) and
m∐

j=1

Yj(bj).

Thus f is given by an n × m matrix A = (fij) with fij ∈ Corraj−bi
(Xj , Yi; Λ).

Let B = (gkl) be the matrix of the inverse of f in CR∗(F, Λ), so that gkl ∈
Corr∗(Yl, Xk; Λ). Let ḡkl be the homogeneous component of gkl of degree bl − ak

and B = (ḡkl). As AB = AB and BA = BA are the identity matrices, we have
B = B = A−1. Therefore, B is the matrix of the inverse of f in CR(F, Λ). ¤

A ring homomorphism Λ → Λ′ gives rise to natural functors CR∗(F, Λ) →
CR∗(F, Λ′) and CR(F, Λ) → CR(F, Λ′) that are identical on objects. We simply
write CR∗(F ) for CR∗(F,Z) and CR(F ) for CR(F,Z).

It follows from Corollary 62.6 that there is a functor

Sm(F ) → CR(F, Λ)

taking a smooth complete scheme X to M(X) and a morphism f : X → Y to
[Γf ]⊗ 1 in Corr0(X, Y ; Λ) = MorCR(F,Λ)

(
M(X),M(Y )

)
, where Γf is the graph of

f .
Let X and Y be smooth complete schemes and i, j ∈ Z. We have

HomCR(F )

(
M(X)(i),M(Y )(j)

)
= Corri−j(X,Y ; Λ).

In particular,

(63.5) HomCR(F,Λ)

(
Λ(i),M(X)

)
= CHi(X; Λ),

(63.6) HomCR(F,Λ)

(
M(X),Λ(i)

)
= CHi(X; Λ).

We define Chow groups with coefficients in Λ for an arbitrary motive M as
follows:

CHi(M ; Λ) := HomCR(F,Λ)

(
Λ(i),M

)
, CHi(M ; Λ) := HomCR(F,Λ)

(
M, Λ(i)

)
.

The category CR(F, Λ) has the structure of a tensor category given by

M(X)(i)⊗M(Y )(j) := M(X × Y )(i + j).

In particular,
M(X)(i)⊗ Λ(j) = M(X)(i + j).

Let Y be a smooth variety of dimension d. By the definition of a morphism in
CR(F ), the equality

(63.7) HomCR(F,Λ)

(
M(Y )(i), N

)
= CHd+i

(
M(Y )⊗N ; Λ

)

holds for every N of the form M(X)(j), where X is a smooth complete scheme;
and, therefore, by additivity it holds for all motives N . Similarly,

(63.8) HomCR(F,Λ)

(
N,M(Y )(i)

)
= CHd+i

(
N ⊗M(Y ); Λ

)
.

The following statement is a variant of the Yoneda Lemma.

Lemma 63.9. Let α : N → P be a morphism in CR(F, Λ). Then the following
conditions are equivalent:
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(1) α is an isomorphism.
(2) For every smooth complete scheme Y , the homomorphism

(1Y ⊗ α)∗ : CH∗
(
M(Y )⊗N ; Λ

) → CH∗
(
M(Y )⊗ P ; Λ

)

is an isomorphism.
(3) For every smooth complete scheme X, the homomorphism

(1Y ⊗ α)∗ : CH∗
(
M(Y )⊗ P ; Λ

) → CH∗
(
M(Y )⊗N ; Λ

)

is an isomorphism.

Proof. Clearly (1) ⇒ (2) and (1) ⇒ (3). We prove that (2) implies (1) (the
proof of the implication (3) ⇒ (1) is similar and left to the reader). It follows from
(63.7) that the natural homomorphism

HomCR(F,Λ)(M, N) → HomCR(F,Λ)(M, P )

is an isomorphism if M = M(Y )(i) for any smooth complete variety Y . By addi-
tivity, it is isomorphism for all motives M . The statement now follows from the
(usual) Yoneda Lemma. ¤

The following statement is the motivic version of the Projective Bundle Theo-
rem 53.10.

Theorem 63.10. Let E → X be a vector bundle of rank r over a smooth complete
scheme X. Then the motives M

(
P(E)

)
and

∐r−1
i=0 M(X)(i) are naturally isomor-

phic in CR(F, Λ).

Proof. Let Y be a smooth complete scheme over F . Applying the Projective
Bundle Theorem 53.10 to the vector bundle E×Y → X×Y , we see that the Chow
groups of

∐r−1
i=0 M(X×Y )(i) and M

(
P(E)×Y

)
are isomorphic. Moreover, in view

of Remark 53.11, this isomorphism is natural in Y with respect to morphisms in
the category CR(F, Λ). In other words, the functors on CR(F, Λ) represented by
the objects

∐r−1
i=0 M(X)(i) and M

(
P(E)

)
are isomorphic. By the Yoneda Lemma,

the objects are isomorphic in CR(F, Λ). ¤

Corollary 63.11. The motive M
(
P(E)

)
is isomorphic to the direct sum M(X)r

of r copies of M(X) in the category CR∗(F, Λ).

64. Category of Chow motives

Let A be an additive category. An idempotent e : A → A in A is called split if
there is an isomorphism f : A

∼→ B⊕C such that e coincides with the composition

A
f−→ B ⊕ C

p−→ B
i−→ B ⊕ C

f−1

−−→ A, where p and i are the canonical morphisms.
The idempotent completion of an additive category A is the category A defined

as follows. Objects of A are the pairs (A, e), where A is an object of A and
e : A → A is an idempotent. The group of morphisms between (A, e) and (B, f) is
f ◦HomA(A,B) ◦ e. Every idempotent in A is split.

The assignment A 7→ (A, 1A) defines a full and faithful functor from A to A.
We identify A with a full subcategory of A.

Let Λ be a commutative ring. The idempotent completion of the category
CR(F, Λ) is called the category of graded Chow motives with coefficients in Λ and is
denoted by CM(F, Λ). By definition, every object of CM(F, Λ) is a direct summand
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of a finite direct sum of motives of the form M(X)(i), where X is a smooth complete
scheme over F . We write CM(F ) for CM(F,Z).

Similarly, the idempotent completion CM∗(F, Λ) of CR∗(F, Λ) is called the
category of Chow motives with coefficients in Λ. Note that Proposition 63.4 holds
for the natural functor CM(F, Λ) → CM∗(F, Λ).

We have functors

Sm(F ) → CR(F, Λ) → CM(F, Λ).

The second functor is full and faithful, so we can view CR(F, Λ) as a full subcategory
of CM(F, Λ) which we do. Note that CM(F, Λ) inherits the structure of a tensor
category.

An object of CM(F, Λ) is also called a motive. We will keep the same notation
M(X)(i), Λ(i), etc. for the corresponding motives in CM(F, Λ). The motives Λ(i)
and Λ are called the Tate motives.

We use formulas (63.5) and (63.6) in order to define Chow groups with coeffi-
cients in Λ for an arbitrary motive M :

CHi(M ; Λ) := HomCM(F,Λ)

(
Λ(i),M

)
, CHi(M ; Λ) := HomCM(F,Λ)

(
M, Λ(i)

)
.

The functor from CM(F, Λ) to the category of Λ-modules, taking a motive M
to CHi(M ; Λ) (respectively the cofunctor M 7→ CHi(M ; Λ)) is then represented
(respectively corepresented) by Λ(i).

Let Y be a smooth variety of dimension d. It follows from (63.7) and (63.8)
that

(64.1) HomCM(F,Λ)

(
M(Y )(i), N

)
= CHd+i

(
M(Y )⊗N ; Λ

)
,

HomCM(F,Λ)

(
N,M(Y )(i)

)
= CHd+i

(
N ⊗M(Y ); Λ

)
.

for all motives N in CM(F, Λ).
Let M and N be objects in CM(F ). The tensor product of two morphisms

M → Λ(i) and N → Λ(j) defines a pairing

(64.2) CH∗(M ; Λ)⊗ CH∗(N ; Λ) → CH∗(M ⊗N ; Λ).

Note that this is an isomorphism whenever M (or N) is a Tate motive.
We say that an object M of CR(F, Λ) is split if M is isomorphic to a (finite)

coproduct of Tate motives. The additivity property of the pairing yields

Proposition 64.3. Let M (or N) be a split motive. Then the homomorphism
(64.2) is an isomorphism.

65. Duality

There is an additive duality functor ∗ : CM(F, Λ)op → CM(F, Λ) uniquely
determined by the rule M(X)(i)∗ = M(X)(−d− i) where X is a smooth complete
variety of dimension d and α∗ = αt for any correspondence α. In particular,
Λ(i)∗ = Λ(−i). The composition ∗ ◦ ∗ is the identity functor.

It follows from the definition of the duality functor that

HomCM(F,Λ)(M∗, N∗) = HomCM(F,Λ)(N, M)

for every two motives M and N . In particular, setting N = Λ(i), we get

CHi(M∗; Λ) = CH−i(M ; Λ).
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The equality (64.1) reads as follows:

(65.1) HomCM(F,Λ)

(
M(Y )(i), N

)
= CH0

(
M(Y )(i)∗ ⊗N ; Λ

)

for every smooth complete scheme Y . Set

Hom(M,N) := M∗ ⊗N

for every two motives M and N . By additivity, the equality (65.1) yields

HomCM(F,Λ)(M, N) = CH0

(
Hom(M,N); Λ

)
.

Since the duality functor commutes with the tensor product, the definition of Hom
satisfies the associativity law

Hom(M ⊗N, P ) = Hom
(
M, Hom(N, P )

)

for all motives M , N and P . Applying CH0 we get

HomCM(F,Λ)(M ⊗N, P ) = HomCM(F,Λ)

(
M, Hom(N,P )

)
.

66. Motives of cellular schemes

Motives of cellular schemes were considered in [70]. Recall that a morphism
p : U → Y over F is an affine bundle of rank d if f is flat and the fiber of p over
any point y ∈ Y is isomorphic to the affine space Ad

F (y).
A scheme X over F is called (relatively) cellular if there is given a filtration by

closed subschemes

(66.1) ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

together with affine bundles pi : Ui := Xi \Xi−1 → Yi of rank di for all i ∈ [0, n],
where Yi is a smooth complete scheme for all i ∈ [1, n] (we don’t assume that Y0 is
either smooth or complete). The scheme Ui is called a cell of X and Yi is the base
of the cell Ui.

The graph Γpi of the morphism pi is a subscheme of Ui×Yi. Let αi in CH(Xi×
Yi) be the class of the closure of Γpi in Xi × Yi. We have α0 = Γp0 .

We view αi as a correspondence Xi Ã Yi of degree 0. Let fi : Xi → X be the
closed embedding. The correspondence fi ◦ αt

i ∈ CH(Yi ×X) between Yi and X is
well-defined and of degree di for all i ≥ 1.

Let Z be a scheme over F . If h is a morphism of schemes, we still write h for
the morphism 1Z × h. We define homomorphisms

ai : CH∗−di(Z × Yi) → CH∗(Z ×X)

for all i ∈ [0, n] as follows: We set a0 = (f0)∗ ◦ (p∗0)
−1 and ai = (fi ◦ αt

i)∗ if i ≥ 1.
If Y0 is smooth and complete, then a0 = (f0 ◦ αt

0)∗.

Theorem 66.2. Let X be a cellular scheme with filtration (66.1). Then for every
scheme Z over F , the homomorphism

(66.3)
n∑

i=0

ai :
n∐

i=0

CH∗−di(Z × Yi) → CH∗(Z ×X)

is an isomorphism.
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Proof. Let gi : Ui → Xi denote the open embedding. By the definition of αi,
we have αi ◦ gi = pi. It follows from Proposition 62.8(2) that for every scheme Z,
the composition

A(Yi × Z, K∗)
α∗i−−→ A(Xi × Z,K∗)

g∗i−→ A(Ui × Z, K∗)

coincides with the pull-back homomorphism p∗i for i ≥ 1. By Theorem 52.13,
the map p∗i is an isomorphism. Hence g∗i is a split surjection. Therefore, in the
localization exact sequence (cf. §52.D),

Ak+1(Xi × Z, K−k)
g∗i−→ Ak+1(Ui × Z, K−k) δ−→
CHk(Xi−1 × Z) → CHk(Xi × Z)

g∗i−→ CHk(Ui × Z) → 0,

the connecting homomorphism δ is trivial. Consequently, we have a short exact
sequence

0 → CH(Xi−1 × Z) → CH(Xi × Z) si−→ CH(Yi × Z) → 0

where si = p∗i
−1◦g∗i and si is split by α∗i : CH(Yi×Z) → CH(Xi×Z). In particular,

CH(Xi × Z) is isomorphic to CH(Xi−1 × Z)⊕ CH(Yi × Z). Iterating, we see that
CH(X × Z) is isomorphic to the coproduct of the CH(Yi × Z) over all i ∈ [0, n].
The inclusion of CH(Yi × Z) into CH(X × Z) coincides with the composition

CH(Yi × Z)
α∗i−−→ CH(Xi × Z)

(fi)∗−−−→ CH(X × Z),

where α∗0 is understood to be p∗0. If i ≥ 1, we have ai = (fi)∗ ◦ (αt
i)∗ by Propo-

sition 62.8(1). Under the identification of CH(Yi × Z) with CH(Z × Yi), we have
(αt

i)∗ = α∗i , hence ai = (fi)∗ ◦ α∗i . It follows that the homomorphism (66.3) is an
isomorphism. ¤

Lemma 63.9 yields

Corollary 66.4. Let X be a smooth complete cellular scheme with filtration (66.1)
and with all Yi smooth complete. Then the morphism

n∐

i=0

M(Yi)(di) → M(X),

defined by the sequence of correspondences fi ◦αt
i is an isomorphism in the category

of correspondences CR(F ).

Example 66.5. Let X = Pn. Consider the filtration given by Xi = Pi, i ∈ [0, n].
We have Ui = Ai and Yi = Spec(F ). By Corollary 66.4,

M(Pn) = Z⊕ Z(1)⊕ · · · ⊕ Z(n).

Example 66.6. Let ϕ be a nondegenerate quadratic form on V and X the asso-
ciated quadric of say dimension d. Consider the following filtration on X ×X: X0

is the image of the diagonal embedding of X into X ×X, X1 consists of all pairs
of orthogonal isotropic lines (L1, L2), and X2 = X ×X. We also set Y0 = X (with
the identity projection of X0 on Y0), Y2 = X, and Y1 is the flag variety Fl of pairs
(L,P ), where L and P are a totally isotropic line and plane, respectively, satisfying
L ⊂ P .

We claim that the morphism p1 : U1 → Y1 taking a pair (L1, L2) to (L1, L1+L2)
is an affine bundle. To do this we use the criterion of Lemma 52.12. Let R be a
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local commutative F -algebra. An R-point of Y1 is a pair (L,P ), where L and P are
totally isotropic direct summands of the R-module VR := V ⊗F R of rank 1 and 2,
respectively, with L ⊂ P . Let {e, f} be an R-basis of P such that L = Re. Then
the morphism A1

R → Spec(R)×Y1 U1 taking an a to the point
(
L,R(ae+ f)

)
of the

fiber product is an isomorphism. It follows from Lemma 52.12 that p1 is an affine
bundle.

We claim that the first projection p2 : U2 → Y2 is an affine bundle of rank
d. We again apply the criterion of Lemma 52.12. Let R be a local commutative
F -algebra. An R-point of Y2 is a totally isotropic direct summand L ⊂ VR of rank
1. Choose a basis of VR so that ϕR is given by a polynomial t0t1 + ψ(T ′), where ψ
is a quadratic form in the variables T ′ = (t2, . . . , td+1) over R, and the orthogonal
complement L⊥ is given by t0 = 0. Then the fiber product Spec(R)×Y2 U2 is given
by the equation t1

t0
+ ψ(T ′

t0
) = 0 and therefore is isomorphic to Ad

R. It follows by
Lemma 52.12 that p2 is an affine bundle.

By Corollary 66.4, we conclude that

M(X ×X) ' M(X)⊕M(Fl)(1)⊕M(X)(d).

Example 66.7. Assume that the quadric X in Example 66.6 is isotropic. The
cellular structure on X ×X is a structure “over X” in the sense that X ×X itself
as well as the bases Yi of the cells have morphisms to X with affine bundles of
the cellular structure morphisms over X. Making the base change of the cellular
structure with respect to an F -point Spec(F ) → X of the isotropic quadric X
corresponding to an isotropic line L, we get a cellular structure on X given by the
filtration X ′

0 ⊂ X ′
1 ⊂ X ′

2 = X, where X ′
0 = {L} and X ′

1 consists of all isotropic lines
orthogonal to L. We have Y ′

0 = Spec(F ), Y ′
1 is the quadric given by the quadratic

form on L⊥/L induced by ϕ, and Y ′
2 = Spec(F ). The quadric Y ′

1 is isomorphic to a
projective quadric Y of dimension d−2, given by a quadratic form Witt equivalent
to ϕ. By Corollary 66.4,

M(X) ' Z⊕M(Y )(1)⊕ Z(d).

67. Nilpotence Theorem

Let Λ be a commutative ring and Y a smooth complete scheme over F . For
every scheme X and elements α ∈ CH(Y × Y ; Λ) and β ∈ CH(X × Y ; Λ), the
compositions αk = α ◦ · · · ◦ α in CH(Y × Y ; Λ) and αk ◦ β in CH(X × Y ; Λ) are
defined.

Theorem 67.1 (Nilpotence Theorem). Let Y be a smooth complete scheme and
X a scheme of dimension d over F . Let α ∈ CH(Y ×Y ; Λ) be an element satisfying
α ◦ CH

(
YF (x); Λ

)
= 0 for every x ∈ X. Then

αd+1 ◦ CH(X × Y ; Λ) = 0.

Proof. Consider the filtration

0 = C−1 ⊂ C0 ⊂ · · · ⊂ Cd = CH(X × Y ; Λ),

where Ci is the Λ-submodule of CH(X × Y ; Λ) generated by the images of the
push-forward homomorphisms

CH(W × Y ; Λ) → CH(X × Y ; Λ),
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for all closed subvarieties W ⊂ X of dimension at most k. It suffices to prove that
α ◦ Ck ⊂ Ck−1 for all k ∈ [0, d].

Let W be a closed subvariety of X of dimension k. Denote by i : W → X
the closed embedding and by w the generic point of W . Pick any element β ∈
CH(W×Y ; Λ). We shall prove that α◦(i∗(β)

) ∈ Ck−1. Let βw be the pull-back of β
under the canonical morphism YF (w) → W ×Y . By assumption, α◦βw = 0. By the
Continuity Property 52.9, there is a nonempty open subscheme U (a neighborhood
of w) in W satisfying α ◦ (β|U×Y ) = 0. It follows by Proposition 62.8(2) that

(α ◦ β)|U×Y = α ◦ (β|U×Y ) = 0.

The complement V of U in W is a closed subscheme of W of dimension less than
k. It follows from the exactness of the localization sequence (cf. Proposition 57.9)

CH(V × Y ; Λ) → CH(W × Y ; Λ) → CH(U × Y ; Λ) → 0

that α ◦ β belongs to the image of the first map in this sequence. Therefore, the
push-forward of the element α ◦ β in CH(X × Y ; Λ) lies in the image of the push-
forward homomorphism

CH(V × Y ; Λ) → CH(X × Y ; Λ).

Consequently, α ◦ (i∗β) = α ◦ (β ◦ it) = (α ◦ β) ◦ it = (i× 1Y )∗(α ◦ β) ∈ Ck−1. ¤
The Nilpotence Theorem 67.1 was originally proven by Rost using the cycle

modules technique.





Part 3

Quadratic forms and algebraic
cycles





CHAPTER XIII

Cycles on Powers of Quadrics

Throughout this chapter, F is a field (of an arbitrary characteristic) and, in all
sections but §70 and §71, X is a smooth projective quadric over F of even dimension
D = 2d ≥ 0 or of odd dimension D = 2d+1 ≥ 1 given by a nondegenerate quadratic
form ϕ on a vector space V over F (of dimension D + 2). For any integer r ≥ 1,
we write Xr for the direct product X × · · · ×X (over F ) of r copies of X.

In this chapter, we study algebraic cycles on Xr for all r. We also obtain many
results for the special case r = 2. In order to make their statements and proofs
more accessible, we introduce certain diagrams of cycles on X2 (cf. §73).

68. Split quadrics

In this section the quadric X will be split , i.e., the Witt index i0(X) has the
maximal value d + 1.

Let V be the underlying vector space of ϕ. Fix a maximal totally isotropic
subspace W ⊂ V . We write P(V ) for the projective space of V ; this is the projective
space in which the quadric X lies as a hypersurface. Note that the subspace P(W )
of P(V ) is contained in X.

Proposition 68.1. Let h ∈ CH1(X) be the pull-back of the hyperplane class in
CH1

(
P(V )

)
. For any integer i ∈ [0, d], let li ∈ CHi(X) be the class of an i-

dimensional subspace of P(W ). Then the total Chow group CH(X) is free with
basis {hi, li| i ∈ [0, d]}. Moreover, the following multiplication rule holds in the
ring CH(X):

h · li = li−1 for any i ∈ [1, d].

Proof. Let W⊥ be the orthogonal complement of W in V (clearly, W⊥ = W
if D is even; otherwise, W⊥ contains W as a hyperplane). The quotient map
V → V/W⊥ induces a morphism X \P(W ) → P(V/W⊥), which is an affine bundle
of rank D − d. Therefore, by Theorem 66.2,

CHi(X) ' CHi

(
P(W )

)⊕ CHi−D+d

(
P(V/W⊥)

)

for any i, where the injection CH∗
(
P(W )

)
↪→ CH∗(X) is the push-forward with

respect to the embedding P(W ) ↪→ X.
To better understand the second summand in the decomposition of CH(X), we

note that the reduced intersection of P(W⊥) with X in P(V ) is P(W ), and that the
affine bundle X\P(W ) → P(V/W⊥) above is the composite of the closed embedding
X \ P(W ) ↪→ P(V ) \ P(W⊥) with the evident vector bundle P(V ) \ P(W⊥) →
P(V/W⊥). It follows that for any i ≤ d, the image of CHi

(
P(V/W⊥)

)
in CHi(X)

coincides with the image of the pull-back CHi
(
P(V )

) → CHi(X) (which is generated
by hi).

307
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To check the multiplication formula, we consider the closed embeddings f :
P(W ) ↪→ X and g : X ↪→ P(V ). Write Li for the class in CH

(
P(W )

)
of an i-

dimensional linear subspace of P(W ), and H for the hyperplane class in CH
(
P(V )

)
.

Since h = g∗(H) and li = f∗(Li), we have by the projection formula (Proposition
56.9) and functoriality of the pull-back (Proposition 55.18),

h · li = g∗(H) · f∗(Li) = f∗
(
(g ◦ f)∗(H) · Li

)
.

By Corollary 57.20 (together with Propositions 104.16 and 55.19), we see that
(g ◦ f)∗(H) is the hyperplane class in CH

(
P(W )

)
; hence (g ◦ f)∗(H) ·Li = Li−1 by

Example 57.23. ¤

Proposition 68.2. For each i ∈ [0, D/2), the i-dimensional subspaces of P(V )
lying inside of X have the same class in CHi(X). If D is even, there are precisely
two different classes of d-dimensional subspaces and the sum of these two classes is
equal to hd.

Proof. By Proposition 68.1, the push-forward homomorphism CHi(X) →
CHi

(
P(V )

)
is injective (even bijective) if i ∈ [0, D/2). Since the i-dimensional

linear subspaces of P(V ) have the same class in CH
(
P(V )

)
, the first statement of

Proposition 68.2 follows.
Assume that D is even. Then {hd, ld} is a basis for the group CHd(X), where

ld is the class of the special linear subspace P(W ) ⊂ X. Let l′d ∈ CHd(X) be the
class of an arbitrary d-dimensional linear subspace of X. Since ld and l′d have the
same image under the push-forward homomorphism CHd(X) → CHd

(
P(V )

)
whose

kernel is generated by hd − 2ld, one has l′d = ld + n(hd − 2ld) for some n ∈ Z.
Since there exists a linear automorphism of X moving ld to l′d, and hd is, of course,
invariant with respect to any linear automorphism, hd and l′d also form a basis for
CHd(X); consequently, the determinant of the matrix

(
1 n
0 1− 2n

)

is ±1, i.e., n is 0 or 1 and l′d is ld or hd − ld. So there are at most two different
rational equivalence classes of d-dimensional linear subspaces of X and the sum of
two different classes (if they exist) is equal to hd.

Now let U be a d-codimensional subspace of V containing W (as a hyper-
plane). The orthogonal complement U⊥ has codimension 1 in W⊥ = W ; therefore
codimU U⊥ = 2. The induced 2-dimensional quadratic form on U/U⊥ is a hyper-
bolic plane. The corresponding quadric consists of two points W/U⊥ and W ′/U⊥

for a uniquely determined maximal totally isotropic subspace W ′ ⊂ V . Moreover,
the intersection X ∩ P(U) is reduced and its irreducible components are P(W )
and P(W ′). Therefore, hd = [X ∩ P(U)] = [P(W )] + [P(W ′)] and it follows that
[P(W )] 6= [P(W ′)]. ¤

Exercise 68.3. Determine a complete multiplication table for CH(X) by showing
that

(1) hd+1 = 2lD−d−1;

(2) if D is not divisible by 4, then l2d = 0;

(3) if D is divisible by 4, then l2d = l0.
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Exercise 68.4. Assume that D is even and let ld, l
′
d ∈ CH(X) be two different

classes of d-dimensional subspaces. Let f be the automorphism of CH(X) induced
by a reflection. Show that f(ld) = l′d.

If D is even, an orientation of the quadric is the choice of one of two classes
of d-dimensional linear subspaces in CH(X). We denote this class by ld. An even-
dimensional quadric with an orientation is called oriented.

Proposition 68.5. For any r ≥ 1, the Chow group CH(Xr) is free with basis given
by the external products of the basis elements {hi, li}, i ∈ [0, d], of CH(X).

Proof. The cellular structure on X, constructed in the proof of Proposition
68.1, together with the calculation of the Chow motive of a projective space (cf.
Example 66.5) show by Corollary 66.4 that the motive of X is split. Therefore, the
homomorphism CH(X)⊗r → CH(Xr), given by the external product of cycles is an
isomorphism by Proposition 64.3. ¤

69. Isomorphisms of quadrics

Let ϕ and ψ be two quadratic forms. A similitude between ϕ and ψ (with
multiplier a ∈ F×) is an isomorphism f : Vϕ → Vψ such that ϕ(v) = aψ

(
f(v)

)
for

all v ∈ Vϕ. A similitude between ϕ and ψ induces an isomorphism of projective
spaces P(Vϕ) ∼→ P(Vψ) and projective quadrics Xϕ

∼→ Xψ.
Let i : Xϕ → P(Vϕ) be the embedding. We consider the locally free sheaves

OXϕ(s) := i∗
(OP(Vϕ)(s)

)

over Xϕ for every s ∈ Z.

Lemma 69.1. Let ϕ be a nonzero quadratic form of dimension at least 2. Then
H0

(
Xϕ,OXϕ(−1)

)
= 0 and H0

(
Xϕ,OXϕ(1)

)
is canonically isomorphic to V ∗

ϕ .

Proof. We have H0
(
P(Vϕ),OP(Vϕ)(−1)

)
= 0, H0

(
P(Vϕ),OP(Vϕ)(1)

) ' V ∗
ϕ and

H1
(
P(Vϕ),OP(Vϕ)(s)

)
= 0 for any s (see [50, Ch. III, Th. 5.1]). The statements

follow from exactness of the cohomology sequence for the short exact sequence

0 → OP(Vϕ)(s− 2)
ϕ−→ OP(Vϕ)(s) → i∗OXϕ(s) → 0. ¤

Lemma 69.2. Let α : Xϕ
∼→ Xψ be an isomorphism of smooth projective quadrics.

Then α∗
(OXψ

(1)
) ' OXϕ(1).

Proof. In the case dim ϕ = 2 the sheaves OXϕ(1) and OXψ
(1) are free and

the statement is obvious.
We may assume that dim ϕ > 2. As the Picard group of smooth projective

varieties injects under field extensions, we also may assume that both forms are
split. We identify the groups Pic(Xϕ) and CH1(Xϕ). The class of the sheaf OXϕ(1)
corresponds to the class h ∈ CH1(Xϕ) of a hyperplane section. It is sufficient to
show that α∗(h) = ±h, since the class −h cannot occur as the sheaf OXϕ(−1) has
no nontrivial global sections by Lemma 69.1.

If dim ϕ > 4 then, by Proposition 68.1, the group CH1(Xϕ) is infinite cyclic
and generated by h. Thus α∗(h) = ±h.

If dim ϕ = 3, then h is twice the generator l0 of the infinite cyclic group
CH1(Xϕ) and the result follows in a similar fashion.
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Finally, if dim ϕ = 4, then the group CH1(Xϕ) is a free abelian group with two
generators l1 and l′1 satisfying l1 + l′1 = h (cf. the proof of Proposition 68.2). Using
the fact that the pull-back map α∗ : CH(Xϕ) → CH(Xϕ) is a ring homomorphism,
one concludes that α∗(l1 + l′1) = ±(l1 + l′1). ¤
Theorem 69.3. Every isomorphism between smooth projective quadrics Xϕ and
Xψ is induced by a similitude between ϕ and ψ.

Proof. Let α : Xϕ
∼→ Xψ be an isomorphism. By Lemma 69.2, α∗

(OXψ
(1)

) '
OXϕ

(1). Lemma 69.1 therefore gives an isomorphism of vector spaces

(69.4) V ∗
ψ = H0

(
Xψ,OXψ

(1)
) ∼→ H0

(
Xϕ,OXϕ

(1)
)

= V ∗
ϕ .

Thus α is given by the induced graded ring isomorphism S•(V ∗
ψ ) → S•(V ∗

ϕ ) which
must take the ideal (ψ) to (ϕ); i.e., it takes ψ to a multiple of ϕ. In other words,
the linear isomorphism f : Vϕ → Vψ dual to (69.4) is a similitude between ϕ and ψ
inducing α. ¤
Corollary 69.5. Let ϕ and ψ be nondegenerate quadratic forms. The quadrics Xϕ

and Xψ are isomorphic if and only if ϕ and ψ are similar.

For a quadratic form ϕ, all similitudes Vϕ → Vϕ form the group of similitudes
GO(ϕ). For every a ∈ F×, the endomorphism of Vϕ given by the product with a is
a similitude. Therefore F× can be identified with a subgroup of GO(ϕ). The factor
group PGO(ϕ) := GO(ϕ)/F× is called the group of projective similitudes. Every
projective similitude induces an automorphism of the quadric Xϕ, so we have a
group homomorphism PGO(ϕ) → Aut(Xϕ).

Corollary 69.6. Let ϕ be a nondegenerate quadratic form. Then the map

PGO(ϕ) → Aut(Xϕ)

is an isomorphism.

70. Isotropic quadrics

The motive of a smooth isotropic quadric is computed in terms of a smooth
quadric of smaller dimension in Example 66.7 as follows:

Proposition 70.1. Let X be a smooth isotropic projective quadric given by a qua-
dratic form ϕ with dim ϕ ≥ 2 and let Y be a (smooth) projective quadric given by
a quadratic form of dimension dim ϕ − 2 that is Witt equivalent to ϕ (we assume
that Y = ∅ if dim X ≤ 1). Then

M(X) ' Z⊕M(Y )(1)⊕ Z(D)

with D = dim X. In particular,

CH∗(X) ' CH∗(Z)⊕ CH∗−1(Y )⊕ CH∗−D(Z).

The motivic decomposition of Proposition 70.1 was originally observed by Rost.
In most of this book we are interested only in smooth quadrics. Nevertheless,

we make some observations concerning the general (not necessarily smooth) case.
Let ϕ be a quadratic form on a vector space V over F and let X be the associated
projective quadric. Suppose a rational point x on X is singular. Then ϕ is nonzero
and x is determined by a nonzero vector v ∈ V in the radical of ϕ (cf. proof of
Proposition 22.1). Let Y be the quadric given by the quadratic form on V/Fv
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induced by ϕ, so dim Y = dim X−1 and X \{x} is an affine bundle over Y of rank
1. Since the first homomorphism in the exact localization sequence

CH
({x}) → CH(X) → CH(Y ) → 0

is a split injection (with the splitting given by the degree homomorphism CH(X) →
CH(Spec F )), we have

Lemma 70.2. Let x be a singular rational point of a quadric X and let Y be as
above. Then CH0(X) is (the infinite cyclic group) generated by [x] and CHi(X) is
isomorphic to CHi−1(Y ) for all i > 0 .

Now assume that ϕ is nonzero and that X = Xϕ has a nonsingular rational
point x ∈ X (although X itself may not be smooth). The point x is given by a
nonzero isotropic vector v ∈ V . The projective quadric Y , given by the restriction
of ϕ on the orthogonal complement v⊥ of v in V , is a closed subscheme of X
containing x. Since ϕ 6= 0, the vector v lies outside of the radical of ϕ, so that v⊥

is a hyperplane of V . If ϕ restricted to v⊥ is zero, then Y is a projective space;
otherwise x is a singular point of Y (and codimX Y = 1). The difference X \ Y is
isomorphic to an affine space (cf. proof of Proposition 22.9). Thus we can apply
Theorem 66.2 to X with the one term filtration Y ⊂ X. Theorem 66.2 and Lemma
70.2 yield (we also include the trivial case of ϕ = 0):

Lemma 70.3. Let x be a nonsingular rational point of a quadric X and Y be
as above. Then the push-forward homomorphism CHi(Y ) → CHi(X) is an iso-
morphism for any i < dim X. In particular, if dim X > 0, the group CH0(X) is
generated by [x].

Combining Lemma 70.2 with Lemma 70.3 and adding the trivial case of ϕ = 0
yields

Corollary 70.4. Let X be an isotropic (not necessarily smooth) projective quadric
X. Then the degree homomorphism deg : CH0(X) → Z is an isomorphism unless
ϕ is a hyperbolic plane, i.e., X is a disjoint union of two copies of Spec F .

71. The Chow group of dimension 0 cycles on quadrics

Recall that for every p ∈ [0, n], the group CHp(Pn
F ) is infinite cyclic generated

by the class hp where h ∈ CH1(Pn
F ) is the class of a hyperplane in Pn

F (cf. Example
57.23). Thus for every p ∈ [0, n] and α ∈ CHp(Pn

F ), we have α = mhp for a
uniquely determined integer m. We call m the degree of α and write m = deg(α).
We have deg(αβ) = deg(α) deg(β) for all homogeneous cycles α ∈ CHp(Pn

F ) and
β ∈ CHq(Pn

F ) satisfying p, q ≥ 0 and p + q ≤ n.
If Z is a closed subvariety of Pn

F , we define the degree deg(Z) of Z as deg([Z]).

Lemma 71.1. Let x ∈ Pn
F be a closed point of degree d > 1 such that the field

extension F (x)/F is simple (i.e., generated by one element). Then there is a mor-
phism f : P1 → Pn with image a curve C satisfying x ∈ C and deg(C) < d.

Proof. Let u be a generator of the field extension F (x)/F . We can write the
homogeneous coordinates si of x in the form si = fi(u), i ∈ [0, n], where fi are
polynomials over F of degree less than d. Let k be the largest degree of the fi

and set Fi(t0, t1) = tk1fi(t0/t1). The polynomials Fi are all homogeneous of degree
k < d. We may assume that all the Fi are relatively prime (by dividing out the gcd
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of the Fi). Consider the morphism f : P1
F → Pn

F given by the polynomials Fi and
let C be the image of f . Note that C contains x and C(F ) 6= ∅. In particular, the
map f is not constant. Therefore C is a closed curve in Pn

F . We have f∗([P1]) = r[C]
for some r ≥ 1.

Choose an index i such that Fi is a nonzero polynomial and consider the hy-
perplane H in Pn

F given by si = 0. The subscheme f−1(H) ⊂ P1
F is given by

Fi(t0, t1) = 0, so f−1(H) is a 0-dimensional subscheme of degree k = deg Fi. Hence
H has a proper inverse image with respect to f . By Proposition 57.19, we have
f∗(h) = mp, where p is the class of a point in P1

F and 1 ≤ m ≤ k < d. It follows
from Proposition 56.9 that

h · r[C] = h · f∗
(
[P1]

)
= f∗

(
f∗(h)

)
= f∗(mp) = mhn.

Hence deg(C) = m/r ≤ m < d. ¤

We follow [66, Th. 3.2] in the proof of the next result.

Theorem 71.2. Let X be an anisotropic (not necessarily smooth) quadric over F
and let x0 ∈ X be a closed point of degree 2. Then for every closed point x ∈ X,
we have [x] = a[x0] in CH0(X) for some a ∈ Z.

Proof. We induct on d = deg x. Suppose first that there are no intermediate
fields between F and F (x). In particular, the field extension F (x)/F is simple.
The quadric X is a hypersurface in the projective space Pn

F for some n. By Lemma
71.1, there is an integral closed curve C ⊂ Pn

F of degree less than d with C(F ) 6= ∅
and x ∈ C.

Let g : X → Pn
F be the closed embedding. Since X is anisotropic and C(F ) 6= ∅,

C is not contained in X. Therefore, C has proper inverse image with respect to g.
As x ∈ C ∩X, by Proposition 57.19,

gF([C]) = [x] + α

in CH0(X), where α is a nonnegative 0-dimensional cycle on X. By Proposition
56.11, we have

deg
(
gF([C])

)
= deg

(
g∗ ◦ gF([C])

)
= deg([X] · [C]) = 2 deg(C),

hence
deg α = 2 deg C − deg x = 2deg C − d < d.

Thus the cycle α is supported on closed points of degree less than d. By the
induction hypothesis, α = b[x0] in CH0(X) for some b ∈ Z. We also have [C] = c[L]
in CH0(Pn

F ) where L is a line in Pn
F satisfying x0 ∈ L and c = deg C. Since

L ∩X = {x0}, by Corollary 57.20, we have gF([L]) = [x0]. Therefore,

[x] = gF([C])− α = cgF([L])− b[x0] = (c− b)[x0].

Now suppose that there is a proper intermediate field L between F and E =
F (x). Let f denote the natural morphism XL → X. The morphism Spec E → X
induced by x and the inclusion of L into E define a closed point x′ ∈ XL with
f(x′) = x and F (x′) = E. It follows that f∗([x′]) = [x].

Consider two cases:

Case 1: XL is isotropic. Let y ∈ XL be a rational point. Since deg f∗
(
[y]

)
=

[L : F ] < d, by the induction hypothesis, f∗
(
[y]

) ∈ Z · [x0]. By Corollary 70.4,
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we know that CH0(XL) is generated by the classes of rational points, hence [x] =
f∗

(
[x′]

) ∈ Z · [x0].

Case 2: XL is anisotropic. Applying the induction hypothesis to the quadric
XL and the point x′ of degree [E : L] < d, we have [x′] = b

[
(x0)L

]
for some b ∈ Z.

Hence
[x] = f∗

(
[x′]

)
= bc[x0],

where c = [L : F ]. ¤

We therefore obtain another proof of Springer’s Theorem 18.5.

Corollary 71.3 (Springer’s Theorem). If X is an anisotropic quadric, the image
of the degree homomorphism deg : CH0(X) → Z is equal to 2Z, i.e., the degree of
a finite field extension L/F with XL isotropic, is even.

In the case charF 6= 2, the following important statement was proven in [69,
Prop. 2.6] and by Swan in [130]. The case of characteristic 2 was considered by
Totaro in [132].

Corollary 71.4. For every anisotropic quadric X, the degree homomorphism deg :
CH0(X) → Z is injective.

72. The reduced Chow group

Let X be an arbitrary smooth projective quadric. We write CH(X̄r) for
CH(Xr

E), where E is a field extension of F such that the quadric XE is split. Note
that for any field L containing E, the change of field homomorphism CH(Xr

E) →
CH(Xr

L) of Example 49.14 is an isomorphism; therefore for any field extension E′/F
with split XE′ , the groups CH(Xr

E) and CH(Xr
E′) are canonically isomorphic, hence

CH(X̄r) can be defined invariantly as the colimit of the groups CH(Xr
L), where L

runs over all field extensions of F .
If D is even, an orientation of the quadric is the choice of one of two classes

of d-dimensional linear subspaces in CH(X̄). An even-dimensional quadric with an
orientation is called oriented.

The reduced Chow group CH(Xr) is defined as the image of the change of field
homomorphism CH(Xr) → CH(X̄r).

We say that an element of CH(X̄r) is rational if it lies in the subgroup CH(Xr) ⊂
CH(X̄r). More generally, for a field extension L/F , the elements of the subgroup
CH(Xr

L) ⊂ CH(X̄r) are called L-rational.
Replacing the integral Chow group by the Chow group modulo 2 in the above

definitions, we get the modulo 2 reduced Chow group Ch(Xr) ⊂ Ch(X̄r) and the
corresponding notion of (L-)rational cycles modulo 2.

Abusing terminology, we shall often call elements of a Chow group, cycles.
The basis described in Proposition 68.5 will be called the basis for CH(X̄r) and its
elements basis elements or basic cycles. Similarly, this basis modulo 2 will be called
the basis for Ch(X̄r) and its elements basis elements or basic cycles. We use the
same notation for the basis elements of CH(X̄r) and for their reductions modulo 2.
The decomposition of an element α ∈ Ch(X̄r) will always mean its representation as
a sum of basic cycles. We say that a basis cycle β is contained in the decomposition
of α (or simply “is contained in α”), if β is a summand of the decomposition. More
generally, for two cycles α′, α ∈ Ch(X̄r), we say that α′ is contained in α or that
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α′ is a subcycle of α (notation: α′ ⊂ α), if every basis element contained in α′ is
also contained in α.

A basis element of Ch(X̄r) is called nonessential, if it is an external product of
(internal) powers of h (including h0 = 1 = [X̄]); the other basis elements are called
essential. An element of Ch(X̄r) that is a sum of nonessential basis elements, is
called nonessential as well. Note that all nonessential elements are rational since
h is rational. An element of Ch(X̄r) that is a sum of essential basis elements, is
called essential as well. (The zero cycle is the only element which is essential and
nonessential simultaneously). The group Ch(X̄r) is a direct sum of the subgroup of
nonessential elements and the subgroup of essential elements. We call the essential
component of an element α ∈ Ch(X̄r) the essence of α. Clearly, the essence of a
rational element is rational.

The group Ch(X) is easy to compute. First of all, by Springer’s theorem
(Corollary 71.3), one has

Lemma 72.1. If the quadric X is anisotropic (i.e., X(F ) = ∅), then the element
l0 ∈ Ch(X̄) is not rational.

Corollary 72.2. If X is anisotropic, the group Ch(X) is generated by the non-
essential basis elements.

Proof. If the decomposition of an element α ∈ Ch(X) contains an essential
basis element li for some i 6= D/2, then li ∈ Ch(X) because li is the i-dimensional
homogeneous component of α (and Ch(X) is a graded subring of Ch(X̄)). If the
decomposition of an element α ∈ Ch(X) contains the essential basis element li for
i = D/2, then D/2 = d, and the d-dimensional homogeneous component of α is
either ld or ld + hd so we still have li ∈ Ch(X). It follows that l0 = li · hi ∈ Ch(X),
contradicting Lemma 72.1. ¤

Let V be the underlying vector space of ϕ and let W ⊂ V be a totally isotropic
subspace of dimension a ≤ d. Let Y be the projective quadric of the quadratic
form ψ : W⊥/W → F induced by ϕ. Then ψ is nondegenerate, Witt-equivalent to
ϕ, dim ψ = dim ϕ− 2a, and dim Y = dim X − 2a. A point of the product Y ×X
is a pair (A/W,B), where B ⊂ V is a totally isotropic subspace of dimension 1
and A ⊂ W⊥ is a totally isotropic subspace of dimension a + 1 containing W . Let
Z ⊂ Y × X be the closed scheme of the pairs (A/W,B) satisfying the condition
B ⊂ A. Note that the composition Z ↪→ Y × X

prY−−→ Y is an a-dimensional
projective bundle; in particular, Z is equidimensional (and Z is a variety if Y is)
of dimension dim Z = dimY + a = dim X − a. Its class α = [Z] ∈ CH(Y ×X) is
called the incidence correspondence.

We first note that the inverse image pr−1
X

(
P(W )

)
of the closed subvariety

P(W ) ⊂ X under the projection prX : Y × X → X is contained in Z with com-
plement a dense open subscheme of Z mapping under prX isomorphically onto(
P(W⊥) ∩X

) \ P(W ).
We let hi = 0 = li for any negative integer i.

Lemma 72.3. Let α be the incidence correspondence in CH(Y ×X).

(1) For any i = 0, . . . , d− a, the homomorphism α∗ : CH(Ȳ ) → CH(X̄) takes
hi to hi+a and li to li+a.
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(2) For any i = 0, . . . , d, the homomorphism α∗ : CH(X̄) → CH(Ȳ ) takes hi

to hi−a and li to li−a. (In the case of even D, the two formulas involving
ld are true for an appropriate choice of orientations of X and of Y .)

Proof. For an arbitrary i ∈ [0, d − a], let L ⊂ W⊥/W be a totally isotropic
linear subspace of dimension i + 1. Then li =

[
P(L)

] ∈ CH(Ȳ ). Let p : W⊥ →
W⊥/W be the projection. Since the dense open subscheme

(
pr−1

Y

(
P(L)

) ∩ Z
) \

pr−1
X

(
P(W )

)
of the intersection pr−1

Y

(
P(L)

) ∩ Z maps under prX isomorphically
onto P(p−1(L))\P(W ), we have (using Proposition 57.21): α∗(li) =

[
P(p−1(L))

]
=

li+a ∈ CH(X̄). Similarly, for any linear subspace H ⊂ W⊥/W of codimension i,
the element hi ∈ CH(Ȳ ) is the class of the intersection P(H) ∩ Y and maps under
α∗ to the class of

[
P(p−1(H)) ∩X

]
which equals hi+a.

To prove the statements on α∗ for an arbitrary i ∈ [a, d], let L ⊂ V be an
(i + 1)-dimensional totally isotropic subspace satisfying dim(L ∩W⊥) = dim L− a
and L ∩ W = 0. (The second condition is, in fact, a consequence of the first
one.) Then li =

[
P(L)

] ∈ CH(X̄) and the intersection pr−1
X

(
P(L)

) ∩ Z maps
under prY isomorphically onto P

(
((L∩W⊥)+W )/W

)
; consequently, α∗(li) = li−a.

Similarly, if H ⊂ V is a linear subspace of codimension i satisfying dim(H∩W⊥) =
dim H − a and H ∩W = 0, then hi =

[
P(H) ∩X

] ∈ CH(X̄) and the intersection
pr−1

X

(
P(H)∩X

)∩Z maps under prY isomorphically onto P
(
((H∩W⊥)+W )/W

)∩
Y ; consequently, α∗(hi) = hi−a. ¤
Corollary 72.4. Assume that X is isotropic but not split and set a = i0(X). Let
X0 be the projective quadric given by an anisotropic quadratic form Witt-equivalent
to ϕ (so dim X0 = D − 2a). Then

(1) The group ChD−a(X ×X0) contains a correspondence “pr” such that the
induced homomorphism pr∗ : Ch(X̄) → Ch(X̄0) takes hi to hi−a and li to
li−a for i = 0, . . . , d.

