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Abstract. Let F be a field of characteristic different from 2 and let q5 be a virtual Albert form 
over F ,  i.e., an anisotropic 6-dimensional quadratic form over F which is still anisotropic over the 
field F ( m ) .  We give a complete description of the quadratic forms II, such that q5 becomes 
isotropic over the function field F(tl,). This completes the series of works ((H6], [LagGI, [Lag], [Lee], 
[MZ]) where the question was considered previously. 

0. Introduction 

Let F be a field of characteristic different from 2 and let 4 and $ be two anisotropic 
quadratic forms over F .  An important problem in the algebraic theory of quadratic 
forms is to  find conditions on 4 and $ so that 4 ~ ( @ )  is isotropic. In the case where 
dim 4 5 5 the problem was completely solved in [H5] and [Schap]. For 6-  dimensional 
quadratic forms, the problem was studied by D. W. HOFFMANN ([H6]), A .  LAGHRIBI 
([LagGI, [Lag]), D. LEEP ([Lee]), and A .  S.  MERKURJEV ([M2]) and was solved fully 
except for the following two cases (see [Lag61 and [Lag]): 

1) dim$ = 4, d,t 4) # 1, and ind(Co(4)) = 2; 
2) dim$ = 4, d* $ # 1, ind(Co(4)) = 4, and d* 4 = d* $. 
In this paper the second case is studied completely. Our result (Theorem 5.1) and 

results of LAGHRIRI, LEEP and MERKURJEV give rise to the following 

Theorem. Let 4 be a 6 - dimensional quadratic form such that ind(Co(4)) = 4.  In 
is the case where I/) $! GP2(F), the quadratic form $F(@I) is isotropic if and only if 
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112 Math. Nachr. 206 (19% 

similar t o  a subform of 4. In the case where $J E GP2(F), the form $F(,J) is isotrop& 
if and only if a 3 -dimensional subform of I) is similar t o  a subform of 4. 

We deduce Theorem 5.1 from a result on 8-dimensional forms (Proposition 4.1). 
which also has an independent value: together with [Lags], it gives rise to Theorem 
4.3 answering the question about isotropy of an 8 - dimensional quadratic form q5 with 
de t4  = 1 and ind(C(4)) = 8 over the function fields of quadrics. 

1. Terminology, notation, and backgrounds 

1.1. Quadratic forms 

We write 4 I 11, for the orthogonal sum of the quadratic forms. The class of 4 
in the Witt ring W ( F )  of the field F is also denoted by 4. For a quadratic form I$ 

of dimension n, we set & 4 = (-l)1'(n-1)/2 det, 4. We consider d5 4 as an element of 
F* I F t 2 .  The maximal ideal of W (  F )  consisting of the classes of the even - dimensional 
forms is denoted by I(F). The anisotropic part of 4 is denoted by $an. We denote 
by ( ( a l , .  . . , a l l ) )  the n-fold Pfister form (1, -a l )  8 . . .  8 (1, -an) and by P,(F) the 
set of all n-fold Pfister forms. The set of all forms similar to n-fold Pfister forms is 
denoted by GP,,(F). For any field extension L I F ,  we put 4~ = 4 8 L, W ( L / F )  = 
Ker(W(F) 3 W(L)),  and P ( L / F )  = K e r ( P ( F )  3 I"(L)). 

For a quadratic form Q, of dimension 2 3, we denote by X 4  the projective variety 
given by the equation = 0. We set F ( 4 )  = F ( X @ )  if d im4 2 3; F($) = F ( & )  if 
dim 4 = 2 and d = d* 4 # 1; and F ( 4 )  = F otherwise. 

Let $1 E GP2 ( F )  and let $0 be a 3 -dimensional subform of $J. Then the quadratic 
forms l / jF (Qo)  and ( ~ ) o ) F ( d , )  are isotropic. Hence for any quadratic form 4, isotropy of 
~J- ( , , , I  is equivalent, to isotropy of $F(,,,~). Thus, t o  give a complete description of the 
quadratic forms li, such that 4 becomes isotropic over the function field F ( $ ) ,  it is 
sufficient to consider the case where 11, fj! GP2(F). 

