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Abstract. Let F be a field of characteristic different from 2 and let ¢ be a virtual Albert form
over F, i.e., an anisotropic 6~ dimensional quadratic form over F which is still anisotropic over the
field F(\/di ¢). We give a complete description of the quadratic forms 4 such that ¢ becomes
isotropic over the function field F(y). This completes the series of works ([H6], [Lag6], (Lag], [Lee],
[M2]) where the question was considered previously.

0. Introduction

Let F be a field of characteristic different from 2 and let ¢ and ¢ be two anisotropic
quadratic forms over F. An important problem in the algebraic theory of quadratic
forms is to find conditions on ¢ and 1 so that ¢p(y, is isotropic. In the case where
dim ¢ < 5 the problem was completely solved in [H5] and [Schap). For 6 - dimensional
quadratic forms, the problem was studied by D. W. HOFFMANN ([H6]), A. LAGHRIBI
([Lag6), (Lag)), D. LEEP ([Lee]), and A.S. MERKURJEV ([M2]) and was solved fully
except for the following two cases (see [Lag6] and [Lag]):

1) dimy = 4, dy ¥ # 1, and ind(Co(4)) = 2;

2)dimy =4, dy v # 1, ind(Co(¢)) = 4, and dy ¢ = du .

In this paper the second case is studied completely. Our result (Theorem 5.1) and
results of LAGHRIBI, LEEP and MERKURJEV give rise to the following

Theorem. Let ¢ be a 6 - dimensional quadratic form such that ind(Co(¢)) = 4. In
the case where ¢ ¢ GP(F), the quadratic form @p(y) is isotropic if and only if ¢ is
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similar to a subform of ¢. In the case where 1 € GPy(F), the form @p(y) is isotropfe
if and only if a 3 - dimensional subform of ¥ is similar to a subform of ¢.

We deduce Theorem 5.1 from a result on 8- dimensional forms (Proposition 4.1).
which also has an independent value: together with [Lag8], it gives rise to Theorepj
4.3 answering the question about isotropy of an 8 - dimensional quadratic form ¢ with
det ¢ = 1 and ind(C(¢)) = 8 over the function fields of quadrics.

1. Terminology, notation, and backgrounds

1.1. Quadratic forms

We write ¢ 1 3 for the orthogonal sum of the quadratic forms. The class of ¢
in the Witt ring W (F) of the field F is also denoted by ¢. For a quadratic form ¢
of dimension n, we set d+ ¢ = (—1)™"~1)/2 det ¢. We consider dy ¢ as an element of
F*/F*?, The maximal ideal of W (F) consisting of the classes of the even ~ dimensional
forms is denoted by I(F). The anisotropic part of ¢ is denoted by ¢an. We denote
by (ai,...,a,)) the n—{fold Pfister form (1,-a;) ® --- ® (1, —a,) and by P,(F) the
set of all n-fold Pfister forms. The set of all forms similar to n-fold Pfister forms is
denoted by GP,(F). For any field extension L/F, we put ¢y = ¢ ® L, W(L/F) =
Ker(W(F) = W(L)), and I*(L/F) = Ker(I*(F) = I*(L)).

For a quadratic form ¢ of dimension > 3, we denote by X4 the projective variety
given by the equation ¢ = 0. We set F(¢) = F(X,) if dim¢ > 3; F(¢) = F(\/(_i) if
dim¢ =2 and d = dy ¢ # 1; and F(¢) = F otherwise.

Let 3 € GPy(F) and let vy be a 3-dimensional subform of ¢. Then the quadratic
forms Y p(y,) and (o) p(y) are isotropic. Hence for any quadratic form @, isotropy of
®r(y) is equivalent to isotropy of ¢r(y,). Thus, to give a complete description of the
quadratic forms 1 such that ¢ becomes isotropic over the function field F(v), it is
sufficient to consider the case where ¥ ¢ GPo(F).

We say that a quadratic form ¢ is a Pfister neighbor if for some n there exists
n € P,(F) such that ¢ is similar to a subform of # and dim¢ > 2",

Let ¢ be a quadratic form of dimension 2". We say that ¢* is a half - neighbor of ¢,
if dim ¢* = 2" and there exists k € F* such that ¢* = k¢ (mod I™*}(F)).

1.2, Algebras

Let A be a central simple algebra over F. We write deg(4), ind(A), [A], and exp(A)
for the degree of A, the Schur index of A, the class of 4 in the Brauer group Br(F),
and the order of 4] in the Brauer group respectively. The Severi- Brauer variety of A
is denoted by SB(A). If an algebra B has the form B = A x A, we set ind B = ind A.