(2) The group ChD−a(X0 ×X) contains a correspondence “in” such that the
induced homomorphism in∗ : Ch(X̄0) → Ch(X̄) takes hi to hi+a and li to
li+a for i = 0, . . . , d− a.

Remark 72.5. Note that the homomorphisms in∗ and pr∗ of Corollary 72.4 map
rational cycles to rational cycles. Since the composite pr∗ ◦ in∗ is the identity, it
follows that pr∗

(
Ch(X)

)
= Ch(X0). More generally, for any r ≥ 1 the homomor-

phisms
inr
∗ : Ch(X̄r

0 ) → Ch(X̄r) and prr
∗ : Ch(X̄r) → Ch(X̄r

0 ),
induced by the rth tensor powers inr ∈ Ch(Xr

0 ×Xr) and prr ∈ Ch(Xr ×Xr
0 ) of

the correspondences in and pr , map rational cycles to rational cycles and satisfy
the relations prr

∗ ◦ inr
∗ = id and prr

∗
(
Ch(Xr)

)
= Ch(Xr

0 ).

We obtain now the following extension of Lemma 72.1.

Corollary 72.6. Let X be an arbitrary quadric and let i be any integer. Then
li ∈ Ch(X) if and only if i0(X) > i.

Proof. The “if” part of the statement is trivial. We prove the “only if” part
by induction on i. The case i = 0 is Lemma 72.1.

We may assume that i > 0 and li ∈ Ch(X). Since li · h = li−1, the element
li−1 is also rational. Therefore i0(X) ≥ i by the induction hypothesis. If i0(X) = i
the image of li ∈ Ch(X) under the map pr∗ : Ch(X̄) → Ch(X̄0) of Corollary 72.4
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equals l0 and is rational. Therefore, by Lemma 72.1, the quadric X0 is isotropic, a
contradiction. ¤

The following observation is crucial:

Theorem 72.7. The absolute and relative higher Witt indices of a nondegenerate
quadratic form ϕ are determined by the group

Ch(X∗) =
∐

r≥1

Ch(Xr).

Proof. We first note that the group Ch(X) determines i0(ϕ) by Corollary
72.6.

Let X0 be as in Corollary 72.4. By Corollary 72.4 and Remark 72.5, the group
Ch(X∗

0 ) is recovered as the image of the group Ch(X∗) under the homomorphism
Ch(X̄∗) → Ch(X̄∗

0 ) induced by the tensor powers of the correspondence pr .
Let F1 be the first field in the generic splitting tower of ϕ. The pull-back homo-

morphism g∗1 : Ch(Xr
0 ) → Ch

(
(X0)r−1

F1

)
with respect to the morphism of schemes

g1 : (X0)r−1
F1

→ Xr
0 given by the generic point of the first factor of Xr

0 , is surjective
(cf. Corollary 57.11). It induces an epimorphism Ch(Xr

0 ) ³ Ch
(
(X0)r−1

F1

)
, which

is the restriction of the epimorphism Ch(X̄r
0 ) ³ Ch(X̄r−1

0 ) mapping each basis
element of the form h0×β, β ∈ Ch(X̄r−1

0 ), to β and killing all other basis elements.
Therefore, the group Ch(X∗

0 ) determines the group Ch
(
(X0)∗F1

)
, and we finish by

induction on the height h(ϕ). ¤
Remark 72.8. The proof of Theorem 72.7 shows that the statement of Theorem
72.7 can be made more precise in the following way: If for some q ∈ [0, h(ϕ)] the
absolute Witt indices j0, . . . , jq−1 are already known, then one determines jq by the
formula

jq = max
{
j | the product hj0 × hj1 × · · · × hjq−1 × lj−1

is contained in a rational cycle
}
.

73. Cycles on X2

In this section, we study the groups Chi(X2) for i ≥ D. After Lemma 73.2, we
shall assume that X is anisotropic.

Most results of this section are simplified versions of original results on integral
motives of quadrics due to Vishik in [133].

Lemma 73.1. The sum

∆ =
d∑

i=0

(hi × li + li × hi) ∈ Ch(X̄2)

is always rational.

Proof. Either the composition with correspondence ∆ or the composition
with the correspondence ∆ + hd × hd (depending on whether l2d is zero or not)
induces the identity endomorphism of Ch(X̄2). Therefore, this correspondence is
the class of the diagonal which is rational. ¤
Lemma 73.2. Suppose for some i ∈ [1, d] at least one of the basis elements ld× li
or li × ld of the group Ch(X̄2) appears in the decomposition of a rational cycle.
Then X is hyperbolic.
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Proof. Let α be a cycle in Chi+d(X2) containing li × ld or ld × li. Replacing
α by its transpose if necessary we may assume that li × ld ∈ α. If β ∈ CHi+d(X̄2)
is a basic cycle, then

β∗(hi) =





ld if β = li × ld,
hd if β = li × hd,
0 otherwise,

hence α∗(hi) is equal to ld or hd + ld. As α∗(hi) is rational, the cycle ld is rational
and X is hyperbolic by Corollary 72.6. ¤

We assume now that X is anisotropic throughout the rest of this section.
Let α1, α2 ∈ Ch∗(X2). The intersection α1 ∩ α2 denotes the sum of the basic

cycles contained simultaneously in α1 and α2.

Lemma 73.3. If α1, α2 ∈
∐

i≥0 ChD+i(X2), then the cycle α1 ∩ α2 is rational.

Proof. Clearly, we may assume that α1 and α2 are homogeneous of the same
dimension D + i and do not contain any nonessential basis element. Using Lemma
73.2 we see that the intersection α1 ∩α2 is the essence of the composite of rational
correspondences α2 ◦

(
α1 · (h0 × hi)

)
and hence is rational. ¤

Notation 73.4. We write Che(X̄2) for the group of essential elements in
∐

i≥D

Chi(X̄2)

and Che(X2) for the group of rational elements in Che(X̄2).

Definition 73.5. A nonzero element of Che(X2) is called minimal if it does not
contain any proper rational subcycle.

Note that a minimal cycle is always homogeneous.

Proposition 73.6. Let X be a smooth anisotropic quadric. Then
(1) The minimal cycles form a basis of the group Che(X2).
(2) Two different minimal cycles intersect trivially.
(3) The sum of the minimal cycles of dimension D is equal to the sum

d∑
i=0

hi × li + li × hi

of all D-dimensional essential basis elements (excluding ld × ld in the case of even
D).

Proof. The first two statements of Proposition 73.6 follow from Lemma 73.3.
The last statement follows from the previous ones together with Lemma 73.1. ¤

Let α be an element of ChD+r(X̄2) for some r ≥ 0. For every i ∈ [0, r], the
products α · (h0×hi), α · (h1×hi−1), . . . , α · (hi×h0) will be called the (ith order)
derivatives of α.

Note that all the derivatives of a rational cycle are also rational.

Lemma 73.7. (1) A derivative of an essential basis element β ∈ CheD+r(X̄2) is
an essential basis element.

(2) For any r ≥ 0, nonnegative integers i1, j1, i2, j2 satisfying i1 + j1 ≤ r,
i2 + j2 ≤ r, and nonzero essential cycle β ∈ CheD+r(X̄2), the two derivatives
β · (hi1 × hj1) and β · (hi2 × hj2) of β coincide only if i1 = i2 and j1 = j2.
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(3) For any r ≥ 0, nonnegative integers i, j with i+j ≤ r, and nonzero essential
cycles β1, β2 ∈ CheD+r(X̄2), the derivatives β1 · (hi × hj) and β2 · (hi × hj) of β1

and β2 coincide only if β1 = β2.

Proof. (1): If β is an essential basis element of CheD+r(X̄2) for some r > 0,
then up to transposition, β = hi × li+r for some i ∈ [0, d − r]. An arbitrary
derivative of β is equal to β · (hj1 × hj2) = hi+j1 × li+r−j2 for some j1, j2 ≥ 0 such
that j1 + j2 ≤ r. It follows that the integers i + j1 and i + r− j2 are in the interval
[0, d]; therefore, hi+j1 × li+r−j2 is an essential basis element.

Statement (2) and (3) are left to the reader. ¤
Remark 73.8. To visualize the above, it is convenient to think of the essential
basic cycles in

∐
i≥D Chi(X̄2) (with lD/2× lD/2 excluded by Lemma 73.2) as points

of two “pyramids”. For example, if D = 8 or D = 9, we write

∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
If we count the rows of the pyramids from the bottom starting with 0, the top row
has number d, and for every r = 0, . . . , d, the rth row of the left pyramid represents
the essential basis elements hi × lr+i, i = 0, 1, . . . , d − r of ChD+r(X̄2), while
the rth row of the right pyramid represents the essential basis elements lr+i × hi,
i = d− r, d− r− 1, . . . , 0 (so that the basis elements of each row are ordered by the
codimension of the first factor).

For any α ∈ Ch(X̄2), we fill in the pyramids by putting a mark in the points
representing basis elements contained in the decomposition of α; the picture thus
obtained is the diagram of α. If α is homogeneous, the marked points (if any) lie in
the same row. It is now easy to interpret the derivatives of α if α is homogeneous
of dimension ≥ D: the diagram of an ith order derivative is a translation of the
marked points of the diagram of α moving them i rows lower. In particular, the
diagram of every derivative of such an α has the same number of marked points as
the diagram of α (cf. Lemma 73.7). The diagrams of any two different derivatives
of the same order are shifts (to the right or to the left) of each other.

Example 73.9. Let D = 8 or D = 9. Let α ∈ ChD+1(X̄2) be the essential cycle
α = h0 × l1 + h2 × l3 + l3 × h2. Then the diagram of α is

∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗• ∗ • ∗ ∗ • ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
There are precisely two first-order derivatives of α. They are given by α·(h0×h1) =
h0 × l0 + h2 × l2 + l3 × h3 and α · (h1 × h0) = h1 × l1 + h3 × l3 + l2 × h2. Their
diagrams are as follows:

∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗• ∗ • ∗ ∗ ∗ • ∗ ∗ ∗

∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ • ∗ • ∗ ∗ ∗ • ∗ ∗
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Lemma 73.10. Let α ∈ Che(X2). Then the following conditions are equivalent:
(1) The cycle α is minimal.
(2) All derivatives of α are minimal.
(3) At least one derivative of α is minimal.

Proof. Derivatives of a proper subcycle of α are proper subcycles of the
derivatives of α; therefore, (3) ⇒ (1).

In order to show that (1) ⇒ (2), it suffices to show that the two first order
derivatives α·(h0×h1) and α·(h1×h0) of a minimal cycle α are also minimal. If not,
possibly replacing α by its transposition, we reduce to the case where the derivative
α · (h0 × h1) of a minimal α is not minimal. It follows that the cycle α · (h0 × hi)
with i = dim α−D is also not minimal. Let α′ be its proper subcycle. Taking the
essence of the composite α ◦α′, we get a proper subcycle of α, a contradiction. ¤
Corollary 73.11. The derivatives of a minimal cycle are disjoint.

Proof. The derivatives of a minimal cycle are minimal by Lemma 73.10 and
pairwise different by Lemma 73.7. As two different minimal cycles are disjoint by
Lemma 73.3, the result follows. ¤

We recall the notation of §25. If F0 = F, F1, . . . , Fh is the generic splitting
tower of ϕ with h = h(ϕ) the height of ϕ, and ϕi = (ϕFi)an for i ≥ 0, we let
Xi = Xϕi be the projective quadric over Fi given by ϕi. Then ir = ir(ϕ) = ir(X)
is the rth relative and jr = jr(ϕ) = jr(X) the rth absolute higher Witt index of ϕ,
r ∈ [0, h]. We will also call these numbers the relative and the absolute Witt indices
of X respectively.

Lemma 73.12. If i, j are integers in the interval [0, d] satisfying i < jq ≤ j for
some q ∈ [1, h), then no element in Ch(X2) contains either hi × lj or lj × hi.

Proof. Let i, j be integers of the interval [0, d] such that hi × lj or lj × hi

appears in the decomposition of some α ∈ Ch(X2). Replacing α by its transpose
if necessary, we may assume that hi × lj ∈ α. Replacing α by its homogeneous
component containing hi × lj , we reduce to the case that α is homogeneous.

Suppose q is an integer in [1, h) satisfying i < jq. It suffices to show that j < jq
as well.

Let L be a field extension of F with i0(XL) = jq (e.g., L = Fq). The cycles
α and li are both L-rational. Therefore, so is the cycle α∗(li) = lj . It follows by
Corollary 72.6 that j < jq. ¤
Remark 73.13. In order to “see” the statement of Lemma 73.12, it is helpful to
mark by a ∗ only those essential basis elements that are not “forbidden” by this
lemma in the pyramids of basic cycles drawn in Remark 73.8 and to mark by a ◦
the remaining points of the pyramids. We will get isosceles triangles based on the
lower row of these pyramids. For example, if X is a 34-dimensional quadric with
relative higher Witt indices 4, 2, 4, 8, the picture looks as follows:

◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦∗ ◦ ◦ ◦ ◦ ◦ ∗ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ∗ ◦ ◦ ◦ ◦ ◦ ∗∗ ∗ ◦ ◦ ◦ ◦ ∗ ∗ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ∗ ∗ ◦ ◦ ◦ ◦ ∗ ∗∗ ∗ ∗ ◦ ∗ ◦ ∗ ∗ ∗ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ∗ ∗ ∗ ◦ ∗ ◦ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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The triangles in the pyramids of Remark 73.13 will be called shell triangles.
The shell triangles in the left pyramid are numbered from the left starting with 1.
The shell triangles in the right pyramid are numbered from the right starting with
1 as well (so that the symmetric triangles have the same number; for any q ∈ [1, h],
the bases of the qth triangles have (each) iq points). The rows of the shell triangles
are numbered from below starting with 0. The points of rows of the shell triangles
(of the left ones as well as of the right ones) are numbered from the left starting
with 1.

Lemma 73.14. For every rational cycle α ∈ ∐
i≥D Chi(X2), the number of essen-

tial basic cycles contained in α is even (i.e., the number of the marked points in the
diagram of α is even).

Proof. We may assume that α is homogeneous, say, α ∈ ChD+k(X2), k ≥ 0.
We may also assume that k ≤ d as there are no essential basic cycles of dimension
> D + d. Let n be the number of essential basic cycles contained in α. The pull-
back δ∗(α) of α with respect to the diagonal δ : X → X2 produces n · lk ∈ Ch(X).
It follows by Corollary 72.2 that n is even. ¤

Lemma 73.15. Let α ∈ Ch(X2) be a cycle containing the top of a qth shell triangle
for some q ∈ [1, h]. Then α also contains the top of the other qth shell triangle.

Proof. We may assume that α contains the top of the left qth shell tri-
angle. Replacing F by the field Fq−1, X by Xq−1, and α by pr2

∗(α), where
pr ∈ Ch(XFq−1 × Xq−1) is the correspondence of Corollary 72.4, we may assume
that q = 1.

Replacing α by its homogeneous component containing the top of the left first
shell triangle β = h0 × lj1−1, we may assume that α is homogeneous.

Suppose that the transpose of β is not contained in α. By Lemma 73.12, the
element α does not contain any essential basic cycles having hi with 0 < i < i1 as
a factor. Since α 6= β by Lemma 73.14, we have h > 1. Moreover, the number of
essential basis elements contained in α and the number of essential basis elements
contained in pr2

∗(α) ∈ Ch(X2
1 ) differ by 1. In particular, these two numbers have

different parity. However, the number of the essential basis elements contained in
α is even by Lemma 73.14. By the same lemma, the number of essential basis
elements contained in pr2

∗(α) is even, too. ¤

Definition 73.16. A minimal cycle α ∈ Che(X2) is called primordial if it is not a
derivative of positive order of another rational cycle.

Lemma 73.17. Let α ∈ Che(X2) be a minimal cycle (as defined in 73.5) which
also contains the top of a qth shell triangle for some q ∈ [1, h]. Then α is symmetric
and primordial.

Proof. The cycle α ∩ t(α), where t(α) is the transpose of α (where the in-
tersection of cycles is defined in Lemma 73.3) is symmetric, rational by Lemma
73.3, contained in α, and, by Lemma 73.15, still contains the tops hjq−1 × ljq−1

and ljq−1 × hjq−1 of both qth shell triangles. Therefore, it coincides with α by the
minimality of α.

It is easy to “see” that α is primordial by looking at the picture in Remark
73.13. Nevertheless, we prove it. If there exists a rational cycle β 6= α such that α
is a derivative of β, then there exists a rational cycle β′ such that α is an order one
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derivative of β′, i.e., α = β′ · (h0 × h1) or α = β′ · (h1 × h0). In the first case, β′

would contain the basic cycle hjq−1 × ljq while in the second case β′ would contain
hjq−1−1×ljq−1. However, neither of these two cases is possible by Lemma 73.12. ¤

It is easy to see that a cycle α satisfying the hypothesis of Lemma 73.17 with
q = 1 exists:

Lemma 73.18. There exists a cycle in ChD+i1−1(X2) containing the top h0×li1−1

of the first left shell triangle.

Proof. If D = 0, this follows by Lemma 73.1. So assume D > 0. Consider
the pull-back homomorphism Ch(X2) ³ Ch(XF (X)) with respect to the morphism
XF (X) → X2 produced by the generic point of the first factor of X2. By Corol-
lary 57.11, this is an epimorphism. It is also a restriction of the homomorphism
Ch(X̄2) → Ch(X̄) mapping each basis element of the type h0×li to li and vanishing
on all other basis elements. Therefore an arbitrary preimage of li1−1 ∈ Ch(XF (X))
under the surjection Ch(X2) ³ Ch(XF (X)) contains h0 × li1−1. ¤

Lemma 73.19. Let ρ ∈ ChD(X2), q ∈ [1, h], and i ∈ [1, iq]. Then the element
hjq−1+i−1 × ljq−1+i−1 is contained in ρ if and only if the element ljq−i × hjq−i is
contained in ρ.

Proof. Clearly, it suffices to prove Lemma 73.19 for q = 1. By Lemma 73.18,
the basis element h0 × li1−1 is contained in a rational cycle. Let α be the minimal
cycle containing h0 × li1−1. By Lemma 73.15, the cycle α also contains li1−1 × h0.
Therefore, the derivative α·(hi−1×hi1−i) contains both hi−1×li−1 and li1−i×hi1−i.
Since the derivative of a minimal cycle is minimal by Lemma 73.10, the lemma
follows by Lemma 73.3. ¤

In the language of diagrams, the statement of Lemma 73.19 means that the ith
point of the base of the qth left shell triangle in the diagram of ρ is marked if and
only if the ith point of the base of the qth right shell triangle is marked.

Definition 73.20. The symmetric shell triangles (i.e., both qth shell triangles for
some q) are called dual. Two points are called dual, if one of them is in a left shell
triangle, while the other one is in the same row of the dual right shell triangle and
has the same number as the first point.

Corollary 73.21. In the diagram of an element of Ch(X2), any two dual points
are simultaneously marked or not marked.

Proof. Let k be the number of the row containing two given dual points. The
case of k = 0 is treated in Lemma 73.19 (while Lemma 73.15 treats the case of
“locally maximal” k). The case of an arbitrary k is reduced to the case of k = 0 by
taking a kth order derivative of α. ¤

Remark 73.22. By Corollary 73.21, it follows that the diagram of a cycle in
Ch(X2) is determined by one (left or right) half of itself. By “shell triangles”
we shall mean the left shell triangles. Note also that the transposition of a cycle
acts symmetrically about the vertical axis on each shell triangle.

The following proposition generalizes Lemma 73.18.
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Proposition 73.23. Let f : Ch(X2) → [1, h] be the map that assigns to each
γ ∈ Ch(X2) the integer q ∈ [1, h] such that the diagram of γ has a point in the
qth shell triangle and has no points in the ith shell triangles for any i < q. For
any q ∈ f

(
Ch(X2)

)
, there exists an element α ∈ Ch(X2) with f(α) = q so that α

contains the top of the qth shell triangle.

Proof. We induct on q. If q = 1, the condition of Proposition 73.23 is auto-
matically satisfied by Lemma 73.1 and the result follows by Lemma 73.18. So we
may assume that q > 1.

Let γ be an element of Ch(X2) with f(γ) = q. Replacing γ by its appropriate
homogeneous component, we may assume that γ is homogeneous. Replacing this
homogeneous γ by any one of its maximal order derivatives, we may further assume
that γ ∈ ChD(X2).

Let i be the smallest integer such that hjq−1+i × ljq−1+i ∈ γ. We first prove
that the group Ch(X2) contains a cycle γ′ satisfying f(γ′) = q with γ′ containing
hjq−1+i × ljq−1. (This is the point on the right side of the qth shell triangle such
that the line connecting it with hjq−1+i × ljq−1+i is parallel to the left side of the
shell triangle. If i = 0, then we can take α = γ′ and finish the proof.)

Let

pr2
∗ : Ch(X2

F (X)) → Ch(X2
1 ) and in2

∗ : Ch(X2
1 ) → Ch(X2

F (X))

be the homomorphisms of Remark 72.5. Applying the induction hypothesis to
the quadric X1 and the cycle pr2

∗(γ) ∈ Ch(X2
1 ), we get a homogeneous cycle in

ChD+iq−1(X2
F (X)) containing hjq−1 × ljq−1. Multiplying it by hi × h0, we get a

homogeneous cycle in Ch(X2
F (X)) containing hjq−1+i× ljq−1. Note that the quadric

XF (X) is not hyperbolic (since h ≥ q > 1) and therefore, by Lemma 73.2, the
basis element ld × ld is not contained in this cycle. Therefore, the group Ch(X3)
contains a homogeneous cycle µ containing h0×hjq−1+i× ljq−1 (and not containing
h0 × ld × ld). View µ as a correspondence of the middle factor of X3 into the
product of the two outer factors. Composing it with γ and taking the pull-back
with respect to the partial diagonal map δ : X2 → X3, (x1, x2) 7→ (x1, x1, x2),
we get the required cycle γ′ (more accurately, γ′ = δ∗

(
t12(µ) ◦ γ

)
, where t12 is the

automorphism of Ch(X3) given by the transposition of the first two factors of X3).
The highest order derivative γ′ · (hiq−1−i × h0) of γ′ contains hjq−1 × ljq−1,

the last point of the base of the qth shell triangle. Therefore, the transpose t(γ′)
contains the first point hjq−1 × ljq−1 of the base of the qth shell triangle by Remark
73.22. Replacing γ by t(γ′), we are in the case that i = 0 (see the third paragraph
of the proof), finishing the proof. ¤

Illustration 73.24. The following picture shows the displacements of the special
marked point of the qth shell triangle in the proof of Proposition 73.23:

6∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ 3∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ ∗ 4
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We start with a cycle γ ∈ Ch(X2) with f(γ) = q. It contains a point somewhere
in the qth shell triangle, the point in Position 1. Then we modify γ in such a way
that f(γ) is always q and look at what happens with this point. Replacing γ by a
maximal order derivative, we move the special point to the base of the shell triangle;
for example, we can move it to Position 2. The heart of the proof is the movement
from Position 2 to Position 3 (here we make use of the induction hypothesis). Again
taking an appropriate derivative, we come to Position 4. Transposing this cycle,
we come to Position 5. Finally, repeating the procedure used in the passage from
Positions 2 to 3, we move from Position 5 to Position 6, arriving to the top.

Illustration 73.25. Let

Ch(X2) ↪→ Ch(X2
F (X))

pr2
∗−−−−→ Ch(X2

1 )

be the homomorphism used in the proof of Proposition 73.23. If α ∈ Ch(X2),
the diagram of pr2

∗(α) is obtained from the diagram of α by erasing the first shell
triangle. An example is shown by the illustration with X as in Remark 73.13:

◦◦ ◦◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ∗◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗∗ ◦ ◦ ◦ ◦ ◦ ∗ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ∗ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗∗ ∗ ◦ ◦ ◦ ◦ ∗ ∗ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ∗ ∗ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗• ∗ • ◦ • ◦ • ∗ • ◦ • ∗ • ∗ • ∗ • • ◦ • ∗ • ◦ • ∗ • ∗ • ∗ •∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
diagram of α diagram of pr2

∗(α)

Summarizing, we have the following structure result on Che(X2):

Theorem 73.26. Let X be a smooth anisotropic quadric. The set of primordial
cycles Π lying in Che(X2) has the following properties:

(1) All derivatives of all cycles in Π are minimal and pairwise disjoint, and
the set of these forms a basis of Che(X2). In particular, the sum of all
maximal order derivatives of the elements in Π is equal to the cycle

∆ =
d∑

i=0

(hi × li + li × hi) ∈ Ch(X̄2).

(2) Every cycle in Π is symmetric and has no points outside of the shell
triangles.

(3) The map f in Proposition 73.23 is injective on Π. Every cycle π ∈ Π
contains the top of the f(π)th shell triangle and has no points in any shell
triangle with number in f(Π) \ {f(π)}.

(4) 1 ∈ f
(
Ch(X2)

)
= f(Π).

Let f be as in Proposition 73.23. If f(α) = q for an element α ∈ Ch(X2),
we say that α starts in the qth shell triangle. More specifically, if f(π) = q for a
primordial cycle π, we say that π is q-primordial.

The following statement is an additional property of 1-primordial cycles:

Proposition 73.27. Let π ∈ Ch(X2) be a 1-primordial cycle. Suppose π contains
hi × li+i1−1 for some positive i ≤ d. Then the smallest integer i with this property
coincides with an absolute Witt index of ϕ, i.e., i = jq−1 for some q ∈ [2, h].
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Proof. The cycle π contains h0 × li1−1 as this is the top of the first shell
triangle. By Lemma 73.12, π contains none of the cycles h1× li1 , . . . , h

i1−1× l2i1−2.
It follows that if i ∈ [1, d] is the smallest integer satisfying hi × li+i1−1 ∈ π, then
i ≥ j1 = i1. Let q ∈ [2, h] be the largest integer with jq−1 ≤ i. We show that
jq−1 = i. Suppose to the contrary that jq−1 < i.

Let X1 be the quadric over F (X) given by the anisotropic part of ϕF (X) and

pr2
∗ : Ch(X2

F (X)) → Ch(X2
1 ),

the homomorphism of Remark 72.5. Then the element pr2
∗(π) starts in the shell

triangle number q − 1 of X1. Therefore, by Proposition 73.23, the quadric X1

possesses a (q − 1)-primordial cycle τ .
Let

in2
∗ : Ch(X2

1 ) → Ch(X2
F (X))

be the homomorphism of Remark 72.5. Then the cycle β = in2
∗(τ) in Ch(X2

F (X))
contains hjq−1 × ljq−1 and does not contain any hj × l? with j < jq−1.

Let η ∈ Ch(X3) be a preimage of β under the pull-back epimorphism

g∗ : Ch(X3) ³ Ch(X2
F (X)) ,

where the morphism g : X2
F (X) → X3 is induced by the generic point of the first

factor of X3 (cf. Corollary 57.11). The cycle η contains h0×hjq−1 × ljq−1 and does
not contain any h0 × hj × l? with j < jq−1.

We consider η as a correspondence X Ã X2. Define µ as the composition
µ = η ◦ α with α = π · (h0 × hi1−1). The cycle α contains h0 × l0 and does not
contain any hj × lj with j ∈ [1, i). In particular, since jq−1 < i, it does not contain
any hj × lj with j ∈ [1, jq−1]. Consequently, the cycle µ contains the basis element

h0 × hjq−1 × ljq−1 = (h0 × hjq−1 × ljq−1) ◦ (h0 × l0)

and does not contain any hj × h? × l? with j ∈ [1, jq−1].
Let

δ∗ : Ch(X3) → Ch(X2)
be the pull-back homomorphism with respect to the partial diagonal morphism

δ : X2 → X3, (x1 × x2) 7→ (x1 × x1 × x2) .

The cycle δ∗(µ) ∈ Ch(X2), contains the basis element

hjq−1 × ljq−1 = δ∗(h0 × hjq−1 × ljq−1)

and does not contain any hj × l? with j < jq−1. It follows that an appropriate
derivative of the cycle δ∗(µ) contains hi × li+i1−1 ∈ π and does not contain h0 ×
li1−1 ∈ π. This contradicts the minimality of π. ¤
Remark 73.28. In the language of diagrams, Proposition 73.27 asserts that the
point hi × li+i1−1 lies on the left side of the qth shell triangle.

Definition 73.29. We say that the integer q ∈ [2, h] occurring in Proposition 73.27
is produced by the 1-primordial cycle π.



CHAPTER XIV

The Izhboldin Dimension

Let X be an anisotropic smooth projective quadric over a field F (of arbitrary
characteristic). The Izhboldin dimension dimIzh X of X is defined as

dimIzh X := dimX − i1(X) + 1 ,

where i1(X) is the first Witt index of X.
Let Y be a complete (possibly singular) algebraic variety over F with all of its

closed points of even degree and such that Y has a closed point of odd degree over
F (X). The main theorem of this chapter is Theorem 76.1 below. It states that
dimIzh X ≤ dim Y and if dimIzh X = dim Y the quadric X is isotropic over F (Y ).

An application of Theorem 76.1 is the positive solution of a conjecture of Izh-
boldin that states: if an anisotropic quadric Y becomes isotropic over F (X), then
dimIzh X ≤ dimIzh Y with equality if and only if X is isotropic over F (Y ).

The results of this chapter for the case that characteristic 6= 2 were obtained
in [76].

74. The first Witt index of subforms

For the reader’s convenience, we list some easy properties of the first Witt
index:

Lemma 74.1. Let ϕ be an anisotropic nondegenerate quadratic form over F of
dimension at least two.

(1) The first Witt index i1(ϕ) coincides with the minimal Witt index of ϕE,
where E runs over all field extensions of F such that the form ϕE is
isotropic.

(2) Let ψ be a nondegenerate subform of ϕ of codimension r and let E/F be a
field extension. Then i0(ψE) ≥ i0(ϕE)−r. In particular, i1(ψ) ≥ i1(ϕ)−r
(if i1(ψ) is defined, i.e., dim ψ ≥ 2).

Proof. The first statement is proven in Corollary 25.3. For the second state-
ment, note that the intersection of a maximal isotropic subspace U (of dimension
i0(ϕE)) of the form ϕE with the space of the subform ψE is of codimension at most
r in U . ¤

The following two statements are due to Vishik (in the case that characteristic
6= 2; cf. [133, Cor. 4.9]).

Proposition 74.2. Let ϕ be an anisotropic nondegenerate quadratic form over F
with dim ϕ ≥ 2. Let ψ be a nondegenerate subform of ϕ. If codimϕ ψ ≥ i1(ϕ), then
the form ψF (ϕ) is anisotropic.

325
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Proof. Let n = codimϕ ψ and assume that n ≥ i1(ϕ). If the form ψF (ϕ)

is isotropic, there exists a rational morphism X 99K Y , where X and Y are the
projective quadrics of ϕ and ψ respectively. We use the same notation as in §72.
Let α ∈ Ch(X2) be the class of the closure of the graph of the composition X 99K
Y ↪→ X. Since the push-forward of α with respect to the first projection X2 → X
is nonzero, we have h0 × l0 ∈ α. On the other hand, as α is in the image of
the push-forward homomorphism Ch(X̄ × Ȳ ) → Ch(X̄2) that maps any external
product β × γ to β × in∗(γ), where the push-forward in∗ : Ch(Ȳ ) → Ch(X̄) maps
hi to hi+n, and n ≥ i1(ϕ), one has li1(ϕ)−1 × hi1(ϕ)−1 /∈ α, contradicting Lemma
73.19 (cf. also Corollary 73.21). ¤
Corollary 74.3. Let ϕ be an anisotropic nondegenerate quadratic form and let ϕ′

be a nondegenerate subform of ϕ of codimension n with dim ϕ′ ≥ 2. If n < i1(ϕ),
then i1(ϕ′) = i1(ϕ)− n.

Proof. Let i1 = i1(ϕ). By Lemma 74.1, we know that i1(ϕ′) ≥ i1 − n. Let ψ
be a nondegenerate subform of ϕ′ of dimension dim ϕ− i1. If i1(ϕ′) > i1 − n, then
the form ψF (ϕ) is isotropic by Lemma 74.1 contradicting Proposition 74.2. ¤
Lemma 74.4. Let ϕ be an anisotropic nondegenerate quadratic F -form satisfying
dim ϕ ≥ 3 and let i1(ϕ) = 1. Let F (t)/F be a purely transcendental field extension
of degree 1. Then there exists a nondegenerate subform ψ of ϕF (t) of codimension
1 satisfying i1(ψ) = 1.

Proof. First consider the case that char(F ) 6= 2. We can write ϕ ' ϕ′⊥〈a, b〉
for some a, b ∈ F× and some quadratic form ϕ′. Set

ψ = ϕ′F (t)⊥
〈
a + bt2

〉
.

This is clearly a subform of ϕF (t) of codimension 1. Moreover, the fields F (t)(ψ)
and F (ϕ) are isomorphic over F . In particular,

i1(ψ) = i0(ψF (t)(ψ)) ≤ i0(ϕF (t)(ψ)) = i0(ϕF (ϕ)) = i1(ϕ) = 1,

hence i1(ψ) = 1.
Suppose char(F ) = 2. If dim ϕ is even then ϕ ' ϕ′⊥[a, b] for some a, b ∈ F

and some even-dimensional nondegenerate quadratic form ϕ′ by Proposition 7.31.
In this case set

ψ = ϕ′F (t)⊥
〈
a + t + bt2

〉
.

If dim ϕ is odd, then ϕ ' ϕ′⊥[a, b]⊥〈c〉 for some c ∈ F×, some a, b ∈ F , and some
even-dimensional nondegenerate quadratic form ϕ′. In this case set

ψ = ϕ′F (t)⊥[a, b + ct2].

In either case, ψ is a nondegenerate subform of ϕF (t) of codimension 1 such that the
fields F (t)(ψ) and F (ϕ) are F -isomorphic. Therefore the argument above shows
that i1(ψ) = 1. ¤

75. Correspondences

Let X and Y be schemes over a field F . Suppose that X is equidimensional
and let d = dim X. Recall that a correspondence (of degree zero) α : X Ã Y from
X to Y is an element α ∈ CHd(X ×Y ) (cf. §62). A correspondence is called prime
if it is represented by a prime cycle. Every correspondence is a linear combination
of prime correspondences with integer coefficients.
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Let α : X Ã Y be a correspondence. Assume that X is a variety and Y is
complete. The projection morphism p : X × Y → X is proper, hence the push-
forward homomorphism

p∗ : CHd(X × Y ) → CHd(X) = Z · [X]

is defined (cf. Proposition 49.9). The integer mult(α) ∈ Z satisfying

p∗(α) = mult(α) · [X]

is called the multiplicity of α. Clearly, mult(α + β) = mult(α) + mult(β) for any
two correspondences α, β : X Ã Y .

A correspondence α : Spec F Ã Y is represented by a 0-cycle z on Y . Clearly,
mult(α) = deg(z), where deg : CH0(Y ) → Z is the degree homomorphism defined
in Example 57.7. More generally, we have the following statement.

Lemma 75.1. The composition

CHd(X × Y ) → CH0

(
YF (X)

) deg−−→ Z,

where the first map is the pull-back homomorphism with respect to the natural flat
morphism YF (X) → X × Y takes a correspondence α to mult(α).

Proof. The statement follows by Proposition 49.20 applied to the fiber prod-
uct diagram

YF (X) −−−−→ X × Yy
y

Spec F (X) −−−−→ X

¤

Lemma 75.2. Let Y be a complete scheme and let F̃ /F be a purely transcendental
field extension. Then

deg CH0(Y ) = deg CH0(YF̃ ).

Proof. We may assume that F̃ is the function field of the affine line A1. By
Proposition 49.20 applied to the fiber product diagram

YF (A1)
f−−−−→ Yy

y
Spec F (A1) −−−−→ Spec F

it suffices to show that the pull-back homomorphism f∗ : CH0(Y ) → CH0

(
YF (A1)

)
is surjective. We have f = p ◦ q where p : Y × A1 → Y is the projection and
q : YF (A1) → Y × A1 is a natural morphism. The pull-back homomorphism p∗

is an isomorphism by Theorem 57.13 and q∗ is surjective by Corollary 57.11. As
f∗ = q∗ ◦ p∗ by Proposition 49.18, the map f∗ is surjective. ¤

Corollary 75.3. Let Y be a complete variety, X a smooth projective quadric, and
X ′ ⊂ X an arbitrary closed subvariety of X. Then

deg CH0

(
YF (X)

) ⊂ deg CH0

(
YF (X′)

)
.
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Proof. Since F (X) is a subfield of F (X ×X ′), we have

deg CH0

(
YF (X)

) ⊂ deg CH0

(
YF (X×X′)

)
.

As the quadric XF (X′) is isotropic, the field extension F (X ×X ′)/F (X ′) is purely
transcendental. Hence

deg CH0

(
YF (X×X′)

)
= deg CH0

(
YF (X′)

)

by Lemma 75.2. ¤

Let X and Y be varieties over F with dim X = d and let Z ⊂ X×Y be a prime
d-dimensional cycle of multiplicity r > 0. The generic point of Z defines a degree
r closed point of the generic fiber YF (X) of the projection X × Y → X and vice
versa. Hence there is a natural bijection of the following two sets for every r > 0:

(1) prime d-dimensional cycles on X × Y of multiplicity r,
(2) closed points of YF (X) of degree r.

A rational morphism X 99K Y defines a prime correspondence X Ã Y of
multiplicity 1 by taking the closure of its graph. Conversely, a prime cycle Z ⊂
X × Y of multiplicity 1 is birationally isomorphic to X. Therefore, the projection
to Y defines a rational map X 99K Z → Y . Hence there are natural bijections
between the sets of:

(0) rational morphisms X 99K Y ,
(1) prime d-dimensional cycles on X × Y of multiplicity 1,
(2) rational points of YF (X).

A prime correspondence X Ã Y of multiplicity r can be viewed as a “generically
r-valued map” between X and Y .

Let α : X Ã Y be a correspondence between varieties of dimension d. We write
αt : Y Ã X for the transpose of α (cf. §62).

Theorem 75.4. Let X be an anisotropic smooth projective quadric with i1(X) = 1.
Let δ : X Ã X be a correspondence. Then mult(δ) ≡ mult(δt) (mod 2).

Proof. The coefficient of h0 × l0 in the decomposition of the class of δ in the
modulo 2 reduced Chow group Ch(X2) is mult(δ) (mod 2) (taking into account
Lemma 73.2 in the case when dim X = 0). Therefore, the theorem is a particular
case of Corollary 73.21. (It is also a particular case of Lemma 73.19 and also of
Lemma 73.15.)

We give another proof of Theorem 75.4. By Example 66.6, we have

CHd(X2) ' CHd(X)⊕ CHd−1(Fl)⊕ CH0(X) ,

where Fl is the flag variety of pairs (L,P ), where L and P are a totally isotropic
line and plane, respectively, satisfying L ⊂ P . It suffices to check the formula of
Theorem 75.4 for δ lying in the image of any of these three summands.

Since the embedding CHd(X) ↪→ CHd(X2) is given by the push-forward with
respect to the diagonal map, its image is generated by the diagonal class for which
the congruence clearly holds.

Since X is anisotropic, every element of CH0(X) becomes divisible by 2 over
an extension of F by Theorem 71.2 and Proposition 68.1. As multiplicity is not
changed under a field extension homomorphism, we have mult(δ) ≡ 0 ≡ mult(δt)
(mod 2) for any δ in the image of CH0(X).
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Since the embedding CHd−1(Fl) ↪→ CHd(X2) is produced by a correspondence
Fl Ã X2 of degree one, the image of CHd−1(Fl) is contained in the image of
the push-forward CHd(Fl×X2) → CHd(X2) with respect to the projection. Let
δ ∈ CHd(X2). By Lemma 75.1, the multiplicity of δ and of δt is the degree of the
image of δ under the pull-back homomorphism CHd(X2) → CH0

(
XF (X)

)
, given

by the generic point of the appropriately chosen factor of X2. As i1(X) = 1, the
degree of any closed point on (Fl×X)F (X) is even by Corollary 71.3. Consequently
mult(δ) ≡ 0 ≡ mult(δt) (mod 2) for any δ in the image of CHd−1(Fl). ¤

Remark 75.5. The statement of Theorem 75.4 with X replaced by an anisotropic
nonsmooth quadric (over a field of characteristic 2) was proved by Totaro in [132].

Corollary 75.6. Let X be as in Theorem 75.4. Then any rational endomorphism
f : X 99K X is dominant. In particular, the only point x ∈ X admitting an
F -embedding F (x) ↪→ F (X) is the generic point of X.

Proof. Let δ : X Ã X be the class of the closure of the graph of f . Then
mult(δ) = 1. Therefore, the integer mult(δt) is odd by Theorem 75.4. In particular,
mult(δt) 6= 0; i.e., f is dominant. ¤

76. The main theorem

The main theorem of the chapter is

Theorem 76.1. Let X be an anisotropic smooth projective quadric over F and let
Y be a complete variety over F such that every closed point of Y is of even degree.
If there is a closed point in YF (X) of odd degree, then

(1) dimIzh X ≤ dim Y .
(2) If dimIzh X = dim Y , then X is isotropic over F (Y ).

Proof. A closed point of Y over F (X) of odd degree gives rise to a prime
correspondence α : X Ã Y of odd multiplicity. By Springer’s Theorem 71.3, to
prove statement (2), it suffices to find a closed point of XF (Y ) of odd degree, and
equivalently, to find a correspondence Y Ã X of odd multiplicity.

First assume that i1(X) = 1, so dimIzh X = dim X. In this special case,
we simultaneously prove both statements of Theorem 76.1 by induction on n =
dim X + dim Y .

If n = 0, i.e., X and Y are both of dimension zero, then X = Spec K and
Y = SpecL for some field extensions K and L of F with [K : F ] = 2 and [L : F ]
even. Taking the push-forward to Spec(F ) of the correspondence α, we have

[K : F ] ·mult(α) = [L : F ] ·mult(αt).

Since mult(α) is odd, the correspondence αt : Y Ã X is of odd multiplicity as
needed.

So we may assume that n > 0. Let d be the dimension of X. We first prove
(2), so we have dim Y = d > 0. It suffices to show that mult(αt) is odd. Assume
that the multiplicity of αt is even. Let x ∈ X be a closed point of degree 2. Since
the multiplicity of the correspondence [Y × x] : Y Ã X is 2 and the multiplicity of
[x×Y ] : X Ã Y is zero, modifying α by adding an appropriate multiple of [x×Y ],
we can assume that mult(α) is odd and mult(αt) = 0.
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The degree of the pull-back of αt on XF (Y ) is now zero by Lemma 75.1. By
Corollary 71.4, the degree homomorphism

deg : CH0

(
XF (Y )

) → Z

is injective. Therefore, by Proposition 52.9, there is a nonempty open subset U ⊂ Y
such that the restriction of α on X ×U is trivial. Write Y ′ for the reduced scheme
Y \U , and let i : X × Y ′ → X × Y and j : X × U → X × Y denote the closed and
open embeddings respectively. The sequence

CHd(X × Y ′) i∗−→ CHd(X × Y )
j∗−→ CHd(X × U)

is exact by Proposition 57.9. Hence there exists an α′ ∈ CHd(X × Y ′) such that
i∗(α′) = α. We can view α′ as a correspondence X Ã Y ′. Clearly, mult(α′) =
mult(α), hence mult(α′) is odd. Since α′ is a linear combination of prime corre-
spondences, there exists a prime correspondence β : X Ã Y ′ of odd multiplicity.
The class β is represented by a prime cycle, hence we may assume that Y ′ is irre-
ducible. Since dimY ′ < dim Y = dim X = dimIzh X, we contradict statement (1)
for the varieties X and Y ′ that holds by the induction hypothesis.

We now prove (1) when i1(X) = 1. Assume that dimY < dim X. Let Z ⊂
X×Y be a prime cycle representing α. Since mult(α) is odd, the projection Z → X
is surjective and the field extension F (X) ↪→ F (Z) is of odd degree. The restriction
of the projection X × Y → Y defines a proper morphism Z → Y . Replacing Y by
the image of this morphism, we assume that Z → Y is a surjection.

In view of Lemma 74.4, extending scalars to a purely transcendental extension
of F , we can find a smooth subquadric X ′ of X of the same dimension as Y having
i1(X ′) = 1. By Lemma 75.2, all closed points on Y are still of even degree. Since
purely transcendental extensions do not change Witt indices by Lemma 7.15, we
still have i1(X) = 1.

By Corollary 75.3, there exists a correspondence X ′ Ã Y of odd multiplicity.
Since dim X ′ < dimX, by the induction hypothesis, statement (2) holds for X ′ and
Y , that is, X ′ has a point over Y , i.e., there exists a rational morphism Y 99K X ′.
Composing this morphism with the embedding of X ′ into X, we get a rational
morphism f : Y 99K X.

Consider the rational morphism

h := idX × f : X × Y 99K X ×X.

As the projection of Z to Y is surjective, Z intersects the domain of the definition
of h. Let Z ′ be the closure of the image of Z under h. The composition of Z 99K Z ′

with the first projection to X yields a tower of field extensions F (X) ⊂ F (Z ′) ⊂
F (Z). As

[
F (Z) : F (X)

]
is odd, so is

[
F (Z ′) : F (X)

]
, i.e., the correspondence β :

X Ã X given by Z ′ is of odd multiplicity. The image of the second projection Z ′ →
X is contained in X ′, hence mult(βt) = 0 as dim X ′ < dim X. This contradicts
Theorem 75.4 and establishes Theorem 76.1 in the case i1(X) = 1.

We now consider the general case. Let X ′ be a smooth subquadric of X with
dim X ′ = dimIzh X. Then i1(X ′) = 1 by Corollary 74.3, i.e., dimIzh X ′ = dimIzh X.
By Corollary 75.3, the scheme YF (X′) has a closed point of odd degree since YF (X)

does. As i1(X ′) = 1, we have shown in the first part of the proof that the statements
(1) and (2) hold for X ′ and Y . In particular, dimIzh X = dimIzh X ′ ≤ dim Y by
(1) for X ′ and Y proving (1) for X and Y . If dimX ′ = dim Y , it follows from
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(2) applied to X ′ and Y that X ′ is isotropic over F (Y ). Hence X is isotropic over
F (Y ) proving (2) for X and Y . ¤
Remark 76.2. The statement of Theorem 76.1 with X replaced by an anisotropic
nonsmooth quadric (over a field of characteristic 2) was proved by Totaro in [132].

A consequence of Theorem 76.1 is that an anisotropic smooth quadric X cannot
be compressed to a variety Y of dimension smaller than dimIzh X with all closed
points of even degree:

Corollary 76.3. Let X be an anisotropic smooth projective F -quadric and let Y
be a complete F -variety with all closed points of even degree. If dimIzh X > dim Y ,
then there are no rational morphisms X 99K Y .

Remark 76.4. Let X and Y be as in part (2) of Theorem 76.1. Suppose in addition
that dimX = dimIzh X, i.e., i1(X) = 1. Let α : X Ã Y be a correspondence of
odd multiplicity. The proof of Theorem 76.1 shows mult(αt) is also odd.

Applying Theorem 76.1 to the special (but perhaps the most interesting) case
where the variety Y is also a projective quadric, we prove the conjectures of Izh-
boldin:

Theorem 76.5. Let X and Y be anisotropic smooth projective quadrics over F .
Suppose that Y is isotropic over F (X). Then

(1) dimIzh X ≤ dimIzh Y .
(2) dimIzh X = dimIzh Y if and only if X is isotropic over F (Y ).