We say that, a quadratic form q5 is a Pfister neighbor if for some n there exists 
E P,, (F) such that 4 is similar to a subform of 7r and dim 4 > 2n-1. 
Let 4 he a quadratic form of dimension 2n. We say that 4* is a half- neighbor of 4, 

if dim 4* = 2n and there exists k E F* such that 4* k$ (mod I n S 1  ( F ) ) .  

1.2. Algebras 

Let A be a central simple algebra over F .  We write deg(A), ind(A), [A] ,  and exp(A) 
for the degree of A,  the Schur index of A,  the class of A in the Brauer group Br(F),  
and the order of [A] in the Brauer group respectively. The Severi - Brauer variety of A 
is denoted by SB(A). If an algebra B has the form B = A x A ,  we set i n d B  = ind A .  

Let 4 be a quadratic form. We write C(4) for the Clifford algebra of 4 and Co(q5) 
for the even part of C(4). If 4 E 12(F) then C(4) is a central simple algebra. Hence 
we get, a well defined element [C(4)] of Br2(F) which we denote by ~ ( 4 ) .  
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113 ]shboldin/Karpenko, Virtual Albert Forms 

1.3. Quadratic forms of dimension 6 

Let 4 be an anisotropic quadratic form of dimension 6 and let d = d* 4. If d = 1, then 
4 is an Albert form. In this case the problem of isotropy of 4 over t,he function field of 
a quadratic form I/) is completely solved ([Lee], [M2]): in the case where I/) $ GP2($), 
the form q5~(,,,) is isotropic if and only if .II, is similar to  a subform in 4. 

Suppose now that d # 1. Then CO(&) is a central simple algebra over the field L = 
F ( & ) .  In this case we have the following classification of anisotropic G-dimension 
forms: 

Type 1 is defined by one of the followii~ig equivalent, conditions: 
1) ind(Co(4)) = 1; 
2) q 5 ~  is hyperbolic; 
3) 4 has the form ((d)) 8 1-1 where 11 is a quadratic form of dimension 3; 
4) q5 is a Pfister neighbor. 

1) ind(Co(4)) = 2; 
2) q 5 ~  is isotropic but not hyperbolic; 
3) 4 is similar to a form of the ltiiid ( (a,  b)) I c ((d)), where ((a,  b))L is not isotropic. 

1) ind(Co(4)) = 4; 
2) 4~ is anisotropic. 

Type 2 is defined by one of the following equivalent conditions: 

Type 3 is defined by one of the followiiig cyuivalent conditions: 

The quadratic form of the type 3 is called a. virtual Albert form. 
For the quadratic forms 4 of type 1 ( i .  e., for the Pfister neighbors), the problem of 

isotropy 4 F ( q , )  is completely solved by the Cassels - Pfister subform theorem [Schar, 
Th. 5.4 (ii) of Ch. 41. The case of quadratic forms of type 2 was studied by D.  
H O F F M A N N  in [Hfi]: he found the conditions on b, arid 1c, so that  djF(,,,,) is isotropic 
excepting the cast. dim I/) = 4. The case where 4 is of type 2 and dim .J, = 4 is recently 
studied in [IK6]. 

The case of the quadratic forms b, of type 3 (virtual Albert forms) was studied 
completely by A .  LAGHRlBl in [LagG, Lag] except for t,he case where dim$ = 4 and 
d* dl = & 4. In t,his paper we complete the investigation of isotropy of virtual Albert, 
forms over t,hc fuiict,iori field of a quadric. 

1.4.  Cohomology groups 

By H * ( F )  wt: denote the graded ring of Galois cohomology 

H * ( F , Z / 2 Z )  = H*(Gal(F,,,/F), Z/2Z). 