Let ¢ be a quadratic form. We write C(¢) for the Clifford algebra of ¢ and Cy(¢)
for the even part of C(¢). If ¢ € I?(F) then C(¢) is a central simple algebra. Hence
we get a well defined element [C(¢)] of Bro(F) which we denote by ¢(¢).
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1.3. Quadratic forms of dimension 6

Let ¢ be an anisotropic quadratic form of dimension 6 and let d = d4 ¢. If d = 1, then
¢ is an Albert form. In this case the problem of isotropy of ¢ over the function field of
a quadratic form 1 is completely solved ({Lec], [M2]): in the case where 1) ¢ GP,(¢),
the form ¢p(y) is isotropic if and only if ¥ is similar to a subform in ¢.

Suppose now that d # 1. Then Cy(¢) is a central simple algebra over the field L =
F(\/a) In this case we have the following classification of anisotropic 6—dimension
forms:

Type 1 is defined by one of the following equivalent conditions:

1) ind(Co(9)) = 1;
2) ¢ is hyperbolic;
3) ¢ has the form {(d)) ® p where u is a quadratic form of dimension 3;
4) ¢ is a Pfister neighbor.
Type 2 is defined by one of the following equivalent conditions:
1) ind(Co(¢)) = 2
2) ¢y, is isotropic but not hyperbolic;
3) ¢ is similar to a form of the kind {(a, b)) L c {d)), where {(a, b)), is not isotropic.

Type 3 is defined by one of the following equivalent conditions:

1) ind(Co(¢)) = 4;
2) ¢, is anisotropic.

The quadratic form of the type 3 is called a virtual Albert form.

For the quadratic forms ¢ of type 1 (i.e., for the Pfister neighbors), the problem of
isotropy ¢p(y) is completely solved by the Cassels - Pfister subform theorem [Schar,
Th. 54 (ii) of Ch. 4]. The case of quadratic forms of type 2 was studied by D.
HOFFMANN in [H6]: he found the conditions on ¢ and 1 so that ¢p(y,) is isotropic
excepting the case dim ¢ = 4. The case where ¢ is of type 2 and dim ¢ = 4 is recently
studied in [TK6].

The case of the quadratic forms ¢ of type 3 (virtual Albert forms) was studied
completely by A. LAGHRIBI in [Lag6, Lag] except for the case where dim1y = 4 and
dy ¥ = di ¢. In this paper we complete the investigation of isotropy of virtual Albert
forms over the function field of a quadric.

1.4. Cohomology groups
By H*(F') we denote the graded ring of Galois cohomology

H*(F,Z/2Z) = H*(Gal(Fyep/F),Z/2Z).

For any field extension L/F, we set H*(L/F) = Ker(H*(F) —» H*(L)).

We use the standard canonical isomorphisms HY(F) = Z/2Z, H'(F) = F*/F*?,
and H(F) = Bry(F). Thus any element a € F* gives rise to an element of H'(F); it
is denoted by (a). The cup product (a1) U...U (a,) is denoted by (a;,...,an).

For n = 0,1, 2 there is a homomorphismn " : I"(F) - H™(F) defined as follows:
e’(¢) = dim¢ (mod 2), e!(¢) = di ¢, and e?(¢) = c(¢). Moreover, there exists a
homomorphism e3 : I3(F) —» H®*(F) which is uniquely determined by the condition
e({a1,as,a3)) = (a1,a2,a3) (see [Ara]). The homomorphism e” is surjective and
Kere® = I"*1(F) for n = 0,1,2,3 (see [M1}, [MS], and [R}).
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1.5. K —theory and Chow groups

Let X be a smooth algebraic F'-variety. The Grothendieck ring of X is denoted by
K(X). This ring is supplied with the filtration “by codimension of support” (which
respects the multiplication); the adjoint graded ring is denoted by G*K (X). There is
a canonical surjective homomorphism of the graded Chow ring CH*(X) onto G* K (X),
its kernel consists only of torsion elements and is trivial in the Oth, 1st, and 2nd graded
components ([Su, §9]).

We fix a separable closure F of the ground field F' and denote by X the variety

Xz The image of the restriction homomorphism G* K (X) = G*K (X ) is denoted by
G K(X).
We denote by |S| the order of a finite set S.