Proof. Choose a subquadric Y ′ ⊂ Y with dim Y ′ = dimIzh Y . Since Y ′

becomes isotropic over F (Y ) by Lemma 74.1(2) and Y becomes isotropic over F (X),
the quadric Y ′ becomes isotropic over F (X). By Theorem 76.1, we have dimIzh X ≤
dim Y ′. Moreover, in the case of equality, X becomes isotropic over F (Y ′) and
hence over F (Y ). Conversely, if X is isotropic over F (Y ), interchanging the roles
of X and Y , the argument above also yields dimIzh Y ≤ dimIzh X, hence equality
holds. ¤

We have the following upper bound for the Witt index of Y over F (X).

Corollary 76.6. Let X and Y be anisotropic smooth projective quadrics over F .
Suppose that Y is isotropic over F (X). Then

i0(YF (X))− i1(Y ) ≤ dimIzh Y − dimIzh X.

Proof. If dimIzh X = 0, the statement is trivial. Otherwise, let Y ′ be a smooth
subquadric of Y of dimension dimIzh X − 1. Since dimIzh Y ′ ≤ dim Y ′ < dimIzh X,
the quadric Y ′ remains anisotropic over F (X) by Theorem 76.5(1). Therefore,
i0(YF (X)) ≤ codimY Y ′ = dim Y −dimIzh X+1 by Lemma 74.1, hence the inequality
holds. ¤

We also have the following more precise version of Theorem 76.1:

Corollary 76.7. Let X be an anisotropic smooth projective F -quadric and let Y
be a complete variety over F such that every closed point of Y is of even degree. If
there is a closed point in YF (X) of odd degree, then there exists a closed subvariety
Y ′ ⊂ Y such that

(1) dim Y ′ = dimIzh X.
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(2) Y ′
F (X) possesses a closed point of odd degree.

(3) XF (Y ′) is isotropic.

Proof. Let X ′ ⊂ X be a smooth subquadric with dim X ′ = dimIzh X. Then
dimIzh X ′ = dim X ′ by Corollary 74.3. An odd degree closed point on YF (X) deter-
mines a correspondence X Ã Y of odd multiplicity which in turn gives a correspon-
dence X ′ Ã Y of odd multiplicity. We may assume that the latter correspondence
is prime and take a prime cycle Z ⊂ X ′ × Y representing it. Let Y ′ be the image
of the proper morphism Z → Y . Clearly, dim Y ′ ≤ dim Z = dim X ′ = dimIzh X.
On the other hand, Z determines a correspondence X ′ Ã Y ′ of odd multiplicity.
Therefore dim Y ′ ≥ dim X ′ by Theorem 76.1, and condition (1) of Corollary 76.7
is satisfied. Moreover, Y ′

F (X′) has a closed point of odd degree. Since the field
F (X ×X ′) is a purely transcendental extension of F (X), Lemma 75.2 shows that
there is a closed point on Y ′

F (X) of odd degree, i.e., condition (2) of Corollary 76.7
is satisfied. Finally, the quadric X ′

F (Y ′) is isotropic by Theorem 76.1; therefore
XF (Y ′) is isotropic. ¤

77. Addendum: The Pythagoras number

Given a field F , its pythagoras number is defined to be

p(F ) := min
{
n | D(n〈1〉) = D(∞〈1〉)}

or infinity if no such integer exists. If charF = 2, then p(F ) = 1 and if charF 6= 2,
then p(F ) = 1 if and only if F is pythagorean. Let F be a field that is not formally
real. Then the quadratic form (s(F )+1) 〈1〉 is isotropic. In particular, p(F ) = s(F )
or s(F ) + 1 and each value is possible. So this invariant is only interesting when
the field is formally real. For a given formally real field determining its pythagoras
number is not easy. If F is an extension of a real closed field of transcendence
degree n, then p(F ) ≤ 2n by Corollary 35.15. In particular, if n = 1 and F is
not pythagorean then p(F ) = 2. It is known that p

(
R(t1, t2)

)
= 4 (cf. [23]), but

in general, the value of p
(
R(t1, . . . , tn)

)
is not known. In this section, given any

nonnegative integer n, we construct a formally real field having pythagoras number
n. This was first done by Hoffmann in [56].

Lemma 77.1. Let F be a formally real field and let ϕ be a quadratic form over F .
If P ∈ X(F ), then P extends to an ordering on F (ϕ) if and only if ϕ is indefinite
at P , i.e., |sgnP (ϕ)| < dim ϕ.

Proof. Suppose that ϕ is indefinite at P . Let FP be the real closure of F with
respect to P . Let K = FP (ϕ). As ϕFP

is isotropic, K/FP is purely transcendental.
Therefore the unique ordering on FP extends to K. The restriction of this extension
to F (ϕ) extends P . The converse is clear. ¤

The following proposition is a consequence of the lemma and Theorem 76.5.

Proposition 77.2. Let F be formally real and let x, y ∈ D(∞〈1〉). Let ϕ ' m〈1〉 ⊥
〈−x〉 and ψ ' n〈1〉 ⊥ 〈−y〉 with n > m ≥ 0. Then F (ψ) is formally real. If, in
addition, ϕ is anisotropic, then so is ϕF (ψ).

Proof. As ψ is indefinite at every ordering, every ordering of F extends to
F (ψ). In particular, F (ψ) is formally real. Suppose that ϕ is anisotropic. Since
over each real closure of F both ϕ and ψ have Witt index 1, the first Witt index
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of ϕ and ψ must also be 1. As dim ϕ > dim ψ, the form ϕF (ψ) is anisotropic by
Theorem 76.5. ¤

Let F0 be a formally real field. Let F1 = F0(t1, . . . , tn−1) and let x = 1 + t21 +
· · ·+ t2n−1 ∈ D(∞〈1〉). By Corollary 17.13, the element x is a sum of n squares in
F1 but no fewer. In particular, ϕ ' (n − 1)〈1〉 ⊥ 〈−x〉 is anisotropic over F1. For
i ≥ 1, inductively define Fi+1 as follows:

Let
Ai :=

{
n〈1〉 ⊥ 〈−y〉 | y ∈ D(∞〈1〉Fi

)
}
.

For any finite subset S ⊂ Ai, let XS be the product of quadrics Xϕ for all ϕ ∈ S.
If S ⊂ T are two subsets of Ai, we have the dominant projection XT → XS and
therefore the inclusion of function fields F (XS) → F (XT ). Set Fi+1 = colim FS

over all finite subsets S ⊂ Ai. By construction, all quadratic forms ϕ ∈ Ai are
isotropic over the field extension Fi of F . Let F =

⋃
Fi. Then F has the following

properties:
(1) F is formally real.
(2) n〈1〉 ⊥ 〈−y〉 is isotropic for all 0 6= y ∈ ∑

(F×)2.
Consequently, D

(∞〈1〉F
) ⊂ D

(
n〈1〉F

)
, so the pythagoras number p(F ) ≤ n. As

ϕ ' (n− 1) 〈1〉 ⊥ 〈−x〉 remains anisotropic over F , we have p(F ) ≥ n. So we have
proved:

Theorem 77.3. For every n ≥ 1 there exists a formally real field F with p(F ) = n.





CHAPTER XV

Application of Steenrod Operations

Since Steenrod operations are not available in characteristic 2, throughout this
chapter, the characteristic of the base field is assumed to be different from 2.

We write v2(n) for the 2-adic exponent of an integer n.
We shall use the notation of Chapter XIII. In particular, X is a smooth D-

dimensional projective quadric over a field F given by a (nondegenerate) quadratic
form ϕ, and d = [D/2].

78. Computation of Steenrod operations

Recall that h ∈ Ch1(X) is the class of a hyperplane section.

Lemma 78.1. The modulo 2 total Chern class c(TX) : Ch(X) → Ch(X) of the
tangent vector bundle TX of the quadric X is multiplication by (1 + h)D+2.

Proof. By Proposition 58.15, it suffices to show that c(TX)
(
[X]

)
= (1+h)D+2.

Let i : X ↪→ P be the closed embedding of X into the (D+1)-dimensional projective
space P = P(V ), where V is the underlying vector space of ϕ. We write H ∈ Ch1(P)
for the class of a hyperplane, so h = i∗(H). Since X is a hypersurface in P of degree
2, the normal bundle N of the embedding i is isomorphic to i∗(L⊗2), where L is
the canonical line bundle over P (cf. §104.B). By Propositions 104.16 and 54.7, we
have c(TX) ◦ c

(
i∗(L⊗2)

)
= c(i∗TP). By Example 61.16, we know that c(TP) is the

multiplication by (1+H)D+2 and by Propositions 54.3 and 57.26, that c(L⊗2) = id
modulo 2. It follows that

c(TX)([X]) =
(
c(i∗TP) ◦ c

(
i∗(L⊗2)

)−1)(
i∗([P])

)

=
(
i∗ ◦ c(TP) ◦ c(L⊗2)−1

)(
[P]

)
= i∗(1 + H)D+2 = (1 + h)D+2

by Proposition 55.22. ¤
Corollary 78.2. Suppose that i0(X) > n for some n ≥ 0. Let W ⊂ V be a
totally isotropic (n + 1)-dimensional subspace of V and let P be the n-dimensional
projective space P(W ). Let i : P ↪→ X be the closed embedding. Then the modulo 2
total Chern class c(N) : Ch(P) → Ch(P) of the normal bundle N of the embedding i
is multiplication by (1 + H)D+1−n, where H ∈ Ch1(P) is the class of a hyperplane.

Proof. By Propositions 104.16 and 54.7, we have c(N) = c(TP)−1 ◦ c(i∗TX);
and by Proposition 55.22 and Lemma 78.1, we have

c
(
i∗TX [P]

)
= c(i∗TX)(i∗[X]) =

(
i∗ ◦ c(TX)

)
([X]) = i∗(1 + h)D+2 = (1 + H)D+2.

Hence by Example 61.16, c(TP) = (1 + H)n+1. ¤
Corollary 78.3. Under the hypothesis of Corollary 78.2, we have

SqX

(
[P]

)
= [P] · (1 + h)D+1−n.

335
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Proof. By the Wu Formula (Proposition 61.8), SqX

(
[P]

)
= i∗

(
c(N)[P]

)
. By

Corollary 78.2, we get

i∗
(
c(N)[P]

)
= i∗

(
(1+H)D+1−n ·[P]

)
= i∗

(
i∗(1+h)D+1−n ·[P]

)
= (1+h)D+1−n ·i∗[P]

using the Projection Formula (Proposition 56.9). ¤

We also have (cf. Example 61.16):

Lemma 78.4. SqX(hi) = hi · (1 + h)i for any i ≥ 0.

Corollary 78.5. If the quadric X is split, then the ring endomorphism SqX :
Ch(X) → Ch(X) acts on the basis {hi, li}i∈[0, d] of Ch(X) by the formulas

SqX(hi) = hi · (1 + h)i and SqX(li) = li · (1 + h)D+1−i.

In particular, for any j ≥ 0,

Sqj
X(hi) =

(
i

j

)
hi+j and Sqj

X(li) =
(

D + 1− i

j

)
li−j .

Binomial coefficients modulo 2 are computed as follows (we leave the proof to
the reader): Let N be the set of nonnegative integers, let 2N be the set of all subsets
of N, and let π : N → 2N be the injection given by base 2 expansions. For any
n ∈ N, the set π(n) consists of all those m ∈ N such that the base 2 expansion of
n has 1 in the mth position. For two arbitrary nonnegative integers i and n, write
i ⊂ n if π(i) ⊂ π(n).

Lemma 78.6. For any i, n ∈ N, the binomial coefficient
(
n
i

)
is odd if and only if

i ⊂ n.

79. Values of the first Witt index

The main result of this section is Theorem 79.9 (conjectured by Hoffmann and
originally proved in [72]); its main ingredient is given by Proposition 79.4. We
begin with some observations.

Remark 79.1. By Theorem 61.9,

Ch(X∗)
SqX∗−−−−→ Ch(X∗)

y
y

Ch(X̄∗)
SqX̄∗−−−−→ Ch(X̄∗)

is commutative, hence we get an endomorphism Ch(X∗) → Ch(X∗) that we shall
also call a Steenrod operation and denote it by SqX∗ , even though it is a restriction
of SqX̄∗ and not of SqX∗ .

Remark 79.2. Let ln × hm ∈ Ch(X̄2) be an essential basis element with n ≥ m.
Since Sq(ln × hm) = Sq(ln)× Sq(hm) by Theorem 61.14, we see by Corollary 78.5,
that the value of Sq(ln × hm) is a linear combination of the elements li × hj with
i ≤ n and j ≥ m. If m = 0, one can say more: Sq(ln × h0) is a linear combination
of the elements li × h0 with i ≤ n.

Of course, we have similar facts for the essential basis elements of type hm× ln.
Representing essential basis elements of type ln×hm with n ≥ m as points of the

right pyramid of Remark 73.8, we may interpret the above statements graphically
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as follows: the diagram of the value of the Steenrod operation on a point ln × hm

is contained in the isosceles triangle based on the lower row of the pyramid whose
top is the point ln × hm (an example of this is the picture on the left below). If
ln × hm is on the right side of the pyramid, then the diagram of the value of the
Steenrod operation is contained in the part of the right side of the pyramid, which
is below the point (an example of this is the picture on the right below).

◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗
The next statement follows simply from Remark 79.2.

Lemma 79.3. Assume that X is anisotropic. Let π ∈ ChD+i1−1(X2) be the 1-
primordial cycle. For any j ≥ 1, the element Sj

X2(π) has no points in the first shell
triangle.

Proof. By the definition of π, the only point the cycle π has in the first (left
as well as right) shell triangle is the top of the triangle. By Remark 79.2, the only
point in the first left shell triangle that may be contained in Sj(π) is the point on
the left side of the triangle and the only point in the first right shell triangle that
may be contained in Sj(π) is the point on the right side of the triangle. Since these
two points are not dual (points on the left side of the first left shell triangle are
dual to points on the left side of the first right shell triangle), the lemma follows by
Corollary 73.21. ¤

We shall obtain further information in Lemma 83.1 below. We write exp2(a)
for 2a.

Proposition 79.4. For any anisotropic quadratic form ϕ of dim ϕ ≥ 2,

i1(ϕ) ≤ exp2 v2

(
dim ϕ− i1(ϕ)

)
.

Proof. Let r = v2(dim ϕ − i1(ϕ)). Apply the Steenrod operation Sq2r

X2 :
Ch(X2) → Ch(X2) to the 1-primordial cycle π. Since

Sq2r

X2(h0 × li1−1) = h0 × Sq2r

X (li1−1) =
(

dim ϕ− i1

2r

)
· (h0 × li1−1−2r )

by Theorem 61.14 and Corollary 78.5 and the binomial coefficient is odd by Lemma
78.6, we have h0 × li1−1−2r ∈ Sq2r

X2(α). It follows by Lemma 79.3 that 2r 6∈ [1, i1),
i.e., that 2r ≥ i1. ¤

Remark 79.5. Let a be a positive integer written in base 2. A suffix of a is
an integer written in base 2 that is obtained from a by deleting several (and at
least one) consecutive digits starting from the left one. For example, all suffixes of
1011010 are 11010, 1010, 10 and 0.

Let i < n be two nonnegative integers. Then the following are equivalent.
(1) i ≤ exp2 v2(n− i).
(2) There exists an r ≥ 0 satisfying 2r < n, i ≡ n (mod 2r), and i ∈ [1, 2r].
(3) i− 1 is the remainder upon division of n− 1 by an appropriate 2-power.
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(4) The 2-adic expansion of i− 1 is a suffix of the 2-adic expansion of n− 1.
(5) The 2-adic expansion of i is a suffix of the 2-adic expansion of n or i is a

2-power divisor of n.
In particular, the integers i = i1(ϕ) and n = dimϕ in Proposition 79.4 satisfy

these conditions.

Corollary 79.6. All relative higher Witt indices of an odd-dimensional quadratic
form are odd. Any relative higher Witt index of an even-dimensional quadratic
form is either even or 1.

Example 79.7. Assume that ϕ is anisotropic and let s ≥ 0 be the largest integer
satisfying dimϕ > 2s. Then it follows by Proposition 79.4 that i1(ϕ) ≤ dim ϕ− 2s

(e.g., by Condition (4) of Remark 79.5). In particular, if dimϕ = 2s + 1, then
i1(ϕ) = 1.

The first statement of the following corollary is the Separation Theorem 26.5
(over a field of characteristic not 2); the second statement was originally proved by
O. Izhboldin (using a different method) in [63, Th. 02]. A characteristic 2 version
has been proven by Hoffmann and Laghribi in [58, Th. 1.3].

Corollary 79.8. Let ϕ and ψ be two anisotropic quadratic forms over F .
(1) If dim ψ ≤ 2s < dim ϕ for some s ≥ 0, then the form ψF (ϕ) is anisotropic.
(2) Suppose that dim ψ = 2s + 1 ≤ dim ϕ for some s ≥ 0. If the form ψF (ϕ)

is isotropic, then the form ϕF (ψ) is also isotropic.

Proof. Let X and Y be the quadrics of ϕ and of ψ respectively. Then
dimIzh X ≥ 2s−1 by Example 79.7. If dim ψ ≤ 2s, then dim Y ≤ 2s−2. Therefore,

dimIzh Y ≤ dim Y < 2s − 1 ≤ dimIzh X

and YF (X) is anisotropic by Theorem 76.5(1).
Suppose that dim ψ = 2s + 1. Then dimIzh Y = 2s − 1 ≤ dimIzh X. If YF (X)

is isotropic, then dimIzh Y = dimIzh X by Theorem 76.5(1) and therefore XF (Y ) is
isotropic by Theorem 76.5(2). ¤

We show next that all values of the first Witt index not forbidden by Proposition
79.4 are possible by establishing the main result of this section:

Theorem 79.9. Two nonnegative integers i and n satisfy i ≤ exp2 v2(n− i) if and
only if there exists an anisotropic quadratic form ϕ over a field of characteristic
not 2 with

dim ϕ = n and i1(ϕ) = i.

Proof. By Proposition 79.4 and Remark 79.5, we need only prove the neces-
sity. Let i and n be two nonnegative integers satisfying i ≤ exp2 v2(n − i). Let r
be as in condition (2) of Remark 79.5. Write n− i = 2r ·m for some integer m.

Let F be any field of characteristic not 2 and consider the field

K = F (t1, . . . , tr)

of rational functions in r variables. By Corollary 19.6, the Pfister form π =
〈〈t1, . . . , tr〉〉 is anisotropic over K. Let L = K(s1, . . . , sm), where s1, . . . , sm

are variables. By Lemma 19.5, the quadratic L-form ψ = πL ⊗ 〈1, s1, . . . , sm〉
is anisotropic.
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We claim that i1(ψ) = 2r. Indeed, by Proposition 6.22, we have i1(ψ) ≥ 2r. On
the other hand, the field E = L(

√−s1) is purely transcendental over K(s2, . . . , sm)
and therefore i0(ψE) = 2r. Consequently, i1(ψ) = 2r.

Let ϕ be an arbitrary subform of ψ of codimension 2r − i. Since dim ψ =
2r · (m+1) = n+(2r− i), the dimension of ϕ is equal to n. As 2r− i < 2r = i1(ψ),
we have i1(ϕ) = i by Corollary 74.3. ¤

80. Rost correspondences

Recall that by abuse of notation we also denote the image of the element h ∈
CH1(X) in the groups CH1(X̄), Ch1(X), and Ch1(X̄) by the same symbol h. In
the following lemma, h stands for the element of Ch(X).

Lemma 80.1. Let n be the integer satisfying

2n − 1 ≤ D ≤ 2n+1 − 2.

Set s = D − 2n + 1 and r = 2n+1 − 2 − D (observe that r + s = 2n − 1). If
α ∈ Chr+s(X), then

SqX
r+s(α) = hr · α2 ∈ Ch0(X).

Proof. By the definition of the cohomological Steenrod operation SqX , we
have SqX = c(TX)◦SqX , where SqX is the homological Steenrod operation. There-
fore, SqX = c(−TX) ◦ SqX . In particular,

SqX
r+s(α) =

r+s∑
i=0

ci(−TX) ◦ Sqr+s−i
X (α)

in Ch0(X). By Lemma 78.1, we have ci(−TX) =
(−D−2

i

) · hi. As
(−D−2

i

)
=

±(
D+i+1

i

)
, it follows from Lemma 78.6, that the latter binomial coefficient is even

for any i ∈ [r + 1, r + s] and is odd for i = r. Since Sqr+s−i
X (α) is equal to 0 for

i ∈ [0, r − 1] and is equal to α2 for i = r by Theorem 61.13, the required relation
is established. ¤

Theorem 80.2. Let n be the integer satisfying

2n − 1 ≤ D ≤ 2n+1 − 2.

Set s = D − 2n + 1 and r = 2n+1 − 2 − D. Let X and Y be two anisotropic
projective quadrics of dimension D over a field of characteristic not 2. Let ρ̄ be a
cycle in Chr+s(X × Y ). Then (prX)∗(ρ̄) = 0 if and only if (prY )∗(ρ̄) = 0, where
prX : X × Y → X and prY : X × Y → Y are the projections.

Proof. Let ρ be an element of the nonreduced Chow group Chr+s(X × Y ).
Write ρ̄ for the image of ρ in Chr+s(X × Y ). The group Chr+s(X) is generated
by hs = hs

X (if s = d, this is true as X is anisotropic, hence not split). Therefore,
we have (prX)∗(ρ̄) = aXhs

X for some aX ∈ Z/2Z. Similarly, (prY )∗(ρ̄) = aY hs
Y for

some aY ∈ Z/2Z. To prove Theorem 80.2 we must show aX = aY .
As X and Y are anisotropic, any closed point z in X or Y has even degree. In

particular, the map
1
2

degZ : Ch0(Z) → Z/2Z
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given by z 7→ 1
2 deg(z) (mod 2) is well-defined for Z = X or Y . Consider the

following diagram:

(80.3)

Chr+s(X × Y )

Chr+s(X) Chr+s(Y )

Ch0(X × Y )

Ch0(X) Ch0(Y )

Z/2Z

wwooooooooo(prX)∗

''OOOOOOOOO
(prY )∗

²²

SqX×Y
r+s

²²

SqX
r+s

²²

SqY
r+s

wwooooooooo(prX)∗

''OOOOOOOOO
(prY )∗

''OOOOOOOOOO 1
2 degX

wwoooooooooo1
2 degY

We show that the diagram (80.3) is commutative. The bottom diamond is commu-
tative by the functorial property of the push-forward homomorphism (cf. Proposi-
tion 49.9 and Example 57.7). The left and the right parallelograms are commutative
by Theorem 60.5. Therefore,

(1
2 degX) ◦ SqX

r+s ◦(prX)∗(ρ) = ( 1
2 degY ) ◦ SqY

r+s ◦(prY )∗(ρ).

Applying Lemma 80.1 to the element α = (prX)∗(ρ), we have

(1
2 degX) ◦ SqX

r+s ◦(prX)∗(ρ) = ( 1
2 degX)(hr

X · α2) = aX .

Similarly ( 1
2 degY ) ◦ SqY

r+s ◦(prY )∗(ρ) = aY , proving the theorem. ¤

Exercise 80.4. Use Theorem 80.2 to prove the following generalization of Corol-
lary 79.8(2): Let X and Y be two anisotropic projective quadrics satisfying dimX =
dim Y = D. Let s be as in Theorem 80.2. If there exists a rational morphism
X 99K Y , then there exists a rational morphism Gs(Y ) 99K Gs(X) where for an in-
teger i, Gi(X) is the scheme (variety, if i 6= D/2) of i-dimensional linear subspaces
lying on X. (We shall study the scheme Gd(X) in Chapter XVI.)

Remark 80.5. One can generalize Theorem 80.2 as follows. We replace Y by
an arbitrary projective variety of an arbitrary dimension (and, in fact, Y need
not be smooth nor of dimension D = dim X). Suppose that every closed point
of Y has even degree. Let ρ ∈ Chr+s(X × Y ) satisfy (prX)∗(ρ̄) 6= 0 ∈ Ch(X).
Then (prY )∗(ρ) 6= 0 ∈ Ch(Y ) (note that this is in Ch(Y ), not Ch(Y )). To prove
this generalization, we use the commutative diagram 80.3. As before, we have
degX ◦SqX

r+s ◦(prX)∗(ρ) 6= 0 provided that prX(ρ̄) 6= 0. Therefore,

degY ◦SqY
r+s ◦(prY )∗(ρ) 6= 0.

In particular, (prY )∗(ρ) 6= 0.

Exercise 80.6. Show that one cannot replace the conclusion (prY )∗(ρ) 6= 0 ∈
Ch(Y ) by (prY )∗(ρ̄) 6= 0 ∈ Ch(Y ) in Remark 80.5. (Hint: Let Y be an anisotropic
quadric with X a subquadric of Y satisfying 2 dim X < dim Y and ρ ∈ Ch(X × Y )
the class of the diagonal of X.)
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Taking Y = X in Theorem 80.2, we have

Corollary 80.7. Let X be an anisotropic quadric of dimension D and let s be as in
Theorem 80.2. If a rational cycle in Ch(X̄2) contains hs × l0, then it also contains
l0 × hs.

Corollary 80.8. Assume that X is an anisotropic quadric of dimension D and for
some integer i ∈ [0, d] the cycle h0 × li + li × h0 ∈ Ch(X̄2) is rational. Then the
integer dim X − i + 1 is a power of 2.

Proof. If the cycle h0 × li + li × h0 is rational, then, multiplying by hs × hi,
we see that the cycle hs× l0 + li−s×hi is also rational. By Corollary 80.7, it follows
that i = s. Therefore, dim X − i + 1 = 2n with n as in Theorem 80.2. ¤

Remark 80.9. By Lemma 73.12 and Corollary 73.21, the integer i in Corollary
80.8 is necessarily equal to i1(X)− 1.

Recalling Definition 73.29, we have

Corollary 80.10. If dim ϕ − i1(ϕ) is not a 2-power, then the 1-primordial cycle
on X2 produces an integer.

Proof. If the 1-primordial cycle π does not produce any integer, then π =
h0×li1−1+li1−1×h0. Therefore, by Corollary 80.8, the integer D−(

i1(ϕ)−1
)
+1 =

dim ϕ− i1(ϕ) is a 2-power. ¤

The element h0 × l0 + l0 × h0 ∈ Ch(X̄2) is called the Rost correspondence of
the quadric X.

Of course, the Rost correspondence of an isotropic quadric X is rational. A
special case of Corollary 80.8 is given by:

Corollary 80.11. If X is anisotropic and the Rost correspondence of X is rational,
then D + 1 is a power of 2.

By multiplying by h1 × h0, we see that rationality of the Rost correspondence
implies rationality of the element h1× l0. In fact, rationality of h1× l0 alone implies
that D + 1 is a power of 2:

Corollary 80.12. If X is anisotropic and the element h1×l0 ∈ Ch(X̄2) is rational,
then D + 1 is a power of 2.

Proof. If h1 × l0 is rational, then for any i ≥ 1, the element hi × l0 is also
rational. Let s be as in Theorem 80.2. By Corollary 80.7 it follows that s = 0, i.e.,
D = 2n − 1. ¤

Let A be a point of a shell triangle of a quadric. We write A] for the dual point
in the sense of Definition 73.20. The following statement was originally proved (in
characteristic 0) by Vishik.

Corollary 80.13. Let Y be another anisotropic projective quadric of dimension
D. Basis elements of Ch(Ȳ 2) are in natural 1-1 correspondence with basis elements
of Ch(X̄2). Assume that i1(Y ) = s+1 with s as in Corollary 80.7. Let A be a point
of a first shell triangle of Y and let A] be its dual point. Then in the diagram of
any element of Ch(X2), the point corresponding to A is marked if and only if the
point corresponding to A] is marked.
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Proof. We may assume that A lies in the left first shell triangle of Y . Let
hi × lj (with 0 ≤ i ≤ j ≤ s) be the basis element represented by A. Then the
basis element represented by A] is ls−i×hs−j . Let α ∈ Ch(X2) and assume that α
contains hi× lj . Then the rational cycle (hs−i×hj) ·α contains hs× l0. Therefore,
by Corollary 80.7, this rational cycle also contains l0×hs. It follows that α contains
ls−i × hs−j . ¤

Remark 80.14. The equality i1(Y ) = s + 1 holds if Y is excellent. By Theorem
79.9 this value of the first Witt index is maximal for all D-dimensional anisotropic
quadrics.

81. On the 2-adic order of higher Witt indices, I

The main result of this section is Theorem 81.2 on a relationship between higher
Witt indices and the integer produced by a 1-primordial cycle originally proved in
[75]. This is used to establish a relationship between higher Witt indices of an
anisotropic quadratic form (cf. Corollary 81.19).

Let ϕ be a nondegenerate (possibly isotropic) quadratic form of dimension D
over a field F of characteristic not 2 and X = Xϕ. Let h = h(ϕ) be the height of ϕ
(or X) and let

F = F0 ⊂ F1 ⊂ · · · ⊂ Fh

be the generic splitting tower (cf. §25). For q ∈ [0, h], let iq = iq(ϕ), jq = jq(ϕ),
ϕq = (ϕFq )an, and Xq = Xϕq .

We shall use the following simple observation in the proof of Theorem 81.2:

Proposition 81.1. Let α be a homogeneous element of Ch(X̄2) with codim α > d.
Assume X is not split, i.e., h > 0 and that for some q ∈ [0, h − 1] the cycle α is
Fq-rational and contains neither hi× l? nor l?×hi for any i < jq. Then δ∗X(α) = 0
in Ch(X̄), where δX : X → X2 is the diagonal morphism of X.

Proof. We may assume that dim α = D+i with i ≥ 0 (otherwise dim δ∗X(α) <
0). As X is not hyperbolic, ld × ld /∈ α by Lemma 73.2. Therefore, by Proposition
68.1, δ∗X(α) = nli, where n is the number of essential basis elements contained in
α. Since α contains neither hi × l? nor l? × hi with i < jq, the number of essential
basis elements contained in α coincides with the number of essential basis elements
contained in pr2

∗(α), where

pr2
∗ : Ch

(
X2

Fq

) → Ch
(
X2

q

)

is the homomorphism of Remark 72.5. In view of Corollary 72.4, the latter number
is even by Lemma 73.14. ¤

We have defined minimal and primordial elements in Ch(X2) for an anisotropic
quadric X (cf. Definitions 73.5 and 73.16). We extend these definitions to the case
of an arbitrary quadric.

Let X be an arbitrary (smooth) quadric given by a quadratic form ϕ (not
necessarily anisotropic) and let X0 be the quadric given by the anisotropic part of ϕ.
The images of minimal (respectively primordial) elements via the embedding in2

∗ :
Ch(X2

0 ) → Ch(X2) of Remark 72.5 are called minimal (respectively primordial)
elements of Ch(X2).
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Theorem 81.2 (cf. [75, Th. 5.1]). Let X be an anisotropic quadric of even dimen-
sion over a field of characteristic not 2. Let π ∈ Ch(X2) be the 1-primordial cycle.
Suppose that π produces an integer q ∈ [2, h] satisfying v2(i2+· · ·+iq−1) ≥ v2(i1)+2.
Then v2(iq) ≤ v2(i1) + 1.

Proof. We fix the following notation:

a = i1,

b = i2 + · · ·+ iq−1 = jq−1 − a,

c = iq.

Set n = v2(i1). Then v2(b) ≥ n + 2.
Consider the (a − 1)th derivative α = π · (h0 × ha−1) of π. By Lemma 73.10

and Proposition 73.27, the cycle α is minimal since π is minimal and α contains
the basis elements h0 × l0 and ha+b × la+b.

Suppose the result is false, i.e., v2(c) ≥ n+2. Proposition 81.3 below contradicts
the minimality of α, hence proving Theorem 81.2. To state Proposition 81.3, we
need the following morphisms:

g1 : X2
F (X) → X3,

the morphism given by the generic point of the first factor of X3;

t12 : Ch(X3) → Ch(X3),

the automorphism given by the transposition of the first two factors of X3;

δX2 : X2 → X4, (x1, x2) 7→ (x1, x2, x1, x2),

the diagonal morphism of X2. We also use the pairing

◦ : Ch(X̄r)× Ch(X̄s) → Ch(X̄r+s−2)

(for various r, s ≥ 1) given by a composition of correspondences, where the ele-
ments of Ch(X̄s) are considered as correspondences X̄s−1 Ã X̄ and the elements
of Ch(X̄r) are considered as correspondences X̄ Ã X̄r−1.

Note that applying Proposition 73.23 to the quadric X1 with cycle pr2
∗(π) ∈

Ch(X2
1 ), there exists a homogeneous essential symmetric cycle β ∈ Ch(X2

F (X))
containing the basis element ha+b× la+b+c−1 and none of the basis elements having
hi with i < a + b as a factor.

Proposition 81.3. In the notation above let η ∈ Ch(X3) be a preimage of β under
the pull-back epimorphism g∗1 and let µ be the essence of the composition η◦α. Then
the cycle

(h0 × hc−a−1) · δ∗X2

(
t12(µ) ◦ (

Sq2a
X3(µ) · (h0 × h0 × hc−a−1)

)) ∈ Ch(X2)

contains ha+b × la+b and does not contain h0 × l0.

Proof. Recall that b ≥ 0 and 2n+2 divides b and c, where n = v2(a). By
Proposition 79.4, we also have that 2n+2 divides dim ϕq−1, so 2n+2 divides dim ϕ1.
We then see, again using Proposition 79.4, that a = 2n. In addition, dim ϕ ≡ 2a
(mod 2n+2) so

(81.4) Sq2a
X (la+b+c−1) = 0

by Corollary 78.5 and Lemma 78.6.
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Let Sym(ρ) = ρ + ρt for a cycle ρ on X̄2 be the symmetrization operation.
The cycle β is homogeneous, essential, symmetric, and does not contain any basis
element having hi with i < a+b as a factor. Consequently, we can write β = β0+β1

with

(81.5) β0 = Sym
(
ha+b × la+b+c−1

)
,

(81.6) β1 = Sym
( ∑

i∈I

hi+a+b × li+a+b+c−1

)

for some set of positive integers I. Furthermore, since α does not contain any of
hi × li with i ∈ (0, a + b), we have

(81.7) µ = h0 × β + ha+b × γ + ν

for some essential cycle γ ∈ ChD+a+b+c−1(X̄2) and some cycle ν ∈ Ch(X̄3) such
that the first factor of every basis element included in ν is of codimension > a + b.
We can decompose γ = γ0 + γ1 with

(81.8) γ0 = x · (h0 × la+b+c−1

)
+ y · (la+b+c−1 × h0

)
,

(81.9) γ1 =
∑
j∈J

hj × lj+a+b+c−1 +
∑

j∈J ′
lj+a+b+c−1 × hj

for some modulo 2 integers x, y ∈ Z/2Z and some sets of integers J, J ′ ⊂ (0, +∞).
We need the following:

Lemma 81.10. In the above, we have x = y = 1, I ⊂ [c, +∞), and J, J ′ ⊂
[a + b + c, +∞).

Proof. To determine y, consider the cycle δ∗(µ) · (h0×hc−1) ∈ Ch(X2) where
δ : X2 → X3 is the morphism (x1, x2) 7→ (x1, x2, x1). This rational cycle does not
contain h0 × l0, while the coefficient of ha+b × la+b equals 1 + y. Consequently,
y = 1 by the minimality of α.

Similarly, using the morphism X2 → X3, (x1, x2) 7→ (x1, x1, x2) instead of
δ, one sees that x = 1 (although the value of x is not important for our future
purposes).

To show that I ⊂ [c, +∞), assume to the contrary that 0 < i < c for some
i ∈ I. Then li+a+b ∈ Ch(XFq ) for this i and therefore the cycle

li+a+b+c−1 = (pr3)∗
(
(l0 × li+a+b × h0) · µ)

is Fq-rational, where pr3 : X3 → X is the projection onto the third factor. This
contradicts Corollary 72.6 because i + a + b + c− 1 ≥ a + b + c = jq(X) = i0(XFq ).

To prove the statement for J , assume to the contrary that there exists a j ∈ J
with 0 < j < a + b + c. Then lj ∈ Ch(XFq ), hence

lj+a+b+c−1 = (pr3)∗
(
(la+b × lj × h0) · µ) ∈ Ch(XFq ),

a contradiction. The statement for J ′ is proved similarly. ¤
Lemma 81.11. The cycle β is F1-rational. The cycles γ and γ1 are Fq-rational.

Proof. Since F1 = F (X), the cycle β is F1-rational by definition.
Let pr23 : X3 → X2, (x1, x2, x3) 7→ (x2, x3) be the projection onto the product

of the second and the third factors of X3. The cycle la+b is Fq-rational; therefore
γ = (pr23)∗

(
(la+b × h0 × h0) · µ)

is also Fq-rational. The cycle γ0 is Fq-rational as
la+b+c−1 is Fq-rational. It follows that γ1 is Fq-rational as well. ¤
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Define

ξ(χ) := δ∗X2

(
t∗12(χ) ◦ (

Sq2a
X3(χ) · (h0 × h0 × hc−a−1)

))
for any χ ∈ Ch(X̄3).

We must prove that the cycle ξ(µ) · (h0 × hc−a−1) ∈ Ch(X2) contains ha+b × la+b

and does not contain h0 × l0, i.e., we have to show that ha+b × lb+c−1 ∈ ξ(µ) and
h0 × lc−a−1 /∈ ξ(µ).

If h0 × lc−a−1 ∈ ξ(µ), then, passing from F to F1 = F (X), we have

lc−a−1 = (pr2)∗
(
(l0 × h0) · ξ(µ)

) ∈ Ch(XF (X)),

where pr2 : X2 → X is the projection onto the second factor of X2, contradicting
Corollary 72.6 as c− a− 1 ≥ a = i1(X) = i0(XF (X)).

It remains to show that ha+b × lb+c−1 ∈ ξ(µ). For any χ ∈ Ch(X̄2), write
coeff(χ) ∈ Z/2Z for the coefficient of ha+b × lb+c−1 in χ. Since coeff(ν) = 0, it
follows from (81.7) that

coeff
(
ξ(µ)

)
= coeff

(
ξ(h0 × β + ha+b × γ)

)
.

We claim that

(81.12) coeff
(
ξ(h0 × β)

)
= 0 = coeff

(
ξ(ha+b × γ)

)
.

Indeed, since Sq2a
X3(h0 × β) = h0 × Sq2a

X2(β) by Theorem 61.14, we have

ξ(h0 × β) = h0 × δ∗X
(
β ◦ (

Sq2a
X2(β) · (h0 × hc−a−1)

))

where δX : X → X2 is the diagonal morphism of X. Hence coeff
(
ξ(h0 × β)

)
= 0.

Since Sq2a
X3(ha+b × γ) is ha+b × Sq2a

X2(γ) plus terms having hj with j > a + b
as the first factor by Remark 79.2, we have

coeff
(
ξ(ha+b × γ)

)
= coeff

(
h2a+2b × δ∗X

(
γ ◦ (

Sq2a
X2(γ) · (h0 × hc−a−1)

)))
= 0.

This proves the claim.
It follows by claim (81.12) that

(81.13) coeff
(
ξ(µ)

)
= coeff

(
ξ(h0 × β + ha+b × γ)− ξ(h0 × β)− ξ(ha+b × γ)

)
.

To compute the right-hand side in (81.13), we need only the terms ha+b×Sq2a
X2(γ) in

the formula for Sq2a
X3(ha+b×γ) since the other terms do not effect coeff. Therefore,

we see that the right-hand side coefficient in (81.13) is equal to

coeff
(
ha+b × δ∗X

(
γ ◦ (

Sq2a
X2(β) · (h0 × hc−a−1)

)

+ β ◦ (
Sq2a

X2(γ) · (h0 × hc−a−1)
)))

.

Consequently, to prove Proposition 81.3, it remains to prove

Lemma 81.14.

δ∗X
(
γ ◦ (

Sq2a
X2(β) · (h0 × hc−a−1)

)
+ β ◦ (

Sq2a
X2(γ) · (h0 × hc−a−1)

))
= lb+c−1.

Proof. We start by showing that

(81.15) δ∗X
(
β ◦ (

Sq2a
X2(γ) · (h0 × hc−a−1)

))
= 0.
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Note that Sq2a vanishes on h0 × la+b+c−1 by (81.4). Therefore Sq2a(γ) = Sq2a(γ1)
by (81.8). By Lemma 81.10 we may assume that dimX ≥ 4(a+ b+ c)− 2 (we shall
need this assumption in order to apply Proposition 81.1), otherwise γ1 = 0.

Looking at the exponent of the first factor of the basis elements contained in
Sq2a(γ1) and using Lemma 81.10, we see that none of the basis elements hj ×
lj+b+c−1 and lj+b+c−1 × hj with j < a + b + c are present in β ◦ (

Sq2a(γ1) ·
(h0 × hc−a−1)

)
. As γ1 is Fq-rational by Lemma 81.11, Equation (81.15) holds by

Proposition 81.1.
We compute Sq2a(β0) where β0 is as in (81.5). By Corollary 78.5 and Lemma

78.6, we have Sq0(ha+b) = ha+b, Sqa(ha+b) = h2a+b, and Sqj(ha+b) = 0 for all
others, j ≤ 2a. Moreover, we have shown in (81.4) that Sq2a(la+b+c−1) = 0.
Therefore, Sq2a(β0) = Sym

(
h2a+b × lb+c−1

)
by Theorem 61.14.

Using Lemma 81.10, we have

γ0 ◦
(
Sq2a(β0) · (h0 × hc−a−1)

)
= lb+c−1 × h0

and

(81.16) δ∗X
(
γ0 ◦

(
Sq2a(β0) · (h0 × hc−a−1)

))
= lb+c−1.

The composition γ0 ◦
(
Sq2a(β1) · (h0 × hc−a−1)

)
is trivial. Indeed, by Lemma

81.10, every basis element of the cycle Sq2a(β1) · (h0 × hc−a−1) has (as the second
factor) either lj with j ≥ 2a+b+c > 0 or hj with j ≥ b+2c−1 > a+b+c−1, while
the two basis elements of γ0 have h0 and la+b+c−1 as the first factor. Consequently

(81.17) δ∗X
(
γ0 ◦

(
Sq2a(β1) · (h0 × hc−a−1)

))
= 0.

Looking at the exponent of the first factor of the basis elements contained in
γ1 and using Lemma 81.10, we see that none of the basis elements hj × lj+b+c−1

and lj+b+c−1 × hj with j < a + b + c is present in γ1 ◦
(
Sq2a(β) · (h0 × hc−a−1)

)
.

Therefore, the relation

(81.18) δ∗X
(
γ1 ◦

(
Sq2a(β) · (h0 × hc−a−1)

))
= 0

holds by Proposition 81.1 in view of Lemma 81.11.
Taking the sum of the relations in (81.15)–(81.18), we have established the

proof of Lemma 81.14. ¤

This completes the proof of Proposition 81.3. ¤

Theorem 81.2 is proved. ¤

Corollary 81.19 (cf. [75, Th. 1.1]). Let ϕ be an anisotropic quadratic form over
a field of characteristic not 2. If h = h(ϕ) > 1, then

v2(i1) ≥ min
(
v2(i2), . . . , v2(ih)

)− 1.

Proof. For any odd-dimensional ϕ, the statement is trivial, as all iq are odd by
Corollary 79.6. Assume that the inequality fails for an even-dimensional anisotropic
ϕ. Note that in this case the difference

dim ϕ− i1 = i1 + 2(i2 + · · ·+ ih)

cannot be a power of 2 because it is larger than 2n and not divisible by 2n+1

for n = v2(i1). Therefore, by Corollary 80.10, the 1-primordial cycle on X2 does
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produce an integer. Therefore, the assumptions of Theorem 81.2 are satisfied,
leading to a contradiction. ¤
Example 81.20. For an anisotropic quadratic form of dimension 6 and of trivial
discriminant, we have h = 2, i1 = 1, and i2 = 2. Therefore, the lower bound on
v2(i1) in Corollary 81.19 is exact.

82. Holes in In

Recall that F is a field of characteristic not 2. For every integer n ≥ 1, we set

dim In(F ) :=
{
dim ϕ | ϕ ∈ In(F ) and anisotropic

}
.

and
dim In :=

⋃
dim In(F ),

where the union is taken over all fields F (of characteristic not 2).
In this section, we determine the set dim In. Theorem 82.8 states that dim In

is the set of even nonnegative integers without the following disjoint open intervals
(which we call holes in In):

Un−i = (2n+1 − 2i+1, 2n+1 − 2i) , i = n, n− 1, . . . , 1.

The statement that U0 ∩ dim In = ∅ is the Hauptsatz (Theorem 23.7). This was
originally proved by Arason and Pfister [10, Hauptsatz]. The statement for U1 ∩
dim In with n = 3 was originally proved in 1966 by Pfister [110, Satz 14], with
n = 4 in 1998 by Hoffmann [55, Main Theorem], and for arbitrary n in 2000 by
Vishik [133, Th. 6.4]. The statement that Un−i ∩ dim In = ∅ for any n and i was
conjectured by Vishik [133, Conj. 6.5]. A positive solution of the conjecture was
announced by Vishik in 2002 but the proof is not available; a proof was given in
[73].

Proposition 82.1. Let ϕ be a nonzero anisotropic form of even dimension with
deg ϕ = n ≥ 1. If dim ϕ < 2n+1, then dim ϕ = 2n+1 − 2i+1 for some i ∈ [0, n− 1].

Proof. We use the notation of §81. We prove the statement by induction on
h = h(ϕ). The case of h = 1 is trivial.

So assume that h > 1. As dim ϕ1 < dim ϕ < 2n+1 and deg ϕ1 = deg ϕ, where
ϕ1 is the first (anisotropic) kernel form of ϕ, the induction hypothesis implies

dim ϕ1 = 2n+1 − 2i+1 for some i ∈ [1, n− 1].

Therefore, dim ϕ = 2n+1 − 2i+1 + 2i1. Since dimϕ < 2n+1, we have i1 < 2i. In
particular, v2(dimϕ− i1) = v2(i1). As i1 ≤ exp2 v2(dim ϕ− i1) by Proposition 79.4,
it follows that i1 is a 2-power, say i1 = 2j for some j ∈ [0, i− 1].

It follows by the induction hypothesis that each of the integers

dim ϕ1, . . . , dim ϕh

is divisible by 2i+1. Therefore, v2(iq) ≥ i for all q ∈ [2, h] and hence by Corollary
81.19, we have j ≥ i− 1. Consequently, j = i− 1, so dim ϕ = 2n+1 − 2i. ¤
Corollary 82.2. Let ϕ be an anisotropic quadratic form such that ϕ ∈ In(F ) for
some n ≥ 1. If dim ϕ < 2n+1, then dim ϕ = 2n+1 − 2i+1 for some i ∈ [0, n].

Proof. We may assume that ϕ 6= 0. We have deg ϕ ≥ n by Corollary 25.12.
Since 2deg ϕ ≤ dim ϕ < 2n+1, we must have deg ϕ = n. The result follows from
Proposition 82.1. ¤
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Corollary 82.3. Let ϕ 6= 0 be an anisotropic quadratic form in In(F ) with dim ϕ <
2n+1. Then the higher Witt indices of ϕ are the successive 2-powers:

i1 = 2i, i2 = 2i+1, . . . , ih = 2n−1,

where i = log2(2n+1 − dim ϕ)− 1 is an integer.