For any field ext,erisioii L / F .  we set, H * ( L / F )  = Ker (H*(F)  + H * ( L ) ) .  
We use the standard canonical isomorphisms H o ( F )  = Z / 2 Z ,  H ’ ( F )  = F*/F*2, 

and H 2 ( ( F )  = Br2(F) .  Thus ally element (i E F* gives rise to  an element of H’(F); it, 
is denoted by ( u ) .  The cup product, (a ’ )  U . . . U (un)  is denoted by ( a l , .  . . , aT1). 

For 72 = 0 , 1 , 2  there is a homomorphism en : I ” ( F )  + H n ( F )  defined as follows: 
e0(4) = d i m 4  (mod 2 ) ,  d ( 4 )  = &. 4, and e2(4)  = ~(4). Moreover, there exists a 
homomorphism c3 : 1 3 ( F )  + H3(F) which is uniquely determined by the condition 
e3(((a1, ~ 1 2 , ~ ) ) )  = ( a ] ,  a2,u3) (see [Ara]). The homomorphism en is surjective and 
Kere” = I’”+’(F) for n = 0 , 1 , 2 , 3  (see [Ml],  [MS], and [R.]). 
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Math. Nachr. 206 (1999) 114 

1.5. K - theory and Chow groups 

Let X be a smooth algebraic F - variety. The Grothendieck ring of X is denoted by 
K ( X ) .  This ring is supplied with the filtration “by codimension of support” (which 
respects the multiplication); the adjoint graded ring is denoted by G*K(X).  There is 
a canonical surjective homomorphism of the graded Chow ring CH*(X) onto G*K(X); 
its kernel consists only of torsion elements and is trivial in the Oth, ls t ,  and 2nd graded 
components ([Su, 591). 

We fix a separable closure F of the ground field F and denote by x the variety 
Xg. The image of the restriction homomorphism G * K ( X )  + G*K(X) is denoted by 
c* K (X). 

We denote by IS1 the order of a finite set S .  

2. Computation of H 3 ( F ( S B ( A )  x S B ( B ) ) / F )  

Theorem 2.1.  Let A and B be biquaternion division F - algebras with ind(Ac3B) = 
8 .  Suppose that there exists a quadratic extension L / F  such that both AL  and BL are 
not division algebras. Then 

H 3 ( F ( S B ( A )  x S B ( B ) ) / F )  

Proof .  We put X = SB(A)  x SB(B). 
The following formula is proved in [K,  

Lemma 2.2. 

I TorsG*K(X)I = 

Prop. 21: 

Lemma 2.3. ( K ( X ) / K ( X ) I  = 2’*. 

Proof .  Applying [Q, Th.  4.1 of 581, one gets an isomorphism 

K ( X )  2 I((F)@4 @ K ( A ) @ 4  @ K ( B ) @ 4  @ K ( A  63 B)@4.  

Thus l K ( ~ ) / K ( X ) l  = (ind A)4 . (ind B)4 9 (ind A @ B)4 = 2*’ . 0 

The variety SB(A)  is isomorphic to a projective space; denote by f the class of a 
hyperplanc in G’K(SB(A) ) .  

Lemma 2.4. For. any z 2 0 ,  the groupc iK(SB(AL) )  contains 2fi;  for any even 
i 2 o it contains f i .  

Proof .  By [I<, Lemma 31, for any i, one has an inclusion 
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Izhboldin/Karpenko, Virtual Albert Forms 115 

where ( .  , .  ) denotes the greatest common divisor. Since ind AL = 2, the statement 
follows. 0 

Lemma 2.5. c'K(SB(A)) 3 2 f .  

Proof .  By the computation [Art, 821 of the Picard group of a Severi- Brauer variety, 
one knows that 

c'K(SB(A)) 3 (exp A )  f . 

Since exp A = 2, the stat,ement follows. 0 

The variety SB(B) is isomorphic to  a projective space; denote by g the class of a 
hyperplane in G'K(SB(I3)). 

Corollary 2.6.  For a n y  i, j 2 0 ,  the  g r o u p c i + j K ( X )  con ta ins  
1) f i  x gj, if i = j = 0; 

if i and  j are even  or 

i f i  = 1, j = 0; 
iji = 0 ,  j = 1 or 

if i + j is odd 07'  

ifi = j = 1; 

4) 8(f*  x g j )  for a n y  i, j .  