2. Computation of H*(F(SB(A) x SB(B))/F)

Theorem 2.1. Let A and B be biquaternion division F - algebras with ind(AQ B) =
8. Suppose that there exists a quadratic extension L/F such that both Ay aend By, are
not division algebras. Then

H3(F(SB(A) x SB(B))/F) = [A]UH(F)+ [BJUH\(F).

Proof. We put X = SB(A) x SB(B).
The following formula is proved in [K, Prop. 2]:

Lemma 2.2. | ( ) .
. _ G*K /G K(X)
| TorsG* K (X)| = |K( VKX

X
X

Lemma 2.3. |K (X )/K(X)| = 2%.
Proof. Applying [Q, Th. 4.1 of §8], one gets an isomorphism
K(X) ~ K(F)* o K(A)% ¢ K(B)® ¢ K(A® B)®.

Thus |K (X )/K(X)| = (ind A)* - (ind B)* - (ind A ® B)* = 2%% . ]

The variety SB(A) is isomorphic to a projective space; denote by f the class of a

hyperplane in G K (SB(A4)).

Lemma 2.4. For any i > 0, the group (_;’-iK(SB(AL)) contains 2f%; for any even
i > 0 it contains f*.

Proof. By [K, Lemma 3], for any i, one has an inclusion

ind AL

G'K(SB(AL)) > md AL

fi
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where (-,-) denotes the greatest common divisor. Since ind Ay = 2, the statement
follows. D

Lemma 2.5. G' K (SB(A)) 3 2f.

Proof. By the computation [Art, §2] of the Picard group of a Severi - Brauer variety,
one knows that

G'K(SB(A)) 3 (exp A)J .
Since exp A = 2, the statement follows. O

The variety SB(B) is isomorphic to a projective space; denote by g the class of a
hyperplane in G! K (SB(B)).

Corollary 2.6. For any i, j > 0, the group §i+j1{(X) contains
1) fixgl, if i=j=0;

ifi and j are even or
2)2(f'xg’), {ifi=0,5=10r

ifi=1,5=0;

if i+ J ts odd or
ifi=j3=1;

3)4(fi xgj), {

4) 8(f* x ¢%) for any i, j.

Proof. The case i = j = 0 is evident.

If ; and j are even, then f? € aiK(SB(AL)) and g/ € @jK(SB(BL)) by Lemma
2.4. Thus fix g’ € @iHK(XL) and the transfer argument shows that 2(f* x ¢7) €
G K (X).

By Lemma 2.5, G' K(SB(A)) > 2f and G 'K(SB(B)) 3 29. Therefore G K (X)
contains 2(f x 1) and 2(1 x g); moreover,(?QK(X) 34(f x g).

If i+ is odd, then 2(fi xgi) e@iHK(XL) by Lemma 2.4 and the transfer argument
shows that 4(f% x ¢7) cGK(X).

Since there exists a field extension of degree 8 splitting the algebras 4 and B simul-
taneously, the inclusion 8(f* x g7) € §i+jK(X) holds for any i, j. O

Corollary 2.7. |G*K(X)/G K(X)| < 28

Proof. Since SB(A) and SB(B) are projective spaces, G*K (X ) is an abelian group
freely generated by f* x ¢ with i, = 0,1,2,3. By Lemma 2.6, we know that the
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following multiples of these generators are in G "K(X):

20-(f°xg0), 21.(f0xgl)’ 21-(f°><g2), 22-(f°xg3),
21-(f1><g°), 22_(flxgl), 22_(f1X92)’ 23-(f1><g3),
21-(f2><g°), 22,(f2xgl), 21-(f2><g2), 22-(f2><g3),
22-(f3><g°), 23.(f3xgl)’ 22~(f3><g2), 23-(f3><g3)

Taking the product of the coefficients, we get 2%5. o

Corollary 2.8. TorsG*K(X) = 0.
Proof. Follows from Lemma 2.2, Lemma 2.3, and Corollary 2.7. 0

Since the Chow group CH?(X) is isomorphic to G2K (X) (see §1.5.), we also get

Corollary 2.9. Tors CH*(X) = 0.

To complete the proof of Theorem 2.1, we apply [Pe, Th. 4.1 with Rem. 4.1]. By
that result, there is a monomorphism

H(F(X)/F)

[A]U HY(F) + [B)U HY(F) — Tors CH*(X)

and so, by Corollary 2.9, we are done. ]

Remark 2.10. In the hypotheses of Theorem 2.1 there are obvious inclusions:

[AJUHY(F) C H3(F(SB(A))/F) C H¥(F(SB(A) x SB(B))/F);
[BJUHY(F) C H3(F(SB(B))/F) C H3(F(SB(A) x SB(B))/F).