Proof. By Corollary 82.2, we have dimϕ = 2n+1 − 2i+1 for i as in the state-
ment of Corollary 82.3, and dimϕ1 = 2n+1 − 2j+1 for some j > i. It follows by
Proposition 79.4 that i1 = 2i. We proceed by induction on dim ϕ. ¤

We now show that every even value of dimϕ for ϕ ∈ In(F ) not forbidden by
Corollary 82.2 is possible over some F . We start with some preliminary work.

Lemma 82.4. Let ϕ be a nonzero anisotropic quadratic form in In(F ) and let
dim ϕ < 2n+1 for some n ≥ 1. Then the 1-primordial cycle is the only primordial
cycle in Ch(X2).

Proof. We induct on h = h(ϕ). The case h = 1 is trivial, so we assume
that h > 1. Let pr2

∗ : Ch(X2) → Ch(X2
1 ) be the homomorphism of Remark 72.5.

Since the integer dim ϕ − i1 lies inside the open interval (2n, 2n+1), it is not a
2-power. Hence by Corollary 80.10, we have pr2

∗(π) 6= 0, where π ∈ Ch(X2) is the
1-primordial cycle. Therefore, by the induction hypothesis, the diagram of pr2

∗(π)
has points in every shell triangle. Thus, the diagram of π itself has points in every
shell triangle. By Theorem 73.26, this means that π is the unique primordial cycle
in Ch(X2). ¤

Corollary 82.5. Let ϕ be a nonzero anisotropic quadratic form in In(F ) and let
dim ϕ = 2n+1 − 2 for some n ≥ 1. Then for any i > 0, the group ChD+i(X2)
contains no essential element.

Proof. By Lemma 82.4, the 1-primordial cycle is the only primordial cycle in
Ch(X2). Since i1 = 1 by Corollary 82.3, we have dim π = D. To finish we apply
Theorem 73.26. ¤

Lemma 82.6. Let F0 be a field (of charF0 6= 2) and let

F = F0(t1j , t2j)1≤j≤n

be the field of rational functions in 2n variables. Then the quadratic form

〈〈t11, . . . , t1n〉〉′⊥− 〈〈t21, . . . , t2n〉〉′
over F is anisotropic (where the prime denotes the pure subform of the Pfister
form).

Proof. For any i = 0, 1, . . . , n, we set

ϕi = 〈〈t11, . . . , t1i〉〉 and ψi = 〈〈t21, . . . , t2i〉〉.
We prove that the form ϕ′i⊥ − ψ′i is anisotropic by induction on i. For i = 0 the
statement is trivial. For i ≥ 1, we have:

ϕ′i⊥− ψ′i ' (ϕ′i−1⊥− ψ′i−1)⊥ t1iϕi−1⊥− t2iψi−1.

The summand ϕ′i−1⊥− ψ′i−1 is anisotropic by the induction hypothesis, while the
forms ϕi−1 and ψi−1 are so by Corollary 19.6. Applying Lemma 19.5 repeatedly
we conclude that the whole form is anisotropic. ¤



82. HOLES IN In 349

Define the anisotropic pattern of a quadratic form ϕ over F to be the set of in-
tegers dim(ϕK)an for all field extensions K/F . By Proposition 25.1, the anisotropic
pattern of a form ϕ coincides with the set

{
dim ϕ− 2jq(ϕ) | q ∈ [0, h(ϕ)]

}
.

The following result is due to Vishik.

Proposition 82.7. Let F0 be a field (of charF0 6= 2) and let n ≥ 1 and m ≥ 2 be
integers. Let

F = F0(ti, tij)1≤i≤m, 1≤j≤n

be the field of rational functions in variables ti and tij. Then the anisotropic pattern
of the quadratic form

ϕ = t1 · 〈〈t11, . . . , t1n〉〉⊥ . . .⊥ tm · 〈〈tm1, . . . , tmn〉〉
over F is the set

{
2n+1 − 2i | i ∈ [1, n + 1]

} ∪ (
2Z ∩ [2n+1, m · 2n]

)
.

Proof. We first show that all the integers 2n+1 − 2i are in the anisotropic
pattern of ϕ. Indeed, the anisotropic part of ϕ over the field E obtained from F
by adjoining the square roots of t31, t41, . . . , tm1, of t1 and of −t2, is isomorphic to
the form

〈〈t11, . . . , t1n〉〉′⊥− 〈〈t21, . . . , t2n〉〉′
of dimension 2n+1 − 2. This form is anisotropic by Lemma 82.6. The anisotropic
pattern of this form is {2n+1 − 2i | i ∈ [1, n + 1]} by Corollary 82.3.

Now assume that there is an even integer in the interval [2n+1, m · 2n] not in
the anisotropic pattern of ϕ. Among all such integers take the smallest one and
call it a. Let b = a− 2 and let c be the smallest integer greater than a and lying in
the anisotropic pattern of ϕ. Let E be the field in the generic splitting tower of ϕ
such that dim ψ = c where ψ = (ϕE)an and let Y be the projective quadric given
by the quadratic form ψ. Let π ∈ Ch(Y 2) be the 1-primordial cycle. We claim that

π = h0 × li1−1 + li1−1 × h0

where i1 = i1(Y ). Indeed, since i1 = (c− b)/2 > 1 and iq(Y ) = 1 for all q such that
dim ψq ∈ [2n+1 − 2, b − 2], the diagram of the cycle π does not have any point in
the qth shell triangle for such q. For the integer q satisfying dim ψq = 2n+1 − 2,
the cycle pr2

∗(π) ∈ Ch(Y 2
q ) has dimension > dim Yq, hence it is 0 by Corollary

82.5. The relation pr2
∗(π) = 0 means that π has no point in any shell triangle with

number > q.
It follows that π = h0 × li1−1 + li1−1 × h0. By Corollary 80.8, the integer

dim Y − i1 + 2 is a power of 2, say 2p. Since

dim Y − i1 + 2 = (c− 2)− (c− b)/2 + 2 = (b + c)/2,

the integer 2p lies inside the open interval (b, c). It follows that the integer 2p

satisfies 2n+1 ≤ 2p < m ·2n and is not in the splitting pattern of the quadratic form
ϕ. But every integer ≤ m ·2n divisible by 2n is evidently in the anisotropic pattern
of ϕ. This contradiction establishes Proposition 82.7. ¤

Summarizing, we have
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Theorem 82.8. For any integer n ≥ 1,

dim In =
{
2n+1 − 2i | i ∈ [1, n + 1]

} ∪ (
2Z ∩ [2n+1, +∞)

)
.

Proof. The inclusion ⊂ is given by Corollary 82.2, while the inclusion ⊃
follows by Proposition 82.7. ¤

Remark 82.9. The case of dimension 2n+1 − 2i can be realized directly by the
difference of two (i− 1)-linked n-fold Pfister forms (cf. Corollary 24.3).

83. On the 2-adic order of higher Witt indices, II

Throughout this section, X is an anisotropic quadric of dimension D over a
field of characteristic not 2. We write i1, . . . , ih and j1, . . . , jh for the relative and
absolute higher Witt indices of X, respectively, where h is the height of X (cf. §81).

The main result of this section is Theorem 83.3 originally proved in [75]. It is
used to establish further relations between higher Witt indices in Corollary 83.4.

We first establish further special properties of the 1-primordial cycle in addition
to those in Proposition 73.27 and Theorem 81.2.

Lemma 83.1. Let π ∈ Ch(X2) be the 1-primordial cycle. Then Sqj
X2(π) = 0 for

all j ∈ (0, i1).

Proof. Let Sq = SqX2 . Assume that Sqj(π) 6= 0 for some j ∈ (0, i1). By
Remark 79.2, one sees that Sqj(π) has a nontrivial intersection with an appropriate
jth order derivative of π. As the derivative of π is minimal by Theorem 73.26, the
cycle Sqj(π) contains this derivative. It follows that Sqj(π) has a point in the first
left shell triangle, contradicting Lemma 79.3. ¤

Proposition 83.2. Let i be an integer such that hi × l? is contained in the 1-
primordial cycle. Then i is divisible by 2n+1 for any n ≥ 0 satisfying i1 > 2n.

Proof. Assume that the statement is false. Let i be the minimal integer
not divisible by 2n+1 and such that hi × l? is contained in the 1-primordial cycle
π ∈ Ch(X2).

Note that π contains only essential basis elements and is symmetric. As dim π =
D + i1 − 1, we have hi × li+i1−1 ∈ π.

For any nonnegative integer k divisible by 2n+1, the binomial coefficient
(
k
l

)
with a nonnegative integer l is odd only if l is divisible by 2n+1 by Lemma 78.6.
Therefore, SqX(hk) = hk(1 + h)k is a sum of powers of h with exponents di-
visible by 2n+1. It follows that the value Sqj

X(π) contains the element Sq0
X(hi) ×

Sqj
X(li+i1−1) = hi×Sqj

X(li+i1−1) for any integer j. Since Sqj
X(π) = 0 for j ∈ (0, i1)

by Lemma 83.1, we have

Sqj
X(li+i1−1) = 0 for j ∈ (0, i1).

Now look at the specific value Sq2v2(i)

X (li+i1−1). Since i is not divisible by 2n+1 and
i1 > 2n, the degree 2v2(i) of the Steenrod operation lies in the interval (0, i1). By
Corollary 78.5, the value Sq2v2(i)

X (li+i1−1) is equal to li+i1−1−2v2(i) multiplied by the
binomial coefficient (

D − i− i1 + 2
2v2(i)

)
.
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The integer D−i1+2 = dim ϕ−i1 is divisible by 2n+1 by Proposition 79.4 as i1 > 2n.
Therefore the binomial coefficient is odd by Lemma 78.6. This is a contradiction,
so it establishes the result. ¤
Theorem 83.3 (cf. [75, Th. 3.3]). Let X be an anisotropic quadric over a field of
characteristic not 2. Suppose that the 1-primordial cycle π ∈ Ch(X2) produces the
integer q. Then v2(iq) ≥ v2(i1).

Proof. Let n = v2(i1). Then the integer 2n divides dim ϕ− i1 by Proposition
79.4. Therefore, 2n divides dim ϕ as well.

We have hjq−1× ljq−1+i1−1 ∈ π by definition of q. Consequently, by Proposition
83.2, the integer jq−1 is divisible by 2n. It follows that 2n divides dim ϕq−1 =
dim ϕ − 2jq−1, where ϕq−1 is the (q − 1)th (anisotropic) kernel of ϕ. If m < n for
m = v2(iq), then applying Proposition 79.4, we have iq = i1(ϕq−1) is equal to 2m

and, in particular, smaller than i1. Therefore the 1-primordial cycle π has no points
in the qth shell triangle. But the point hjq−1 × ljq−1+i1−1 ∈ π lies in the qth shell
triangle. This contradiction establishes the theorem. ¤
Corollary 83.4 (cf. [75, Th. 1.1]). We have v2(i1) ≤ max

(
v2(i2), . . . , v2(ih)

)
if

the integer
dim ϕ− i1 = i1 + 2(i2 + · · ·+ ih)

is not a power of 2.

Proof. If the integer dim ϕ− i1 is not a 2-power, then the 1-primordial cycle
does produce an integer by Corollary 80.10. The result follows by Theorem 83.3. ¤

84. Minimal height

Every nonnegative integer n is uniquely representable in the form of an alter-
nating sum of 2-powers:

n = 2p0 − 2p1 + 2p2 − · · ·+ (−1)r−12pr−1 + (−1)r2pr

for some integers p0, p1, . . . , pr satisfying p0 > p1 > · · · > pr−1 > pr + 1 > 0. We
shall write P (n) for the set {p0, p1, . . . , pr}. Note that pr coincides with the 2-adic
order v2(n) of n. For n = 0 our representation is the empty sum, so P (0) = ∅.

Define the height h(n) of the integer n as the number of positive elements in
P (n). Therefore, h(n) is the number |P (n)|, the cardinality of the set P (n) if n is
even, while h(n) = |P (n)| − 1 if n is odd.

In this section we prove the following theorem conjectured by Rehmann and
originally proved in [59]:

Theorem 84.1. Let ϕ be an anisotropic quadratic form over a field of character-
istic not 2. Then

h(ϕ) ≥ h(dim ϕ).

Remark 84.2. Let n ≥ 0 and let ϕ be an anisotropic excellent quadratic form of
dimension n. It follows from Proposition 28.5 that h(ϕ) = h(n). Therefore, the
bound in Theorem 84.1 is sharp.

We shall see (cf. Corollary 84.5) that Theorem 84.1 in odd dimensions is a
consequence of Proposition 79.4. In even dimensions we shall also need Theorems
81.2 and 83.3. We shall also need several combinatorial arguments to prove Theorem
84.1.
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Suppose ϕ is anisotropic. Let ϕi be the ith (anisotropic) kernel form of ϕ, and
let ni = dim ϕi, 0 ≤ i ≤ h(ϕ).

Lemma 84.3. For any i ∈ [1, h], the difference d(i) := h(ni−1) − h(ni) satisfies
the following:

(I) If the dimension of ϕ is odd, then |d(i)| = 1.
(II) If the dimension of ϕ is even, then |d(i)| ≤ 2. Moreover,

(+2) If d(i) = 2, then P (ni) ⊂ P (ni−1) and v2(ni) ≥ v2(ni−1) + 2.
(+1) If d(i) = 1, the set difference P (ni) \ P (ni−1) is either empty or

consists of a single element p, in which case both integers p− 1 and
p + 1 lie in P (ni−1).

(0) If d(i) = 0, the set difference P (ni)\P (ni−1) consists of one element
p and either p− 1 or p + 1 lies in P (ni−1).

(−1) If d(i) = −1, the set difference P (ni) \P (ni−1) consists either of two
elements p− 1 and p + 1 for some p ∈ P (ni−1) or the set difference
consists of one element.

(−2) If d(i) = −2, the set difference P (ni) \ P (ni−1) consists of two el-
ements, i.e., P (ni) ⊃ P (ni−1). Moreover, in this case one of these
two elements is equal to p + 1 for some p ∈ P (ni−1).

Proof. Write p0, p1, . . . , pr for the elements of P (ni−1) in descending order.
We have ni = ni−1 − 2ii. We also know by Proposition 79.4 that there exists a
nonnegative integer m such that 2m < ni−1, ii ≡ ni−1 (mod 2m), and 1 ≤ ii ≤ 2m.
The condition 2m < ni−1 implies m < p0. Let ps be the element with maximal
even s satisfying m < ps.

If m = ps − 1, then ii = 2ps−1 − 2ps+1 + 2ps+2 − . . . and, therefore,

ni = 2p0 − 2p1 + · · · − 2ps−1 + 2ps+1 − 2ps+2 + · · ·+ (−1)r−12pr .

If s = r and pr−1 + 1 = pr−2, then P (ni) equals P (ni−1) without pr−2 and pr.
Otherwise, P (ni) equals P (ni−1) without ps.

Therefore, we may assume that m < ps − 1.
If s = r, then ii = 2m and ni = ni−1 − 2m+1. If m = pr − 2, we have P (ni) is

obtained from P (ni−1) by replacing pr with pr − 1. If m < pr − 2, we have P (ni)
equals P (ni−1) with m + 1 added.

Therefore, we may assume in addition that s < r.
If ps − 1 > m > ps+1, then ii = 2m − 2ps+1 + 2ps+2 − . . . and, therefore,

ni = 2p0 − 2p1 + · · · − 2ps−1 + 2ps − 2m+1 + 2ps+1 − 2ps+2 + · · ·+ (−1)r+12pr .

This is the correct representation of ni and, therefore, P (ni) equals P (ni−1) with
m + 1 added.

It remains to consider the case with m ≤ ps+1 while s < r. In this case, first
assume that s = r − 1. Then ii = 2m and ni = ni−1 − 2m+1.

If m < pr − 2, then P (ni) equals P (ni−1) with pr + 1 and m + 1 added.
If m = pr−2, then P (ni) equals P (ni−1) with pr removed and pr +1 and pr−1

added.
If m = pr − 1, one has two possibilities. If pr−1 > pr + 2, then P (ni) equals

P (ni−1) with pr removed and pr + 1 added. If pr−1 = pr + 2, then P (ni) equals
P (ni−1) with pr and pr−1 removed while pr + 1 added.

Finally, if m = pr, then either pr−1 = pr +2 and P (ni) equals P (ni−1) without
pr−1, or P (ni) equals P (ni−1) with pr + 2 added.
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To finish the proof we may assume that m ≤ ps+1 and s < r − 1. We have:
ii = 2ps+2 − 2ps+3 + · · ·+ (−1)r2pr and

ni = 2p0 − 2p1 + · · ·+ 2ps − 2ps+1+1 + 2ps+1 − 2ps+2 + · · ·+ (−1)r+12pr .

Thus, if ps > ps+1 + 1, then P (ni) equals P (ni−1) with ps+1 + 1 added; otherwise
P (ni) is P (ni−1) with ps removed. ¤

Corollary 84.4. Let ϕ be an anisotropic odd-dimensional quadratic form and let
i ∈ [1, h(ϕ)]. Then

h(ni−1)− h(ni) ≤ 1.

Corollary 84.5. Let ϕ be an anisotropic quadratic form of odd dimension n. Then
h(ϕ) ≥ h(n).

Proof. Let h := h(ϕ). As dimϕ is odd, nh = 1. Then h(nh) = 0 and
by Corollary 84.4, we have h(ni−1) − h(ni) ≤ 1 for every i ∈ [1, h]. Therefore,
h(n0) ≤ h. Since ϕ is anisotropic, n = n0, and the result follows. ¤

Remark 84.6. By Lemma 84.3, for any quadratic form ϕ of odd dimension n, we
have h(ni) = h(ni−1)± 1. Therefore h(ϕ) ≡ h(n) (mod 2).

Proposition 84.7. Let ϕ be an anisotropic quadratic form of even dimension n
and h := h(ϕ). Suppose that v2(ni) ≥ v2(ni−1) + 2 for some i ∈ [1, h). Then the
open interval (i, h) contains an integer i′ satisfying |v2(ni′)− v2(ni−1)| ≤ 1.

Proof. It suffices to consider the case i = 1. Note that h ≥ 2. Set p = v2(n0).
By assumption, we have v2(n1) ≥ p + 2. Therefore, v2(i1) = p − 1. Clearly, the
integer n0 − i1 = i1 + n1 is not a power of 2. Therefore, by Corollary 80.10, the
1-primordial cycle of Ch(X2) produces an integer j ∈ [2, h]. We shall show that
either v2(nj−1) or v2(nj) lies in [p − 1, p + 1] for this j. We then take i′ = j − 1
in the first case and i′ = j in the second case. Note that i′ 6= 1 and i′ 6= h as
v2(n1) ≥ p + 2, while v2(nh) = ∞.

By Theorem 83.3, we have v2(ij) ≥ p − 1. Consequently, v2(nj−1) ≥ p − 1
by Proposition 79.4 as well. Since n1 = 2(i2 + · · · + ij−1) + nj−1, it follows that
v2(i2 + · · · + ij−1) + 1 ≥ p − 1. If v2(i2 + · · · + ij−1) < p + 1, then v2(nj−1) =
v2(i2+· · ·+ij−1)+1 ∈ [p−1, p+1]. So, we may assume that v2(i2+· · ·+ij−1) ≥ p+1
and apply Theorem 81.2 to conclude that v2(ij) ≤ p. We have v2(ij) ∈ {p−1, p}. If
v2(nj−1) > v2(ij)+1, then v2(nj) = v2(ij)+1 ∈ {p, p+1}. If v2(nj−1) = v2(ij)+1,
then v2(nj−1) ∈ {p, p+1}. Finally, if v2(nj−1) < v2(ij)+1, then v2(nj−1) = v2(ij),
hence v2(nj−1) ∈ {p− 1, p}. ¤

Corollary 84.8. Let ϕ be an anisotropic quadratic form of even dimension n.
Suppose that v2(ni) ≥ v2(ni−1)+2 for some i ∈ [1, h). Set p = v2(ni−1). Then there
exists i′ ∈ (i, h) such that the set P (ni′) contains an element p′ with |p′ − p| ≤ 1.

Proof. Let i′ be the integer in the conclusion of Proposition 84.7. Then
p′ = v2(ni′) works. ¤

We now prove Theorem 84.1.

Proof of Theorem 84.1. By Corollary 84.5, we need only prove Theorem
84.1 for even-dimensional forms. Let h := h(ϕ) ≥ 1 and let {n0 > n1 > · · · > nh}
with ni = dim ϕi be the anisotropic pattern of ϕ with n = n0 even.
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Let H be the set {1, 2, . . . , h}. For any i ∈ H, let d(i) := h(ni−1) − h(ni).
Recall that d(i) ≤ 2 for any i ∈ H by Lemma 84.3. Let C be the subset of
H consisting of all those i ∈ H such that d(i) = 2. We shall construct a map
f : C → H satisfying d(j) ≤ 1− |f−1(j)| for any j ∈ f(C). In particular, we shall
have f(C) ⊂ H \ C. Once such a map is constructed, we establish Theorem 84.1
as follows: The subsets f−1(j) ∪ {j} ⊂ H, where j runs over H \ C, are disjoint
and cover H. In addition, the average value of d on each such subset is ≤ 1, so the
average value

( ∑
i∈H d(i)

)
/h = h(n)/h of d on H is ≤ 1, i.e., h(n) ≤ h.

So it remains to define the map f with the desired properties. Let i ∈ C.
By Lemma 84.3, we have v2(ni) ≥ v2(ni−1) + 2. Therefore, by Corollary 84.8,
there exists i′ ∈ (i, h) such that the set P (ni′) contains an element p′ satisfying
|p′−p| ≤ 1 for p = v2(ni−1). Taking the minimal i′ with this property, set f(i) = i′.
We also define g(i) to be the minimal element of P (nf(i)) satisfying |g(i)− p| ≤ 1.

This defines the map f . To finish, we must show that f has the desired property.
First observe that by the definition of f , for any i ∈ C and any j ∈ [i, f(i)− 1]

the set P (nj) does not contain any element p with |p − v2(ni−1)| ≤ 1. It follows
that if f(i1) = f(i2) for some i1 6= i2, then for p1 = v2(ni1−1) with p2 = v2(ni2−1)
one has |p2 − p1| ≥ 2. Moreover, if g(i1) = g(i2), then |p1 − p| ≤ 1 and |p2 − p| ≤ 1
for p = g(i1) = g(i2) by definition of g. Therefore, we have

if f(i1) = f(i2) and g(i1) = g(i2) for some i1 6= i2,(84.9)

then |p2 − p1| = 2 for p1 = v2(ni1−1) and p2 = v2(ni2−1).

Let j ∈ f(C). By the definition of f , the set difference P (nj) \ P (nj−1) is
nonempty. Then d(j) 6= 2 by Lemma 84.3(II)(+2). Moreover, the above set dif-
ference contains an element p satisfying {p − 1, p + 1} 6⊂ P (nj−1). Consequently,
d(j) 6= 1 by Lemma 84.3(II)(+1). Therefore, d(j) ≤ 0 by Lemma 84.3.

Now let j be an element of f(C) with |f−1(j)| ≥ 2. Let i1 < i2 be two different
elements of f−1(j). Note that i1 < i2 < j. Moreover, if p1 = v2(ni1−1) and
p2 = v2(ni2−1), then, by the definition of f(i1), we have |p2 − p1| > 1. We shall
show that d(j) ≤ −1. We already know that d(j) ≤ 0. If d(j) = 0, then by Lemma
84.3(II)(−0), the set difference P (nj)\P (nj−1) consists of one element p′ and either
p′− 1 or p′+1 lies in P (nj−1). Since the difference P (nj) \P (nj−1) consists of one
element p′, we have p′ = g(i1) = g(i2). It follows that {p1, p2} = {p′ − 1, p′ + 1}.
Consequently, the set P (nj−1) contains neither p′ − 1 nor p′ + 1, a contradiction.
Thus we have proved that d(j) ≤ −1 if |f−1(j)| ≥ 2.

Now let j be an element of f(C) with |f−1(j)| ≥ 3. Let i1, i2, i3 be three
different elements of f−1(j). The equalities g(i1) = g(i2) = g(i3) cannot take place
simultaneously, as otherwise, by (84.9), we would have |p2 − p1| = 2, |p3 − p2| = 2,
and |p1 − p3| = 2, a contradiction. However, the set difference P (nj) \ P (nj−1)
can have at most two elements. Therefore, we may assume that g(i1) = g(i2) and
that g(i3) is different from g(i1) = g(i2). Set p′ = g(i1) = g(i2). We shall show
that d(j) = −2. We already know that d(j) ≤ −1. If d(j) = −1, then by Lemma
84.3(II)(−1), the set difference P (nj) \P (nj−1) consists of p̃− 1 and p̃+1 for some
p̃ ∈ P (nj−1). However, p′ is neither p̃− 1 nor p̃ + 1, a contradiction.

We finish the proof by showing that |f−1(j)| is never ≥ 4. Indeed, if |f−1(j)| ≥
4, then the set difference P (nj) \ P (nj−1) contains two elements p′ and p′′ with
none of p′ ± 1 or p′′ ± 1 lying in P (nj−1), contradicting Lemma 84.3. ¤



CHAPTER XVI

The Variety of Maximal Totally Isotropic
Subspaces

So far in this book, the projective quadric has been the only variety associated
with a quadratic form. In this chapter, we introduce another variety, the variety of
maximal isotropic subspaces.

85. The variety Gr(ϕ)

Let ϕ be a nondegenerate quadratic form on V over F . In this chapter, we study
the scheme Gr(ϕ) of maximal totally isotropic subspaces of V . We view Gr(ϕ) as
a closed subscheme of the Grassmannian variety of V . Let n be the integer part of
(dimϕ− 1)/2, so dim ϕ = 2n + 1 or 2n + 2.

Example 85.1. If dim ϕ = 1, we have Gr(ϕ) = Spec F . If dim ϕ = 2 or 3, then
Gr(ϕ) coincides with the quadric of ϕ; that is Gr(ϕ) = Spec C0(ϕ) if dim ϕ = 2 and
Gr(ϕ) is the conic curve associated to the quaternion algebra C0(ϕ) if dim ϕ = 3.

The orthogonal algebraic group O(V, ϕ) acts transitively on Gr(ϕ). We write
O+(V, ϕ) for the (connected) special orthogonal group (cf. [86, §23]). If dim ϕ is
odd, O+(V, ϕ) acts transitively on Gr(ϕ) and therefore, Gr(ϕ) is a smooth projec-
tive variety over F .

Suppose that dim ϕ = 2n+2 is even. Then the group O(V, ϕ) has two connected
components, one is O+(V, ϕ). The factor group O(V, ϕ)/O+(V, ϕ) is identified with
the Galois group over F of the center Z of the even Clifford algebra C0(V, ϕ). Recall
that Z is an étale quadratic F -algebra (cf. Proposition 11.6). The class of Z(ϕ) in
Ét2(F ) is the discriminant of ϕ (cf. §13).

A point of Gr(ϕ) over a commutative ring R is a totally isotropic direct sum-
mand P of rank n + 1 of the R-module VR = V ⊗F R. Since p2 = 0 in the Clifford
algebra C(V, ϕ)R for every p ∈ P , the inclusion of P into VR gives rise to an injec-
tive R-module homomorphism h : Λn+1(P ) → C(V, ϕ)R. Let W be the image of h.
Since ZW = W , left multiplication by elements of the center Z of C0(V, ϕ) defines
an F -algebra homomorphism Z → EndR(W ) = R. Therefore, we have a morphism
Gr(ϕ) → Spec Z, so Gr(ϕ) is a scheme over Z.

If the discriminant of ϕ is trivial, i.e., Z = F × F , the scheme Gr(ϕ) has two
smooth (irreducible) connected components Gr1 and Gr2 permuted by the quotient
O(V, ϕ)/O+(V, ϕ). More precisely, they are isomorphic under any reflection of V .
If Z is a field, the discriminant of ϕZ is trivial and therefore Gr(ϕ) is isomorphic
to a connected component of Gr(ϕZ).

The varieties of even- and odd-dimensional forms are related by the following
statement.

355
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Proposition 85.2. Let ϕ be a nondegenerate quadratic form on V over F of di-
mension 2n + 2 and trivial discriminant and let ϕ′ be a nondegenerate subform
of ϕ on a subspace V ′ ⊂ V of codimension 1. Let Gr1 be a connected compo-
nent of Gr(ϕ). Then the assignment U 7→ U ∩ V ′ gives rise to an isomorphism
Gr1

∼→ Gr(ϕ′).

Proof. Since both varieties Gr1 and Gr(ϕ′) are smooth, it suffices to show that
the assignment induces a bijection on points over any field extension L/F . More-
over, we may assume that L = F . Let U ′ ⊂ V ′ be a totally isotropic subspace of
dimension n. Then the orthogonal complement U ′⊥ of U ′ in V is (n+2)-dimensional
and the induced quadratic form on H = U ′⊥/U ′ has trivial discriminant (i.e., H
is a hyperbolic plane). The space H has exactly two isotropic lines permuted by
a reflection. Therefore, the pre-images of these lines in V are two totally isotropic
subspaces of dimension n+1 living in different components of Gr(ϕ). Thus exactly
one of them represents a point of Gr1 over F . ¤

Let ϕ′ be a nondegenerate subform of codimension 1 of a nondegenerate qua-
dratic form ϕ of even dimension. Let Z be the discriminant of ϕ. By Proposition
85.2, we have that Gr(ϕ′)Z is isomorphic to a connected component Gr1 of Gr(ϕZ)
and therefore, Gr(ϕ) ' Gr1 ' Gr(ϕ′)Z .

Example 85.3. If dim ϕ = 4, then Gr(ϕ) is the conic curve (over Z) associated to
the quaternion algebra C0(ϕ).

Exercise 85.4. Show that if 3 ≤ dim ϕ ≤ 6, then Gr(ϕ) is isomorphic to the
Severi-Brauer variety associated to the even Clifford algebra C0(ϕ).

86. The Chow ring of Gr(ϕ) in the split case

In this section, we present the calculation of the Chow groups of Gr(ϕ) given by
Vishik in [134]. Set Gr := Gr(ϕ) and r := dimϕ−n−1, where n is the integer part
of (dim ϕ − 1)/2. We define the tautological vector bundle E over Gr of rank r to
be the restriction of the tautological vector bundle over the Grassmannian variety
of V , i.e., variety E is the closed subvariety of the trivial bundle V 1 := V × Gr
consisting of pairs (u, U) such that u ∈ U . The projective bundle P(E) is a closed
subvariety of X ×Gr, where X is the (smooth) projective quadric of ϕ.

Let E⊥ be the kernel of the natural morphism V 1 → E∨ given by the polar
bilinear form bϕ. If dimϕ = 2n + 2, we have U⊥ = U for any totally isotropic
subspace U ⊂ V of dimension n + 1, hence E⊥ = E.

In the case when dim ϕ = 2n + 1, the situation is as follows. For any totally
isotropic subspace U ⊂ V of dimension n, the orthogonal complement U⊥ contains
U as a subspace of codimension 1. Therefore, E⊥ is a vector bundle over Gr of rank
n + 1 containing E. The fiber of E⊥ over U is the orthogonal complement U⊥.

Now suppose that ϕ is isotropic. Choose an isotropic line L ⊂ V . Set Ṽ =
L⊥/L and let ϕ̃ be the quadratic form on Ṽ induced by ϕ. Denote the projective
quadric of ϕ̃ by X̃.

A totally isotropic subspace of Ṽ of dimension r− 1 is of the form U/L, where
U is a totally isotropic subspace of V of dimension r containing L. Therefore, we
can view the variety G̃r := Gr(ϕ̃) of maximal totally isotropic subspaces of Ṽ as a
closed subvariety of Gr. Denote by i : G̃r → Gr the closed embedding.
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Let U be a totally isotropic subspace of V of dimension r that does not contain
L. Then dim(U ∩L⊥) = r− 1 and

(
(U ∩L⊥)+L

)
/L is a totally isotropic subspace

of Ṽ of dimension r − 1.

Lemma 86.1. The morphism f : Gr \G̃r → G̃r that takes U to
(
(U ∩L⊥) + L

)
/L

is an affine bundle.

Proof. We use the criterion of Lemma 52.12. Let R be a local commutative
F -algebra. An F -morphism SpecR → G̃r, or equivalently an R-point of G̃r, is given
by a direct summand Ũ of the R-module VR = V ⊗F R of rank r with LR ⊂ Ũ .

An R-point of Gr \G̃r is a totally isotropic direct summand U of VR of rank
r with U + LR a direct summand U of VR of rank r + 1. If f(U) = Ũ/LR, then
Ũ ⊂ U+LR. The assignment U 7→ (U+LR)/Ũ gives rise to an isomorphism between
the fiber Spec R ×

G̃r
(Gr \G̃r) of f over Ũ/LR and PR(VR/Ũ) \ PR(L⊥R/Ũ) ' An

R.
By Lemma 52.12, we have f is an affine bundle. ¤

Note that dimGr = dim G̃r + n, so dim Gr = n(n + 1)/2.
By Lemma 86.1, Gr is a cellular variety with the short filtration G̃r ⊂ Gr, hence

by Corollary 66.4, we have a decomposition of Chow motives:

(86.2) M(Gr) = M(G̃r)⊕M(G̃r)(n).

The morphism M(G̃r) → M(Gr) is induced by the embedding i : G̃r → Gr and
the morphism M(G̃r)(n) → M(Gr) is given by the transpose of the closure of the
graph of f , the class of which we shall denote by β ∈ CH(G̃r×Gr). The correspon-
dence β is given by the scheme of pairs (W/L,U), where U is a totally isotropic
r-dimensional subspace of V , W is a totally isotropic r-dimensional subspace of L⊥

containing L, and dim(U + W ) ≤ r + 1.
For the rest of this section, we shall assume that ϕ is split. It follows by

induction, using (86.2) and Example 85.1, that CH(Gr) is a free abelian group of
rank 2r. We shall determine the multiplicative structure of CH(Gr).

Since the motive of X (and also Gr) is split, we have CH(X ×Gr) = CH(X)⊗
CH(Gr) by Proposition 64.3. In other words, CH(X × Gr) is a free module over
CH(Gr) with basis

{
hk × [Gr], lk × [Gr] | k ∈ [0, n− 1]

}
if dim ϕ = 2n + 1,

{
hk × [Gr], lk × [Gr], ln × [Gr], l′n × [Gr] | k ∈ [0, n− 1]

}
if dim ϕ = 2n + 2.

Note that in the even-dimensional case, we have assumed that X is oriented.
In both cases, P(E) is a closed subvariety of X×Gr of codimension n. Therefore,

in the odd-dimensional case there are unique elements ek ∈ CHk(Gr), k ∈ [0, n],
satisfying

(86.3) [P(E)] = ln−1 × e0 +
n∑

k=1

hn−k × ek

in CH(X×Gr). Pulling this back with respect to the canonical morphism XF (Gr) →
X ×Gr, we see that e0 = 1.
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In the even-dimensional case, there are unique elements ek ∈ CHk(Gr), k ∈
[0, n] and e′0 ∈ CH0(Gr), satisfying

(86.4) [P(E)] = ln × e0 + l′n × e′0 +
n∑

k=1

hn−k × ek

in CH(X × Gr). Choose a totally isotropic subspace U ⊂ V of dimension n + 1
so that [P(U)] = ln in CH(X) and let U ′ be a reflection of U . It follows from
Exercise 68.4 that [P(U ′)] = l′n. Let g denote the generic point of Gr whose closure
contains [U ]. Let g′ be another generic point of Gr whose closure contains [U ′].
Note that CH0(Gr) = Z[g]⊕Z[g′]. Pulling back equation (86.4) with respect to the
two morphisms X → X ×Gr given by the points [U ] and [U ′] respectively, we see
that e0 = [g] and e′0 = [g′]. In particular, e0 and e′0 are orthogonal idempotents of
CH0(Gr), hence e0 + e′0 = 1.

It follows that for every totally isotropic subspace W ⊂ V of dimension n + 1
with [W ] in the closure of g (resp. g′), we have [W ] = ln (respectively [W ] = l′n).
In particular, to give an orientation of X is to choose one of the two connected
components of Gr.

The multiplication rule in Proposition 68.1 for CH(X) implies that in both
cases

ek = p∗
(
(ln−k × 1) · [P(E)]

)

for k ∈ [1, n], where p : X ×Gr → Gr is the projection.
We view the cycle γ = [P(E)] in CH(X ×Gr) as the incidence correspondence

X Ã Gr. It follows from Proposition 63.2 that the induced homomorphism γ∗ :
CH(X) → CH(Gr) takes ln−k to ek.

Let s : P(E) → Gr and t : P(E) → X be the two projections. Proposition 62.7
provides the following simple formula for ek:

(86.5) ek = s∗ ◦ t∗(ln−k).

Lemma 86.6. We have en = [G̃r] in CHn(Gr).

Proof. The element t∗(l0) coincides with the cycle of the intersection ({L} ×
Gr) ∩ P(E) = {L} × G̃r. It follows from (86.5) that [G̃r] = s∗ ◦ t∗(l0) = en. ¤

We write h̃ and l̃i for the standard generators of CH(X̃). Recall that the
incidence correspondence α : X̃ Ã X is given by the scheme of pairs (A/L,B)
of one-dimensional isotropic subspaces of Ṽ and V respectively with B ⊂ A. By
Lemma 72.3, we can orient X̃ (in the case dim ϕ is even) so that α∗(l̃k−1) = lk and
α∗(lk) = l̃k−1 for all k.

Denote by ẽk ∈ CHk(G̃r) the elements given by (86.3) or (86.4) for G̃r. Simi-
larly, we have the incidence correspondence γ̃ : X̃ Ã G̃r with γ̃∗(l̃n−1−k) = ẽk.

Lemma 86.7. The diagram of correspondences

X̃

γ̃

²²
²O
²O
²O

α ///o/o/o X

γ

²²
²O
²O
²O

αt
///o/o/o
X̃

γ̃

²²
²O
²O
²O

G̃r
β

///o/o/o Gr
it

///o/o/o G̃r

is commutative.
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Proof. By Corollary 57.22, all calculations can be done on the level of cycles
representing the correspondences. By definition of the composition of correspon-
dences, the compositions γ ◦ α and β ◦ γ̃ coincide with the cycle of the subscheme
of X̃ ×Gr consisting of all pairs (A/L,U) with dim(A + U) ≤ r + 1. Similarly, the
compositions γ̃ ◦ αt and it ◦ γ coincide with the cycle of the subscheme of X × G̃r
consisting of all pairs (B, Ũ/L) with B ⊂ Ũ . ¤

Corollary 86.8. We have β∗(ẽk) = ek and i∗(ek) = ẽk for all k ∈ [0, n− 1].

Proof. The equalities β∗(ẽ0) = e0 and i∗(e0) = ẽ0 follow from the fact that
X and X̃ have compatible orientations. If k ≥ 1, we have by Lemma 86.7,

β∗(ẽk) = β∗ ◦ γ̃∗(l̃n−1−k) = γ∗ ◦ α∗(l̃n−1−k) = γ∗(ln−k) = ek,

and

i∗(ek) = it∗(ek) = it∗ ◦ γ∗(ln−k)

= γ̃∗ ◦ αt
∗(ln−k) = γ̃∗ ◦ α∗(ln−k) = γ̃∗(l̃n−1−k) = ẽk. ¤

For a subset I of [0, n] let eI be the product of ek for all k ∈ I. Similarly, we
define ẽJ for any subset J ⊂ [0, n− 1].

Corollary 86.9. We have i∗(ẽJ) = eJ · en = eJ∪{n} for every J ⊂ [0, n− 1].

Proof. By Corollary 86.8, we have i∗(eJ) = ẽJ . It follows from Lemma 86.6
and the Projection Formula (Proposition 56.9) that

i∗(ẽJ ) = i∗(i∗(eJ ) · 1) = eJ · i∗(1) = eJ · en = eJ∪{n}. ¤

Corollary 86.10. The monomial e[0, n] = e0e1 · · · en is the class of a rational point
in CH0(Gr).

Proof. The statement follows from the formula e[0, n] = i∗(ẽ[0, n−1]) and by
induction on n. ¤

Let j : Gr \G̃r → Gr be the open embedding. Let f : Gr \G̃r → G̃r be the
morphism in Lemma 86.1.

Lemma 86.11. We have f∗(ẽJ) = j∗(eJ) for any J ⊂ [0, n− 1].

Proof. It suffices to prove that f∗(ẽk) = j∗(ek) for all k ∈ [0, n− 1]. By the
construction of β (cf. §66), we have βt ◦ j = f . It follows from Corollary 86.8 that
f∗(ẽk) = j∗ ◦ (βt)∗(ẽk) = j∗ ◦ β∗(ẽk) = j∗(ek). ¤

Theorem 86.12. Let ϕ be a nondegenerate quadratic form on V over F of di-
mension 2n + 1 or 2n + 2 and let Gr be the scheme of maximal totally isotropic
subspaces of V . Then the set of monomials eI for all 2n subsets I ⊂ [1, n] is a
basis of CH(Gr) over CH0(Gr).

Proof. We induct on n. The localization property gives the exact sequence
(cf. the proof of Theorem 66.2)

0 → CH(G̃r) i∗−→ CH(Gr)
j∗−→ CH(Gr \G̃r) → 0.

By the induction hypothesis and Corollary 86.9, the set of monomials eI for all I

containing n is a basis of the image of i∗. Since f∗ : CH(G̃r) → CH(Gr \G̃r) is
an isomorphism by Theorem 52.13, again by the induction hypothesis and Lemma
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86.11, the set of all the elements j∗(eI) with n /∈ I is a basis of CH(Gr \G̃r). The
statement follows. ¤

We now can compute the Chern classes of the tautological vector bundle E
over Gr.

Proposition 86.13. We have ck(V 1/E) = ck(E∨) = 2ek and ck(E) = (−1)k2ek

for all k ∈ [1, n].

Proof. Let s : X → P(V ) be the closed embedding. Let H denote the class
of a hyperplane in P(V ). We have s∗(hk) = 2Hk+1 for all k ≥ 0.

First suppose that dim ϕ = 2n + 1. It follows from (86.3) that

[P(E)] = s∗(ln−1)× 1 +
n∑

k=1

2Hn+1−k × ek

in CH
(
P(V )×Gr

)
.

On the other hand, by Proposition 58.10 applied to the subbundle E of V 1,
we have

[P(E)] =
n+1∑

k=0

Hn+1−k × ck(V 1/E).

It follows from the Projective Bundle Theorem 53.10 that ck(V 1/E) = 2ek for
k ∈ [1, n].

By duality, V 1/E⊥ ' E∨. Note that the line bundle E⊥/E carries a nonde-
generate quadratic form, hence is isomorphic to its dual. Since Pic(Gr) = CH1(Gr)
is torsion-free, we conclude that E⊥/E ' 1. Therefore,

c(E∨) = c(V 1/E⊥) = c(V 1/E).

The proof in the case dim ϕ = 2n+2 proceeds along similar lines: one uses the
equality (86.4) and the duality isomorphism V 1/E ' E∨. ¤

Remark 86.14. Let ϕ be a nondegenerate quadratic form that is not necessarily
split. By Proposition 86.13, the classes 2ek, k ≥ 1, that are a priori defined over a
splitting field of ϕ, are in fact defined over F .

In order to determine the multiplicative structure of CH(Gr), we present the
set of defining relations between the ek. For convenience, we set ek = 0 if k > n.

Since c(V 1/E) ◦ c(E) = c(V 1) = 1 and CH(Gr) is torsion-free, it follows from
Proposition 86.13 that

(86.15) e2
k − 2ek−1ek+1 + 2ek−2ek+2 − · · ·+ (−1)k−12e1e2k−1 + (−1)ke2k = 0

for all k ≥ 1.

Proposition 86.16. The equalities (86.15) form a set of defining relations between
the generators ek of the ring CH(Gr) over CH0(Gr).

Proof. Let A be the factor ring of the polynomial ring Z[t1, t2, . . . , tn] modulo
the ideal generated by polynomials giving the relations (86.15). We claim that the
ring homomorphism A → CH(Gr) taking tk to ek is an isomorphism.

Call a monomial tr1
1 tr2

2 · · · trn
n with ri ≥ 0 basic if rk = 0 or 1 for every k. By

Theorem 86.12, it is sufficient to prove that the ring A is generated by classes of
basic monomials.
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We define the weight w(m) of a monomial m = tr1
1 tr2

2 · · · trn
n by the formula

w(m) =
n∑

k=1

k2 · rk

and the weight of a polynomial f(t1, . . . , tn) over Z as the minimum of weights of
its nonzero monomials. Clearly, w(m ·m′) = w(m) + w(m′). For example, in the
formula (86.15), we have w(t2k) = 2k2, w(tk−itk+i) = 2k2 + 2i2, and w(t2k) = 4k2.
Thus, t2k is the monomial of the lowest weight in the formula (86.15).

Let f be a polynomial representing an element of the ring A. Applying formula
(86.15) to the square of a variable tk in a nonbasic monomial of f of the lowest
weight increases the weight but not the degree of f . Since the weight of a polynomial
of degree d is at most n2d, we eventually reduce to a polynomial having only basic
monomials. ¤

The relations (86.15) look particularly simple modulo 2:

e2
k ≡ e2k mod 2 CH(Gr) for all k ≥ 1.

Proposition 86.17. Let ϕ be a split nondegenerate quadratic form on V over F
of dimension 2n + 2 and let ϕ′ be a nondegenerate subform of ϕ on a subspace
V ′ ⊂ V of codimension 1. Let f denote the morphism Gr(ϕ) → Gr(ϕ′) taking U
to U ∩ V ′, and let e′k, k ≥ 1, denote the standard generators of CH

(
Gr(ϕ′)

)
. Then

f∗(e′k) = ek for all k ∈ [1, n].

Proof. Denote by E → Gr(ϕ) and E′ → Gr(ϕ′) the tautological vector bun-
dles of ranks n + 1 and n respectively. The line bundle

E/f∗(E′) = E/(V ′1 ∩ E) ' (E + V ′1)/V ′1 = V 1/V ′1

is trivial. In particular, c(E) = c(f∗E′) = f∗c(E′). It follows from Proposition
86.13 that

2f∗(e′k) = (−1)kf∗
(
ck(E′)

)
= (−1)kck

(
f∗(E′)

)
= (−1)kck(E) = 2ek.

The result follows since CH
(
Gr(ϕ)

)
is torsion-free. ¤

87. The Chow ring of Gr(ϕ) in the general case

Let ϕ be a nondegenerate quadratic form of dimension 2n + 1 on V over an
arbitrary field F and let X = Xϕ. Let Y be a smooth proper scheme over F
and let h : Y → Gr = Gr(ϕ) be a morphism. We set E′ = h∗(E), where E is the
tautological vector bundle over Gr, and view P(E′) as a closed subscheme of X×Y .

Proposition 87.1. The CH(Y )-module CH(X × Y ) is free with basis hk, hk ·
[P(E′)] with k ∈ [1, n− 1].