Proof .  The case i = j = 0 is evident. 

If i and j are even, then f i  E ~ ' K ( S B ( A L ) )  and g j  E cjK(SB(l3~))  by Lemma 
K ( X L )  and the transfer argument shows that 2(f i  x g j )  E 

By Lemma 2.5, c 'K(SB(A) )  3 2f and c 'K(SB(B) )  3 29. Therefore F ' K ( X )  

If i + j  is odd, then 2( f i  xg j )  E c i + j K ( X ~ )  by Lemma 2.4 and the transfer argument 

Since there exists a field extension of degree 8 splitting the algebras A and B simul- 
0 

- i+j  2.4. Thus f i  x g3 E G 
G K(X). 

contains 2(f x 1 )  and 2(1 x 9); moreover,G'K(X) 3 4(f  x 9). 

- i + j  

shows that 4 (  f i  x gj) E Gi+j K ( W .  

taneously, the inclusion 8 ( f i  x gj)  EF" ' jK(X)  holds for any i , j .  

Corollary 2.7. l G * K ( F ) / G * K ( X ) l  5 228. 

Proof .  Since SB(A) and SB(B) are projective spaces, G * K ( X )  is an abelian group 
freely generated by f' x g j  with i , j  = 0 , 1 , 2 , 3 .  By Lemma 2.6, we know that the 
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116 Math. Nachr. 206 (19991 

following multiples of these generators are in c * K ( X ) :  

2O. (fO x 90) , 2' . ( f O  x 9') , 21 . ( f O  x g2) ,  22. (fO x 93), 

2' . ( f l  x go) 2 2 .  ( f l  x 91) , 2 2 .  (f '  x g2) , 23 . ( f l  93) , 
2' ' ( f 2  x 90) 2 2 .  ( 1 2  x g1), 2' . ( f 2  x 92) 2 2 .  ( f 2  x 93) ,  

22 . ( f 3  x go) , 23 . ( f 3  x 91) , 22 . ( f 3  x 92) , 23 . ( f 3  g3) . 

Taking the product, of the coefficients, we get 228. 0 

Corollary 2.8. TorsG*K(X) = 0. 

Proof. Follows from Lemma 2.2, Lemma 2.3, and Corollary 2.7. 0 

Since the Chow group CH2(X) is isomorphic to G 2 K ( X )  (see §1.5.), we also get 

Corollary 2.9. Tors CH'((X) = 0. 

To complete the proof of Theorem 2.1, we apply [Pe, Th. 4.1 with Rem. 4.11. By 
that result, there is a monomorphism 

H 3 ( W ) / F )  TorsCH2(X) 
[A] u H 1 ( F )  + fB] u H1(F) 

and so, by Corollary 2.9, we are done. 0 

Remark 2.10. In the hypotheses of Theorem 2.1 there are obvious inclusions: 

[A] U H ' ( F )  c H3(F(SB(A))/F)  C H3(F(SB(A) x S B ( B ) ) / F )  ; 

[B] u H ' ( F )  c H3(F(SB(B)) /F)  c H3(F(SB(A) x SB(B)) /F)  . 

Therefore H3(F(SB(A) x SB(B)) /F)  = H3(F(SB(A)) /F)  + H3(F(SB(B)) /F) .  

3. Computation of H 3 ( F ( X +  x S B ( D ) ) / F )  

Theorem 3.1. Let 11, be an anisotropic 4 -dimensional quadratic form over F with 
d* 11, # 1. Let D be u 3 -quaternion division algebra over F such that DF(,,,) is not a 
division u1gebi.u. Then the group H3(F(Xd, x SB(D)) /F)  is equul to  

{ e 3 ( @  ((k))) 1 k E F* is such that 11, ((k)) E GP3(F)} + [D] U H ' ( F ) .  