Therefore H3(F(SB(A) x SB(B))/F) = H3(F(SB(A))/F) + H3(F(SB(B))/F).

3. Computation of H3(F(X, x SB(D))/F)

Theorem 3.1. Let ¢ be an anisotropic 4 - dimensional guadratic form over F' with
d+ # 1. Let D be a 3 - quaternion division algebra over F such that Dy is not a
division algebra. Then the group H3(F(Xy x SB(D))/F) is equal to

{83('(/) (k)) | k € F* is such that ¢ (k) € GP3(F)} +[D]U HY(F).

Proof. We start with the following observation:

Lemma 3.2. In the hypotheses of Theorem 3.1, assume that vy = (—a, —b,ab,d) with
some a, b, d € F*. Then there exist u, v, s € F* such that D >~ (a,b) @ (u,v) ® (d, s).
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Proof. Clearly, Co(y)) ~ (a,b) FV)- Since Dp(yy is not a division algebra, the
index reduction formula [M3] shows that ind(Co (%) ® p D) = 2. Therefore

ind((a,b) ®F D) p(ya) = 2.

Hence there are u, v, s € F* such that [(a,b) ®F D] = [(u,v) ®F (d, s)] in Bra(F).
Consequently [D] = [(a,b) ®F (u,v) ®F (d,s)]. Since degD = 8, it follows that
D~ (a,b) ® (u,v) ® (d, $). O
Replacing 9 by a similar form, we may assume that ¢ = (—a, —b,ab,d) with some
a, b, d € F*. We choose u, v, s € F* as in Lemma 3.2. Put F= F((t)) and consider
two biquaternion algebras A = (a,b) ® (d,t) and B = (d, st) ® (u,v) over F.
Since D is a division algebra, it follows that ind(D) = 8. Therefore

ind((aab)®(u)v))F(\/2) = mdDF(\/-&) = 4.

Hence (a,b) g, and (u,v)p( /g are division F(Vd) - algebras. Consequently, by
Tignol’s theorem [T, Prop. 2.4], A and B are division F - algebras as well.
Since ind(D) = ind (D;:) (see [T, Prop. 2.4]) and [A ® B] = [Df] in Br (f’), we

have ind (A ®p B) = ind(D) = 8. Since Af(\/ﬁ) and BF(\/E) are not division algebras,

the conditions of Theorem 2.1 hold for the field ' and the algebras A and B over F.
Therefore

HB(ﬁ(SB(A)xSB(B))/ﬁ) = [AJUH!(F) + [BJUH'(F).

Let E = F(SB(A)xSB(B)). Clearly [Ag] = |Bg) = 0. Hence [Dg] = [Ag]+[Bg) = 0.
Thus SB(D)g is a rational variety.

Since [Ag] = 0, the Albert form (—a, ~b,ab,d,t, —dt); of the biquaternion algebra
Ag = ((a,b) ® (d,t))g is hyperbolic. Hence (~a,—b,ab,d)g = (dt,—t) in the Witt
ring W(E). Therefore 4 is isotropic. Hence (X )E is a rational variety.

Let Y = X, xSB(D). Since (Xy)g and SB(D)Eg are rational, it follows that Yg is ra-
tional. Hence E(Y)/E is a purely transcendental extension. Therefore H3(E(Y)/F) =
H3(E/F). We have H}(F(Y)/F) c H}E(Y)/F) = H3(E/F).

Let u € H3(F (X, xSB(D))/F) = H¥(F(Y)/F). To prove the theorem, it is enough
to show that u can be written in the form

w = S k) + DU )

with some k, 7 € F*.
Since H3(F(Y)/F) c H3(E/F), it follows that

up € HY(E/F) = H*(F(SB(4) xSB(B))/F) = [AJuHY(F) + [BJUH'(F).

Since [A] + [B] = [DI;], we have uz € [A]U H' (F) + [D;] U H'(F). Hence there
are a, B € F such that up = [4]U(a) + [Dﬁ] U(B). Since F* JF*2 ~ F*/F*? x {1,t},
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we may assume that o = kt* and § = rt?, where k, r € F* and 4, j € {0,1}. We hawe

(AU (a) + [Dﬁ] U (8)

((a,b) + (d,1)) U (kt*) + [D] U (rt?)