Proof. Let V 1 denote the trivial vector bundle V ×Y over Y . We claim that
the restriction f : T = (X × Y ) \ P(E′) → P(V 1/E′⊥) of the natural morphism
f : P(V 1)\P(E′⊥) → P(V 1/E′⊥) is an affine bundle. To do so we use the criterion
of Lemma 52.12.

Let R be a local commutative F -algebra. An F -morphism

Spec R → P(V 1/E′⊥),

equivalently, an R-point of P(V 1/E′⊥), determines a pair (U,W ) where U is a
totally isotropic direct summand of VR of rank n and W is a direct summand of



362 XVI. THE VARIETY OF MAXIMAL TOTALLY ISOTROPIC SUBSPACES

VR of rank n + 2 containing U⊥. Since rank W⊥ = n − 1, one can choose an R-
basis of W so that the restriction of the quadratic form ϕ on W/W⊥ is equal to
xy + az2 for some a ∈ R× and U is given by x = z = 0 in W . Therefore, the fiber
Spec R ×P(V 1/E′⊥) T is given by the equation y/x = a(z/x)2 over R and hence is
isomorphic to an affine space over R. By Lemma 52.12, f is an affine bundle.

Thus X × Y is equipped with the structure of a cellular scheme. In particular,
we have a (split) exact sequence

0 → CH
(
P(E′)

) i∗−→ CH(X × Y ) → CH(T ) → 0

and the isomorphism

f∗ : CH
(
P(V 1/E′⊥)

) ∼→ CH(T ).

The restriction of the canonical line bundle over P(V ) to X×Y and CH
(
P(E′)

)
are

also canonical bundles. It follows from the Projective Bundle Theorem 53.10 and
the Projection Formula (Proposition 56.9) that the image of i∗ is a free CH(Y )-
module with basis hk · [P(E′)], k ∈ [0, n− 1].

The geometric description of the canonical line bundle given in §104.C shows
that the pull-back with respect to f of the canonical line bundle is the restriction to
T of the canonical bundle on X × Y . Again, it follows from the Projective Bundle
Theorem 53.10 that CH(T ) is a free CH(Y )-module with basis the restrictions of
hk, k ∈ [0, n− 1], on T . The statement readily follows. ¤

Remark 87.2. The proof of Proposition 87.1 gives the motivic decomposition

M(X × Y ) = M
(
P(E′)

)⊕M
(
P(V 1/E′⊥)

)
(n).

As in the case of quadrics, we write CH(Gr) for the colimit of CH(GrL) over all
field extensions L/F and CH(Gr) for the image of CH(Gr) in CH(Gr). We say that
a cycle α in CH(Gr) is rational if it belongs to CH(Gr). We use similar notations
and definitions for the cycles on Gr2, the classes of cycles modulo 2, etc.

Corollary 87.3. The elements (ek× 1)+ (1× ek) in CH(Gr
2
) are rational for all

k ∈ [1, n].

Proof. Let E1 and E2 be the two pull-backs of E on Gr2 := Gr×Gr. Pulling
the formula (86.3) back to X ×Gr

2
, we get in CH(X ×Gr

2
):

[P(E1)] = ln−1 × 1× 1 +
n∑

k=1

hn−k × ek × 1,

[P(E2)] = ln−1 × 1× 1 +
n∑

k=1

hn−k × 1× ek.

Therefore the cycle

[P(E1)]− [P(E2)] =
n∑

k=1

hn−k × (ek × 1− 1× ek)

is rational. Applying Proposition 87.1 to the variety Gr2, we have the cycles
(ek × 1)− (1× ek) are also rational. Note that by Proposition 86.13, the cycles 2ek

are rational. ¤
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Now consider the Chow groups Ch(Gr), Ch(Gr) modulo 2 and write Ch(Gr)
for the image of Ch(Gr) in Ch(Gr). We still write ek for the class of the generator
in Chk(Gr).

For every subset I ⊂ [1, n], the rational correspondence

(87.4) xI =
∏

k∈I

[
(ek × 1) + (1× ek)

] ∈ Ch(Gr2)

defines an endomorphism (xI)∗ of Ch(Gr) taking Ch(Gr) into Ch(Gr).

Lemma 87.5. For any subsets I, J ⊂ [1, n], we have

(xJ)∗(eI) =
{

eI∩J if I ∪ J = [1, n],
0 otherwise,

in Ch(Gr).

Proof. We have xJ =
∑

eJ1 × eJ2 , where the sum is taken over all subsets J1

and J2 of [1, n] such that J is the disjoint union of J1 and J2. Hence

(xJ)∗(eI) =
∑

deg(eI · eJ1) eJ2

and the statement is implied by the following lemma.

Lemma 87.6. For any subsets I, J ⊂ [1, n],

deg(eI · eJ) ≡
{

1 mod 2 if J = [1, n] \ I,
0 mod 2 otherwise.

Proof. If J = [1, n] \ I, the product eI · eJ = e[1, n] is the class of a rational
point of Gr by Corollary 86.10, hence deg(eI · eJ) = 1. Otherwise modulo 2, eI · eJ

is either zero or the monomial eK for some K different from [1, n] (one uses the
relations between the generators modulo 2). Hence deg(eI · eJ) ≡ 0 mod 2. ¤

The following statement is due to Vishik. We give a proof different from the
one in [134].

Theorem 87.7. Let Gr be the variety of maximal isotropic subspaces of a nonde-
generate quadratic form of dimension 2n + 1 or 2n + 2. Then the ring Ch(Gr) is
generated by all ek, k ∈ [0, n], such that ek ∈ Ch(Gr).

Proof. By Propositions 85.2 and 86.17, it suffices to consider the case of
dimension 2n + 1. It follows from Theorem 86.12 that every element α ∈ Ch(Gr)
can be written in the form α =

∑
aIeI with aI ∈ Z/2Z. It suffices to prove the

following:
Claim: For every I satisfying aI = 1, we have ek ∈ Ch(Gr) for any k ∈ I.
To prove the claim, we may assume that α is homogeneous. We establish the

claim by induction on the number of nonzero coefficients of α. Choose I with largest
|I| such that aI = 1 and set J = ([1, n] \ I) ∪ {k}. By Lemma 87.5, (xJ)∗(α) = ek

or 1 + ek. Indeed, if aI′ = 1 for some I ′ ⊂ [1, n] with I ′ ∪ J = [1, n], then
either I ′ = [1, n] \ J and hence (xJ)∗(eI′) = e∅ = 1, or I ′ = ([1, n] \ J) ∪ {l} for
some l. But since α is homogeneous, we must have l = k. Therefore I ′ = I and
(xJ )∗(eI′) = ek.

We have shown that ek ∈ Ch(Gr) for all k ∈ I. Therefore, eI ∈ Ch(Gr) and
α − eI ∈ Ch(Gr). By the induction hypothesis, the claim holds for α − eI and
therefore for α. ¤
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Exercise 87.8. Prove that the tangent bundle of Gr is canonically isomorphic to
Λ2(V 1/E).

88. The invariant J(ϕ)

In this section, we define a new invariant of nondegenerate quadratic forms. It
differs slightly from the one defined in [134].

Let ϕ be a nondegenerate quadratic form of dimension 2n+1 or 2n+2 and set
Gr = Gr(ϕ). As before, let ek be viewed as the class of the generator for Ch(Gr).
We define a new discrete J-invariant J(ϕ) as follows:

J(ϕ) = {k ∈ [0, n] with ek /∈ Ch(Gr)}.
Recall that e0 = 1 if dim ϕ = 2n + 1, hence in this case J(ϕ) ⊂ [1, n]. When
dim ϕ = 2n + 2, we have 0 ∈ J(ϕ) if and only if the discriminant of ϕ is not trivial.

If dim ϕ = 2n + 2 and ϕ′ is a nondegenerate subform of ϕ of codimension 1,
then

J(ϕ) =
{

J(ϕ′) if disc ϕ is trivial,
{0} ∪ J(ϕ′) otherwise.

For a subset I ⊂ [0, n] let ||I|| denote the sum of all k ∈ I.

Proposition 88.1. The smallest dimension i such that Chi(Gr) 6= 0 is equal to
||J(ϕ)||.

Proof. By Theorem 87.7, the product of all ek satisfying k /∈ J(ϕ) is a non-
trivial element of Ch(Gr) of the smallest dimension equal to ||J(ϕ)||. ¤

Proposition 88.2. A nondegenerate quadratic form ϕ is split if and only if J(ϕ) =
∅.

Proof. The “only if” part follows from the definition. Suppose the set J(ϕ)
is empty. Since all the ek are rational, the class of a rational point of Gr belongs
to Ch0(Gr) by Corollary 86.10. It follows that Gr has a closed point of odd degree,
i.e., ϕ is split over an odd degree finite field extension. By Springer’s Theorem
(Corollary 18.5), the form ϕ is split. ¤

Lemma 88.3. Let ϕ = ϕ̃ ⊥ H. Then J(ϕ) = J(ϕ̃).

Proof. Suppose that dim ϕ = 2n+1. Note first that the cycle en = [Gr(ϕ̃)] is
rational so that n /∈ J(ϕ). Let k ≤ n− 1. It follows from the decomposition (86.2)
that CHk(Gr) ' CHk Gr(ϕ̃) and ek corresponds to ẽk by Lemma 86.11. Hence
ek ∈ J(ϕ) if and only if ẽk ∈ J(ϕ̃). The case of the even dimension is similar. ¤

Corollary 88.4. Let ϕ and ϕ′ be Witt-equivalent quadratic forms. Then J(ϕ) =
J(ϕ′).

Lemma 88.5. Let X be a variety, Y a scheme, and n an integer such that the
natural homomorphism CHi(X) → CHi

(
XF (y)

)
is surjective for every point y ∈ Y

and i ≥ dim X − n. Then CHj(Y ) → CHj

(
YF (X)

)
is surjective for every j ≥

dim Y − n.
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Proof. Using a localization argument similar to that used in the proof of
Proposition 52.10, one checks that the top homomorphism in the commutative
diagram

CH(X)⊗ CH(Y ) −−−−→ CH(X × Y )
y

y
CH(Y ) −−−−→ CH

(
YF (X)

)

is surjective in dimensions ≥ dim X + dim Y − n by induction on dimY . Since
the right vertical homomorphism is surjective, so is the bottom homomorphism in
dimensions ≥ dim Y − n. ¤

Let ϕ be a quadratic form of dimension 2n + 1 or 2n + 2.

Corollary 88.6. The canonical homomorphism CHi(Gr) → CHi
(
GrF (X)

)
is sur-

jective for all i ≤ n− 1.

Proof. Note that X is split over F (y) for every y ∈ Gr. Therefore, CHk(XF (y))
is generated by hk for all k ≤ n − 1 and, hence, the homomorphism CHk(X) →
CHk

(
XF (y)

)
is surjective. ¤

Corollary 88.7. J(ϕ) ∩ [0, n− 1] ⊂ J(ϕF (X)) ⊂ J(ϕ).

The following proposition relates the set J(ϕ) and the absolute Witt indices of
ϕ. It follows from Corollaries 88.4 and 88.7.

Proposition 88.8. Let ϕ be a nondegenerate quadratic form of dimension 2n + 1
or 2n + 2. Then

J(ϕ) ⊂ {
n− j0(ϕ), n− j1(ϕ), . . . , n− jh(ϕ)−1(ϕ)

}
.

In particular, |J(ϕ)| ≤ h(ϕ).

Remark 88.9. One can impose further restrictions on J(ϕ). Choose a nondegene-
rate form ψ such that one of the forms ϕ and ψ is a subform of the other of
codimension 1 and the dimension of the largest form is even. Then the sets J(ϕ)
and J(ψ) differ by at most one element 0. Therefore, the inclusion in Proposition
88.8 applied to the form ψ gives

J(ϕ) ⊂ {
0, n− j0(ψ), n− j1(ψ), . . . , n− jh(ψ)−1(ψ)

}
.

Example 88.10. Suppose that ϕ is an anisotropic m-fold Pfister form, m ≥ 1.
Then J(ϕ) = {2m−1 − 1}. Indeed, h(ϕ) = 1, hence J(ϕ) ⊂ {2m−1 − 1} by Proposi-
tion 88.8. But J(ϕ) is not empty by Proposition 88.2.

We write nGr for the gcd of deg(g) taken over all closed points g ∈ Gr. The
ideal nGr ·Z is the image of the degree homomorphism CH(Gr) → Z. Since ϕ splits
over a field extension of F of degree a power of 2, the number nGr is a 2-power.

Proposition 88.11. Let ϕ be a nondegenerate quadratic form of odd dimension.
Then

2|J(ϕ)| · Z ⊂ nGr · Z ⊂ ind
(
C0(ϕ)

) · Z.

Proof. For every k /∈ J(ϕ), let fk be a cycle in CH
k
(Gr) satisfying fk ≡ ek

modulo 2 CHk(Gr). By Remark 86.14, we have 2ek ∈ CH
k
(Gr) for all k. Let α be

the product of all the fk satisfying k /∈ J(ϕ) and all the 2ek satisfying k ∈ J(ϕ).
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Clearly, α is a cycle in CH(Gr) of degree 2|J(ϕ)|m, where m is an odd integer. The
first inclusion now follows from the fact that nGr is a 2-power.

Let L be the residue field F (g) of a closed point g ∈ Gr. Since ϕ splits over L,
so does the even Clifford algebra C0(ϕ). It follows that ind C0(ϕ) divides [L : F ] =
deg g for all g and therefore divides nGr. ¤

Propositions 88.8 and 88.11 yield

Corollary 88.12. Let ϕ be a nondegenerate quadratic form of dimension 2n + 1.
Consider the following statements:

(1) C0(ϕ) is a division algebra.
(2) nGr = 2n.
(3) J(ϕ) = [1, n].
(4) jk = k for all k = 0, 1, . . . , n.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).

The following statement is a refinement of the implication (1) ⇒ (3).

Corollary 88.13. Let ϕ be a nondegenerate quadratic form of odd dimension and
indC0(ϕ) = 2k. Then [1, k] ⊂ J(ϕ).

Proof. We proceed by induction on dimϕ = 2n + 1. If k = n, i.e., C0(ϕ) is a
division algebra, the statement follows from Corollary 88.12. So we may assume that
k < n. Let ϕ′ be a form over F (ϕ) Witt-equivalent to ϕF (ϕ) of dimension less than
dim ϕ. The even Clifford algebra C0(ϕ′) is Brauer-equivalent to C0(ϕ)F (ϕ). Since
C0(ϕ) is not a division algebra, it follows from Corollary 30.10 that ind

(
C0(ϕ′)

)
=

ind
(
C0(ϕ)

)
= 2k. By the induction hypothesis, [1, k] ⊂ J(ϕ′). By Corollaries 88.4

and 88.7, we have J(ϕ′) = J(ϕF (ϕ)) ⊂ J(ϕ). ¤

Exercise 88.14. Let ϕ be a quadratic form of odd dimension.
(1) Prove that 1 ∈ J(ϕ) if and only if the even Clifford algebra C0(ϕ) is not

split.
(2) Prove that 2 ∈ J(ϕ) if and only if ind C0(ϕ) > 2.

89. Steenrod operations on Ch
(
Gr(ϕ)

)

We calculate the Steenrod operations on Ch
(
Gr(ϕ)

)
as given by Vishik in

[134]. Let ϕ be a nondegenerate quadratic form on V over F of dimension 2n + 1
or 2n + 2, let X be the projective quadric of ϕ, let Gr be the variety of maximal
totally isotropic subspaces of V , and let E be the tautological vector bundle over
Gr. Let s : P(E) → Gr and t : P(E) → X be the projections. There is an exact
sequence of vector bundles over P(E):

0 → 1→ Lc ⊗ s∗(E) → Ts → 0,

where Lc is the canonical line bundle over P(E) and Ts is the relative tangent
bundle of s (cf. Example 104.20). Note that Lc is the pull-back with respect to t
of the canonical line bundle over X, hence c(Lc) = 1 + t∗(h), where h ∈ CH1(X) is
the class of a hyperplane section of X. By Proposition 86.13, ci(E) is divisible by
2 for all i > 0. It follows that

c(Ts) = c
(
Lc ⊗ s∗(E)

) ≡ c(Lc ⊗ 1n) = c(Lc)n =
(
1 + t∗(h)

)n mod 2.
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Theorem 89.1. Let charF 6= 2 and Gr = Gr(ϕ) with ϕ a nondegenerate quadratic
form of dimension 2n+1 or 2n+2. Then the Steenrod operation SqGr : Ch(Gr) →
Ch(Gr) of cohomological type satisfies

Sqi
Gr(ek) =

(
k

i

)
ek+i

for all i and k ∈ [1, n].

Proof. We have SqX(ln−k) = (1 + h)n+k · ln−k by Corollary 78.5. It follows
from (86.5), Theorem 61.9, and Proposition 61.10 that

SqGr(ek) = SqGr ◦s∗ ◦ t∗(ln−k)

= s∗ ◦ c(−Ts) ◦ SqP(E) ◦t∗(ln−k)

= s∗
(
(1 + t∗h)−n · t∗ ◦ SqX(ln−k)

)

= s∗ ◦ t∗
(
(1 + h)−n · (1 + h)n+k · ln−k

)

= s∗ ◦ t∗
(
(1 + h)k · ln−k

)

=
∑

i≥0

(
k

i

)
s∗ ◦ t∗(ln−k−i)

=
∑

i≥0

(
k

i

)
ek+i. ¤

Exercise 89.2. Let ϕ be an anisotropic quadratic form of even dimension and
height 1. Using Steenrod operations, give another proof of the fact that dim(ϕ) is
a 2-power. (Hint: Use Propositions 88.2 and 88.8.)

90. Canonical dimension

Let F be a field and let C be a class of field extensions of F . Call a field E ∈ C
generic if for any L ∈ C there is an F -place E ⇀ L (cf. §103).

Example 90.1. Let X be a scheme over F . A field extension L of F is called an
isotropy field of X if X(L) 6= ∅. If X is a smooth variety, it follows from §103 that
the field F (X) is generic in the class of all isotropy fields of X.

The canonical dimension cdim(C) of the class C is defined to be the minimum
of the tr.degF E over all generic fields E ∈ C. If X is a scheme over F , we write
cdim(X) for cdim(C), where C is the class of fields as defined in Example 90.1. If
X is smooth, then cdim(X) ≤ dim X.

Let p be a prime integer and let C be a class of field extensions of F . A
field E ∈ C is called p-generic if for any L ∈ C there is an F -place E ⇀ L′ for
some finite extension L′ of L of degree prime to p. The canonical p-dimension
cdimp(C) of C and cdimp(X) of a scheme X over F are defined similarly. Clearly,
cdimp(C) ≤ cdim(C) and cdimp(X) ≤ cdim(X).

The following theorem answers an old question of Knebusch (cf. [83, §4]):

Theorem 90.2. For an arbitrary anisotropic smooth projective quadric X,

cdim2(X) = cdim(X) = dimIzh X.
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Proof. Let Y be a smooth subquadric of X of dimension dimY = dimIzh X.
Note that i1(Y ) = 1 by Corollary 74.3. Clearly, the function field F (Y ) is an
isotropy field of X. Moreover, if L is an isotropy field of X, then by Lemma 74.1,
we have Y (L) 6= ∅. Since the variety Y is smooth, there is an F -place F (Y ) ⇀ L
(cf. §103). Therefore, F (Y ) is a generic isotropy field of X.

Suppose that E is an arbitrary 2-generic isotropy field of X. We show that
tr. degF E ≥ dim Y which will finish the proof.

Since E and F (Y ) are both generic isotropy fields of the same X, we have
F -places π : F (Y ) ⇀ E and ε : E ⇀ E′, where E′ is an odd degree field extension
of F (Y ). Let y and y′ be the centers of π and ε ◦ π respectively. Clearly, y′ is a
specialization of y and therefore,

dim y′ ≤ dim y ≤ tr. degF E.

The morphism Spec E′ → Y induced by ε ◦ π gives rise to a prime correspondence
δ : Y Ã Y with odd mult(δ) so that p2∗(δ) = [y′], where p2 : Y × Y → Y is the
second projection. By Theorem 75.4, mult(δt) is odd, hence y′ is the generic point
of Y and dim y′ = dim Y . ¤

The rest of this section is dedicated to determining the canonical 2-dimension
of the class C of all splitting fields of a nondegenerate quadratic form ϕ. Note
for this class C, we have cdim(C) = cdim(Gr) and cdim2(C) = cdim2(Gr), where
Gr = Gr(ϕ), since L ∈ C if and only if Gr(L) 6= ∅. Hence

cdim2(Gr) ≤ cdim(Gr) ≤ dimGr.

Theorem 90.3. Let ϕ be a nondegenerate quadratic form over F . Then

cdim2

(
Gr(ϕ)

)
= ||J(ϕ)||.

Proof. Let E be a 2-generic isotropy field of Gr such that tr.degF E =
cdim2(Gr). As E is an isotropy field, there is a morphism SpecE → Gr over
F . Let Y be the closure of the image of this morphism. We view F (Y ) as a
subfield of E. Clearly, tr.degF E ≥ dim Y .

Since E is 2-generic, there is a field extension L/F (Gr) of odd degree and an
F -place E ⇀ L. Restricting this place to the subfield F (Y ), we get a morphism
f : Spec L → Y as Y is complete. Let g : SpecL → Gr be the morphism induced
by the field extension L/F (Gr). Then the closure Z of the image of the morphism
(f, g) : Spec L → Y × Gr is of odd degree [L : F (Gr)] when projecting to Gr.
Therefore, the image of [Z] under the composition

Ch(Y ×Gr)
(i×1Gr)∗−−−−−−→ Ch(Gr×Gr)

q∗−→ Ch(Gr),

where i : Y → Gr is the closed embedding and q is the second projection, is equal
to [Gr]. In particular, (i× 1Gr)∗([Z]) 6= 0, hence (i× 1Gr)∗ 6= 0.

We claim that the push-forward homomorphism i∗ : Ch(Y ) → Ch(Gr) is also
nontrivial. Let L be the residue field of a point of Y . Consider the induced
morphism j : Spec L → Gr. The pull-back of the element xI in Ch(Gr2) (de-
fined in (87.4)) with respect to the morphism j × 1Gr : GrL → Gr2 is equal to
eI ∈ Ch(GrL) = Ch(GrL). Since the elements eI generate Ch(GrL) by Theo-
rem 86.12, the pull-back homomorphism Ch(Gr2) → Ch(GrL) is surjective. Ap-
plying Proposition 58.18 to the projection p : Y × Gr → Y and the embedding
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i× 1Gr : Y ×Gr → Gr2, we conclude that the product

hY : Ch(Y )⊗ Ch(Gr2) → Ch(Y ×Gr), α⊗ β 7→ p∗(α) · β
is surjective.

By Propositions 49.20 and 58.17, the diagram

Ch(Y )⊗ Ch(Gr2) hY−−−−→ Ch(Y ×Gr)

i∗⊗1

y
y(i×1Gr)∗

Ch(Gr)⊗ Ch(Gr2) hGr−−−−→ Ch(Gr×Gr)

is commutative. As (i × 1Gr)∗ is nontrivial, we conclude that i∗ is also nontrivial.
This proves the claim.

By Proposition 88.1, we have dim Y ≥ ||J(ϕ)||, hence

cdim2(Gr) = tr. degF E ≥ dim Y ≥ ||J(ϕ)||.
It follows from Proposition 88.1 that there is a closed subvariety Y ⊂ Gr of

dimension ||J(ϕ)|| such that [Y ] 6= 0 in Ch(Gr) ⊂ Ch(GrF (Gr)). By Lemma 87.6,
there is a β ∈ Ch(GrF (Gr)) satisfying [Y ] · β 6= 0 in Ch0(GrF (Gr)). It follows from
Proposition 56.11 that the product [Y ] ·β belongs to the image of the push-forward
homomorphism

Ch0

(
YF (Gr)

) → Ch0

(
GrF (Gr)

)
,

therefore Ch0

(
YF (Gr)

) 6= 0. In other words, there is a closed point y ∈ YF (Gr) of
odd degree. Let Z be the closure of the image of y under the canonical morphism
YF (Gr) → Y ×Gr. Note that that the projection Z → Gr is of odd degree deg(y),
hence F (Z) is an extension of F (Gr) of odd degree. Let Y ′ denote the image of the
projection Z → Y , so F (Y ′) is isomorphic to a subfield of F (Z).

We claim that F (Y ′) is a 2-generic splitting field of Gr. Indeed, since Y ′ is a
subvariety of Gr, the field F (Y ′) is a splitting field of Gr. Let L be another splitting
field of Gr. By Lemma 103.2, a geometric F -place F (Gr) ⇀ L can be extended to
an F -place F (Z) ⇀ L′ where L′ is an extension of L of odd degree. Restricting to
F (Y ′), we get an F -place F (Y ′) ⇀ L′. This proves the claim. Therefore, we have

cdim2(Gr) ≤ dim Y ′ ≤ dim Y = ||J(ϕ)||. ¤
Theorem 90.3 and Corollary 88.12 yield

Corollary 90.4 (cf. [74, Th. 1.1]). Let ϕ be a nondegenerate quadratic form of
dimension 2n + 1 such that J(ϕ) = [1, n] (e.g., if C0(ϕ) is a division algebra or if
nGr = 2n). Then

cdim2(Gr) = cdim(Gr) = dim(Gr) =
n(n + 1)

2
.

Example 90.5. Let ϕ be an anisotropic m-fold Pfister form with m ≥ 1. Since
the class of splitting fields of ϕ coincides with the class of isotropy fields, we have
cdim(Gr) = dimIzh(X) = 2m−1− 1. By Theorem 90.3 and Example 88.10, we have
cdim2(Gr) = ||J(ϕ)|| = 2m−1 − 1.

We next compute the canonical dimensions cdim(Gr), cdim2(Gr) and determine
the set J(ϕ) for an excellent quadratic form ϕ. Write the dimension of ϕ in the
form

(90.6) dim ϕ = 2p0 − 2p1 + 2p2 − · · ·+ (−1)s−12ps−1 + (−1)s2ps
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with some integers p0, p1, . . . , ps satisfying p0 > p1 > · · · > ps−1 > ps +1 > 0. Note
that the height h of ϕ equals s + 1 for even dim ϕ, while h = s if dim ϕ is odd.

Let ψ be the ph−1-fold Pfister form ρh−1 over F defined in Theorem 28.3 for
the form ϕ. Since ϕ and ψ have the same classes of splitting fields, we have
cdimGr(ϕ) = cdim Gr(ψ) and cdim2 Gr(ϕ) = cdim2 Gr(ψ). By Example 90.5,

(90.7) cdim
(
Gr(ϕ)

)
= cdim2

(
Gr(ϕ)

)
= 2ph−1−1 − 1.

Proposition 90.8. Let ϕ be an anisotropic excellent form of height h. Then
J(ϕ) = {2ph−1−1 − 1}, where the integer ph−1 is determined in (90.6).

Proof. Note that jh−1 = (dim ϕ − dim ψ)/2 if dimϕ is even and jh−1 =
(dimϕ− dim ψ + 1)/2 if dim ϕ is odd. Hence by Proposition 88.8, every element of
J(ϕ) is at least 2ph−1−1 − 1. By Theorem 90.3, we have cdim2

(
Gr(ϕ)

)
= ||J(ϕ)||.

It follows from (90.7) that J(ϕ) = {2ph−1−1 − 1}. ¤
The notion of canonical dimension of algebraic groups was introduced by Berhuy

and Reichstein in [17]. Here we have presented the more general notion of canonical
dimension and p-canonical dimension of a class of field extensions of a given field
(cf. [77]). The computation of cdim2

(
Gr(ϕ)

)
given in Theorem 90.3 is new. It is

conjectured in [134, Conj. 6.6] that cdim
(
Gr(ϕ)

)
= cdim2

(
Gr(ϕ)

)
.



CHAPTER XVII

Motives of Quadrics

91. Comparison of some discrete invariants of quadratic forms

In this section, F is an arbitrary field, n a positive integer, V a vector space
over F of dimension 2n or 2n + 1, ϕ a nondegenerate quadratic form on V , X the
projective quadric of ϕ. For any positive integer i, we write Gi for the scheme of
i-dimensional totally isotropic subspaces of V . In particular, G1 = X and Gi = ∅
for i > n.

We write Ch(Y ) for the Chow group modulo 2 of an F -scheme Y ; Ch(Ȳ ) is the
colimit of Ch(YL) over all field extensions L/F , Ch(Y ) is the reduced Chow group,
i.e., the image of the homomorphism Ch(Y ) → Ch(Ȳ ).

We write Ch(G∗) for the direct sum
∐

i≥1 Ch(Gi). We recall that Ch(X∗)
stands for

∐
i≥1 Ch(Xi), where Xi is the direct product of i copies of X. We

consider Ch(G∗) and Ch(X∗) as invariants of the quadratic form ϕ. Note that
their components Ch(Gi) and Ch(Xi) are subsets of the finite sets Ch(Ḡi) and
Ch(X̄i) respectively, depending only on dim ϕ.

These invariants are not independent. A relation between them is described in
the following theorem:

Theorem 91.1. The following three invariants of a nondegenerate quadratic form
ϕ of a fixed dimension are equivalent in the sense that if ϕ′ is another nondegenerate
quadratic form with dim ϕ = dim ϕ′ and the values of one of the invariants for ϕ
and ϕ′ are equal, then the values of any other of the invariants for ϕ and ϕ′ are
also equal.

(i) Ch(X∗),
(ii) Ch(Xn),
(iii) Ch(G∗).

Remark 91.2. Although the equivalence of the above invariants means that any
of them can be expressed in terms of any other, it does not seem to be possible to
get manageable formulas relating (iii) with (ii) or (i).

We need some preparation to prove Theorem 91.1. For i ≥ 1, write Fli for the
scheme of flags V1 ⊂ · · · ⊂ Vi of totally isotropic subspaces V1, . . . , Vi of V , where
dim Vj = j. In particular, Fl1 = X and Fli = ∅ for i > n. The following lemma
generalizes Example 66.6:

Lemma 91.3. For any i ≥ 1, the product Fli×X has the canonical structure of
a relative cellular scheme where the bases of the cells are as follows: a rank i − 1
projective bundle over Fli, the scheme Fli+1, and the scheme Fli taken i times.

Proof. We construct a descending cellular filtration

Y = Y (0) ⊃ Y (1) ⊃ · · · ⊃ Y (i+1) ⊃ Y (i+2) = ∅
371
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on the scheme Y = Fli×X as follows: for j ∈ [1, i] the scheme Y (j) is the subscheme
of pairs

(91.4) (V1 ⊂ · · · ⊂ Vi,W )

such that the subspace W + Vj is totally isotropic and Y (i+1) is the subscheme of
the pairs (91.4) with W ⊂ Vi.

The natural projection Y (j−1)\Y (j) → Fli is a vector bundle for j ∈ [1, i]. The
map Y (i) \ Y (i+1) → Fli+1 taking a pair (91.4) to the flag V1 ⊂ · · · ⊂ Vi ⊂ Vi + W
is also a vector bundle. The projection of the scheme Y (i+1) onto Fli is a (rank
i − 1) projective bundle. Of course, if i ≥ n, then Y (i+1) = Y (i) (and the base of
the empty “cell” Y (i) \ Y (i+1) is the empty scheme Fli+1). ¤
Corollary 91.5. The motive of the product Fli×X for i ≤ n canonically decom-
poses as a direct sum, where each summand is some shift of the motive of the
scheme Fli or of the scheme Fli+1. Moreover, a shift of the motive of Fli occurs in
the decomposition and a shift of the motive of Fli+1 also occurs (if i + 1 ≤ n).

Proof. By Corollary 66.4 and Lemma 91.3, the motive of Fli×X decomposes
into a direct sum of summands that are shifts of the motives of Y (i+1), Fli+1, and
Fli, where Y (i+1) is a projective bundle over Fli. By Theorem 63.10, the motive of
Y (i+1) is also a direct sum of shifts of the motive of Fli. ¤
Corollary 91.6. For any r ≥ 1, the motive of Xr canonically decomposes into a
direct sum, where each summand is a shift of the motive of some Fli with i ∈ [1, r].
Moreover, for any i ∈ [1, r] with i ≤ n, a shift of the motive of Fli occurs.

Proof. We induct on r. Since X1 = X = Fl1, the case r = 1 is immediate.
If the statement is proved for some r ≥ 1, then the statement for Xr+1 follows by
Corollary 91.5. ¤
Lemma 91.7. For any i ≥ 1, the motive of Fli canonically decomposes into a
direct sum, where each summand is a shift of the motive of the scheme Gi.

Proof. For each j ∈ [1, i], write Φj for the scheme of flags V1 ⊂ · · · ⊂
Vi−j ⊂ Vi of totally isotropic subspaces Vk of V satisfying dim Vk = k for any k. In
particular, Φ1 = Fli and Φi = Gi. The projections

Fli = Φ1 → Φ2 → · · · → Φi = Gi

are projective bundles. Therefore, the lemma follows from Theorem 63.10. ¤
Combining Corollary 91.6 with Lemma 91.7, we get

Corollary 91.8. For any r ≥ 1, the motive of Xr canonically decomposes into a
direct sum, where each summand is a shift of the motive of some Gi with i ∈ [1, r].
Moreover, for any i ∈ [1, r] with i ≤ n, a shift of the motive of Gi occurs.

Proof of Theorem 91.1. The equivalences (i) ⇔ (iii) and (ii) ⇔ (iii) are
given by Corollary 91.8. ¤
Remark 91.9. One may say that the invariant Ch(Xn) is a “compact form” of
the invariant Ch(X∗) and also that the invariant Ch(G∗) is a “compact form” of
Ch(Xn). However, some properties of these invariants are easier formulated and
proven on the level of Ch(X∗). Among such properties (used many times above), we
have the stability of Ch(X∗) ⊂ Ch(X̄∗) under partial operations on Ch(X̄∗) given
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by permutations of factors of any Xr as well as pull-backs and push-forwards with
respect to partial projections and partial diagonals between Xr and Xr+1. It is
also easier to describe a basis of Ch(X̄∗) and compute multiplication and Steenrod
operations (giving further restrictions on Ch(X∗)) in terms of this basis, than to
do a similar analysis for Ch(Ḡ∗).

92. The Nilpotence Theorem for quadrics

Let Λ be a commutative ring. We shall work in the categories CR∗(F, Λ) and
CR(F, Λ), introduced in §63.

Let C be a class of smooth complete schemes over field extensions of F closed
under taking finite disjoint unions (of schemes over the same field), taking connected
components, and scalar extensions. We say that C is tractable if for any variety X
in C having a rational point and of positive dimension, there is a scheme X ′ in C
satisfying dim X ′ < dim X and M(X ′) ' M(X) in CR∗(F, Λ). A scheme is called
tractable, if it is member of a tractable class.

Our primary example of a tractable scheme will be any smooth projective
quadric over F , the tractable class being the class of (all finite disjoint unions of)
all smooth projective quadrics over field extensions of F (cf. Example 66.7).

A smooth projective scheme is called split if its motive in CR∗(F, Λ) is isomor-
phic to a finite direct sum of several copies of the motive Λ. Any tractable scheme
X splits over an extension of the base field. Moreover, the number of copies of Λ
in the corresponding decomposition is an invariant of X. We call this the rank of
X and denote it by rk X. The number of components of any tractable scheme does
not exceed its rank.

Exercise 92.1. Let X/F be a smooth complete variety such that for any field
extension E/F satisfying X(E) 6= ∅, the scheme XE is split (for example, the vari-
ety of the maximal totally isotropic subspace of a nondegenerate odd-dimensional
quadratic form considered in Chapter XVI). Show that X is tractable.

Exercise 92.2. Show that the product of two tractable schemes is tractable.

Remark 92.3. As shown in [25], the class of all projective homogeneous varieties
(under the action of an algebraic group) is tractable.

The following theorem was initially proved by Rost in the case of quadrics (cf.
Theorem 67.1). The more general case of a projective homogeneous variety was
done in [25].

Theorem 92.4 (Nilpotence Theorem for tractable schemes). Let X be a tractable
scheme over F with M(X) its motive in CR∗(F, Λ) or in CR(F, Λ) and α ∈
EndM(X) a correspondence. If αE ∈ EndM(XE) vanishes for some field ex-
tension E/F , then α is nilpotent.

Proof. It suffices to consider the case of the category CR∗(F, Λ) as the functor
(63.3) is faithful. We fix a tractable class of schemes containing X. We shall
construct a map

N : [0, +∞)× [1, rk X] → [1, +∞)
with the following properties. If Y is a scheme in the tractable class with rk Y ≤
rkX and α ∈ CH(Y 2; Λ) a correspondence vanishing over some field extension



374 XVII. MOTIVES OF QUADRICS

of F , then αN(i,j) = 0 if dim Y ≤ i and the number of i-dimensional connected
components of Y is at most j.

If dim Y = 0, then any extension of scalars induces an injection of CH(Y 2; Λ).
In this case, we set N(0, j) = 1 for any j ≥ 1.

Now order the set [0, +∞) × [1, rk X] lexicographically. Let (i, j) be a pair
with i ≥ 1. Assume that N has been defined on all pairs smaller than (i, j).

Let Y be an arbitrary scheme in the class such that dim Y = i and the number
of the i-dimensional components of Y is j. To simplify the notation, we shall assume
that the field of definition of Y is F . Let Y1 be a fixed i-dimensional component of Y
and set Y0 to be the union of the remaining components of Y . We take an arbitrary
correspondence α ∈ CH(Y 2; Λ) vanishing over a scalar extension and replace it by
αN(i′,j′), where (i′, j′) is the pair preceding (i, j) in the lexicographical order. Then
for any point y ∈ Y1, we have αF (y) = 0, since the motive of the scheme YF (y) is
isomorphic to the motive of another scheme having j − 1 components of dimension
i. Applying Theorem 67.1, we see that

αi+1 ◦ CH(Y1 × Y ; Λ) = 0.

In particular, the composite of the inclusion morphism M(Y1) → M(Y ) with
αi+1 is trivial. Replace α by αi+1. We can view α as a 2 × 2 matrix accord-
ing to the decomposition M(Y ) ' M(Y0)⊕M(Y1). Its entries corresponding to
Hom

(
M(Y1),M(Y0)

)
and to End M(Y1) are 0. Moreover, the matrix entry corre-

sponding to End M(Y0) is nilpotent with N(i′, j′) its nilpotence exponent, as the
number of the i-dimensional components of Y0 is at most j − 1. Replacing α by
αN(i′,j′) , we may assume that α has only one possibly nonzero entry, namely, the
(nondiagonal) entry corresponding to Hom

(
M(Y0),M(Y1)

)
. Therefore, α2 = 0. Set

N(i, j) = 2(i + 1)N(i′, j′)2. We have shown that for any scheme Y in the tractable
class with rk Y ≤ rk X and any correspondence α ∈ CH(Y 2; Λ) vanishing over
some field extension of F we have αN(i,j) = 0 if dim Y = i and the number of i-
dimensional connected components of Y is j. Since N(i, j) ≥ N(i′, j′), one also has
αN(i,j) = 0 if dimY ≤ i and the number of i-dimensional connected components of
Y is smaller than j. ¤

Corollary 92.5. Let X be a tractable scheme over F and let E/F be a field ex-
tension. If q ∈ End M(XE) is an idempotent lying in the image of the restriction
EndM(X) → EndM(XE) in the motivic category CR∗(F, Λ) or CR(F, Λ), then
there exists an idempotent p ∈ End M(X) satisfying pE = q.

Proof. Choose a correspondence p′ ∈ EndM(X) satisfying p′E = q. Let A
(respectively, B) be the (commutative) subring of

End M(X) (respectively, End
(
M(XE)

)
)

generated by p′ (respectively, q). By Theorem 92.4, the kernel of the ring epimor-
phism A ³ B consists of nilpotent elements. It follows that the map SpecB →
Spec A is a homeomorphism and, in particular, induces a bijection of the sets of the
connected components of these topological spaces. Therefore, the homomorphism
A → B induces a bijection of the sets of idempotents of these rings (cf. [18, Ch.
II, §4.3, Prop. 15, Cor. 1]), and we can find a required p inside of A. ¤
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Exercise 92.6. Show that one can take for p some power of p′. (Hint: Prove
and use the fact that the kernel of End X → EndXE is annihilated by a positive
integer.)

Corollary 92.7. Let X and Y be tractable schemes and let p ∈ End M(X) and q ∈
EndM(Y ) be idempotents in the motivic category CR∗(F, Λ) or CR(F, Λ). Let f be
a morphism (X, p) → (Y, q) in the category CM∗(F, Λ) or CM(F, Λ) respectively. If
fE is an isomorphism for some field extension E/F , then f is also an isomorphism.

Proof. By Proposition 63.4, it suffices to prove the result for the category
CR∗(F, Λ).

First suppose that Y = X and q = p. We may assume that the scheme XE

is split and we have fixed an isomorphism of the motive (XE , pE) with the direct
sum of n copies of Λ for some n. Then Aut(XE , pE) = GLn(Λ). Let P (t) ∈ Λ[t]
be the characteristic polynomial of the matrix fE , hence P (fE) = 0. If Q(t) ∈ Λ[t]
satisfies P (t) = P (0) + tQ(t), the endomorphism

fE ◦Q(fE) = Q(fE) ◦ fE = P (fE)− P (0) = −P (0) = ±det fE

is multiplication by an invertible element ε = ± det fE in the coefficient ring Λ. By
Theorem 92.4, the endomorphism α ∈ End(X, p) satisfying f ◦Q(f) = Q(f) ◦ f =
ε + α is nilpotent. Thus the composites f ◦Q(f) and Q(f) ◦ f are automorphisms.
Consequently f is an automorphism.

In the general case, consider the transpose f t : (Y, q) → (X, p) of f . Since fE

is an isomorphism, f t
E is also an isomorphism. It follows by the previous case that

the composites f ◦f t and f t ◦f are automorphisms. Thus f is an isomorphism. ¤
Corollary 92.8. Let X be a tractable scheme with p, p′ ∈ End M(X) idempotents
satisfying pE = p′E for some field E ⊃ F . Then the motives (X, p) and (X, p′) are
canonically isomorphic.

Proof. The morphism p′ ◦ p : (X, p) → (X, p′) is an isomorphism because it
becomes an isomorphism over E. ¤

93. Criterion of isomorphism

In this section, we let Λ = Z/2Z.

Theorem 93.1. Let X and Y be smooth projective quadrics over F . Then the
motives of X and Y in the category CR(F,Z/2Z) are isomorphic if and only if
dim X = dim Y and i0(XL) = i0(YL) for any field extension L/F .

Proof (cf. [71]). The “only if” part of the statement is easy: the motive
M(X) of X in CR(F,Z/2Z) determines the graded group Ch∗(X) which in turn
determines dim X and i0(X) by Corollary 72.6. To prove the “if” part assume that
dim X = dim Y and i0(XL) = i0(YL) for any field extension L/F . As before we
write D for dimX and set d = [D/2].

The case of split X and Y is trivial. Note that in the split case an isomorphism
M(X) → M(Y ) is given by the cycle cXY + deg(l2d)(h

d × hd), where

cXY =
d∑

i=0

(hi × li + li × hi) ∈ Ch(X × Y )

(cf. Lemma 73.1). By Corollary 92.7, it follows in the nonsplit case that the motives
of X and Y are isomorphic if the cycle cXY ∈ Ch(X̄ × Ȳ ) is rational.
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To prove Theorem 93.1 in the general case, we show by induction on D that
the cycle cXY is rational.

If X (and therefore Y ) is isotropic, then the cycle cX0Y0 is rational by the
induction hypothesis, where X0 and Y0 are the anisotropic parts of X and Y re-
spectively. It follows that the cycle cXY is rational in the isotropic case. We may
therefore assume that X and Y are anisotropic.

To finish the proof we need two results. For their proofs we introduce some
special notation and terminology. Write N for the set of the symbols

{hi × li, li × hi}i∈[0, d].

For any subset I ⊂ N , write cXY (I) for the sum of the basis elements of ChD(X̄ ×
Ȳ ) corresponding to the symbols of I. Similarly, define the cycles cY X(I) ∈
ChD(Ȳ × X̄), cXX(I) ∈ ChD(X̄2), and cY Y (I) ∈ ChD(Ȳ 2).

We call a subset I ⊂ N admissible, if the cycles cXY (I) and cY X(I) are rational
and weakly admissible if cXX(I) and cY Y (I) are rational.

Since the set N is weakly admissible by Lemma 73.1, the complement N \ I of
any weakly admissible set I is also weakly admissible.

Call a subset I ⊂ N symmetric, if it is stable under transposition, i.e., It = I.
For any I ⊂ N , the set I ∪ It is the smallest symmetric set containing I; we call it
the symmetrization of I.

Lemma 93.2. (1) Any admissible set is weakly admissible.
(2) The symmetrization of an admissible set is admissible.
(3) A union of admissible sets is admissible.

Proof. (1): This follows from the formulas which hold up to the addition of
hd × hd:

cXX(I) = cY X(I) ◦ cXY (I) and cY Y (I) = cXY (I) ◦ cY X(I).

(3): Let I and J be admissible sets. The cycle cXY (I ∪ J) is rational as

cXY (I ∪ J) = cXY (I) + cXY (J) + cXY (I ∩ J)

and up to the addition of hd × hd, we have cXY (I ∩ J) = cXY (J) ◦ cXX(I). The
rationality of cY X(I ∪ J) is proved analogously.

(2): The transpose It of an admissible set I ⊂ N is admissible. Therefore, by
(3), the union I ∪ It is admissible. ¤

The key observation is:

Proposition 93.3. Let I be a weakly admissible set and let hr × lr ∈ I be the
element with smallest r. Then hr × lr is contained in an admissible set.

Assuming Proposition 93.3, we finish the proof of Theorem 93.1 by showing
that the set N is admissible.

Note that ∅ is a symmetric admissible set. Let I0 be a symmetric admissible
set. It suffices to show that if I0 6= N , then I0 is contained in a strictly bigger
symmetric admissible set I1.

By Lemma 93.2(1), the set I0 is weakly admissible. Therefore, the set I := N\I0

is weakly admissible as well. Since the set I is nonempty and symmetric, hi× li ∈ I
for some i. Take the smallest r with hr × lr ∈ I. By Proposition 93.3, there is an
admissible set J containing hr × lr. By Lemma 93.2(3), the union I0 ∪ J is also



93. CRITERION OF ISOMORPHISM 377

an admissible set. Let I1 be its symmetrization. Then the set I1 is admissible by
Lemma 93.2(2). It is symmetric and contains I0 properly because hr × lr ∈ I1 \ I0.

So to finish, we must only prove Proposition 93.3.

Proof of Proposition 93.3. Multiplying the generic point morphism

Spec F (X) → X

by X × Y (on the left), we get a flat morphism

(X × Y )F (X) → X × Y ×X.

This induces a surjective pull-back homomorphism

f : ChD(X̄ × Ȳ × X̄) → ChD(X̄ × Ȳ )

mapping each basis element of the form β1 × β2 × h0 to β1 × β2 and vanishing on
the remaining basis elements. Note that this homomorphism maps the subgroup of
F -rational cycles onto the subgroup of F (X)-rational cycles (cf. Corollary 57.11).

Since the quadrics XF (X) and YF (X) are isotropic, the cycle cXY (N) is F (X)-
rational. Therefore, the set f−1

(
cXY (N)

)
contains a rational cycle. Any cycle in

this set has the form

(93.4) c := cXY (N)× h0 +
∑

α× β × γ,

where the sum is taken over some homogeneous cycles α, β, γ with codim γ positive.
In the following, we assume that (93.4) is a rational cycle.