Proof .  We start with the following observation: 

Lemma 3.2. In the hypotheses of Theorem 3.1, assume that 1(, = (-a,  -b, ab, d )  with 
some a ,  b,  d E F*. Then there exist u, v, s E F* such that D N (a ,b)  8 ( u , v )  8 (d ,s ) .  

 15222616, 1999, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.19992060104 by Institut des H
autes E

tudes Scientifiques, W
iley O

nline L
ibrary on [09/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Izhboldin/Karpenko, Virtual Albert Forms 117 

Proof. Clearly, C0($) N ( a , b ) F ( d ) .  Since DF(+) is not a division algebra, the 
index reduction formula [M3] shows that ind(Co($) @ F  D) = 2. Therefore 

ind((a, b )  @ F  = 2 .  

Hence there are u, v ,  s E F* such that [ (a ,  b )  @ F  D ]  = [ (u ,v )  € 3 ~  (d , s )]  in BrZ(F). 
Consequently [D]  = ( (a ,b )  @ F  (u , v )  6 3 ~  (d , s ) ] .  Since degD = 8, it follows that 

O 

Replacing II, by a similar form, we may assume that $ = (-a, -b, ab, d )  with some 
a, b,  d E F*. We choose u, v ,  s E F* as in Lemma 3.2. Put F = F ( ( t ) )  and consider 
two biquaternion algebras A = (a, b )  8 (d ,  t )  and B = (d, si) @ (u, v )  over a. 

D = (a, b) @ (u, v) @ (d ,  s). 

Since D is a division algebra, it follows that ind(D) = 8. Therefore 

ind((a,b) 8 ( u , u ) ) ~ ( J ; ~ )  = indDF(J;i) = 4 .  

Hence (a, b ) F ( & )  and (u, V ) ~ ( J ; ~ )  are division F ( & )  -algebras. Consequently, by 
Tignol's theorem [T, Prop. 2.41, A and B are division F- algebras as well. 

Since ind(D) = ind (Dp) (see [T, Prop. 2.41) and [A 8 B] = [Dp] in Br (E) , we 

have ind A@ B = ind(D) = 8. Since A,-,&, and Bp(&) are not division algebras, 

the conditions of Theorem 2.1 hold for the field @ and the algebras A and B over E. 
Therefore 

( , - I  
H 3  (a(SB(A) x SB(B))/F) = [A]  U H' (a) + [B] U H' (a) . 

Let E = E(SB(A) xSB(B)). Clearly [ A E ]  = [BE] = 0. Hence [DE] = [AE]+[BE] = 0. 
Thus SB(D)E is a rational variety. 

Since [AE]  = 0, the Albert form (-a, -b, ab, d, t ,  -d t )E  of the biquaternion algebra 
AE = ( ( a , b )  @ ( d , t ) ) ~  is hyperbolic. Hence ( - a , - b , d ~ , d ) ~  = (d t , - t ) ,  in the Witt 
ring W ( E ) .  Therefore II,E is isotropic. Hence ( X + ) E  is a rational variety. 

Let Y = X,,) xSB(D). Since ( X + ) E  and SB(D)E are rational, it  follows that YE is ra- 
tional. Hence E ( Y ) / E  is a purely transcendental extension. Therefore H 3 ( E ( Y ) / F )  = 
H 3 ( E / F ) .  We have H 3 ( F ( l ' ) / F )  c H 3 ( E ( Y ) / F )  = H 3 ( E / F ) .  

Let u E H 3 ( F ( X +  x SB(D))/F) = H 3 ( F ( Y ) / F ) .  To prove the theorem, it is enough 
to show that can be written in the form 

'u. = e3(II, ((k))) + [Dl u ( T )  

with some k, E F " .  
Since H 3 ( F ( Y ) / F )  c H3(E/F), it follows that 

up E H3(E/F) = H 3  (F(SB(A) x SB(B))/P) = [A]  U H' (F)  + [B] U H' (F)  . 