((a,b, k) + [D] U (1)) + (¢) U (i(a,b) + (d, k(~1)?) + j[D]) .
)=H

{(F) ® H*"?(F), we have

vy

(t
Using the well - known isomorphism H*(F((t))) =
u = (a,b,k)+ [D]U(r)
and '
i(a,b) + (d,k(-1)") + j[D] = 0.
We claim that j = 0. Indeed, if j # 0 then j = 1 and hence [D] = i(a,b) + (d,k(——l)"),
Therefore [D] = [(a,b") ® (d, k(—l)i)]. Thus ind(D) < 4, a contradiction.
So j = 0, and we have i(a,b) + (d,k(—1)") = 0. Thereby i(a,b) p(yvzy = 0. Since
(a,8) p(vay # 0, it follows that i = 0.
Since i(a,b) + (d,k(—1)*) = 0 and i = 0, we have (d,k) = 0. Hence (d,k)) = 0 in
W(F). Since ¢ = (—a, -b,ab,d) = {{a,b) — {(d})), we have
P (k) = ((a,b) — (@) (k) = (a,b,k) ~ {d.k) = (a,bk).
Therefore 1 (k) € GP3(F) and e*(¥ {k))) = (a,b, k).
Hence the element u = (a,b, k) + [D} U (7) belongs to the set
{e3(¥ (k) | k is such that ¢ (k) € GPs(F)} + [D]UH'(F).

The proof is complete. o

Remark 3.3. In the hypotheses of Theorem 3.1 there are obvious inclusions:

{€3(y (k) | k € F* is such that o (k) € GPs(F)} C H3(F(4)/F)
C H3(F(Xy x SB(D))/F);
[DJUHY(F) c H¥(F(SB(D))/F) C H*(F(Xy x SB(D))/F).

Therefore H3(F (X, x SB(D))/F) = H*(F(4)/F) + H}(F(SB(D))/F).

Proposition 3.4. In the hypotheses of Theorem 3.1, let £ € I*(F) be a quadratic
form such that c(¢) = [D]. Then for an arbitrary element n € I*(F(X, x SB(D))/F)
there are ky, ko € F* such that

m B (k) + € (k2) (mod I'(F)).

Proof. Obviously e3(n) € H3(F(Xy x SB(D))/F). It follows from Theorem 3.1
that there are ki, k» € F* such that e*(r) = €*(¢ (k1)) + [D] U (ko). Clearly
[D]U (ko) = e*(€) U e’ ((k2))) = €*(£ (ko). Hence 3(n) = €3 (1) (k1)) + €3 (€ (ka))-
Since Ker (e : I3(F) — H3(F)) = I*(F), we have m = ¢ (k1)) +¢ (ko)) (mod I*(F)).

a
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|, 8-dimensional quadratic forms

Proposition 4.1. Let ¢ be an 8 - dimensional quadratic form with dy ¢ = 1 and
nd C(¢) = 8. Let 1 be a 4 - dimensional quadratic form with dy 1 # 1. Suppose that

br(w) B8 isotropic. Then there exists a half - neighbor ¢* of ¢ such that ¢ C ¢*.

Proof. Replacing ¢ by a similar form, we may assume that ¢ = (—a,—b,ab,d)
vith some a, b, d € F*. Then Cy(¢) = (a,b)F(\/a). Besides, since ind C(¢) = 8, there
xists a 3 — quaternion division algebra D such that c(¢) = [D].

Since ¢p(y) is isotropic, it follows that Dp(y,) is not a division algebra. Therefore,
sy Lemma 3.2, there exist u, v, s € F* such that D ~ (a,) ® (u,v) ® (d, 5).

Consider the quadratic form

v = (~a,-b,ab,d) L —s(—u,-v,uv,d).

Jne can verify that dy v = 1 and ¢(y) = [D)]. Hence ¢(¢) = [D] = ¢(y). Therefore
p+ € I3(F).

Lemma 4.2. ¢+ € I*(F(Xy x SB(D))/F).

Proof. Let E = F(X, x SB(D)). Since ¢ + v € I3(F), it is sufficient to verify that
pg and g are hyperbolic. Obviously [Dg] = 0, and the form v is isotropic. Since
A¢Er) = ¢(ye) = [DEg]) = 0 and dim ¢ = dim~y = 8, we have ¢, yg € GP3(E). Hence
t is sufficient to prove that ¢ and yg are isotropic. Since ¢r(y) and 1 £ are isotropic,
pE is isotropic as well. Since ¥ C v and ¥ is isotropic, we see that g is isotropic. O

Now we can complete the proof of Proposition 4.1. By Proposition 3.4 and Lemma
4.2, there exist ky, ks € F* such that

¢+7 = Y (k) + & (k) (mod I*(F)).
Let p= —s{—u,—v,uv,d). We have v = ¢ + p. Hence
¢$+Y+p=9— ki + ¢ - k¢ (mod I(F)).