Let I and r be as in the statement of Proposition 93.3. Viewing the cycle (93.4)
as a correspondence from X̄ to Ȳ × X̄, we may take the composition c ◦ cXX(I).
The result is a rational cycle on X̄ × Ȳ × X̄ that (up to the addition of hd × hd) is
equal to

(93.5) c′ := cXY (I)× h0 +
∑

α× β × γ,

where the sum is taken over some (other) homogeneous cycles α, β, γ with codim γ >
0 and codim α ≥ r. Take the pull-back of the cycle c′ with respect to the morphism
X̄ × Ȳ → X̄ × Ȳ × X̄, given by (x, y) 7→ (x, y, x), that is induced by the diagonal
of X̄. The result is a rational cycle on X̄ × Ȳ that is equal to

(93.6) c′′ := cXY (I) +
∑

(α · γ)× β,

where codim(α · γ) > r. It follows that c′′ = cXY (J ′) for some set J ′ containing
hr × lr.

Repeating the procedure with X and Y interchanged, we can find a set J ′′

containing hr × lr with the cycle cY X(J ′′) rational. Then the set J := J ′ ∩ J ′′

contains hr × lr and is admissible as cXY (J) coincides (up to addition of hd × hd)
with the composition cXY (J ′) ◦ cY X(J ′′) ◦ cXY (J ′) and a similar equality holds for
cY X(J). ¤

The proof of Theorem 93.1 is now complete. ¤

Remark 93.7. By Theorem 27.3, an isomorphism of motives of odd-dimensional
quadrics gives rise to an isomorphism of the corresponding varieties. The question
whether for a given even n the conditions

n = dim ϕ = dim ψ and i0(ϕL) = i0(ψL) for any L
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imply that ϕ and ψ are similar is answered positively if characteristic is not 2 and
n ≤ 6 in [62], and negatively for all n ≥ 8 but 12 in [63]. It remains open for
n = 12.

94. Indecomposable summands

In this section, Λ = Z/2Z and we work in the category CM(F,Z/2Z) of graded
motives. Let X be a smooth anisotropic projective quadric of dimension D. We
write P for the set of idempotents in ChD(X2) = EndM(X). We shall provide
some information about objects (X, p) (with p ∈ P ) in the category CM(F,Z/2Z).
For such p (or, more generally, for any element p ∈ ChD(X2)), let p̄ stand for the
essence (as defined in §72) of the image of p in the reduced Chow group Ch(X2).
We write [(X, p)] for the isomorphism class of the motive (X, p).

Theorem 94.1. (1) The map
{
[(X, p)]

}
p∈P

→ ChD(X2) given by [(X, p)] 7→ p̄

is well-defined and injective; its image is the group CheD(X2) of all D-dimensional
essential cycles.

(2) Let p, p1, p2 ∈ P . Then (X, p) ' (X, p1)⊕(X, p2) if and only if p̄ is a
disjoint union of p̄1 and p̄2, i.e., p̄1 and p̄2 do not intersect and p̄ = p̄1 + p̄2. In
particular, the motive (X, p) is indecomposable if and only if the cycle p̄ is minimal.

(3) For any p, p′ ∈ P , the motives (X, p) and (X, p′) are isomorphic to twists of
each other if and only if p̄ and p̄′ are derivatives of the same rational cycle. More
precisely, if i ≥ 0, then (X, p) ' (X, p′)(i) if and only if p̄ = (h0 × hi) · α and
p̄′ = (hi × h0) · α for some α ∈ ChD+i(X2).

Proof. Let E/F be a field extension such that the quadric XE is split.
(1): By Corollary 92.7, we have [(X, p)] = [(X, p′)] if and only if [(X, p)E ] =

[(X, p′)E ]. Assume that D is odd. Then the basis of Ch(X2
E) is a system of

orthogonal idempotents. Therefore any element α ∈ Ch(X2
E) is an idempotent and

the motive (XE , α) is isomorphic to the direct sum of the motives (XE , β) over all
basis elements β appearing in the decomposition of α. Besides, (XE , hi × li) '
Z/2Z(i) and (XE , li×hi) ' Z/2Z(D− i) for any i ∈ [0, d]. It follows that the map
in (1) is well-defined and injective. The statement on the image of the map is a
consequence of Corollary 92.5.

Now assume that D is even. In this case the basis elements

{hi × li, li × hi}i∈[0, d−1]

of Ch(X2
E) are orthogonal idempotents, (XE , hi× li) ' Z/2Z(i) and (XE , li×hi) '

Z/2Z(D−i) for any i ∈ [0, d−1]. Moreover, each of these idempotents is orthogonal
to each of the remaining basis elements hd × ld, ld × hd, hd × hd, and ld × ld. The
elements hd× ld, hd× ld +hd×hd, ld×hd and ld×hd +hd×hd are also idempotents,
each of the four motives produced by these idempotents is isomorphic to Z/2Z(d).

If the even integer D is not divisible by 4, then l2d = 0 (cf. Exercise 68.3) and it
follows that the idempotents hd× ld and ld×hd are orthogonal and their sum is the
fifth (the last) nonzero idempotent in the span of hd× ld, ld×hd and hd×hd. If D
is divisible by 4, then l2d = l0 (cf. Exercise 68.3) and it follows that the idempotents
hd × ld and ld × hd + hd × hd are orthogonal and their sum is the fifth (the last)
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nonzero idempotent in the span of hd × ld, ld × hd and hd × hd. The statement (1)
follows now from Lemmas 73.2 and 73.19.

(2): (X, p) ' (X, p1)⊕(X, p2) if and only if (X, p)E ' (X, p1)E ⊕(X, p2)E if
and only if p̄ is a disjoint union of p̄1 and p̄2.

(3): A correspondence α ∈ ChD+i(X2) determines an isomorphism (X, p)E →
(X, p′)(i)E if and only if p̄ = (h0 × hi) · ᾱ and p̄′ = (hi × h0) · ᾱ. ¤
Corollary 94.2. The motive of any anisotropic smooth projective quadric X de-
composes into a direct sum of indecomposable summands. Moreover, such a decom-
position is unique and the number of summands coincides with the number of the
minimal cycles in ChD(X2), where D = dim X.

Exercise 94.3 (Rost motives). Let π be an anisotropic n-fold Pfister form. Show
the following:

(1) The decomposition of the motive of the projective quadric of π into a sum
of indecomposable summands has the form

∐2n−1−1
i=0 Rπ(i) for some motive Rπ

uniquely determined by π. The motive Rπ is called the Rost motive associated to
π.

(2) For any splitting field extension E/F of π, we have

(Rπ)E ' Z/2Z⊕Z/2Z(2n−1 − 1).

(3) The motive of the quadric given by any 1-codimensional subform of π

decomposes as
∐2n−1−2

i=0 Rπ(i).
(4) Let ϕ be a (2n−1 + 1)-dimensional nondegenerate subform of π. Find a

smooth projective quadric X such that the motive of the quadric of ϕ decomposes
as M(X)(1)⊕Rπ. Finally, reprove all this for motives with integral coefficients.

Theorems 93.1 and 94.1 hold in the more general case of motives with integral
coefficients. This was done by Vishik in [133]. We note that the integral versions
follow from the Z/2Z-versions by [51] (cf. also [66, Th. 11.2(c)] or [67, Ch. E]).
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95. Formally real fields

In this section, we review the Artin-Schreier theory of formally real fields. These
results and their proofs, may be found in the books by Lam [89] and Scharlau [121].

Let F be a field, P ⊂ F a subset. We say that P is a preordering of F if P
satisfies all of the following:

P + P ⊂ P, P · P ⊂ P, −1 /∈ P, and
∑

F 2 ⊂ P.

A preordering P of F is called an ordering if, in addition,

F = P ∪ −P.

A field F is called formally real if

D̃(∞〈1〉) := {x ∈ F | x is a sum of squares in F}
is a preordering of F , equivalently if −1 is not a sum of squares in F , i.e., the
polynomial t21 + · · · + t2n has no nontrivial zero over F for any (positive) integer
n. Clearly, if F is formally real, then the characteristic of F must be zero. (If
charF 6= 2, then F is not formally real if and only if F = D̃(∞〈1〉).) One checks
that a preordering is an ordering if and only if it is maximal with respect to set
inclusion in the set of preorderings of F . By Zorn’s lemma, maximal preorderings
and therefore orderings exist for F if it is formally real. In particular, a field F is
formally real if and only if the space of orderings on F ,

X(F ) := {P | P is an ordering of F}
is not empty. Every P ∈ X(F ) (if any) contains the preordering D̃(∞〈1〉). Let
P ∈ X(F ) and 0 6= x ∈ F . If x ∈ P , then x is called positive (respectively, negative)
with respect to P and we write x >P 0 (respectively, x <P 0). Elements that are
positive (respectively, negative) with respect to all orderings of F (if any) are called
totally positive (respectively, totally negative). In fact, we have

Proposition 95.1 (cf. [89, Th. VIII.1.12] or [121, Cor. 3.1.7]). Suppose that F is
formally real. Then D̃(∞〈1〉) =

⋂
P∈X(F ) P , i.e., a nonzero element of F is totally

positive if and only if it is a sum of squares.

It follows that a formally real field has precisely one ordering if and only if
D̃(∞〈1〉) is an ordering in F , e.g., Q or R. The field of real numbers even has R2

as an ordering. A formally real field F having F 2 as an ordering is called euclidean.
For such a field every element is either a square or the negative of a square. For
example, the field of real constructible numbers is euclidean.

A formally real field is called real closed if it has no proper algebraic extension
that is formally real. If F is such a field, then it must be euclidean. Let K/F be
an algebraic field extension with K real closed. Then K2 ∩ F is an ordering on F .

Let Q ∈ X(K). The pair (K, Q) is called an ordered field. Let K/F be a
field extension with K formally real. If P ∈ X(F ) satisfies P = Q ∩ F , then
(K,Q)/(F, P ) is called an extension of ordered fields and Q is called an extension
of P . If, in addition, K/F is algebraic and there exist no extension (L,R)/(K,Q)
with L/K nontrivial algebraic, we call (K, Q) a real closure of (F, P ).

Proposition 95.2 (cf. [121, Th. 3.1.14]). If (K, Q) is a real closure of (F, P ),
then K is real closed and Q = K2.

The key to proving this is
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Theorem 95.3 (cf. [121, Th. 3.1.9]). Let (F, P ) be an ordered field.

(1) Let d ∈ F and K = F (
√

d). Then there exists an extension of P to K if
and only if d ∈ P .

(2) If K/F is finite of odd degree, then there exists an extension of P to K.

The main theorem of Artin-Schreier Theory is

Theorem 95.4 (cf. [89, Th. VIII.2.8] or [121, Th. 3.1.13 and Th. 3.2.8]). Every
ordered field (F, P ) has a real closure (F , F

2
) and this real closure is unique up to

a canonical F -isomorphism and this isomorphism is order-preserving.

Because of the last results, if we fix an algebraic closure F̃ of a formally real
field F and P ∈ X(F ), then there exists a unique real closure (F, F

2
) of (F, P ) with

F ⊂ F̃ . We denote F by FP .

96. The space of orderings

We view the space of orderings X(F ) on a field F as a subset of the space of
functions {±1}F× by the embedding

X(F ) → {±1}F× via P 7→ (signP : x 7→ signP x)

(the sign of x in F rel P ). Giving {±1} the discrete topology, we have {±1}F×

is Hausdorff and by Tychonoff’s Theorem, compact. The collection of clopen (i.e.,
open and closed) sets given by

(96.1) Hε(a) := {g ∈ {±1}F× | g(a) = −ε}
for a ∈ F× and ε ∈ {±1} forms a subbase for the topology of {±1}F× , hence
{±1}F× is also totally disconnected. Consequently, {±1}F× is a boolean space
(i.e., a compact totally disconnected Hausdorff space). Let X(F ) have the induced
topology arising from the embedding f : X(F ) → {±1}F× .

Theorem 96.2. X(F ) is a boolean space.

Proof. It suffices to show that X(F ) is closed in {±1}F× . Take any element
s ∈ {±1}F× \ f

(
X(F )

)
. First suppose that s is the constant function ε. Then the

clopen set Hε(ε) is disjoint from f
(
X(F )

)
and contains s, so it separates s from

f
(
X(F )

)
. Assume that s is not a constant function, hence, is surjective. Since

s−1(1) is not an ordering on F , there exist a, b ∈ F× such that s(a) = 1 = s(b)
(i.e., a, b are “positive”) but either s(a + b) = −1 or s(ab) = −1. Let c = ab if
s(ab) = −1, otherwise let c = a+ b. As there cannot be an ordering in which a and
b are positive but c negative, H1(−a)∩H1(−b)∩H−1(−c) is disjoint from f

(
X(F )

)
and contains s, so it separates s from f

(
X(F )

)
. ¤

As we are identifying X(F ) with its image in {±1}F× , we see that the collection
of sets

H(a) = HF (a) := H1(a) ⊂ X(F ), a ∈ F×,

forms a subbasis of clopen sets for the topology of X(F ) called the Harrison subbasis.
So H(a) is the set of orderings on which a is negative. It follows that the collection
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of sets

H(a1, . . . , an) = HF (a1, . . . , an) :=
n⋂

i=1

H(ai), a1, . . . , an ∈ F×

forms a basis for the topology of X(F ).

97. Cn-fields

We call a homogeneous polynomial of (total) degree d a d-form. A field F is
called a Cn-field if every d-form over F in at least dn + 1 variables has a nontrivial
zero over F .

For example, a field is algebraically closed if and only if it is a C0-field. Every
finite field is a C1-field by the Chevalley-Warning Theorem (cf. [123], I.2, Th. 3).

An n-form in n-variables over F is called a normic form if it has no nontrivial
zero. For example, let E/F be a finite field extension of degree n. Let {x1, . . . , xn}
be an F -basis for E. Then the norm form of the extension E/F is the polynomial

NE(t1,...,tn)/F (t1,...,tn)(t1x1 + · · ·+ tnxn)

over F in the variables t1, . . . , tn is of degree n and has no nontrivial zero, hence it
is normic (the reason for the name).

Lemma 97.1. Let F be a nonalgebraically closed field. Then there exist normic
forms of arbitrarily large degree.

Proof. There exists a normic form ϕ of degree n for some n > 1. Having
defined a normic form ϕs of degree ns, let

ϕs+1 := ϕ(ϕs|ϕs| . . . |ϕs).

This notation means that new variables are to be used after each occurrence of |.
The form ϕs+1 of degree ns+1 has no nontrivial zero. ¤

Theorem 97.2. Let F be a Cn-field and let f1, . . . , fr be d-forms in N common
variables. If N > rdn, then the forms have a common nontrivial zero in F .

Proof. Suppose first that n = 0 (i.e., F is algebraically closed) or d = 1. As
N > r, it follows from [125, Ch. I, §6.2, Prop.] that the forms have a common
nontrivial zero over F .

So we may assume that n > 0 and d > 1. By Lemma 97.1, there exists a normic
form ϕ of degree at least r. We define a sequence of forms ϕi, i ≥ 1, of degree di

in Ni variables as follows. Let ϕ1 = ϕ. Assuming that ϕi is defined let

ϕi+1 = ϕ(f1, . . . , fr | f1, . . . , fr | . . . | f1, . . . , fr | 0, . . . , 0),

where zeros occur in < r places. The forms fi between two consecutive signs | have
the same sets of variables.

If x ∈ R, let [x] denote the largest integer ≤ x. We have

(97.3) di+1 = ddi and Ni+1 = N
[Ni

r

]
.

Note that since N > rdn ≥ 2r, we have Ni →∞ as i →∞.
Set

(97.4) αi =
r

Ni

[Ni

r

]
.
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We have αi → 1 as i →∞. It follows from (97.3) and (97.4) that
Ni+1

dn
i+1

=
Ni

dn
i

· αiN

rdn
.

Since N > rdn and αi → 1, there is a β > 1 and an integer s such that
αiN

rdn
> β

if i ≥ s. Therefore, we have
Ni+1

dn
i+1

>
Ni

dn
i

· β,

if i ≥ s. It follows that Nk > dn
k for some k. As F is a Cn-field, the form ϕk

has a nontrivial zero. Choose the smallest k with this property. By definition of
ϕk, a nontrivial zero of ϕk gives rise to a nontrivial common zero of the forms
f1, . . . , fr. ¤

Corollary 97.5. Let F be a Cn-field and let K/F be an algebraic field extension.
Then K is a Cn-field.

Proof. Let f be a d-form over K in N variables with N > dn. The coefficients
of f belong to a finite field extension of F , so we may assume that K/F is a finite
extension. Let {x1, . . . , xr} be an F -basis for K. Choose variables tij , i = 1, . . . , N ,
j = 1, . . . , r over F and set

ti = ti1x1 + · · ·+ tirxr

for every i. Then

f(t1, . . . , tN ) = f1(tij)x1 + · · ·+ fr(tij)xr

for some d-forms fj in rN variables. Since rN > rdn, it follows from Theorem
97.2 that the forms fj have a nontrivial common zero over F which produces a
nontrivial zero of f over K. ¤

Corollary 97.6. Let F be a Cn-field. Then F (t) is a Cn+1-field.

Proof. Let f be a d-form in N variables over F (t) with N > dn+1. Clearing
denominators of the coefficients of f we may assume that all the coefficients are
polynomials in t. Choose variables tij , i = 1, . . . , N , j = 0, . . . ,m for some m and
set

ti = ti0 + ti1t + · · ·+ timtm

for every i. Then

f(t1, . . . , tN ) = f0(tij)t0 + · · ·+ fdm+r(tij)tdm+r

for some d-forms fj in N(m+1) variables over F and r = degt(f). Since N > dn+1,
one can choose m such that N(m + 1) > (dm + r + 1)dn. By Theorem 97.2, the
forms fj have a nontrivial common zero over F which produces a nontrivial zero of
f over F (t). ¤

Corollaries 97.5 and 97.6 yield

Theorem 97.7. Let F be a Cn-field and let K/F be a field extension of transcen-
dence degree m. Then K is a Cn+m-field.

As algebraically closed fields are C0-fields, the theorem shows that a field of
transcendence degree n over an algebraically closed field is a Cn-field. In particular,
we have the classical Tsen Theorem:
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Theorem 97.8. If F is algebraically closed and K/F is a field extension of tran-
scendence degree 1, then the Brauer group Br(K) is trivial.

Proof. Let A be a central division algebra over K of degree d > 1. The
reduced norm form Nrd of D is a form of degree d in d2 variables. By Theorem
97.7, K is a C1-field, hence Nrd has a nontrivial zero, a contradiction. ¤

98. Algebras

For more details see [86] and [52].

98.A. Semisimple, separable and étale algebras. Let F be a field. A
finite-dimensional (associative, unital) F -algebra A is called simple if A has no
nontrivial (two-sided) ideals. By Wedderburn’s theorem, every simple F -algebra is
isomorphic to the matrix algebra Mn(D) for some n and a division F -algebra D
uniquely determined by A up to isomorphism over F .

An F -algebra A is called semisimple if A is isomorphic to a (finite) product of
simple algebras.

An F -algebra A is called separable if the L-algebra AL := A⊗F L is semisimple
for every field extension L/F . This is equivalent to A being a finite product of
the matrix algebras Mn(D), where D is a division F -algebra with center a finite
separable field extension of F . Separable algebras satisfy the following descent
condition: If A is an F -algebra and E/F is a field extension, then A is separable if
and only if AE is separable as an E-algebra.

Let A be a finite-dimensional commutative F -algebra. If A is separable, it is
called étale. Consequently, A is étale if and only if A is a finite product of finite
separable field extensions of F . An étale F -algebra A is called split if A is isomorphic
to a product of several copies of F . Let A be a commutative (associative, unital)
F -algebra. The determinant (respectively, the trace) of the linear endomorphism
of A given by left multiplication by an element a ∈ A is called the norm NA(a)
(respectively, the trace TrA(a)). We have TrA(a + a′) = TrA(a) + TrA(a′) and
NA(aa′) = NA(a)NA(a′) for all a, a′ ∈ A. Every a ∈ A satisfies the characteristic
polynomial equation

an − TrA(a)an−1 + · · ·+ (−1)n NA(a) = 0

where n = dim A.

98.B. Quadratic algebras. A quadratic algebra A over F is an F -algebra of
dimension 2. A quadratic algebra is necessarily commutative. Every element a ∈ A
satisfies the quadratic equation

(98.1) a2 − TrA(a)a + NA(a) = 0.

For every a ∈ A, set ā := TrA(a)− a. We have aa′ = āā′ for all a, a′ ∈ A. Indeed,
since dim A = 2, it suffices to check the equality when a ∈ F or a′ ∈ F (this is
obvious) and when a′ = a (it follows from the quadratic equation). Thus the map
a 7→ ā is an algebra automorphism of A of exponent 2. We have

TrA(a) = a + ā and NA(a) = aā.

A quadratic F -algebra A is étale if A is either a quadratic separable field extension
of F or A is split, i.e., is isomorphic to F × F .

Let A and B be two quadratic étale F -algebras. The subalgebra A ? B of the
tensor product A ⊗F B consisting of all elements stable under the automorphism
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of A ⊗F B defined by x ⊗ y 7→ x̄ ⊗ ȳ is also a quadratic étale F -algebra. The
operation ? on quadratic étale F -algebras yields a (multiplicative) group structure
on the set Ét2(F ) of isomorphism classes [A] of quadratic étale F -algebras A. Thus
[A] · [B] = [A ? B]. Note that Ét2(F ) is an abelian group of exponent 2.

Example 98.2. If charF 6= 2, every quadratic étale F -algebra is isomorphic to

Fa := F [t]/(t2 − a)

for some a ∈ F×. Let j be the class of t in Fa. For every u = x + yj, we have

ū = x− yj, Tr(u) = 2x, and N(u) = x2 − ay2.

The assignment a 7→ [Fa] gives rise to an isomorphism F×/F×2 ∼= Ét2(F ).

Example 98.3. If charF = 2, every quadratic étale F -algebra is isomorphic to

Fa := F [t]/(t2 + t + a)

for some a ∈ F . Let j be the class of t in Fa. For every u = x + yj, we have

ū = x + y + yj, Tr(u) = y, and N(u) = x2 + xy + ay2.

The assignment a 7→ [Fa] induces an isomorphism F/ Im ℘ ∼= Ét2(F ), where the
Artin-Schreier map ℘ : F → F is defined by ℘(x) = x2 + x.

98.C. Brauer group. An F -algebra A is called central if F · 1 coincides with
the center of A. A central simple F -algebra A is called split if A ∼=Mn(F ) for some
n.

Two central simple F -algebras A and B are called Brauer equivalent ifMn(A) ∼=
Mm(B) for some n and m. For example, all split F -algebras are Brauer equivalent.

The set Br(F ) of all Brauer equivalence classes of central simple F -algebras
is a torsion abelian group with respect to the tensor product operation A ⊗F B,
called the Brauer group of F . The identity element of Br(F ) is the class of split
F -algebras.

The class of a central simple F -algebra A will be denoted by [A] and the product
of [A] and [B] in the Brauer group, represented by the tensor product A⊗F B, will
be denoted by [A] · [B].

The inverse class of A in Br(F ) is given by the class of the opposite algebra
Aop. The order of [A] in Br(F ) is called the exponent of A and will be denoted
by exp(A). In particular, exp(A) divides 2 if and only if Aop ∼= A, i.e., A has an
anti-automorphism.

For an integer m, we write Brm(F ) for the subgroup of all classes [A] ∈ Br(F )
such that [A]m = 1.

Let A be a central simple algebra over F and let L/F be a field extension. Then
AL is a central simple algebra over L. (In particular, every central simple F -algebra
is separable.) The correspondence [A] 7→ [AL] gives rise to a group homomorphism

rL/F : Br(F ) → Br(L).

We set Br(L/F ) := Ker rL/F . The class A is said to be split over L (and L/F
is called a splitting field extension of A) if the algebra AL is split, equivalently
[A] ∈ Br(L/F ).

A central simple F -algebra A is isomorphic to Mk(D) for a central division F -
algebra D, unique up to isomorphism. The integers

√
dim D and

√
dim A are called

the index and the degree of A respectively and denoted by ind(A) and deg(A).
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Fact 98.4. Let A be a central simple algebra over F and L/F a finite field exten-
sion. Then

ind(AL) | ind(A) | ind(AL) · [L : F ].

Corollary 98.5. Let A be a central simple algebra over F and L/F a finite field
extension. Then

(1) If L is a splitting field of A, then ind(A) divides [L : F ].
(2) If [L : F ] is relatively prime to ind(A), then ind(AL) = ind(A).

Fact 98.6. Let A be a central division algebra over F .
(1) A subfield K ⊂ A is maximal if and only if [K : F ] = ind(A). In this case

K is a splitting field of A.
(2) Every splitting field of A of degree ind(A) over F can be embedded into A

over F as a maximal subfield.

98.D. Severi-Brauer varieties. Let A be a central simple F -algebra of de-
gree n. Let r be an integer dividing n. The generalized Severi-Brauer variety
SBr(A) of A is the variety of right ideals of dimension rn in A [86, 1.16]. We
simply write SB(A) for SB1(A).

If A is split, i.e., A = End(V ) for a vector space V of dimension n, every
right ideal I in A of dimension rn has the form I = Hom(V, U) for a uniquely
determined subspace U ⊂ V of dimension r. Thus the correspondence I 7→ U yields
an isomorphism SBr(A) ∼= Grr(V ), where Grr(V ) is the Grassmannian variety of
r-dimensional subspaces in V . In particular, SB(A) ∼= P(V ).

Proposition 98.7 ([86, Prop. 1.17]). Let A be a central simple F -algebra and let
r be an integer dividing deg(A). Then the Severi-Brauer variety X = SBr(A) has a
rational point over an extension L/F if and only if ind(AL) divides r. In particular,
SB(A) has a rational point over L if and only if A is split over L.

Let V1 and V2 be vector spaces over F of finite dimension. The Segre closed
embedding is the morphism

P(V1)× P(V2) → P(V1 ⊗F V2)

taking a pair of lines U1 and U2 in V1 and V2 respectively to the line U1 ⊗F U2 in
V1 ⊗F V2.

Example 98.8. The Segre embedding identifies P1
F ×P1

F with a projective quadric
in P3

F .

The Segre embedding can be generalized as follows. Let A1 and A2 be two
central simple algebras over F . Then the correspondence (I1, I2) 7→ I1 ⊗ I2 yields
a closed embedding

SB(A1)× SB(A2) → SB(A1 ⊗F A2).

98.E. Quaternion algebras. Let L/F be a Galois quadratic field extension
with Galois group {e, g} and b ∈ F×. The F -algebra Q = (L/F, b) := L ⊕ Lj,
where the symbol j satisfies j2 = b and jl = g(l)j for all l ∈ L, is central simple
of dimension 4 and is called a quaternion algebra. We have Q is either split, i.e.,
isomorphic to the matrix algebra M2(F ), or a division algebra. The algebra Q
carries a canonical involution : Q → Q satisfying j̄ = −j and l̄ = g(l) for all
l ∈ L.
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Using the canonical involution, we define the linear reduced trace map as

Trd : Q → F by Trd(q) = q + q̄,

and the quadratic reduced norm map as

Nrd : Q → F by Nrd(q) = q · q̄.
An element q ∈ Q is called a pure quaternion if Trd(q) = 0, or equivalently,

q̄ = −q. Denote by Q′ the 3-dimensional subspace of all pure quaternions. We have
Nrd(q) = −q2 for any q ∈ Q′.

Proposition 98.9. Every central division algebra of dimension 4 is isomorphic to
a quaternion algebra.

Proof. Let L ⊂ Q be a separable quadratic subfield. By the Skolem-Noether
Theorem, the only nontrivial automorphism g of L over F extends to an inner
automorphism of Q, i.e., there is j ∈ Q× such that jlj−1 = g(l) for all l ∈ L.
Clearly, Q = L⊕Lj and j2 commutes with j and L. Hence j2 belongs to the center
of Q, i.e., b := j2 ∈ F×. Therefore, Q is isomorphic to the quaternion algebra
Q = (L/F, b). ¤

Example 98.10. If charF 6= 2, a separable quadratic subfield L of a quaternion
algebra Q = (L/F, b) is of the form L = F (i) with i2 = a ∈ F×. Hence Q has a
basis {1, i, j, k := ij} with multiplication table

i2 = a, j2 = b, ji + ij = 0,

for some b ∈ F×. We shall denote the algebra generated by i and j with these
relations by

(
a,b
F

)
.

The space of pure quaternions has {i, j, k} as a basis. For every q = x + yi +
zj + wk with x, y, z, w ∈ F , we have

q̄ = x− yi− zj − wk, Trd(q) = 2x, and Nrd(q) = x2 − ay2 − bz2 + abw2.

Example 98.11. If charF = 2, a separable quadratic subfield L of a quaternion
algebra Q = (L/F, b) is of the form L = F (s) with s2 + s + c = 0 for some c ∈ F .
Set i = sj/b. We have i2 = a := c/b. Hence Q has a basis {1, i, j, k := ij} with the
multiplication table

(98.12) i2 = a, j2 = b, ji + ij = 1.

We shall denote by
[

a,b
F

]
the algebra given by the generators i and j and the

relations (98.12). Note that this is also a quaternion algebra (in fact split) when
b = 0.

The space of pure quaternions has {1, i, j} as a basis. For every q = x + yi +
zj + wk with x, y, z, w ∈ F , we have

q̄ = (x + w) + yi + zj + wk, Trd(q) = w,

and Nrd(q) = x2 + ay2 + bz2 + abw2 + xw + yz.

The classes of quaternion F -algebras satisfy the following relations in Br(F ):

Fact 98.13. Suppose that charF 6= 2. Then

(1)
(

aa′,b
F

)
=

(
a,b
F

)
·
(

a′,b
F

)
and

(
a,bb′

F

)
=

(
a,b
F

)
·
(

a,b′

F

)
.
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(2)
(

a,b
F

)
=

(
b,a
F

)
.

(3)
(

a,b
F

)2

= 1.

(4)
(

a,b
F

)
= 1 if and only if a is a norm of the quadratic étale extension Fb/F .

Fact 98.14. Suppose that charF = 2. Then

(1)
[

a+a′,b
F

]
=

[
a,b
F

]
·
[

a′,b
F

]
and

[
a,b+b′

F

]
=

[
a,b
F

]
·
[

a,b′

F

]
.

(2)
[

ab,c
F

]
·
[

bc,a
F

]
·
[

ca,b
F

]
= 1.

(3)
[

a,b
F

]
=

[
b,a
F

]
.

(4)
[

a,b
F

]2

= 1.

(5)
[

a,b
F

]
= 1 if and only if a is a norm of the quadratic étale extension Fab/F .

We shall need the following properties of quaternion algebras.

Lemma 98.15 (Chain Lemma). Let
(

a,b
F

)
and

(
c,d
F

)
be isomorphic quaternion

algebras over a field F of characteristic not 2. Then there is an e ∈ F× satisfying(
a,b
F

)
' (

a,e
F

) ' (
c,e
F

) '
(

c,d
F

)
.

Proof. Note that if x and y are pure quaternions in a quaternion algebra Q
that are orthogonal with respect to the reduced trace bilinear form, i.e., Trd(xy) =
0, then Q '

(
x2,y2

F

)
. Let Q =

(
a,b
F

)
. By assumption, there are pure quaternions

x, y satisfying x2 = a and y2 = c. Choose a pure quaternion z orthogonal to x and
y. Setting e = z2, we have Q ' (

a,e
F

) ' (
c,e
F

)
. ¤

Lemma 98.16. Let Q be a quaternion algebra over a field F of characteristic 2.
Suppose that Q is split by a purely inseparable field extension K/F such that K2 ⊂
F . Then Q ∼=

[
a,b
F

]
with a ∈ K2.

Proof. First suppose that K = F (
√

a) is a quadratic extension of F . By Fact
98.6, we know that K can be embedded into Q. Therefore there exists an i ∈ Q\F
such that i2 = a ∈ K2. Note that i is a pure quaternion in Q′ \ F . The linear
map Q′ → F taking an x to ix + xi is nonzero, hence there is a j ∈ Q′ such that
ij + ji = 1. Hence, Q ∼=

[
a,b
F

]
where b = j2.

In the general case, write Q =
[

c,d
F

]
. By Property (5) of Fact 98.14, we have

c = x2 +xy+cdy2 for some x, y ∈ K. Since x2 and y2 belong to F , we have xy ∈ F .
Hence the extension E = F (x, y) splits Q and [E : F ] ≤ 2. The statement now
follows from the first part of the proof. ¤

Let σ be an automorphism of a ring R. Denote by R[t, σ] the ring of σ-twisted
polynomials in the variable t with multiplication defined by tr = σ(r)t for all r ∈ R.
For example, if σ is the identity, then R[t, σ] is the ordinary polynomial ring R[t]
over R. Observe that if R has no zero divisors, then neither does R[t, σ].
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Example 98.17. Let A be a central division algebra over a field F . Consider an
automorphism σ of the polynomial ring A[x] defined by σ(a) = a for all a ∈ A and

σ(x) =
{ −x if charF 6= 2,

x + 1 if charF = 2.

Let B be the quotient ring of A[x][t, σ]. The ring B is a division algebra over its
center E where

E =
{

F (x2, t2) if charF 6= 2,
F (x2 + x, t2) if charF = 2.

Moreover, B = A⊗F Q, where Q is a quaternion algebra over E satisfying

Q =





(
x2,t2

E

)
if char F 6= 2,[

(x2+x)/t2,t2

E

]
if char F = 2.

Iterating the construction in Example 98.17 yields the following

Proposition 98.18. For any field F and integer n ≥ 1, there is a field exten-
sion L/F and a central division L-algebra that is a tensor product of n quaternion
algebras.

We now study interactions between two quaternion algebras.

Theorem 98.19. Let Q1 and Q2 be division quaternion algebras over F . Then
the following conditions are equivalent:

(1) The tensor product Q1 ⊗F Q2 is not a division algebra.
(2) Q1 and Q2 have isomorphic separable quadratic subfields.
(3) Q1 and Q2 have isomorphic quadratic subfields.

Proof. (1) ⇒ (2): Write X1, X2, and X for Severi-Brauer varieties of Q1,
Q2, and A := Q1 ⊗F Q2 respectively. The morphism X1 ×X2 → X taking a pair
of ideals I1 and I2 to the ideal I1 ⊗ I2 identifies X1 ×X2 with a twisted form of a
2-dimensional quadric in X (cf. §98.D).

Let Y be the generalized Severi-Brauer variety of rank 8 ideals in A. A rational
point of Y , i.e., a right ideal J ⊂ A of dimension 8, defines the closed curve CJ

in X comprising all ideals of rank 4 contained in J . In the split case, Y is the
Grassmannian variety of planes and CJ is the projective line (the projective space
of the plane corresponding to J) properly intersecting the quadric X1 × X2 in
two points. Thus there is a nonempty open subset U ⊂ Y with the following
property: for any rational point J ∈ U , we have CJ ∩ (X1 ×X2) = {x}, where x
is a point of degree 2 with residue field L a separable quadratic field extension of
F . By assumption, there is a right ideal I ⊂ A of dimension 8, i.e., Y (F ) 6= ∅.
The algebraic group G of invertible elements of A acts transitively on Y , i.e., the
morphism G → Y taking an a to the ideal aI is surjective. As rational points of G
are dense in G, we have rational points of Y are dense in Y . Hence U possesses a
rational point J .

As X1(L)×X2(L) = (X1 ×X2)(L) 6= ∅, it follows that the field L splits both
Q1 and Q2 and therefore L is isomorphic to quadratic subfields in Q1 and Q2.

(2) ⇒ (3) is trivial.
(3) ⇒ (1): Let L/F be a common quadratic subfield of both Q1 and Q2. It

follows that Q1 and Q2 and, hence, A are split by L. It follows from Corollary 98.5
that ind(A) ≤ 2, i.e., A is not a division algebra. ¤
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99. Galois cohomology

For more details see [124].

99.A. Galois modules and Galois cohomology groups. Let Γ be a profi-
nite group and let M be a (left) discrete Γ-module. For any n ∈ Z, let Hn(Γ, M)
denote the nth cohomology group of Γ with coefficients in M . In particular, the
group Hn(Γ,M) is trivial, if n < 0 and

H0(Γ,M) = MΓ :=
{
m ∈ M | γm = m for all γ ∈ Γ

}
,

the subgroup of Γ-invariant elements of M .
An exact sequence 0 → M ′ → M → M ′′ → 0 gives rise to an infinite long exact

sequence of cohomology groups

0 → H0(Γ, M ′) → H0(Γ, M) → H0(Γ,M ′′) → H1(Γ,M ′) → H1(Γ,M) → . . . .

Let F be a field. Denote by ΓF the absolute Galois group of F , i.e., the Galois
group of a separable closure Fsep of the field F over F . A discrete ΓF -module is
called a Galois module over F . For a Galois module M over F , we write Hn(F,M)
for Hn(ΓF ,M) .

Example 99.1. (1) Every abelian group A can be viewed as a Galois module over
F with trivial action. We have H0(F, A) = A and H1(F, A) = Homc(ΓF , A), the
group of continuous homomorphisms (where A is viewed with discrete topology).
In particular, H1(F,A) is trivial if A is torsion-free, e.g., H1(F,Z) = 0.

The group H1(F,Q/Z) = Homc(ΓF ,Q/Z) is called the character group of ΓF

and will be denoted by χ(ΓF ).
The cohomology group Hn(F, M) is torsion for every Galois module M and

any n ≥ 1.
Since the group Q is uniquely divisible, we have Hn(F,Q) = 0 for all n ≥ 1.

The cohomology exact sequence for the short exact sequence of Galois modules
with trivial action

0 → Z→ Q→ Q/Z→ 0

then gives an isomorphism Hn(F,Q/Z) ∼→ Hn+1(F,Z) for any n ≥ 1. In particular,
H2(F,Z) ∼= χ(ΓF ).

Let m be a natural integer. The cohomology exact sequence for the short exact
sequence

0 → Z m−→ Z→ Z/mZ→ 0

gives an isomorphism of H1(F,Z/mZ) with the subgroup χm(ΓF ) of characters of
exponent m.

(2) The cohomology groups Hn(F, Fsep) with coefficients in the additive group
Fsep are trivial if n > 0. If charF = p > 0, the cohomology exact sequence for the
short exact sequence

0 → Z/pZ→ Fsep
℘−→ Fsep → 0,

where ℘ is the Artin-Schreier map defined by ℘(x) = xp − x, yields canonical
isomorphisms

Hn(F,Z/pZ) ∼=



Z/pZ if n = 0,
F/℘(F ) if n = 1,
0 otherwise.
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In fact, Hn(F,M) = 0 for all n ≥ 2 and every Galois module M over F of charac-
teristic p satisfying pM = 0.

(3) We have the following canonical isomorphisms for the cohomology groups
with coefficients in the multiplicative group F×sep:

Hn(F, F×sep) ∼=




F× if n = 0,
1 if n = 1 (Hilbert Theorem 90),
Br(F ) if n = 2.

(4) The group µm = µm(Fsep) of mth roots of unity in Fsep is a Galois sub-
module of F×sep. We have the following exact sequence of Galois modules:

(99.2) 1 → µm → F×sep → F×sep → F×sep/F×m
sep → 1,

where the middle homomorphism takes x to xm.
If m is not divisible by charF , we have F×sep/F×m

sep = 1. Therefore, the coho-
mology exact sequence (99.2) yields isomorphisms

Hn(F, µm) ∼=




µm(F ), if n = 0,
F×/F×m, if n = 1,
Brm(F ), if n = 2.

For any a ∈ F×, we shall write (a)m or simply (a) for the element of H1(F, µm)
corresponding to the coset aF×m in F×/F×m.

If p = charF > 0, we have µp(Fsep) = 1 and the cohomology exact sequence
(99.2) gives an isomorphism

H1
(
F, F×sep/F×p

sep

) ∼= Brp(F ).

Example 99.3. Let ξ ∈ χ2(ΓF ) be a nontrivial character. Then Ker(ξ) is a sub-
group of ΓF of index 2. By Galois theory, it corresponds to a Galois quadratic
field extension Fξ/F . The correspondence ξ 7→ Fξ gives rise to an isomorphism
χ2(ΓF ) ∼→ Ét2(F ).

99.B. Cup-products. Let M and N be Galois modules over F . Then the
tensor product M ⊗Z N is also a Galois module via the diagonal ΓF -action. There
is a pairing

Hm(F, M)⊗Hn(F,N) → Hm+n(F, M ⊗Z N), α⊗ β 7→ α ∪ β

called the cup-product . When m = n = 0 the cup-product coincides with the
natural homomorphism MΓF ⊗NΓF → (M ⊗Z N)ΓF .

Fact 99.4. (Cf. [24, Ch. IV, §7].) Let 0 → M ′ → M → M ′′ → 0 be an ex-
act sequence of Galois modules over F . Suppose that for a Galois module N the
sequence

0 → M ′ ⊗Z N → M ⊗Z N → M ′′ ⊗Z N → 0
is exact. Then the diagram

Hn(F, M ′′)⊗Hm(F, N) ∪−−−−→ Hn+m(F,M ′′ ⊗Z N)

∂⊗id

y
y∂

Hn+1(F, M ′)⊗Hm(F,N) ∪−−−−→ Hn+m+1(F,M ′ ⊗Z N)
is commutative.
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Example 99.5. The cup-product

H0(F, F×sep)⊗H2(F,Z) → H2(F, F×sep)

yields a pairing
F× ⊗ Ét(F ) → Br2(F ).

If charF 6= 2, we have a∪[Fb] =
(

a,b
F

)
for all a, b ∈ F×. In the case that charF = 2,

we have a ∪ [Fab] =
[

a,b
F

]
for all a ∈ F× and b ∈ F .

Suppose that charF 6= 2. Then µ2 ' Z/2Z. The cup-product

H1(F,Z/2Z)⊗H1(F,Z/2Z) → H2(F,Z/2Z)

gives rise to a pairing

F×/F×
2 ⊗ F×/F×

2 → Br2(F ).

We have (a) ∪ (b) =
(

a,b
F

)
for all a, b ∈ F×. In particular, (a) ∪ (1 − a) = 0 for

every a 6= 0, 1 by Fact 98.13(4).

99.C. Restriction and corestriction homomorphisms. Let M be a Ga-
lois module over F and K/F an arbitrary field extension. Separable closures of F
and K can be chosen so that Fsep ⊂ Ksep. The restriction then yields a continuous
group homomorphism ΓK → ΓF . In particular, M has the structure of a discrete
ΓK-module and we have the restriction homomorphism

rK/F : Hn(F, M) → Hn(K, M).

If K/F is a finite separable field extension, then ΓK is an open subgroup of
finite index in ΓF . For every n ≥ 0 there is a natural corestriction homomorphism

cK/F : Hn(K, M) → Hn(F, M).

In the case n = 0, the map cK/F : MΓK → MΓF is given by x → ∑
γ(x) where

the sum is over a left transversal of ΓK in ΓF . The composition cK/F ◦ rK/F is
multiplication by [K : F ].

Let K/F be an arbitrary finite field extension and let M be a Galois mod-
ule over F . Let E/F be the maximal separable sub-extension in K/F . As the
restriction map ΓK → ΓE is an isomorphism, we have a canonical isomorphism
s : Hn(K, M) ∼→ Hn(E,M). We define the corestriction homomorphism cK/F :
Hn(K,M) → Hn(F,M) as [K : E] times the composition cE/F ◦ s.

Example 99.6. The corestriction homomorphism cK/F : H1(K,µm) → H1(F, µm)
takes a class (x)m to

(
NK/F (x)

)
m

.

Example 99.7. The restriction map in Galois cohomology agrees with the restric-
tion map for Brauer groups defined in §98.C. The corestriction in Galois coho-
mology yields a map cK/F : Br(K) → Br(F ) for a finite field extension K/F .
Since the composition cK/F ◦ rK/F is the multiplication by m = [K : F ] we have
Br(K/F ) ⊂ Brm(F ).

Let K/F be a finite separable field extension and let M be a Galois module
over K. We view ΓK as a subgroup of ΓF . Denote by IndK/F (M) the group
MapΓK

(ΓF ,M) of ΓK-equivariant maps ΓF → M , i.e., maps f : ΓF → M satisfying
f(ρδ) = ρf(δ) for all ρ ∈ ΓK and δ ∈ ΓF . The group IndK/F (M) has a structure
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of Galois module over F defined by (γf)(δ) = f(δγ) for all f ∈ IndK/F (M) and
γ, δ ∈ ΓF . Consider the ΓK-module homomorphisms

M
u−→ IndK/F (M) v−→ M

defined by v(f) = f(1) and

u(m)(γ) =
{

m if γ ∈ ΓK ,
0 otherwise.

Fact 99.8. Let M be a Galois module over F and let K/F be a finite separable
field extension. Then the compositions

Hn
(
F, IndK/F (M)

) rK/F−−−→ Hn
(
K, IndK/F (M)

) Hn(K,v)−−−−−−→ Hn(K,M),

Hn(K,M)
Hn(K,u)−−−−−−→ Hn

(
K, IndK/F (M)

) cK/F−−−→ Hn
(
F, IndK/F (M)

)

are isomorphisms inverse to each other.

Suppose, in addition, that M is a Galois module over F . Consider the ΓF -
module homomorphisms

(99.9) 0 → M
w−→ IndK/F (M) t−→ M → 0

defined by w(m)(γ) = γm and

t(f) =
∑

γ
(
f(γ−1)

)
,

where the sum is taken over a left transversal of ΓK in ΓF .

Corollary 99.10. (1) The composition

Hn(F, M)
Hn(F,w)−−−−−−→ Hn

(
F, IndK/F (M)

) ∼→ Hn(K, M)

coincides with rK/F .
(2) The composition

Hn(K, M) ∼→ Hn
(
F, IndK/F (M)

) Hn(F,t)−−−−−→ Hn(K, M)

coincides with cK/F .

99.D. Residue homomorphism. Let m be an integer. A Galois module M
over F is said to be m-periodic if mM = 0. If m is not divisible by charF , we
write M(−1) for the Galois module Hom(µm,M) with the action of ΓF given by
(γf)(ξ) = γf(γ−1ξ) for every f ∈ M(−1) (the construction is independent of the
choice of m). For example, µm(−1) = Z/mZ.

Let L be a field with a discrete valuation v and residue field F . Suppose that
the inertia group of an extension of v to Lsep acts trivially on M . Then M has a
natural structure of a Galois module over F .

Fact 99.11 (Cf. [46, §7]). Let L be a field with a discrete valuation v and residue
field F . Let M be an m-periodic Galois module L with m not divisible by charF
such that the inertia group of an extension of v to Lsep acts trivially on M . Then
there exists a residue homomorphism

∂v : Hn+1(L, M) → Hn
(
F, M(−1)

)

satisfying
(1) If M = µm and n = 0, then ∂v

(
(x)m

)
= v(x) + mZ for every x ∈ L×.
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(2) For every x ∈ L× with v(x) = 0, we have ∂v

(
α ∪ (x)m

)
= ∂v(α) ∪ (x̄)m,

where α ∈ Hn+1(L,M) and x̄ ∈ F× is the residue of x.