Since [A] + [B] = [Dp] , we have uz E [ A ]  U H' (a) + [Dp] U HI (a). Hence there 

a r e a l p €  F s u c h t h a t u p =  [ A ] U ( a ) +  [ D p ] U ( B ) .  S i n c e a * / F * 2 z F * / F * 2 x { l , t } ,  
A 
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118 Math. Nachr. 206 (19991 

we may assume tha t  cy = kta and  f i  = r t j ,  where k, r E F' and  i, j E (0, I}. We have 

uj? = [A] u (0) + [DF] u ( B )  
= ( ( a , b )  + ( d , t ) )  u (kt1) + [D] u ( T t j )  

= ( ( a , b , k ) + [ D ] U ( r ) ) + ( t ) U  ( i ( a , b ) +  ( d , k ( - l y )  + j [ D ] ) .  

Using t,he well-- known isomorphism H a ( F ( ( t ) ) )  = H i ( F )  @ Hi-'(F), we have 

21 = (u,b,lc) + [D] u ( r )  

i(a, b )  + ( d ,  k(-1)')  + j [ D ]  = 0 .  
and  

We claim tha t  j = 0. Indeed, if j # 0 then j = 1 and hence [D]  = i(a, b)  + (d,  k ( - l ) i ) .  
Therefore [D] = [ ( a ,  bi) 18 (d ,  k ( - l ) i ) ] .  Thus  ind(D) _< 4, a contradiction. 

So j = 0, and we have i ( a , b )  + ( d , k ( - l ) i )  = 0. Thereby i ( a , b ) F ( ~ )  = 0. Since 
( ~ , b ) ~ ( ~ ; i )  # 0, it follows t h a t  i = 0. 

Since i(a, b )  + (d ,  k ( - l ) i )  = 0 and i = 0, we have (d ,  k) = 0. Hence ((d, k)) = 0 in 
W ( F ) .  Since I) = ( -a ,  -b ,ab ,d )  = ((a,b)) - ( (d ) ) ,  we have 

Ilr ((k)) = (((a, b)) - ((4)) ((a = ((a,  4 4) - ((dl k)) = ((a1 4 k)) . 
Therefore I,') ((k)) E GP3(F) arid e3($ ((k))) = (a ,b ,  k). 

Hence the  element, 1~ = (a ,  b ,  k) + [D] U ( r )  belongs to  the  set 

{ e 3 ( Q  ( ( l c ) ) )  I k is such tha t  I/! ((k)) E GP3(F)} + [D] U H 1 ( F ) .  

T h e  proof is complete. 0 

Remark 3.3. In the hypotheses of Theorem 3.1 there a re  obvious inclusions: 

{ e 3 ( $  ((k))) I k E F' is such that, I,') ((k)) E GP3(F)}  C H 3 ( F ( $ ) / F )  

c H 3 ( F ( X j ,  x S B ( D ) ) / J ' ) ;  
[D] U H ' ( F )  c H 3 ( F ( S B ( D ) ) / F )  C H 3 ( F ( X j ,  x S B ( D ) ) / F )  . 

Therefore H3(F(X,,, x S B ( D ) ) / F )  = H 3 ( F ( 4 ) / F )  + H 3 ( F ( S B ( D ) ) / F ) .  

P r o p o s i t i o n  3.4. In the hypotheses of Theorem 3.1, let ( E 1 2 ( F )  be a quadratic 
form such that c ( ( )  = [ D ] .  Then for an arbitrary element 7r E 1 3 ( F ( X Q  x SB(D))/F) 
there are h.1, k2 E F* such that 

7.r I,') ((kl)) + t @2)) (mod 1 4 ( F ) ) .  

P r o o f .  Obviously e3(7r) E H 3 ( F ( X ,  x S B ( D ) ) / F ) .  It follows from Theorem 3.1 
that, there are k l ,  k2 E F' such t h a t  e3(7r) = e 3 ( ~ ( ( k 1 ) ) )  + [D] u (k2).  Clearly 
[Dl u (k2)  = e 2 ( 0  u e1 (((b))) = e 3 ( t  ((k2))) .  Hence e3(7r) = e3($ @I))) + e 3 ( t  ((kz))). 
Since Ker (e3  : 1 3 ( F )  -+ H 3 ( F ) )  = 1 4 ( F ) ,  we have. 7r = Q ( ( l c l ) ) + (  ((k2)) (mod 1 4 ( F ) ) .  

0 
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119 

.proposition 4.1. Let 4 be an 8 -dimensional quadratic f o r m  with df 4 = 1 and 
nd C(4) = 8.  Let 11, be a 4 -dimensional quadratic form with d* 11, # 1. Suppose that 
b F ( $ )  is isotropic. Then there exists a half- neighbor 4' of 4 such that 11, c y. 

Proof .  Replacing II, by a similar form, we may assume that 11, = ( -a ,  -b, ab, d )  
vith some a, b, d E F' .  Then Co(II,) = ( a , b ) F ( ~ ) .  Besides, since indC(4)  = 8, there 

Since ~ F ( Q )  is isotropic, it follows that DF(@) is not a division algebra. Therefore, 

Consider the quadratic form 

a 3 - quaternion division algebra D such that c(4) = [D]. 

)y Lemma 3.2, there exist u, v, s E F* such that D N (a, b)  8 (u, V )  @J (d ,  s). 

3ne can verify that d*y = 1 and c(y) = [D] .  Hence c(4) = [D] = c(y). Therefore 
b + y E 1 3 ( F ) .  

Lemma 4.2. $ + y E I 3 ( F ( X @  x S B ( D ) ) / F ) .  

Proof .  Let E = F(X$ x SB(D)). Since 4 + y E I 3 ( F ) ,  it is sufficient to verify that 
#JE and YE are hyperbolic. Obviously [DE] = 0, and the form $E is isotropic. Since 
: ( 4 ~ )  = C ( Y E )  = [DE]  = 0 and dim 4 = dim y = 8, we have 4 ~ ,  TE E GP3(E). Hence 
.t is sufficient to prove that 4~ and Y E  are isotropic. Since and $E are isotropic, 
$E is isotropic as well. Since 11, C y and I,!,JE is isotropic, we see that y~ is isotropic. 13 

Now we can complete the proof of Proposition 4.1. By Proposition 3.4 and Lemma 
1.2, there exist Icl ,  Ic2 E F' such that 

Let p = -s ( -u,  - v , u u , d ) .  We have y = 1/, + p. Hence 

Thus kl$ + p = - k 2 4  (mod I 4 ( F ) ) .  Hence II, + h p  = - k 1 k 2 4  (mod 1°F)). We 
0 finish the proof by setting 4* = I,!,J I k i p .  

Theorem 4.3.  Let 4 be an 8 - dimensional quadratic form with d* 4 = 1 and 
indC(4) = 8. Let I,!,J be a quadratic f o r m  of dimension 2 4 such that 11, 4 GP2(F).  
The following conditions are equivalent: 

1) 4F(@) is  isotropic; 
2) there exists a half- neighbor $* of 4 such that I) C $*. 

Proof .  The case dim$ = 4 is Proposition 4.1. In the case dim$ # 4 the statement 
0 was proved by LAGHRIEII in (Lag81 and [Lag] (see also [IK, Cor. 0.21). 
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120 Math. Nachr. 206 (1999); 

5 .  Main theorem 

Theorem 5.1. Let 4 be a virtual Albert form ( 2 .  e., a 6 - dimensional quadratic fom 
with d* 4 4 F*2 and ind(Co(4)) = 4) .  Let Q be a 4 -dimensional quadratic form such 
that d* 2c, # 1. The following conditions are equivalent: 

(1) d ~ ( $ )  is isotropic; 
(2) Q is  similar to a subform in 4. 