Let X be a variety (integral scheme) over F and let x ∈ X be a regular point
of codimension 1. The local ring OX,x is a discrete valuation ring with quotient
field F (X) and residue field F (x). For any m-periodic Galois module M over F let

∂x : Hn+1
(
F (X),M

) → Hn
(
F (x),M(−1)

)

denote the residue homomorphism ∂v of the associated discrete valuation v on
F (X).

Fact 99.12 (Cf. [46, Th. 9.2]). For every field F , the sequence

0 → Hn+1(F, M) r−→ Hn+1
(
F (t),M

)

(∂x)−−−→
∐

x∈P1
Hn

(
F (x),M(−1)

) c−→ Hn
(
F, M(−1)

) → 0,

where c is the direct sum of the corestriction homomorphisms cF (x)/F , is exact.

99.E. A long exact sequence. Let K = F (
√

a) be a quadratic field exten-
sion of a field F of characteristic not 2. Let M be a 2-periodic Galois module over
F .

We have the exact sequence (99.9) of Galois modules over F . By Corollary
99.10, the induced exact sequence of Galois cohomology groups reads as follows:

. . .
∂−→ Hn(F, M)

rK/F−−−→ Hn(K, M)
cK/F−−−→ Hn(F, M) ∂−→ Hn+1(F, M) → . . . .

We now compute the connecting homomorphisms ∂. If n = 0 and M = Z/2Z, we
have the exact sequence

Z/2Z 0−→ Z/2Z ∂−→ F×/F×2 → K×/K×2.

The kernel of the last homomorphism is the cyclic group {1, (a)}. It follows that
∂(1 + 2Z) = (a). By Fact 99.4, the homomorphisms ∂ : Hn(F,M) → Hn+1(F,M)
coincide with the cup-product by (a).

We have proven

Theorem 99.13. Let K = F (
√

a) be a quadratic field extension of a field F of
characteristic not 2 and let M be a 2-periodic Galois module over F . Then the
following sequence

. . .
∪(a)−−−→ Hn(F,M)

rK/F−−−→ Hn(K, M)
cK/F−−−→ Hn(F, M)

∪(a)−−−→ Hn+1(F, M)
rK/F−−−→ . . .

is exact.

100. Milnor K-theory of fields

A more detailed exposition on the Milnor K-theory of fields is available in [43,
Ch. IX] and [47, Ch. 7].
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100.A. Definition. Let F be a field. Let T∗ denote the tensor ring of the
multiplicative group F×. That is a graded ring with Tn the nth tensor power of
F× over Z. For instance, T0 = Z, T1 = F×, T2 = F× ⊗Z F×, etc. The graded
Milnor ring K∗(F ) of F is the factor ring of T∗ by the ideal generated by tensors
of the form a⊗ b with a + b = 1.

The class of a tensor a1⊗a2⊗ . . .⊗an in K∗(F ) is denoted by {a1, a2, . . . , an}F

or simply by {a1, a2, . . . , an} and is called a symbol . We have Kn(F ) = 0 if n < 0,
K0(F ) = Z, K1(F ) = F×. For n ≥ 2, Kn(F ) is generated (as an abelian group) by
the symbols {a1, a2, . . . , an} with ai ∈ F× that are subject to the following defining
relations:

(M1) (Multilinearity)

{a1, . . . , aia
′
i, . . . , an} = {a1, . . . , ai, . . . , an}+ {a1, . . . , a

′
i, . . . , an};

(M2) (Steinberg Relation) {a1, a2, . . . , an} = 0 if ai + ai+1 = 1 for some i ∈
[1, n− 1].

Note that the operation in the group Kn(F ) is written additively. In particular,
{ab} = {a}+ {b} in K1(F ) where a, b ∈ F×.

The product in the ring K∗(F ) is given by the rule

{a1, a2, . . . , an} · {b1, b2, . . . , bm} = {a1, a2, . . . , an, b1, b2, . . . , bm}.
Fact 100.1. Let a1, . . . , an ∈ F×.

(1) For a permutation σ ∈ Sn, we have

{aσ(1), aσ(2), . . . , aσ(n)} = sgn(σ){a1, a2, . . . , an}.
(2) {a1, a2, . . . , an} = 0 if ai + aj = 0 or 1 for some i 6= j.

A field homomorphism F → L induces the restriction graded ring homomor-
phism rL/F : K∗(F ) → K∗(L) taking a symbol {a1, a2, . . . , an}F to the symbol
{a1, a2, . . . , an}L. In particular, K∗(L) has a natural structure of a left and right
graded K∗(F )-module. The image rL/F (α) of an element α ∈ K∗F is also denoted
by αL.

If E/L is another field extension, then rE/F = rE/L ◦ rL/F . Thus, K∗ is a
functor from the category of fields to the category of graded rings.

Proposition 100.2. Let L/F be a quadratic field extension. Then

Kn(L) = rL/F

(
Kn−1(F )

) ·K1(L)

for every n ≥ 1, i.e., K∗(L) is generated by K1(L) as a left K∗(F )-module.

Proof. It is sufficient to treat the case n = 2. Let x, y ∈ L \ F . If x = cy for
some c ∈ F×, then {x, y} = {−c, y} ∈ rL/F

(
K1(F )

) ·K1(L). Otherwise, as x, y,
and 1 are linearly dependent over F , there are a, b ∈ F× such that ax + by = 1.
We have

0 = {ax, by} = {x, y}+ {x, b}+ {a, by},
hence {x, y} = {b}L · {x} − {a}L · {by} ∈ rL/F

(
K1(F )

) ·K1(L). ¤

We write k∗(F ) for the graded ring K∗(F )/2K∗(F ). Abusing notation, if
{a1, . . . , an} is a symbol in Kn(F ), we shall also write it for its coset {a1, . . . , an}+
2Kn(F ) in kn(F ).

We need some relations among symbols in k2(F ).
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Lemma 100.3. We have the following relations in k2(F ):

(1) {a, x2 − ay2} = 0 for all a ∈ F×, x, y ∈ F satisfying x2 − ay2 6= 0.
(2) {a, b} = {a + b, ab(a + b)} for all a, b ∈ F× satisfying a + b 6= 0.

Proof. (1): The statement follows from Fact 100.1 if x = 0. Suppose x 6= 0. By
the Steinberg relation, we have

0 = {a(yx−1)2, 1− a(yx−1)2} = {a, x2 − ay2}.

(2): Since a(a + b) + b(a + b) is a square, by (1) we have

0 = {a(a + b), b(a + b)} = {a, b}+ {a + b, ab(a + b)}. ¤

100.B. Residue homomorphism. Let L be a field with a discrete valuation
v and residue field F . The homomorphism L× → Z given by the valuation can
be viewed as a homomorphism K1(L) → K0(F ). More generally, for every n ≥ 0,
there is the residue homomorphism

∂v : Kn+1(L) → Kn(F )

uniquely determined by the following condition:
If a0, a1, . . . , an ∈ L× satisfying v(ai) = 0 for all i = 1, 2, . . . , n, then

∂v

({a0, a1, . . . , an}
)

= v(a0) · {ā1, . . . , ān},
where ā ∈ F denotes the residue of a.

Fact 100.4. Let L be a field with a discrete valuation v and residue field F .

(1) If α ∈ K∗(L) and a ∈ L× satisfies v(a) = 0, then

∂v(α · {a}) = ∂v(α) · {ā} and ∂v({a} · α) = −{ā} · ∂v(α).

(2) Let K/L be a field extension and let u be a discrete valuation of K ex-
tending v with residue field E. Let e denote the ramification index. Then
for every α ∈ K∗(L),

∂u

(
rK/L(α)

)
= e · rE/F

(
∂v(α)

)
.

100.C. Milnor’s theorem. Let X be a variety (integral scheme) over F and
let x ∈ X be a regular point of codimension 1. The local ring OX,x is a discrete
valuation ring with quotient field F (X) and residue field F (x). Denote by

∂x : K∗+1

(
F (X)

) → K∗
(
F (x)

)

the residue homomorphism of the associated discrete valuation on F (X).
The following description of the K-groups of the function field F (t) = F (A1

F )
of the affine line is known as Milnor’s Theorem.

Fact 100.5. (Milnor’s Theorem) For every field F , the sequence

0 → Kn+1(F )
rF (t)/F−−−−−→ Kn+1

(
F (t)

) (∂x)−−−→
∐

x∈A1
(0)

Kn

(
F (x)

) → 0

is split exact.
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100.D. Specialization. Let L be a field and let v be a discrete valuation on
L with residue field F . If π ∈ L× is a prime element, i.e., v(π) = 1, we define the
specialization homomorphism

sπ : K∗(L) → K∗(F )

by the formula sπ(u) = ∂({−π} · u). We have

sπ

({a1, a2, . . . , an}
)

= {b̄1, b̄2, . . . , b̄n},
where bi = ai/πv(ai).

Example 100.6. Consider the discrete valuation v of the field of rational func-
tions F (t) given by the irreducible polynomial t. For every u ∈ K∗(F ), we have
st(uF (t)) = u. In particular, the homomorphism K∗(F ) → K∗

(
F (t)

)
is split injec-

tive as stated in Fact 100.5.

100.E. Norm homomorphism. Let L/F be a finite field extension. The
standard norm homomorphism L× → F× can be viewed as a homomorphism
K1(L) → K1(F ). In fact, there exists the norm homomorphism

cL/F : Kn(L) → Kn(F )

for every n ≥ 0 defined as follows.
Suppose first that the field extension L/F is simple, i.e., L is generated by

one element over F . We identify L with the residue field F (y) of a closed point
y ∈ A1

F . Let α ∈ Kn(L) = Kn

(
F (y)

)
. By Milnor’s Theorem 100.5, there is

β ∈ Kn+1

(
F (A1

F )
)

satisfying

∂x(β) =
{

α if x = y,
0 otherwise.

Let v be the discrete valuation of the field F (P1
F ) = F (A1

F ) associated with the
infinite point of the projective line P1

F . We set cL/F (α) = ∂v(β).
In the general case, we choose a sequence of simple field extensions

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = L

and set
cL/F = cF1/F0 ◦ cF2/F1 ◦ · · · ◦ cFn/Fn−1 .

It turns out that the norm map cL/F is well-defined, i.e., it does not depend
on the choice of the sequence of simple field extensions and the identifications with
residue fields of closed points of the affine line (cf. [43, Ch. IX, §3], [47, Ch. 7,
§3]).

The following theorem is the direct consequence of the definition of the norm
map and Milnor’s Theorem 100.5.

Theorem 100.7. For every field F , the sequence

0 → Kn+1(F )
rF (t)/F−−−−−→ Kn+1

(
F (t)

) (∂x)−−−→
∐

x∈P1(0)

Kn

(
F (x)

) c−→ Kn(F ) → 0

is exact where c is the direct sum of the corestriction homomorphisms cF (x)/F .
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Fact 100.8. (1) (Transitivity) Let L/F and E/L be finite field extensions. Then
cE/F = cL/F ◦ cE/L.

(2) The norm map cL/F : K0(L) → K0(F ) is multiplication by [L : F ] on Z.
The norm map cL/F : K1(L) → K1(F ) is the classical norm L× → F×.

(3) (Projection Formula) Let L/F be a finite field extension. Then for every
α ∈ K∗F and β ∈ K∗(L) we have

cL/F (rL/F (α) · β) = α · cL/F (β),

i.e., if we view K∗(L) as a K∗(F )-module via rL/F , then cL/F is a homomorphism
of K∗(F )-modules. In particular, the composition cL/F ◦ rL/F is multiplication by
[L : F ].

(4) Let L/F be a finite field extension and let v be a discrete valuation on F .
Let v1, v2, . . . , vs be all the extensions of v to L. Then the following diagram is
commutative:

Kn+1(L)
(∂vi

)−−−−→ ∐s
i=1 Kn

(
L(vi)

)

cL/F

y
y∑

cL(vi)/F (v)

Kn+1(F ) ∂v−−−−→ Kn

(
F (v)

)
.

(5) Let L/F be a finite and E/F an arbitrary field extension. Let P1, P2, . . . , Pk

be all the prime (maximal) ideals of the ring R = L⊗F E. For every i ∈ [1, k], let
Ri denote the residue field R/Pi and let li be the length of the localization ring RPi .
Then the following diagram is commutative:

Kn(L)
(rRi/L)−−−−−→ ∐k

i=1 Kn(Ri)

cL/F

y
y∑

li·cRi/E

Kn(F )
rE/F−−−−→ Kn(E).

We now turn to fields of positive characteristic.

Fact 100.9 (Cf. [60, Th. A]). Let F be a field of characteristic p > 0. Then the
p-torsion part of K∗(F ) is trivial.

Fact 100.10 (Cf. [60, Cor. 6.5]). Let F be a field of characteristic p > 0. Then
the natural homomorphism

Kn(F )/pKn(F ) → H0
(
F, Kn(Fsep)/pKn(Fsep)

)

is an isomorphism.

Now consider the case of purely inseparable quadratic extensions.

Lemma 100.11. Let L/F be a purely inseparable quadratic field extension. Then
the composition rL/F ◦ cL/F on Kn(L) is the multiplication by 2.

Proof. The statement is obvious if n = 1. The general case follows from
Proposition 100.2 and Fact 100.8(3). ¤

Write kn(E) := Kn(E)/2Kn(E) for a field E.
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Proposition 100.12. Let L/F be a purely inseparable quadratic field extension.
Then the sequence

kn(F )
rL/F−−−→ kn(L)

cL/F−−−→ kn(F )
rL/F−−−→ kn(L)

is exact.

Proof. Let α ∈ Kn(F ) satisfy αL = 2β for some β ∈ Kn(L). By Proposition
100.8,

2α = cL/F (αL) = cL/F (2β) = 2cL/F (β),
hence α = cL/F (β) in view of Fact 100.9.

Let β ∈ Kn(L) satisfy cL/F (β) = 2α for some α ∈ Kn(F ). It follows from
Lemma 100.11 that

2β = cL/F (β)L = 2αL,

hence β = αL, again by Fact 100.9. ¤

101. The cohomology groups Hn,i(F,Z/mZ)

Let F be a field. For all n,m, i ∈ Z with m > 0, we define the group
Hn,i(F,Z/mZ) as follows (cf. [46]): If m is not divisible by charF , we set

Hn,i(F,Z/mZ) = Hn
(
F, µ⊗i

m

)
,

where µ⊗i
m is the ith tensor power of µm if i ≥ 0 and µ⊗i

m = Hom(µ⊗−i
m ,Z/mZ) if

i < 0. If char F = p > 0 and m is a power of p, we set

Hn,i(F,Z/mZ) =





Ki(F )/mKi(F ) if n = i,
H1

(
F,Ki(Fsep)/mKi(Fsep)

)
if n = i + 1,

0 otherwise.

In the general case, write m = m1m2, where m1 is not divisible by charF and m2

is a power of charF if charF > 0, and set

Hn,i(F,Z/mZ) = Hn,i(F,Z/m1Z)⊕Hn,i(F,Z/m2Z).

Note that if charF does not divide m and µm ⊂ F×, we have a natural iso-
morphism

Hn,i(F,Z/mZ) ' Hn,0(F,Z/mZ)⊗ µ⊗i
m .

In particular, the groups Hn,i(F,Z/mZ) and Hn,0(F,Z/mZ) are (noncanonically)
isomorphic.

Example 101.1. For an arbitrary field F , we have canonical isomorphisms
(1) H0,0(F,Z/mZ) ' Z/mZ,
(2) H1,1(F,Z/mZ) ' F×/F×m,

(3) H1,0(F,Z/mZ) ' Homc(ΓF ,Z/mZ), H1,0(F,Z/2Z) ∼= Ét2(F ),
(4) H2,1(F,Z/mZ) ' Brm(F ).

If L/F is a field extension, there is the restriction homomorphism

rL/F : Hn,i(F,Z/mZ) → Hn,i(L,Z/mZ).

If L is a finite over F , we define the corestriction homomorphism

cL/F : Hn,i(L,Z/mZ) → Hn,i(F,Z/mZ)

as follows: It is sufficient to consider the following two cases.
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(1) If L/F is separable, then cL/F is the corestriction homomorphism in Galois
cohomology.

(2) If L/F is purely inseparable, then ΓL = ΓF , we have [Lsep : Fsep] = [L : F ],
and cL/F is induced by the corestriction homomorphism K∗(Lsep) → K∗(Fsep).

Example 101.2. Let L/F be a finite field extension. By Example 99.6, the map

cL/F : L×/L×m = H1,1(L,Z/mZ) → H1,1(F,Z/mZ) = F×/F×m

is induced by the norm map NL/F : L× → F×. If charF = p > 0, it follows from
Example 99.1(2) that the map

cL/F : L/℘(L) = H1,0(L,Z/pZ) → H1,0(F,Z/pZ) = F/℘(F )

is induced by the trace map TrL/F : L → F .

Let l, m ∈ Z. If charF does not divide l and m, we have a natural exact
sequence of Galois modules

1 → µ⊗i
l → µ⊗i

lm → µ⊗i
m → 1

for every i. If l and m are powers of charF > 0, then by Fact 100.9, the sequence
of Galois modules

0 → Kn(Fsep)/lKn(Fsep) → Kn(Fsep)/lmKn(Fsep) → Kn(Fsep)/mKn(Fsep) → 0

is exact. Taking the long exact sequences of Galois cohomology groups yields the
following proposition.

Proposition 101.3. For any l,m, n, i ∈ Z with l, m > 0, there is a natural long
exact sequence

· · · → Hn,i(F,Z/lZ) → Hn,i(F,Z/lmZ)

→ Hn,i(F,Z/mZ) → Hn+1,i(F,Z/lZ) → · · · .

The cup-product in Galois cohomology and the product in the Milnor ring
induce a structure of the graded ring on the graded abelian group

H∗,∗(F,Z/mZ) =
∐

i,j∈Z
Hi,j(F,Z/mZ)

for every m ∈ Z. The product in this ring will be denoted by ∪.

101.A. Norm residue homomorphism. Let symbol (a)m denote the ele-
ment in H1,1(F,Z/mZ) corresponding to a ∈ F× under the isomorphism in Exam-
ple 101.1(2).

Lemma 101.4 (Steinberg Relation). Let a, b ∈ F× satisfy a+ b = 1. Then (a)m∪
(b)m = 0 in H2,2(F,Z/mZ).

Proof. We may assume that char F does not divide m. Let K = F [t]/(tm−a)
and let α ∈ K× be the class of t. We have a = αm and NK/F (1 − α) = b, hence
1− α ∈ K×. It follows from the projection formula and Example 99.6 that

(a)m ∪ (b)m = cK/F

(
rK/F (a)m ∪ (1− α)m

)
= 0

since rK/F (a)m = m(α)m = 0 in H1,1(K,Z/mZ). ¤
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It follows from Lemma 101.4 that for every n,m ∈ Z there is a unique norm
residue homomorphism

(101.5) hn,m
F : Kn(F )/mKn(F ) → Hn,n(F,Z/mZ)

taking the class of a symbol {a1, a2, . . . , an} to the cup-product (a1)m ∪ (a2)m ∪
· · · ∪ (an)m.

The norm residue homomorphism allows us to view H∗,∗(F,Z/mZ) as a module
over the Milnor ring K∗(F ).

By Example 99.1, the map hn,m
F is an isomorphism for n = 0 and 1. Bloch and

Kato conjectured that hn,m
F is always an isomorphism.

For every l, m ∈ Z, we have a commutative diagram

Kn(F )/lmKn(F ) −−−−→ Kn(F )/mKn(F )

hn,lm
F

y
yhn,m

F

Hn,n(F,Z/lmZ) −−−−→ Hn,n(F,Z/mZ)

with top map the natural surjective homomorphism.
The following important result was originally conjectured by Milnor in [106]

and was proven in [136] by Voevodsky.

Fact 101.6. Let F be a field of characteristic not 2. If m is a power of 2, then the
norm residue homomorphism hn,m

F is an isomorphism.

Proposition 101.3 and commutativity of the diagram above yield

Corollary 101.7. Let l and m be powers of 2. Then the natural homomorphism
Hn,n(F,Z/lmZ) → Hn,n(F,Z/mZ) is surjective and the sequence

0 → Hn+1,n(F,Z/lZ) → Hn+1,n(F,Z/lmZ) → Hn+1,n(F,Z/mZ)

is exact for any n.

Now consider the case m = 2. We shall write hn
F for hn,2

F and Hn(F ) for
Hn,n(F,Z/2Z).

The norm residue homomorphisms commute with field extension homomor-
phisms. They also commute with residue and corestriction homomorphisms as the
following two propositions show.

Proposition 101.8. Let L be a field with a discrete valuation v and residue field
F of characteristic different from 2. Then the diagram

kn+1(L) ∂v−−−−→ kn(F )

hn+1
L

y
yhn

F

Hn+1(L) ∂v−−−−→ Hn(F )

is commutative.

Proof. Fact 99.11(1) shows that the diagram is commutative when n = 0.
The general case follows from Fact 99.11(2) as the group kn+1(L) is generated by
symbols {a0, a1, . . . , an} with v(a1) = · · · = v(an) = 0. ¤



101. THE COHOMOLOGY GROUPS Hn,i(F,Z/mZ) 405

Proposition 101.9. Let L/F be a finite field extension. Then the diagram

kn(L)
cL/F−−−−→ kn(F )

hn
L

y
yhn

F

Hn(L)
cL/F−−−−→ Hn(F )

is commutative.

Proof. We may assume that L/F is a simple field extension. The statement
follows from the definition of the norm map for the Milnor K-groups, Fact 99.12,
and Proposition 101.8. ¤
Proposition 101.10. Let F be a field of characteristic different from 2 and let
L = F (

√
a)/F be a quadratic extension with a ∈ F×. Then the following infinite

sequence

. . . → kn−1(F )
{a}−−→ kn(F )

rL/F−−−→ kn(L)
cL/F−−−→ kn(F )

{a}−−→ kn+1(F ) → . . .

is exact.

Proof. It follows from Proposition 101.9 that the diagram

kn−1(F )
{a}−−−−→ kn(F )

rL/F−−−−→ k∗(L)
cL/F−−−−→ kn(F )

{a}−−−−→ kn+1(F )

hn−1
F

y hn
F

y hn
L

y hn
F

y
yhn+1

F

Hn−1(F )
{a}−−−−→ Hn(F )

rL/F−−−−→ H∗(L)
cL/F−−−−→ Hn(F )

{a}−−−−→ Hn+1(F )
is commutative. By Fact 101.6, the vertical homomorphisms are isomorphisms. By
Theorem 99.13, the bottom sequence is exact. The result follows. ¤

Now consider the case char F = 2. The product in the Milnor ring and the
cup-product in Galois cohomology yield a pairing

K∗(F )⊗H∗(F ) → H∗(F )

making H∗(F ) a module over K∗(F ).

Example 101.11. By Example 99.5, we have {a} · [Fab] =
[

a,b
F

]
in Br2(F ) for all

a ∈ F× and b ∈ F .

Proposition 101.12. Let F be a field of characteristic 2 and let L/F be a separable
quadratic field extension. Then the following sequence

0 → kn(F )
rL/F−−−→ kn(L)

cL/F−−−→ kn(F )
·[L]−−→ Hn+1(F )

rL/F−−−→ Hn+1(L)
cL/F−−−→ Hn+1(F ) → 0

is exact where the middle map is multiplication by the class of L in H1(F ).

Proof. We shall show that the sequence in question coincides with the exact
sequence in Theorem 99.13 for the quadratic field extension L/F and the Galois
module kn(Fsep) over F . Indeed, by Fact 100.10, we have H0(E, kn

(
Esep)

) '
kn(E) and by definition, H1(E, kn

(
Esep)

) ' Hn+1(E) for every field E. Note that
H2

(
F, kn(Fsep)

)
= 0 by Example 99.1(2). The connecting homomorphism in the

sequence in Theorem 99.13 is multiplication by the class of L in H1(F ). ¤
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Now let F be a field of characteristic different from 2. The connecting homo-
morphism

bn : Hn(F ) → Hn+1(F )
with respect to the short exact sequence

(101.13) 0 → Z/2Z→ Z/4Z→ Z/2Z→ 0

is called the Bockstein map.

Proposition 101.14. The Bockstein map is trivial if n is even and coincides with
multiplication by (−1) if n is odd.

Proof. If n is even or −1 ∈ F×2, then µ⊗n
4 ' Z/4Z and the statement follows

from Corollary 101.7.
Suppose that n is odd and −1 /∈ F×2. In this case µ⊗n

4 ' µ4. Consider the
field K = F (

√−1). By Theorem 99.13, the connecting homomorphism Hn(F ) →
Hn+1(F ) with respect to the exact sequence (99.9) is the cup-product with (−1).
The classes of the sequences (101.13) and (99.9) differ in Ext1Γ(Z/2Z,Z/2Z) by the
class of the sequence

0 → Z/2Z→ µ⊗n
4 → Z/2Z→ 0.

By Corollary 101.7, the connecting homomorphism Hn(F ) → Hn+1(F ) with re-
spect to this exact sequence is trivial. It follows that bn is the cup-product with
(−1). ¤

101.B. Cohomological dimension and p-special fields. Let p be a prime
integer. A field F is called p-special if the degree of every finite field extension of
F is a power of p.

The following property of p-special fields is very useful.

Proposition 101.15. Let F be a p-special field and let L/F be a finite field exten-
sion. Then there is a tower of field extensions

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = L

satisfying [Fi+1 : Fi] = p for all i ∈ [0, n− 1].

Proof. The result is clear if L/F is purely inseparable. So we may assume
that L/F is a separable extension. Let E/F be a normal closure of L/F . Set
G = Gal(E/F ) and H = Gal(E/L). As G is a p-group, there is a sequence of
subgroups

G = H0 ⊃ H1 ⊃ · · · ⊃ Hn−1 ⊃ Hn = H

with the property [Hi : Hi+1] = p for all i ∈ [0, n − 1]. Then the fields Fi = LHi

satisfy the required property. ¤

Proposition 101.16. For every prime integer p and field F , there is a field ex-
tension L/F satisfying

(1) L is p-special.
(2) The degree of every finite sub-extension of L/F is not divisible by p.

Proof. If charF = q > 0 and different from p, we set F ′ :=
⋃

F q−n

(in a fixed
algebraic closure of F ), otherwise F ′ := F . Let Γ be the Galois group of F ′sep/F ′

and let ∆ ⊂ Γ be a Sylow p-subgroup. The field L = (F ′sep)∆ satisfies the required
conditions. ¤
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We call the field L in Proposition 101.16 a p-special closure of F .

Let F be a field and let p be a prime integer. The cohomological p-dimension
of F , denoted cdp(F ), is the smallest integer such that for every n > cdp(F ) and
every finite field extension L/F we have Hn,n−1(L,Z/pZ) = 0.

Example 101.17. (1) cdp(F ) = 0 if and only if F has no separable finite field
extensions of degree a power of p.

(2) cdp(F ) ≤ 1 if and only if Brp(L) = 0 for all finite field extensions L/F .
(3) If F is p-special, then cdp(F ) < n if and only if Hn,n−1(F,Z/pZ) = 0.

102. Length and Herbrand index

102.A. Length. Let A be a commutative ring and let M be an A-module of
finite length. The length of M is denoted by lA(M). The ring A is artinian if the
A-module M = A is of finite length. We write l(A) for lA(A).

Lemma 102.1. Let C be a flat B-algebra where B and C are commutative local
artinian rings. Then for every finitely generated B-module M , we have

lC(M ⊗B C) = l(C/QC) · lB(M),

where Q is the maximal ideal of B.

Proof. Since C is flat over B, both sides of the equality are additive in M .
Thus, we may assume that M is a simple B-module, i.e., M = B/Q. We have
M ⊗B C ' C/QC and the equality follows. ¤

Setting M = B we obtain

Corollary 102.2. In the conditions of Lemma 102.1, one has l(C) = l(C/QC) ·
l(B).

Lemma 102.3. Let B be a commutative A-algebra and let M be a B-module of
finite length over A. Then

lA(M) =
∑

lBQ(MQ) · lA(B/Q),

where the sum is taken over all maximal ideals Q ⊂ B.

Proof. Both sides are additive in M , so we may assume that M = B/Q,
where Q is a maximal ideal of B. The result follows. ¤

102.B. Herbrand index. Let M be a module over a commutative ring A

and let a ∈ A. Suppose that the modules M/aM and let aM := Ker(M a−→ M)
have finite length. The integer

h(a, M) = lA(M/aM)− lA(aM)

is called the Herbrand index of M relative to a.
We collect simple properties of the Herbrand index in the following lemma.

Lemma 102.4. (1) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-
modules. Then h(a,M) = h(a,M ′) + h(a, M ′′).

(2) If M has finite length, then h(a,M) = 0.
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Lemma 102.5. Let S be a 1-dimensional Noetherian local ring and let P1, . . . , Pm

be all the minimal prime ideals of S. Let M be a finitely generated S-module and
s ∈ S not belonging to any of Pi. Then

h(s, M) =
m∑

i=1

lSPi
(MPi

) · l(S/(Pi + sS)
)
.

Proof. Since s /∈ Pi, the coset of s in S/Pi is not a zero divisor. Hence

lS
(
S/(Pi + sS)

)
= h(s, S/Pi).

Both sides of the equality are additive in M . Since M has a filtration with factors
S/P , where P is a prime ideal of S, we may assume that M = S/P . If P is
maximal, then MPi = 0 and h(s,M) = 0 since M is simple. If P = Pi for some
i, then lSPj

(M) = 1 if i = j and zero otherwise. The equality holds in this case
too. ¤

103. Places

Let K be a field. A valuation ring R of K is a subring R ⊂ K such that for
any x ∈ K \ R, we have x−1 ∈ R. A valuation ring is a local domain. A trivial
example of a valuation ring is the field K itself.

Given two fields K and L, a place π : K ⇀ L is a local ring homomorphism
f : R → L of a valuation ring R ⊂ K. We say that the place π is defined on R.
An embedding of fields is a trivial example of a place defined everywhere. A place
K ⇀ L is called surjective if f is surjective.

If K and L are extensions of a field F , we say that a place K ⇀ L is an F -place
if π is defined and the identity on F .

Let K ⇀ L and L ⇀ E be two places, given by ring homomorphisms f : R → L
and g : S → E respectively, where R ⊂ K and S ⊂ L are valuation rings. Then

the ring T = f−1(S) is a valuation ring of K and the composition T
f |T−−→ S

g−→ E
defines the composition place K ⇀ E. In particular, any place L ⇀ E can be
restricted to any subfield K ⊂ L.

A composition of two F -places is an F -place. Every place is a composition of
a surjective place and a field embedding.

A place K ⇀ L is said to be geometric if it is a composition of (finitely many)
places each defined on a discrete valuation ring. An embedding of fields will also
be viewed as a geometric place.

Let Y be a complete variety over F and let π : F (Y ) ⇀ L be an F -place. The
valuation ring R of the place dominates a unique point y ∈ Y , i.e., OY,y ⊂ R and
the maximal ideal of OY,y is contained in the maximal ideal M of R. The induced
homomorphism of fields F (y) → R/M → L over F gives rise to an L-point of Y ,
i.e., to a morphism f : Spec(L) → Y with image {y}. We say that y is the center
of π and f is induced by π.

Let X be a regular variety over F and let f : Spec(L) → X be a morphism over
F . Choose a regular system of parameters a1, a2, . . . , an in the local ring R = OX,x,
where {x} is the image of f . Let Mi be the ideal of R generated by a1, . . . , ai and
set Ri = R/Mi, Pi = Mi+1/Mi. Denote by Fi the quotient field of Ri, in particular,
F0 = F (X) and Fn = F (x). The localization ring (Ri)Pi is a discrete valuation
ring with quotient field Fi and residue field Fi+1 therefore, it determines a place
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Fi ⇀ Fi+1. The composition of places

F (X) = F0 ⇀ F1 ⇀ . . . ⇀ Fn = F (x) ↪→ L

is a geometric place constructed (noncanonically) out of the point f ∈ X(L).

Lemma 103.1. Let K be an arbitrary field, let K ′/K be an odd degree field ex-
tension, and let L/K be an arbitrary field extension. Then there exists a field L′,
containing K ′ and L, such that the extension L′/L is of odd degree.

Proof. We may assume that K ′/K is a simple extension, i.e., K ′ is generated
over K by one element. Let f(t) ∈ F [t] be its minimal polynomial. Since the degree
of f is odd, there exists an irreducible divisor g ∈ L[t] of f over L with odd deg(g).
We set L′ = L[t]/(g). ¤

Lemma 103.2. Let K be a field extension of F of finite transcendence degree over
F , let K ⇀ L be a geometric F -place and let K ′ be a finite field extension of K of
odd degree. Then there exists an odd degree field extension L′/L such that the place
K ⇀ L extends to a place K ′ ⇀ L′.

Proof. By Lemma 103.1, it suffices to consider the case of a surjective place
K ⇀ L given by a discrete valuation ring R. It also suffices to consider only two
cases: (1) K ′/K is purely inseparable and (2) K ′/K is separable.

In the first case, the degree [K ′ : K] is a power of an odd prime p. Let R′ be
an arbitrary valuation ring of K ′ lying over R, i.e., such that R′ ∩K = R and with
the embedding R → R′ local (such an R′ exists in the case of an arbitrary field
extension K ′/K by [140, Ch. VI, Th. 5′]). We have a surjective place K ′ ⇀ L′,
where L′ is the residue field of R′. We claim that L′ is purely inseparable over
L (and therefore [L′ : L], being a power of p, is odd). Indeed if l ∈ L′, choose a
preimage k ∈ R′ of l. Then kpn ∈ K for some n, hence lp

n ∈ L, i.e., L′/L is a
purely inseparable extension.

In the second case, consider all the valuation rings R1, . . . , Rr of K ′ lying over R
(the number of such valuation rings is finite by [140, Ch. VI, Th. 12, Cor. 4]). The
residue field of each Ri is a finite extension of L. Moreover,

∑r
i=1 eini = [K ′ : K]

by [140, Ch. VI, Th. 20 and p. 63], where ni is the degree over L of the residue
field of Ri, and ei is the ramification index of Ri over R (cf. [140, Def. on pp.
52–53]). It follows that at least one of the ni is odd. ¤

104. Cones and vector bundles

The word “scheme” in the next two sections means a separated scheme of finite
type over a field.

104.A. Definition of a cone. Let X be a scheme over a field F and let
S• = S0 ⊕ S1 ⊕ S2 ⊕ . . . be a sheaf of graded OX -algebras. We assume that

(1) The natural morphism OX → S0 is an isomorphism.
(2) The OX -module S1 is coherent.
(3) The sheaf of OX -algebras S• is generated by S1.
The cone of S• is the scheme C = Spec(S•) over X and P(C) = Proj(S•) is

called the projective cone of C. Recall that Proj(S•) has a covering by the principal
open subschemes D(s) := Spec(S(s)) over all s ∈ S1, where S(s) is the subring of
degree 0 elements in the localization Ss.
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We have natural morphisms C → X and P(C) → X. The canonical homomor-
phism S• → S0 of OX -algebras induces the zero section X → C.

If C and C ′ are cones over X, then C ×X C ′ has a natural structure of a cone
over X. We denote it by C ⊕ C ′.

Example 104.1. A coherent OX -module P defines the cone C(P ) = Spec
(
S•(P )

)
over X, where S• stands for the symmetric algebra. If the sheaf P is locally free, the
cone E := C(P ) is called the vector bundle over X with the dual sheaf of sections
P∨ := HomOX

(P,OX). The projective cone P(E) is called the projective bundle of
E. The assignment P 7→ C(P∨) gives rise to an equivalence between the category
of locally free coherent OX -modules and the category of vector bundles over X. In
particular, such operations over the locally free OX -modules as the tensor product,
symmetric power, dual sheaf etc., and the notion of an exact sequence translate
to the category of vector bundles. We write K0(X) for the Grothendieck group
of the category of vector bundles over X. The group K0(X) is the abelian group
given by generators, the isomorphism classes [E] of vector bundles E over X and
relations [E] = [E′] + [E′′] for every exact sequence 0 → E′ → E → E′′ → 0 of
vector bundles over X.

Example 104.2. The trivial line bundle X × A1 → X will be denoted by 1.

Example 104.3. Let f : Y → X be a closed embedding and let I ⊂ OX be the
sheaf of ideals of the image of f in X. The cone

Cf = Spec
(OX/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .

)

over Y is called the normal cone of Y in X. If X is a scheme of pure dimension d,
then Cf is also a scheme of pure dimension d [45, B.6.6].

Example 104.4. If f : X → C is the zero section of a cone C, then Cf = C.

Example 104.5. The cone TX := Cf of the diagonal embedding f : X → X ×X
is called the tangent cone of X. If X is a scheme of pure dimension d, then the
tangent cone TX is a scheme of pure dimension 2d (cf. Example 104.3).

Let U and V be vector spaces over a field F and let

U = U0 ⊃ U1 ⊃ U2 ⊃ . . . and V = V0 ⊃ V1 ⊃ V2 ⊃ . . .

be two filtrations by subspaces. Consider the filtration on U ⊗ V defined by

(U ⊗ V )k =
∑

i+j=k

Ui ⊗ Vj .

The following lemma can be proven by a suitable choice of bases of U and V .

Lemma 104.6. The canonical linear map
∐

i+j=k

(Ui/Ui+1)⊗ (Vj/Vj+1) → (U ⊗ V )k/(U ⊗ V )k+1

is an isomorphism for every k ≥ 0.

Proposition 104.7. Let f : Y → X and g : S → T be closed embeddings. Then
there is a canonical isomorphism Cf × Cg ' Cf×g.
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Proof. We may assume that X = Spec(A), Y = Spec(A/I), and T =
Spec(B), S = Spec(B/J), where I ⊂ A and J ⊂ B are ideals. Then X × T =
Spec(A⊗B) and Y × S = Spec(A⊗B)/K, where K = I ⊗B + A⊗ J .

Consider the vector spaces Ui = Ii and Vj = Jj . We have (U ⊗ V )k = Kk. By
Lemma 104.6,

Cf ×Cg = Spec
( ∐

i≥0

Ii/Ii+1⊗
∐

j≥0

Jj/Jj+1
)
' Spec

( ∐

k≥0

Kk/Kk+1
)

= Cf×g. ¤

Corollary 104.8. If X and Y are two schemes, then TX×Y = TX × TY .

104.B. Regular closed embeddings. Let A be a commutative ring. A
sequence a = (a1, a2, . . . , ad) of elements of A is called regular if the ideal generated
by a1, . . . , ad is different from A and the coset of ai is not a zero divisor in the
factor ring A/(a1A + · · ·+ ai−1A) for all i ∈ [1, d]. We write l(a) = d.

Let Y be a scheme and let d : Y → Z be a locally constant function. A closed
embedding f : Y → X is called regular of codimension d if for every point y ∈ Y
there is an affine neighborhood U ⊂ X of f(y) such that the ideal of f(Y ) ∩ U in
F [U ] is generated by a regular sequence of length d(y).

Let f : Y → X be a closed embedding and let I be the sheaf of ideals of Y in
OX . The embedding of I/I2 into

∐
k≥0 Ik/Ik+1 induces a surjective OY -algebra

homomorphism S•(I/I2) → ∐
k≥0 Ik/Ik+1 and therefore a closed embedding of

cones ϕf : Cf → C(I/I2) over Y .

Proposition 104.9. (Cf. [48, Cor. 16.9.4, Cor. 16.9.11].) A closed embedding
f : Y → X is regular of codimension d if and only if the OY -module I/I2 is locally
free of rank d and the natural morphism ϕf : Cf → C(I/I2) is an isomorphism.

Corollary 104.10. Let f : Y → X be a regular closed embedding of codimension
d and let I be the sheaf of ideals of Y in OX . Then the normal cone Cf is a vector
bundle over Y of rank d with the sheaf of sections naturally isomorphic to (I/I2)∨.

We shall write Nf for the normal cone Cf of a regular closed embedding f and
call Nf the normal bundle of f .

Proposition 104.11. Let f : Y → X be a closed embedding and let g : X ′ → X
be a faithfully flat morphism. Then f is a regular closed embedding if and only if
the closed embedding f ′ : Y ′ = Y ×X X ′ → X ′ is regular.

Proof. Let I be the sheaf of ideals of Y in OX . Then I ′ = g∗(I) is the sheaf
of ideals of Y ′ in OX′ . Moreover

g∗(Ik/Ik+1) = I ′k/I ′k+1
, Cf ×Y Y ′ = Cf ′ , C(I/I2)×Y Y ′ = C(I ′/I ′2),

and ϕf ×Y 1Y ′ = ϕf ′ . By faithfully flat descent, I/I2 is locally free and ϕf is an
isomorphism if and only if I ′/I ′2 is locally free and ϕf ′ is an isomorphism. The
statement follows by Proposition 104.9. ¤
Proposition 104.12 (Cf. [48, Cor. 17.12.3]). Let g : X → Y be a smooth mor-
phism of relative dimension d and let f : Y → X be a section of g, i.e., g ◦ f = 1Y .
Then f is a regular closed embedding of codimension d and Nf = f∗Tg, where
Tg := Ker(TX → g∗TY ) is the relative tangent bundle of g over X.

Corollary 104.13. Let X be a smooth scheme. Then the diagonal embedding X →
X ×X is regular. In particular, the tangent cone TX is a vector bundle over X.
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Proof. The diagonal embedding is a section of any of the two projections
X ×X → X. ¤

If X is a smooth scheme, the vector bundle TX is called the tangent bundle
over X.

Corollary 104.14. Let f : X → Y be a morphism where Y is a smooth scheme
of pure dimension d. Then the morphism h = (1X , f) : X → X × Y is a regular
closed embedding of codimension d with Nh = f∗TY .

Proof. Applying Proposition 104.12 to the smooth projection p : X×Y → X
of relative dimension d, we have the closed embedding h is regular of codimension
d. The tangent bundle Tp is equal to q∗TY , where q : X × Y → Y is the other
projection. Since q ◦ h = f , we have

Nh = h∗Tp = h∗ ◦ q∗TY = f∗TY . ¤
Proposition 104.15 (Cf. [48, Prop. 19.1.5]). Let g : Z → Y and f : Y → X
be regular closed embeddings of codimension s and r respectively. Then f ◦ g is a
regular closed embedding of codimension r + s and the natural sequence of normal
bundles over Z,

0 → Ng → Nf◦g → g∗Nf → 0,

is exact.

Proposition 104.16 (Cf. [48, Th. 17.12.1, Prop. 17.13.2]). A closed embedding
f : Y → X of smooth schemes is regular and the natural sequence of vector bundles
over Y ,

0 → TY → f∗TX → Nf → 0,

is exact.

104.C. Canonical line bundle. Let C = Spec(S•) be a cone over X. The
cone Spec(S•[t]) = C × A1 coincides with C ⊕ 1. Let I ⊂ S•[t] be the ideal
generated by S1. The closed subscheme of P(C ⊕ 1) defined by I is isomorphic to
Proj(S0[t]) = Spec(S0) = X. Thus we get a canonical closed embedding (canonical
section) of X into P(C ⊕ 1).

Set Lc := P(C ⊕ 1) \ X. The inclusion of S•(s) into S•[t](s) for every s ∈ S1

induces a morphism Lc → P(C).

Proposition 104.17. The morphism Lc → P(C) has a canonical structure of a
line bundle.

Proof. We have S•[t](s) = S•(s)[
t
s ], hence the preimage of D(s) is isomorphic

to D(s)× A1. For any other element s′ ∈ S1 we have t
s′ = s

s′
t
s , i.e., the change of

coordinate function is linear. ¤
The line bundle Lc → P(C) is called the canonical line bundle over P(C).
A section of Lc over the open set D(s) is given by an S•(s)-algebra homomor-

phism S•(s)[
t
s ] → S•(s) that is uniquely determined by the image as of t

s . The element
sas ∈ Ss of degree 1 agrees with s′as′ on the intersection D(s) ∩D(s′). Therefore
the sheaf of sections of Lc coincides with O(1) := S̃•(1) where S̃• denotes the sheaf
associated to S• (cf. [50, Ch. II, §5]).

The scheme P(C) can be viewed as a locally principal divisor of P(C⊕1) given
by t. The open complement P(C ⊕ 1) \ P(C) is canonically isomorphic to C. The
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image of the canonical section X → P(C⊕1) is contained in C (and in fact is equal
to the image of the zero section of C), hence it does not intersect P(C). Moreover,
P(C ⊕ 1) \ (

P(C) ∪X
)

is canonically isomorphic to C \X.
If C is a cone over X, we write C◦ for C \ X where X is viewed as a closed

subscheme of C via the zero section. We have shown that C◦ is canonically isomor-
phic to L◦c . Note that C is a cone over X and Lc is a cone (in fact, a line bundle)
over P(C).

For every s ∈ S1, the localization Ss is the Laurent polynomial ring S(s)[s, s−1]
over S(s). Hence the inclusion of S(s) into Ss induces a flat morphism C◦ → P(C)
of relative dimension 1.

104.D. Tautological line bundle. Let C = Spec(S•) be a cone over X.
Consider the tensor product T • = S• ⊗S0 S• as a graded ring with respect to the
second factor. We have

Proj(T •) = C ×X P(C).
Let J be the ideal of T • generated by x⊗ y − y ⊗ x for all x, y ∈ S1 and set

Lt := Proj
(
T •/J

)
.

Thus Lt is a closed subscheme of C ×X P(C) and we have natural projections
Lt → C and Lt → P(C).

Proposition 104.18. The morphism Lt → P(C) has a canonical structure of a
line bundle.

Proof. Let s ∈ S1. The preimage of D(s) in Lt coincides with

Spec
(
T •(1⊗s)/J(1⊗s)

)
,

where J(1⊗s) = J1⊗s∩T •(1⊗s). The homomorphism T • → S•s [t], where t is a variable,
defined by x⊗ y 7→ xy

sn · tn for any x ∈ Sn and y ∈ S•, gives rise to an isomorphism
between T •(1⊗s)/J(1⊗s) and S•(s)[t]. Hence the preimage of D(s) is isomorphic to
D(s)× A1. ¤

The line bundle Lt → P(C) is called the tautological line bundle over P(C).

Example 104.19. If L is a line bundle over X, then P(L) = X and Lt =
L×X P(L) = L.

Similar to the case of the canonical line bundle, a section of Lt over the open
set D(s) is given by an element as ∈ S•(s) and the element as/s ∈ S•s of degree −1
agrees with as′/s′ on the intersection D(s)∩D(s′). Therefore the sheaf of sections
of Lt coincides with S̃•(−1) = O(−1). In particular, the tautological line bundle is
dual to the canonical line bundle, Lt = Lc

∨.
The ideal I = S>0 in S• defines the image of the zero section of C. The graded

ring T •/J is isomorphic to S• ⊕ I ⊕ I2 ⊕ · · · . Therefore, the canonical morphism
Lt → C is the blowup of C along the image of the zero section of C. The exceptional
divisor in Lt is the image of the zero section of Lt. Hence the induced morphism
L◦t → C◦ is an isomorphism.

Example 104.20. Let F [ε] be the F -algebra of dual number over F . The tangent
space TP(V ),L of the point of the projective space P(V ) given by a line L ⊂ V
coincides with the fiber over L of the map P(V )(F [ε]) → P(V )(F ) induced by the
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ring homomorphism F [ε] → F , ε 7→ 0. For example, the F [ε]-submodule L⊕Lε of
V [ε] := V ⊗ F [ε] represents the zero vector of the tangent space TP(V ),L.

For a linear map h : L → V let Wh be the F [ε]-submodule of V [ε] generated
by the elements v + h(v)ε, v ∈ L. Since Wh/εWh ' L, we can view Wh as a point
of TP(V ),L. The map HomF (L, V ) → TP(V ),L given by h 7→ Wh yields an exact
sequence of vector spaces

0 → HomF (L, L) → HomF (L, V ) → TP(V ),L → 0.

In other words,
TP(V ),L = HomF (L, V/L).

Since the fiber of the tautological line bundle Lt over the point given by L
coincides with L, we get an exact sequence of vector bundles over P(V ):

0 → Hom(Lt, Lt) → Hom(Lt,1⊗F V ) → TP(V ) → 0.

The first term of the sequence is isomorphic to 1 and the second term is isomorphic
to Lc ⊗F V ' (Lc)⊕n, where n = dim V . It follows that

[TP(V )] = n[Lc]− 1 ∈ K0

(
P(V )

)
.

More generally, if E → X is a vector bundle, then there is an exact sequence
of vector bundles over P(E):

0 → 1→ Lc ⊗ q∗E → Tq → 0,

where q : P(E) → X is the natural morphism and Tq is the relative tangent bundle
of q.

104.E. Deformation to the normal cone. Let f : Y → X be a closed
embedding of schemes. First suppose that X is an affine scheme, X = Spec(A),
and Y is given by an ideal I ⊂ A. Set Y = Spec(A/I). Consider the subring

Ã =
∐

n∈Z
I−ntn

of the Laurent polynomial ring A[t, t−1], where the negative powers of the ideal I

are understood as equal to A. The scheme Df := Spec(Ã) is called the deformation
scheme of the closed embedding f . In the general case, in order to define Df , we
cover X by open affine subschemes and glue together the deformation schemes of
the restrictions of f to the open sets of the covering.

The inclusion of A[t] in Ã induces a morphism g : Df → A1 ×X. Denote by
Cf the inverse image g−1({0} ×X). In the affine case,

Cf = Spec(A/I ⊕ I/I2 · t−1 ⊕ I2/I3 · t−2 ⊕ · · · ).
Thus, Cf is the normal cone of f (cf. Example 104.3). If f is a regular closed
embedding of codimension d, then Cf is a vector bundle over Y of rank d. We
write Nf for Cf in this case.

The open complement Df \Cf is the inverse image g−1(Gm×X). In the affine
case, it is the spectrum of the ring Ã[t−1] = A[t, t−1]. Hence the inverse image is
canonically isomorphic to Gm ×X via g, i.e.,

Df \ Cf ' Gm ×X.

In the affine case, the natural ring homomorphism A[t] → (A/I)[t] extends
canonically to a ring homomorphism Ã → (A/I)[t]. Hence the morphism f × id :
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A1 × Y → A1 ×X factors through the canonical morphism h : A1 × Y → Df over
A1. The fiber of h over a point t 6= 0 of A1 is naturally isomorphic to the morphism
f . The fiber of h over t = 0 is isomorphic to the zero section Y → Cf of the normal
cone Cf of f . Thus we can view h as a family of closed embeddings parameterized
by A1 deforming the closed embedding f into the zero section Y → Cf as the
parameter t “approaches 0”. We have the following diagram of natural morphisms:

Y −−−−→ A1 × Y ←−−−− Gm × Y
y

y
y

Cf −−−−→ Df ←−−−− Gm ×X
y

y
∥∥∥

Y −−−−→ A1 ×X ←−−−− Gm ×X.

Note that the normal cone Cf is the principal divisor in Df of the function t.
Consider a fiber product diagram

(104.21)

Y ′ f ′−−−−→ X ′

g

y
yh

Y
f−−−−→ X

where f and f ′ are closed embeddings. It induces the fiber product diagram of
open and closed embeddings:

(104.22)

Cf ′ −−−−→ Df ′ ←−−−− Gm ×X ′

k

y l

y
yid×h

Cf −−−−→ Df ←−−−− Gm ×X.

Proposition 104.23. In the notation of (104.21), there are natural closed embed-
dings Df ′ → Df ×X X ′ and Cf ′ → Cf ×X X ′. These embeddings are isomorphisms
if h is flat.

Proof. We may assume that all schemes are affine and h is given by a ring
homomorphism A → A′. The scheme Y is defined by an ideal I ⊂ A and Y ′ is given
by I ′ = IA′ ⊂ A′. The natural homomorphism In⊗AA′ → (I ′)n is surjective, hence
Ã⊗A A′ → Ã′ is surjective. Consequently, Df ′ → Df ×X X ′ and Cf ′ → Cf ×X X ′

are closed embeddings. If A′ is flat over A, the homomorphism In ⊗A A′ → (I ′)n

is an isomorphism. ¤
104.F. Double deformation space. Let A be a commutative ring.

Lemma 104.24. Let I be the ideal of A generated by a regular sequence a =
(a1, a2, . . . , ad) and let a ∈ A be such that a + I is not a zero divisor in A/I.
If ax ∈ Im for some x ∈ A and m, then x ∈ Im.

Proof. By Proposition 104.9, multiplication by a + I on In/In+1 is injective
for any n. The statement of the lemma follows by induction on m. ¤

Let a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , be) be two sequences of elements of
A. We write a ⊂ b if d ≤ e and ai = bi for all i ∈ [1, d]. Clearly, if a ⊂ b and b is
regular, so is a.
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Let I ⊂ J be ideals of A. We define the ideals InJm for n < 0 or m < 0 by

InJm =
{

Jn+m if n < 0,
In if m < 0.

Proposition 104.25. Let a ⊂ b be two regular sequences in a ring A and let I ⊂ J
be the ideals of A generated by a and b respectively. Then

InJm ∩ In+1 = In+1Jm−1,

InJm ∩ Jn+m+1 = InJm+1,

for all n and m.

Proof. We prove the first equality. The proof of the second one is similar.
We proceed by induction on m. The case m ≤ 1 is clear. Suppose m ≥ 2. As

the inclusion “⊃” is easy, we need to prove that

InJm ∩ In+1 ⊂ In+1Jm−1.

Let d be a sequence such that a ⊂ d ⊂ b and let L be the ideal generated by d, so
I ⊂ L ⊂ J . By descending induction on the length l(d) of the sequence d, we prove
that

(104.26) InJm ∩ In+1 ⊂ Ln+1Jm−1.

When l(d) = l(a), i.e., d = a and L = I, we get the desired inclusion.
The case l(d) = l(b), i.e., d = b and L = J is obvious. Let c be the sequence

satisfying a ⊂ c ⊂ d and l(c) = l(d) − 1. Let K be the ideal generated by c. We
have L = K +aA where a is the last element of the sequence d. Assuming (104.26),
we shall prove that

InJm ∩ In+1 ⊂ Kn+1Jm−1.

Let x ∈ InJm ∩ In+1. By assumption,

x ∈ Ln+1Jm−1 =
n+1∑

k=0

an+1−kKkJm−1,

hence

x =
n+1∑

k=0

an+1−kxk

for some xk ∈ KkJm−1. For any s ∈ [0, n + 1], set

ys =
s∑

k=0

as−kxk.

We claim that ys ∈ KsJm−1 for s ∈ [0, n+1]. We prove the claim by induction
on s. The case s = 0 is obvious since y0 = x0 ∈ Jm−1. Suppose ys ∈ KsJm−1 for
some s < n + 1. We have

x = an+1−sys +
n+1∑

k=s+1

an+1−kxk,

where xk ∈ KkJm−1 ⊂ Ks+1 if k ≥ s+1 and x ∈ In+1 ⊂ Ks+1. Hence an+1−sys ∈
Ks+1 and therefore ys ∈ Ks+1 by Lemma 104.24. Thus ys ∈ KsJm−1 ∩ Ks+1.
By the first induction hypothesis, the latter ideal is equal to Ks+1Jm−2 and ys ∈
Ks+1Jm−2. Since xs+1 ∈ Ks+1Jm−1, we have ys+1 = ays + xs+1 ∈ Ks+1Jm−1.
This proves the claim. By the claim, x = yn+1 ∈ Kn+1Jm−1. ¤
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Let Z
g−→ Y

f−→ X be regular closed embeddings. We have closed embeddings

i : (Nf )|Z → Nf and j : Ng → Nfg.

We shall construct the double deformation scheme D = Df,g and a morphism
D → A2 satisfying all of the following:

(1) D|A1×Gm
= Df ×Gm.

(2) D|Gm×A1 = Gm ×Dfg.
(3) D|A1×{0} = Dj .
(4) D|{0}×A1 = Di.
(5) D|{0}×{0} = Ni ' Nj .
As in the case of an ordinary deformation space, it suffices to consider the affine

case: X = Spec(A), Y = Spec(A/I), and Z = Spec(A/J), where I ⊂ J are the
ideals of A generated by regular sequences. Consider the subring

Â =
∐

n,m∈Z
InJm−n · t−ns−m

of the Laurent polynomial ring A[t, s, t−1, s−1] and set D = Spec(Â). Since Â
contains the polynomial ring A[t, s], there are natural morphisms D → X × A2 →
A2.

We have

Â[s−1] =
∐

n,m∈Z
In · t−ns−m =

( ∐

n,m∈Z
In · t−n

)
[s, s−1],

Â[t−1] =
∐

n,m∈Z
Jm · t−ns−m =

( ∐

n,m∈Z
Jm · s−m

)
[t, t−1].

This proves (1) and (2).
To prove (3) consider the rings

Â/sÂ =
∐

n,m∈Z

[
InJm−n/InJm−n+1

] · t−n,

R =
∐

m∈Z

[
Jm/Jm+1

] · s−m,

S =
∐

m∈Z

[
(Jm + I)/(Jm+1 + I)

] · s−m.

We have Spec(R) = Nfg and Spec(S) = Ng. The natural surjection R → S
corresponds to the embedding j : Ng → Nfg.

Let Ĩ = Ker(R → S). By Proposition 104.25, Jm ∩ I = IJm−1, hence

Ĩ =
∐

m∈Z

[
IJm−1 + Jm+1/Jm+1

] · s−m

and
Ĩn =

∐

m∈Z

[
InJm−n + Jm+1/Jm+1

] · s−m.

Therefore, Dj is the spectrum of the ring
∐

m∈Z

[
InJm−n + Jm+1/Jm+1

] · t−ns−m.
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It follows from Proposition 104.25 that this ring coincides with Â/sÂ, hence (3).
To prove (4) consider the ring

Â/tÂ =
∐

n,m∈Z

[
InJm−n/In+1Jm−n−1

] · s−m.

The normal bundle Nf is the spectrum of the ring

T =
∐

n∈Z

[
In/In+1

] · u−m.

Let J̃ be the ideal of T of the closed subscheme (Nf )|Z . We have

J̃m =
∐

n∈Z

[
InJm + In+1/In+1

] · u−m.

The deformation scheme Di is the spectrum of the ring

U =
∐

n,m∈Z

[
InJm + In+1/In+1

] · u−ns−m.

We define the surjective ring homomorphism ϕ : Â/tÂ → U taking

(x + In+1Jm−n−1) · t−ns−m to (x + In+1) · u−ns−m+n.

By Proposition 104.25, the map ϕ is also injective. Hence ϕ gives the identification
(4). Property (5) follows from (3) and (4).

105. Group actions on algebraic schemes

In this section all schemes are quasi-projective over a field F . We write G =
{1, σ} for a cyclic group of order 2.

105.A. G-schemes. A G-scheme is a scheme Y together with a G-action on
Y . As Y is a quasi-projective scheme, every pair of points of Y belong to an open
affine subscheme. It follows that there is an open G-invariant affine covering of
such Y . Therefore, in most of the constructions and proofs, we may restrict to the
class of affine G-schemes.

In particular, to define a subscheme Y G ⊂ Y for a G-scheme Y , we may assume
that Y is affine, i.e., Y = Spec R, where R is a G-algebra, i.e., a commutative F -
algebra with G acting on R by F -algebra automorphisms. Consider the ideal I ⊂ R
generated by σ(r)− r for all r ∈ R and set

Y G := Spec(R/I).

Example 105.1. For any scheme X over F , the group G acts on X×X by permu-
tation of the factors. Then (X×X)G coincides with the image of the diagonal closed
embedding ∆ : X → X×X. Indeed, if X = Spec(A), then X×X = Spec(A⊗F A)
and the ideal I ⊂ A ⊗F A is generated by σ(a ⊗ a′) − a ⊗ a′ = a′ ⊗ a − a ⊗ a′ for
all a, a′ ∈ A. Hence it coincides with the kernel of the product map A⊗A → A.

Exercise 105.2. Prove that (X × Y )G = XG × Y G for G-schemes X and Y .

Proposition 105.3. Let Y be a G-scheme and let B be the blowup of Y along
Y G. Then G acts naturally on B and the subscheme BG of B coincides with
the exceptional divisor P(C), where C is the normal cone of the closed embedding
Y G → Y .
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Proof. We may assume that Y = Spec R for a G-algebra R. Then Y G =
Spec(R/I), where I is the ideal of R generated by σ(r) − r for all r ∈ R, and
B = Proj S, where S = R ⊕ I ⊕ I2 ⊕ · · · . The scheme B is covered by open
G-invariant subschemes Spec(S(s)) with s = σ(r) − r, r ∈ R. The intersection of
Spec(S(s)) with the exceptional divisor P(C) is given by the ideal sS(s) in S(s).
Therefore, it suffices to show that the ideal J in S(s) generated by elements of
the form σ(x) − x with x ∈ S(s) coincides with sS(s). Clearly s = σ(r) − r ∈ J .
Conversely, let x = r

sn with r ∈ In be an element in S(s). As σ acts on In/In+1 by
multiplication by (−1)n, we have t := (−1)nσ(r)− r ∈ In+1 and hence

σ(x)− x =
t

sn
= s

t

sn+1
∈ sS(s). ¤

Let Y be a G-scheme. To define a scheme Y/G we may assume that Y = Spec R.
Set

Y/G := Spec(RG).

The natural morphism p : Y → Y/G is called a G-torsor if Y G = ∅.
Example 105.4. Let Y be a G-scheme and let Y ′ = Y \ Y G. Then the natural
morphism Y ′ → Y ′/G is a G-torsor.

Proposition 105.5. Let p : Y → Y/G be a G-torsor. Then

(1) p∗(OY ) is a locally free OY/G-module of rank 2.
(2) The morphism p is étale.

Proof. We may assume that Y = Spec(R) for a G-algebra R. As Y G = ∅, the
elements s = σ(r)− r with r ∈ R generate the unit ideal of R, i.e., the G-invariant
open sets Spec(Rs) cover Y . Replacing R by Rs we may assume that s is invertible
in R. Then {1, r} is a basis of R over RG since for every a ∈ R we have a = f + gr
with f =

(
aσ(r)− σ(a)r

)
s−1 ∈ RG and g =

(
σ(a)− a

)
s−1 ∈ RG.

Moreover, r is the root of the quadratic polynomial h(t) = t2 − bt + c over RG

with b = σ(r) + r and c = σ(r)r. As the element h′(r) = 2r − b = −s is invertible
in R, the morphism p is étale (cf. [105, Ch. I, Ex. 3.4]). ¤

Example 105.6. Let p : Y → Y/G be a G-torsor with Y/G = Spec F . Then
Y = Spec K, where K is an étale quadratic F -algebra.

Proposition 105.7. Suppose charF 6= 2. Let Y be a G-scheme and let U =
Y \ Y G. Then

(1) The composition Y G → Y
p−→ Y/G is a closed embedding with the comple-

ment U/G.
(2) If I ⊂ OY/G is the sheaf of ideals of Y G in Y/G, then p∗(I) = J2, where

J ⊂ OY is the sheaf of ideals of Y G in Y .
(3) If Y is regular and Y G is a regular divisor in Y , then Y/G is also regular.

Proof. We may assume that Y = Spec R for a G-algebra R.
(1): The composition Y G → Y → Y/G is given by the composition of algebra

homomorphisms RG → R → R/I, where I is the ideal of R generated by σ(r)− r
for all r ∈ R. The latter composition is surjective as any r ∈ R is the image of(
σ(r) + r

)
/2 ∈ RG.
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The scheme U (respectively U/G) is covered by the open sets Spec(Rs) (re-
spectively Spec(RG

s2)) with s = σ(r) − r, r ∈ R. Therefore, the second statement
in (1) follows from the equality (Rs)G = (RG)s2 .

(2): We need to prove that
(
I ∩ RG

)
R = I2. The generators s = σ(r) − r of

I satisfy σ(s) = −s. Therefore, the ideal I2 is generated by G-invariant elements.
Hence I2 ⊂ (I ∩RG)R. Conversely, let a ∈ I ∩RG. We can write a =

∑
risi with

ri ∈ R and si ∈ I satisfying σ(si) = −si. Hence

a =
1
2
(
a + σ(a)

)
=

1
2

∑(
ri − σ(ri)

)
si ∈ I2.

(3): Let z ∈ Y/G and let y ∈ Y be a point above z. Suppose y ∈ Y \ Y G. The
natural morphism Y \Y G → (

Y \Y G
)
/G is a G-torsor by Example 105.4, hence it

is flat by Proposition 105.5. As the local ring OY,y is regular, so is OY/G,z by [48,
Prop. 17.3.3(i)].

Suppose now that y ∈ Y G. We may assume that F is algebraically closed
and y is a rational point. The tangent space TY G,y has codimension 1 in TY,y and
coincides with the subspace of all G-invariant vectors in TY,y. Hence there is a basis
ā1, ā2, . . . , ān of mY,y/m2

Y,y satisfying σ(ā1) = −ā1 and σ(āi) = āi for i ≥ 2. Lift
the āi to a local system of parameters ai ∈ mY,y with σ(a1) = −a1 and σ(ai) = ai

for i ≥ 2. The completion of the local ring OY/G,z coincides with

ÔY/G,z =
(ÔY,y

)G = F [[a1, a2, . . . , an]]G = F [[a2
1, a2, . . . , an]],

and hence is regular. Therefore, z is a regular point on Y/G. ¤
105.B. The scheme BX . Let X be a scheme. Write BX for the blowup of

X2 ×A1 := X ×X ×A1 along ∆(X)× {0}. Since the normal cone of ∆(X)× {0}
in X2 ×A1 is TX ⊕ 1 (cf. Proposition 104.7), the projective cone P

(
TX ⊕ 1)

is the
exceptional divisor in BX (cf. [45, B.6.6]).

Let G act on X2 × A1 by σ(x, x′, t) = (x′, x,−t). If charF 6= 2, we have

(X2 × A1)G = (X2)G × (A1)G = ∆(X)× {0}.
Set UX = (X2 × A1) \ (

∆(X) × {0}). By Proposition 105.3, the group G acts
naturally on BX so that (BX)G = P

(
TX ⊕ 1)

and BX \ P(TX ⊕ 1)
is canonically

isomorphic to UX .

Proposition 105.8. Suppose charF 6= 2. If X is smooth, then so are BX and
BX/G.

Proof. The scheme BX is a blowup of a smooth scheme along smooth center,
hence it is smooth. As the scheme P

(
TX ⊕ 1)

= (BX)G is a smooth divisor in BX ,
the second statement follows from Proposition 105.7(3). ¤
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de caractéristique différente de 2, C. R. Acad. Sci. Paris 255 (1962), 1366–1368.

[28] M. A. Dickmann and F. Miraglia, On quadratic forms whose total signature is zero mod 2n,
Invent. Math. 133 (1998), no. 2, 243–278.

[29] , Lam’s conjecture, Algebra Colloq. 10 (2003), no. 2, 149–176.
[30] R. Elman, Pfister forms and K-theory of fields, Ph.D. thesis, University of California, Berke-

ley, California, 1972.
[31] , Quadratic forms and the u-invariant. III, Conference on Quadratic Forms–1976

(Proc. Conf., Queen’s Univ., Kingston, Ont., 1976), Queen’s Univ., Kingston, Ont., 1977,
pp. 422–444. Queen’s Papers in Pure and Appl. Math., No. 46.

[32] R. Elman and T. Y. Lam, Pfister forms and K-theory of fields, J. Algebra 23 (1972),
181–213.

[33] , Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math.
94 (1972), 1155–1194.

[34] , Quadratic forms and the u-invariant. I, Math. Z. 131 (1973), 283–304.
[35] , Quadratic forms and the u-invariant. II, Invent. Math. 21 (1973), 125–137.
[36] , Classification theorems for quadratic forms over fields, Comment. Math. Helv. 49

(1974), 373–381.
[37] , Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), no. 1, 21–42.
[38] R. Elman, T. Y. Lam, and A. Prestel, On some Hasse principles over formally real fields,

Math. Z. 134 (1973), 291–301.
[39] R. Elman, T. Y. Lam, and A. R. Wadsworth, Amenable fields and Pfister extensions, Confer-

ence on Quadratic Forms–1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976), Queen’s
Univ., Kingston, Ont., 1977, pp. 445–492. With an appendix “Excellence of F (ϕ)/F for
2–fold Pfister forms” by J. K. Arason. Queen’s Papers in Pure and Appl. Math., No. 46.

[40] R. Elman and H.-K. Lee, On a relative u-invariant, Preprint.
[41] R. Elman and C. Lum, On the cohomological 2-dimension of fields, Comm. Algebra 27

(1999), no. 2, 615–620.
[42] R. Elman and A. Prestel, Reduced stability of the Witt ring of a field and its Pythagorean

closure, Amer. J. Math. 106 (1984), no. 5, 1237–1260.
[43] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, second ed., Translations

of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI,
2002, With a foreword by I. R. Shafarevich.

[44] R. W. Fitzgerald, Function fields of quadratic forms, Math. Z. 178 (1981), no. 1, 63–76.
[45] W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzge-

biete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-
Verlag, Berlin, Germany, 1998.

[46] S. Garibaldi, A. S. Merkurjev, and J.-P. Serre, Cohomological invariants in Galois coho-
mology, University Lecture Series, vol. 28, American Mathematical Society, Providence, RI,
2003.

[47] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Stud-
ies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, UK, 2006.
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Karpenko et al.), Astérisque (2006), no. 307, Exp. No. 941, vii, 113–163, Séminaire Bourbaki.
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Mathématique de France, Paris, to appear.

[68] I. Kaplansky, Quadratic forms, J. Math. Soc. Japan 5 (1953), 200–207.
[69] N. A. Karpenko, Algebro-geometric invariants of quadratic forms, Algebra i Analiz 2 (1990),

no. 1, 141–162.
[70] , Cohomology of relative cellular spaces and of isotropic flag varieties, Algebra i

Analiz 12 (2000), no. 1, 3–69.
[71] , Criteria of motivic equivalence for quadratic forms and central simple algebras,

Math. Ann. 317 (2000), no. 3, 585–611.
[72] , On the first Witt index of quadratic forms, Invent. Math. 153 (2003), no. 2, 455–

462.
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Notation

(a), 394

(a)m, 394

A ? B, 387

Ap(X, Kq) (K-cohomology group), 257

Aop (opposite algebra), 388

AL, 387

An (property), 149

Ap(X, Kq) (K-homology group), 238

BX , 279

C(X) (Rost complex), 218

C(ϕ) (Clifford algebra), 57

C
(
X(F ),Z

)
, 134

C ⊕ C′ (direct sum of cones), 410

C+(ϕ), 63

C◦, 413

C0(ϕ) (even Clifford algebra), 57

CQ (conic curve), 194

Cf (normal cone), 410

Cp(X), 219

Cp,n(X), 219

D(t), 116

D(b) (set of nonzero values of b), 15

D(ϕ) (set of nonzero values of ϕ), 52

D[t], 116

D
(∞〈1〉), 123

Df (deformation scheme), 414

F (T ) (rational function field), 71

F (Xϕ) (function field), 94

F ((t)) (Laurent series field), 123

F (p) (quotient field), 75

F (t) (rational function field), 17

F (x) (residue field of x), 217

F [T ] (polynomial ring), 71

F [t] (polynomial ring), 15

F [t1, . . . , tn] (polynomial ring), 71

F×2, 12

FP (real closure), 128, 384

Fa, 53, 388

Fpy (pythagorean closure), 125

Fsep (separable closure), 393

Fh(ϕ)−1 (leading field), 104

G(b) (group of similarity factors), 15

G(ϕ) (group of similarity factors), 52

GC
(
X(F ),Z

)
, 184

GP (F ) (set of general quadratic Pfister
forms), 53

GPn(F ) (set of general quadratic n-fold
Pfister forms), 53

GW∗(F ) (graded Witt ring), 28

H(a), 384

H(a1, . . . , an), 385

Hn(F ) (Galois cohomology group), 404

Hn(F, M) (Galois cohomology group), 393

Hn(Γ, M) (cohomology group), 393

Hn,i(F,Z/mZ), 402

Hn (property), 173

I(F ) (fundamental ideal), 24

In(F ), 24

InJm, 416

Iq(F ) (quadratic Witt group), 51

Iq(K/F ), 99

In
q (F ), 53

It(F ), 130

In
t (F ), 148

Ib(F ), 153

In
red(F ), 137

J(ϕ) (J-invariant), 364

K ⇀ L (place), 408

K∗(F ) (graded Milnor ring), 398

K0(X), 410

Kn(F ) (Milnor group), 398

(L/F, b) (quaternion algebra), 389

L(D), 267

Lc (canonical line bundle), 412

Ln, 198

Lt (tautological line bundle), 413

M(−1), 396

M(X) (Chow motive), 296

M(X)(i) (Chow motive), 296

MΓ, 393

N(ρ), 109

Nf (normal bundle), 411

P (F ) (set of quadratic Pfister forms), 53

P (n), 351

P∨ (dual sheaf), 410

Pn(F ) (set of quadratic n-fold Pfister
forms), 53

R[t, σ], 391

R× (unit group), 12

T (V ) (tensor algebra), 57

TX (tangent cone), 410

Tg (relative tangent bundle), 411
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UX , 278

V (E), 209

V (T ), 71

V [T ], 71

V [t], 71

VQ (space of pure quaternions), 194

Vϕ (underlying vector space of ϕ), 39

W (F ) (Witt ring), 20

W (K/F ), 99

W⊥ (orthogonal complement), 13

Wt(F ), 126

Wred(F ) (reduced Witt ring), 137

Xϕ (projective quadric), 93

Xϕ(L) (set of L-points), 93

Xk, 105

X(p), 218

Y/G (factor scheme), 419

Y G, 418

Yx (fiber scheme), 222

Z(a), 262

[A] · [B] (product in Br(F ) and Ét2(F )),
388

[Z] (cycle of Z), 219

[a, b] (binary quadratic form), 40

[x] (cycle of a point), 261

Br(F ) (Brauer group), 388

Br(L/F ), 388

Brm(F ), 388

CH(Z; Λ), 295

CH∗(X) (graded Chow group), 267

CHp(X) (Chow group of codimension p
classes of cycles), 267

CHp(X) (Chow group of dimension p
classes of cycles on X), 261

char F (characteristic of F ), 11

Ét2(F ), 388

Λ(V ) (exterior algebra of V ), 57

Λ2(V ) (exterior square of V ), 12

ΓF (absolute Galois group), 393

Γf (graph of a morphism), 292

Grr(V ) (Grassmannian variety), 389

IndK/F (M), 395

Λ(i) (Tate motive), 296

Mn(F ) (n× n matrix ring), 12

NA (quadratic norm form), 60, 387

Nrd (reduced norm), 194, 390

P(C) (projective cone), 409

SB(A) (Severi-Brauer variety), 389

Tn(F ) (n× n upper-triangular matrices),
41

TrA (trace form), 60, 387

Trd (reduced trace), 194, 390

Z(X;P1), 263, 278

Zp(X) (group of p-dimensional cycles), 261

α : X Ã Y (correspondence), 295

α ∪ β (cup-product), 394

α× β (external product), 232

α∗, 294

α2
G, 278

αt (transpose of α), 292

α∗, 293

annm(ρ), 181

annm(b), 181

annW (F )(ϕ), 55

annW (F )(b), 37

ē0, 25

ē1, 25

ū(F ) (ū-invariant), 161

ūr(F ) (ūr-invariant), 162

β ◦ α, 292〈
D(ϕ)

〉
, 76

OXϕ (s), 309

∩ (intersection of cycles), 317

S• (symmetric algebra), 93, 118

cdp(F ) (cohomological p-dimension), 407

χ(ΓF ) (character group), 393

χm(ΓF ), 393

clif(ϕ) (Clifford invariant), 63

deg ϕ (degree of ϕ), 104

deg f (degree), 75

deg v (degree), 75

deg (degree homomorphism), 263

deg(A) (degree of A), 388

δ (connecting homomorphism), 240

det b (determinant), 12

dim x (dimension of x), 218

disc(ϕ) (discriminant), 61

div(f) (divisor of f), 219

ind(A) (index of A), 388

κ(x) (residue field of x), 217

〈a〉b, 14

〈a〉q , 40

〈a1, . . . , an〉b, 14

〈a1, . . . , an〉q , 44

〈〈a〉〉b, 24

〈〈a1, . . . , an]], 53

〈〈a]], 53

〈〈a1, . . . , an〉〉b, 24

〈〈a1, . . . , an〉〉q , 56(
a,b
F

)
(quaternion algebra), 390[

a,b
F

]
(quaternion algebra), 390

1 (trivial line bundle), 410

h(n) (height of an integer n), 351

µa, 197

µm, 394

ν(F ) (torsion-free index), 190

SBr(A) (generalized Severi-Brauer variety),
389

CM*(F, Λ), 299

CM(F ), 299

CM(F, Λ), 298

CR(F ), 297

CR(F, Λ), 296

CR∗(F ), 297

CR∗(F, Λ), 296
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Corri(X, Y ; Λ), 295

C(F, Λ), 296

GO(ϕ) (group of similitudes), 310

PGO(ϕ) (group of projective similitudes),
310

Sg(C) (total Segre class), 268

Sm (category of smooth complete schemes),
291

SqX (Steenrod operation of homological
type), 280

SqX (Steenrod operation of cohomological
type), 285

Sqk
X , 285

SqX
k , 281

O(V, ϕ) (orthogonal group), 355

O+(V, ϕ) (special orthogonal group), 355

cdim(X) (canonical dimension of X), 367

cdim(C) (canonical dimension of C), 367

cdimp(X) (canonical p-dimension of X),
367

cdimp(C) (canonical p-dimension of C), 367

ordR (order homomorphism), 262

ordx, 262

sgC (Segre homomorphism), 268

I
n
(F ), 143

annm(ρ), 181

annm(b), 181

en (nth graded cohomological invariant), 68

∂ (first residue homomorphism), 81

∂x
x′ (residue homomorphism), 218

∂R (residue homomorphism), 218

∂U
Z (boundary map), 229

∂π (second residue homomorphism), 81

∂v (residue homomorphism), 396, 399

∂x (residue homomorphism), 397, 399

ψ⊥ (complementary form), 42

rad ϕ (quadratic radical of ϕ), 42

rad b (radical of b), 13

sgn b (signature), 123

sgn (signature map), 123

sgn (total signature map), 134

sgnP (signature map), 128

σf (deformation homomorphism), 235, 240

st(F ) (stable range), 181

str(F ) (reduced stability index), 135

supp b (support), 134

τv (hyperplane reflection), 40

Hom(M, N), 300

ϕ ≺Â ψ, 97

ϕ ∼ ψ (Witt equivalence), 49

ϕ ' ψ (isometry), 40

ϕ′ (pure subform), 66

ϕ|W (restriction), 41

ϕ1 ⊥ ϕ2 (orthogonal sum), 44

ϕK (base extension), 42

ϕk (kth kernel form), 104

ϕan (anisotropic part), 49

ϕb (quadratic form associated to b), 40

ϕh(ϕ)−1 (leading form), 104

Î(F ), 24

În(F ), 24

Ŵ (F ) (Witt-Grothendieck ring), 19

D̃(b), 15

D̃(ϕ), 52

D̃
(∞〈1〉), 123, 383

G̃(ϕ), 56

ũ(F ) (Hasse number), 173

℘ (Artin-Schreier map), 41, 388

{a1, a2, . . . , an} (n-symbol), 28, 219, 398

{a}, 219

aM , 407

bn (Bockstein map), 406

c(E) (total Chern class), 248

ci(E) (Chern class), 248, 270

cK/F (corestriction homomorphism), 395

cL/F (corestriction (norm)

homomorphism), 400, 402

dX (differential of Rost complex), 218

e(E) (Euler class), 243

e(L)• (total Euler class), 268

e0, 25

e1, 25, 62

e2, 29, 63

en (nth cohomological invariant), 68

ey(g), 223

f∗ (leading coefficient), 75

f∗ (pull-back homomorphism), 254

fF (Gysin homomorphism), 251, 265

f∗, 28

f∗ (push-forward homomorphism), 220,
239, 263

g∗ (pull-back homomorphism), 223, 239,
263, 407

h (hyperplane section class), 307

hn,m
F (norm residue homomorphism), 404

hn
F (norm residue homomorphism), 68, 404

i0(Xϕ) (Witt index), 93

kn(F ), 28

l(A) (length of A), 407

lA(M) (length of M), 407

la, 195

li (linear subspace class), 307

nϕ, 44

nb, 14

rK/F (restriction homomorphism), 21, 51,
395

rL/F (restriction homomorphism), 388,
398, 402

s(E) (total Segre operation), 269

s(F ) (level of F ), 33

s∗ (transfer map), 84

s∗(b) (transfer map), 82

sπ (specialization homomorphism), 400

u′(F ) (u′-invariant), 166

u(F ) (u-invariant), 161
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u(L/F ) (relative u-invariant), 167
uX , 280
v∗ (leading coefficient), 75
v2 (2-adic exponent), 335
vX , 279
w (total Stiefel-Whitney map), 29
wi (ith total Stiefel-Whitney map), 30
x <P 0, 383
x >P 0, 383
S2(V ) (symmetric square of V ), 12
H (hyperbolic plane), 40
H(V ) (hyperbolic form on V ), 40
Hλ (hyperbolic λ-bilinear plane), 12
Hλ(V ) (hyperbolic λ-bilinear form), 12
Z (ring of integers), 21
X(F ) (set of orderings), 383
b⊗ ϕ, 51
b′ (pure subform), 34
b|W (restriction), 12
b1 ' b2 (isometry), 11
b1 ⊗ b2 (tensor product), 19
b1 ⊥ b2 (orthogonal sum), 14
bK (base extension to K), 13
bϕ (polar form), 39
ban (anisotropic part), 19
h(ϕ) (height of ϕ), 104
i(b) (Witt index of b), 19
i0(ϕ) (Witt index of ϕ), 49
ik(X), 105
ik(ϕ), 104
jk(X), 105
jk(ϕ), 104
CH(X̄r), 313
Gr(ϕ), 355

Che(X2), 317

Che(X̄2), 317
dimIzh, 325
CH(Xr) (reduced Chow group), 313

Ch(G∗), 371

Ch(X∗), 316

Ch(Xr) (modulo 2 reduced Chow group),
313

mult, 327
nil

(
W (F )

)
(nilradical of W (F )), 122

zd
(
W (F )

)
(zero divisors of W (F )), 122

Jn(F ), 105



Terminology

absolute Galois group, 393

absolute stability index, 190

additive completion, 296

admissible extension, 125

affine bundle, 242

algebra

étale, 387

quadratic, 387

quaternion, 389

semisimple, 387

separable, 387

central, 388

opposite, 388

split, 387, 388

alternating matrix, 12

anisotropic part

of a bilinear form, 19

of a quadratic form, 49

anisotropic pattern, 349

Arf invariant, 62

Artin-Schreier map, 41, 388

artinian ring, 407

associativity law, 300

base, 300

basic monomial, 360

bilinear form, 11

alternating, 11

anisotropic, 16

anisotropic part of, 19

determinant of, 12

diagonal, 15

dimension of, 11

isotropic, 16

metabolic, 17

nondegenerate, 11, 79

radical of, 13

round, 15

signature of, 123

signed determinant of, 25

skew-symmetric, 11

subform of, 12

support of, 134

symmetric, 11

tensor product of, 19

totally isotropic subspace of, 17

universal, 16

Witt index of, 19

Bilinear Similarity Norm Principle, 87

Bilinear Similarity Theorem, 87

Bilinear Substitution Principle, 72

Bilinear Value Norm Principle, 78

Bilinear Value Theorem, 77

Bilinear Witt Decomposition Theorem, 18

Bockstein map, 406

boolean space, 384

boundary map, 229

Brauer equivalent algebras, 388

Brauer group, 388

canonical

p-dimension, 367

dimension, 367

involution, 389

line bundle, 412

Cartan Formula, 288

Cassels-Pfister Theorem, 71

category

of Chow motives, 299

of correspondences, 296

of graded Chow motives, 298

of graded correspondences, 296

cell, 300

chain equivalence of bilinear forms, 21

Chain Lemma, 391

change of field homomorphism, 223

character group, 393

Chern class, 248

Chow group

of codimension p classes of cycles, 267

of dimension p classes of cycles, 261

reduced, 313

Chow motive, 296

Classification Theorem, 150

Clifford algebra, 57

even, 57

Clifford invariant of a quadratic form, 63

clopen set, 384

cocycle relation, 26

cohomological p-dimension, 407

cohomological invariant of a quadratic
Pfister form, 67

431
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cohomology group, 393

cone, 409

normal, 410

projective, 409

tangent, 410

congruent matrices, 12

connecting homomorphism, 240

corestriction homomorphism, 395, 402

correspondence, 291, 295, 326

incidence, 314, 358

multiplicity of, 327

prime, 326

cup-product, 394

cycle

q-primordial, 323

basic, 313

derivative of, 317

diagram of, 318

essence of, 314

essential, 314

integer produced by 1-primordial, 324

minimal, 317, 342

primordial, 320, 342

rational, 313, 362

subcycle of, 314

cycle of a subscheme, 219

cycles

intersection of, 317

deformation homomorphism, 235, 240

deformation scheme, 414

degree

homomorphism, 263

of a cycle, 311

of a subvariety, 311

of an algebra, 388

of a monomial, 75

of a polynomial vector, 75

of a quadratic form, 104

derivative of a cycle, 317

determinant, 12, 63

diagonalizable bilinear form, 15

diagram of a cycle, 318

dimension

of a bilinear form, 11

of a quadratic form, 39

dimension map, 24

discriminant of a quadratic form, 61

divisor, 219

double deformation scheme, 417

duality functor, 299

Euler class, 243

Excess Formula, 251

excess vector bundle, 251

exchange isomorphism, 292

exponent, 388

external product, 232

field
p-generic, 367
p-special, 406
admissible extension of, 125
euclidean, 122, 383
formally real, 74, 383
function field of a quadric, 94
generic, 367
Hasse number of, 173
isotropy, 367
Laurent series, 123
leading field of a quadratic form, 104
linked, 172
of finite stable range, 181
ordered, 383
pythagorean, 123
pythagorean closure of, 125
quadratic closure of, 125
quadratically closed, 121
real closed, 383
reduced stability index of, 135
relative u-invariant of, 167
stable range of, 181

field extension, 383
excellent, 113
splitting, 388

first residue homomorphism, 81
Frobenius Reciprocity, 83
function field of a quadric, 94
fundamental ideal of the Witt ring, 24

G-algebra, 418
Galois module, 393
generic splitting tower, 104
graded Milnor ring, 398
graph of a morphism, 292
group

of p-dimensional cycles, 261
of projective similitudes, 310
of similarity factors, 15, 52
of similitudes, 310

G-scheme, 418
G-torsor, 419
Gysin homomorphism, 251, 265

Harrison subbasis, 384
Hasse number, 173
Hasse Principle

strong, 173
weak, 172

Hasse-Witt invariant, 31
Hauptsatz, 36, 100
height of a quadratic form, 104
height of an integer, 351
Herbrand index, 407
Homotopy Invariance, 242, 265
hyperbolic λ-bilinear form, 12
hyperbolic form

bilinear, 12
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quadratic, 40

hyperbolic pair, 12, 40

hyperbolic plane

bilinear, 12

quadratic, 40

hyperplane reflection, 40

idempotent completion of an additive
category, 298

index of an algebra, 388

intersecting properly subvarieties, 266

isometry

of bilinear forms, 11

of quadratic forms, 40

Izhboldin dimension, 325

J-invariant, 364

K-cohomology group, 257

kernel form, 104

K-homology group, 238

lagrangian of a bilinear form, 17

leading coefficient of a polynomial, 75

leading field of a quadratic form, 104

leading form of a quadratic form, 104

leading term of a polynomial, 75

leading vector of a polynomial vector, 75

level of a field, 33

linkage

of bilinear Pfister forms, 37

of quadratic Pfister forms, 102

linkage number of bilinear Pfister forms, 37

Local-Global Principle, 128

localization exact sequence, 240

Localization Sequence, 264

Milnor Conjecture, 68

Milnor’s Theorem, 399

motive, 296, 299

m-periodic module, 396

multiplicity of a correspondence, 327

multiplier, 309

negative with respect to an ordering, 383

Nilpotence Theorem, 302, 373

norm, 387

norm homomorphism, 400

norm residue homomorphism, 404

normal bundle, 411

Normality Theorem, 135

order

homomorphism, 262

in a ring, 116

ordering, 383

orientation, 309, 313

orthogonal basis, 14

orthogonal complement, 13

orthogonal subspace, 13

orthogonal sum

external, 14, 44

internal, 13, 42

orthogonal vectors, 13

Pfister form

n-fold, 24, 53

associated general, 101

bilinear, 24

r-linked, 37

chain p-equivalent, 33

divides, 35

general, 35

linkage number of, 37

linkage of, 37

linked, 37

pure subform of, 34

simply p-equivalent, 33

divisor of, 102

quadratic, 53

r-linked, 102

chain p-equivalent, 65

general, 53

linkage of, 102

linked, 102

neighbor, 101

pure subform of, 66

simply p-equivalent, 65

Pfister neighbor, 101

place, 408

center of, 408

composition, 408

geometric, 408

induced by, 408

surjective, 408

polar form, 39

polar identity, 39

polynomial

σ-twisted, 391

marked, 227

positive with respect to an ordering, 383

preordering, 383

prime cycle, 261

Projection Formula, 258

projective bundle, 410

Projective Bundle Theorem, 246, 265

proper inverse image, 266

Property An, 149

Property Hn, 173

p-special closure, 407

pull-back homomorphism, 223, 239, 254,
263

pure quaternion, 390

pure subform

of a bilinear Pfister form, 34

of a quadratic Pfister form, 66

push-forward homomorphism, 220, 239, 263

pythagoras number, 332
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pythagorean closure, 125

Quadratic Cancellation Theorem, 48
quadratic closure, 125
quadratic form, 39

kth kernel form, 104
nth cohomological invariant of, 68
absolute higher Witt index of, 104
anisotopic, 41
anisotropic part of, 49
annihilators of, 55
associated, 40
Clifford invariant of, 63
defined over a field, 111
degree of, 104
determinant of, 63
diagonalizable, 44
dimension of, 39
discriminant of, 61
excellent, 113
height of, 104
irreducible, 94
isotropic, 41
kernel form of, 104
leading field of, 104
leading form of, 104
locally hyperbolic, 161
locally isotropic, 172
nondegenerate, 43
polar form of, 79
regular, 42
regular part of, 42
relative higher Witt index of, 104
round, 52
splits off a hyperbolic plane, 42
splitting pattern of, 104
subform, 41
tensor product of, 51
totally indefinite, 172
totally isotropic subspace of, 41
totally singular, 42
universal, 52
Witt-equivalent, 49

quadratic radical, 42
Quadratic Similarity Norm Principle, 86
Quadratic Similarity Theorem, 86
Quadratic Substitution Principle, 72
Quadratic Value Norm Principle, 78
Quadratic Value Theorem, 76
quadratic Witt group, 51
quadratically closed field, 17
quadric

oriented, 309, 313
projective, 93
split, 307

quasi-Pfister form, 56

radical
bilinear, 13

quadratic, 42

ramification index, 223

rationally equivalent cycles, 263

reduced Chow group, 313

modulo 2, 313

reduced norm map, 390

reduced stability index, 135

reduced trace map, 390

regular part of a quadratic form, 42

relative u-invariant, 167

relative dimension, 222

relative tangent bundle, 411

Representation Theorem, 73

represented values, 15, 52

residue homomorphism, 218, 399

restriction homomorphism, 21, 51, 223,
395, 398, 402

Rost complex, 229

Rost correspondence, 341

Rost motive, 379

scheme, 217, 261, 277

rank of, 373

relatively cellular, 300

tractable, 373

second residue homomorphism, 81

Segre closed embedding, 389

Segre homomorphism, 268

Separation Theorem, 108

sequence

regular, 411

regular of codimension d, 411

Severi-Brauer variety, 389

generalized, 389

shell triangle, 320, 321

dual, 321

signature, 123

total, 134

signature map, 123, 128

total, 134

signed determinant, 25, 62

similar

bilinear forms, 12

quadratic forms, 41

similarity factor

of a bilinear form, 15

of a quadratic form, 52

similitude, 309

simply chain equivalent forms, 21

space of orderings, 383

specialization, 218

specialization homomorphism, 235, 400

split class, 388

split idempotent, 298

split object, 299

splitting field extension, 388

splitting pattern, 104

Splitting Principle, 247
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Springer’s Theorem, 77, 313

stable range, 181

Steenrod operations

of cohomological type, 277, 285

of homological type, 277

Stiefel-Whitney map, 30

Strong Splitting Principle, 275

subform, 12

complementary form of, 42

Subform Theorem, 94

Sylvester’s Law of Inertia, 123

symbol, 398

symmetrization, 344

symplectic basis, 14

tangent bundle, 412

Tate motive, 296, 299

tautological line bundle, 413

tensor algebra, 57

tensor category, 297

tensor product, 19

torsion-free index, 190

total Chern class, 248

total Euler class, 268

total Segre class, 268

total Segre operation, 269

total Stiefel-Whitney class, 29

total Stiefel-Whitney map, 29

totally isotropic subspace, 17

totally negative, 383

totally positive, 383

totally positive elements, 383

trace, 387

tractable class, 373

transfer

of bilinear forms, 82

of quadratic forms, 82

transfer maps

of Witt groups, 84

of Witt rings, 84

transpose of a correspondence, 292

ū-invariant, 161

ūr-invariant, 162

u-invariant, 161

u′-invariant, 166

variety, 217, 261

vector

anisotropic, 16, 41

isotropic, 16, 41

primitive, 79

vector bundle, 410

tautological, 356

weight of a monomial, 361

Weil’s Reciprocity Law, 222

Whitney Sum Formula, 30, 250

Witt Cancellation Theorem, 19

Witt Chain Equivalence Theorem, 22
Witt class, 20
Witt Decomposition Theorem, 48
Witt equivalence, 49
Witt Extension Theorem, 47
Witt group of classes of quadratic forms, 51
Witt index

absolute higher, 104
of a bilinear form, 19
of a quadratic form, 49
of a quadric, 93
relative higher, 104

Witt relations, 22
Witt ring

graded, 28
annihilator ideals in, 37
annihilators in, 182
reduced, 137

Witt ring of classes of symmetric bilinear
forms, 20

Witt-Grothendieck ring, 19
Wu Formula, 286

zero section, 410