Proof .  (1) (2) .  Let d = d* 4. We have ind C(4 I ( ( d ) ) ) F ( d l )  = ind(Co(4)) = 
4. Consider the 8-dimensional quadratic form < = &p I t ( ( d ) )  over the field = 
F ( ( t ) ) .  Clearly, c(<) = c(4 I t ( ( d ) ) )  = c(4  I ( ( d ) ) )  + [ (d , t ) ] .  Applying (T, Prop. 2.41, 
we have ind(C(<)) = 2 ind (C(0  I ( ( d ) ) ) F ( d l )  = 8. 

Clearly < F ( ~ , )  is isotropic. I t  follows from Proposition 4.1 tha t  there exists a quadratic 

form <* over 

( 

such that, < and (* are half - neighbors arid @$ c <*. 

Lemma 5.2.  (* is similar t o  <. 

P r o o f .  Since < and <* are half-neighbors, there exists k E such that 

< E k<* (mod I4(P)) .  

By Springer’s theorem one can write k<* in the form k<* = /LO I t p l ,  where quadratic 
forms 110 and p1 are defined over F .  We have 

4 I t ( (d) )  = < E k<* = /LO I tpl (mod 14(5)). 

Hence 4 f po (mod 1 3 ( F ) ) ,  ( (d))  (mod 1 3 ( F ) ) ,  and 

4 + ( (d) )  f PO + /LI (mod 1 4 ( F ) )  

Therefore indCo(p0) = iridCo(4) 2 4 .  Hence dimpo 2 6. Therefore d i m p l  5 2. 
By the Arason -Pfister Hauptsatz the condition ( (d) )  E p1 (mod 1 3 ( F ) )  implies that 
p1 = ((d)).  Hence 4 E po (mod I4(F)). Applying Arason-Pfister Hauptsatz once 

Now we return to the proof of Theorem 5.1. Since 1/) is similar to a subform in <*, 
and <* is similar to  <, it, follows that  $1 is similar to  a subform in ( = 4 I t ( (d) ) .  Thus 
I/) is similar to a subform of b, by the following obvious observation. 

again, we have 4 = PO. Therefore < = k<* . 

Lemma 5.3. Let $, yo a n d  71 be anisotropic quadratic forms over F .  The following 

a) t ) F ( ( i ) )  is similar t o  u subform in yo I t y l ,  
b) 1/) is similar either to  a subform in TO or to  a subform in 71. 

Thus we have proved t,hat condition (1) of Theorem 5.1 implies condition (2). On 
the other hand, condition (2) obviously implies condition (1). The proof of Theorem 

conditions are equivalent: 
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Izhboldin/Karpenko, Virtual Albert Forms 121 

5.1 is complete. 0 

Theorem 5.4. Let  4 be a virtual Albert f o r m  and let 11, @ GP2(F). T h e  quadratic 
form I$F(@) is isotropic if and only if$ i s  similar to  a subform in 4. 

Proof.  This theorem was proved by A .  LAGHRIBI in the following cases ([LagGI, 

(a) dim$ # 4; 
(b) dim $ = 4, d* $ # d* 4. 

[Lagl): 

Thus we may assume that  dim$ = 4.  To complete the proof it is sufficient to apply 
Theorem 5.1. 0 

In the special case which was not covered by the results of A .  LAGHRIBI, we get the 
following 

Corollary 5.5. Let  4 be a virtual Albert f o r m  and $ be a 4 - dimensional form such 
that d* 11, = dh  4. T h e n  4 ~ ( @ )  i s  anisotropic. 

Proof .  If .4/, is similar to a subform in 4, then 4 is isotropic, a contradiction. There- 
fore 11, is not similar to a subform in 4. By Theorem 5.1, it means that 4F(3) is 
anisotropic. 0 

Together with results described in $1, Theorem 5.4 gives rise to the following 

Corollary 5.6 .  Let 4 be a 6 -dimensional quadratic f o r m  wi th  ind(Co(4)) = 4. In 
the case where $ 4 GP2(F),  the quadratic form $ F ( @ )  is isotropic if and on19 if 4) is 
similar to  a subforni o f + .  In the case where $ E GP2(F), the f o r m  $F(+)  is isotropic 
if and only if a 3 -dimensional  subform of $ is  similar t o  a subform of 4. 
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