Thus k1¢) + p = —ko¢ (mod 1*(F)). Hence ¥ + kip = ~kiko¢p (mod I4(F)). We
finish the proof by setting ¢* = 1 kip. O

Theorem 4.3. Let ¢ be an 8 - dimensional quadratic form with dy ¢ = 1 and
ind C(¢) = 8. Let 1 be a quadratic form of dimension > 4 such that v ¢ GP(F).
The following conditions are equivalent:

1) ¢F(y) 15 isotropic,

2) there exists a half - neighbor ¢* of ¢ such that ¢ C ¢*.

Proof. The case dim = 4 is Proposition 4.1. In the case dim 1 # 4 the statement
was proved by LAGHRIBI in {Lag8] and [Lag] (see also [IK, Cor. 0.2]). O
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5. Main theorem

Theorem 5.1. Let ¢ be a virtual Albert form (i. e., a 6 - dimensional quadratic form
with dy ¢ ¢ F*? and ind(Co(4)) = 4). Let ¢ be a 4 - dimensional quadratic form such
that d+ ¥ # 1. The following conditions are equivalent:

(1) ¢p(y) is isotropic;

(2) ¥ is similar to a subform in ¢.

Proof. (1) = (2). Let d = ds ¢. We have ind (C(¢ 1 «d»)p(m) = ind(Co(9)) =
4. Consider the 8- dimensional quadratic form £ = ¢4 L t{(d)) over the field F=
F((t)). Clearly, c(¢) = c(¢ L t(d) = e(¢ L (@) + [(d, 1)]. Applying [T, Prop. 2.4,
wﬂmmeC@D=2meX¢iww»W%):&

Clearly {5 ) is isotropic. It follows from Proposition 4.1 that there exists a quadratic

form &* over F such that € and £* are half - neighbors and Yp C L

Lemma 5.2. £* is similar to €.

Proof. Since € and £* are half-neighbors, there exists & € F such that

£

ke* (mod I*(F)).

By Springer’s theorem one can write k€* in the form k&* = pp L tyy, where quadratic
forms pg and p; are defined over F'. We have

pLi(d) = ¢
Hence ¢ = yo (mod I3(F)), (d) = 1 (mod I3(F)), and

k€ = po Lty (mod ]4(f’))

¢+ (d) = po+ s (mod I*'(F)).

Therefore ind Co(up) = ind Co(¢) > 4. Hence dim g > 6. Therefore dimu; < 2.
By the Arason - Pfister Hauptsatz the condition ((d)) = p1 (mod I3(F)) implies that
1 = {d). Hence ¢ = po (mod I*(F)). Applying Arason - Pfister Hauptsatz once
again, we have ¢ = pg. Therefore £ = k£*. ]

Now we return to the proof of Theorem 5.1. Since v is similar to a subform in £*,
and £* is similar to &, it follows that 1 is similar to a subform in £ = ¢ L t {d)). Thus
1) is similar to a subform of ¢ by the following obvious observation.

Lemma 5.3. Let ¥, 9 and 1 be anisotropic guadratic forms over F. The following
conditions are equivalent:

a) Yp(q)) 18 similar to a subform in vy Ltm,

b) v is similar either to a subform in vy or to a subform in .

Thus we have proved that condition (1) of Theorem 5.1 implies condition {2). On
the other hand, condition (2) obviously implies condition (1). The proof of Theorem
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5.1 is complete. m]

Theorem 5.4. Let ¢ be a virtual Albert form and let v ¢ GP,(F). The quadratic
form @r(y) 1s isotropic if and only if ¢ is similar to a subform in ¢.

Proof. This theorem was proved by A. LAGHRIBI in the following cases ({Lag6],
[Lag)):

(a) dim 9 # 4;

(b) dimy =4, dy ¢ # dx ¢.
Thus we may assume that dim1 = 4. To complete the proof it is sufficient to apply
Theorem 5.1. 0

In the special case which was not covered by the results of A. LAGHRIBI, we get the
following

Corollary 5.5. Let ¢ be a virtual Albert form and i be a 4 - dimensional form such
that dy ¥ = d+ ¢. Then @p(y) is anisotropic.

Proof. If ¢ is similar to a subform in ¢, then ¢ is isotropic, a contradiction. There-
fore 1 is not similar to a subform in ¢. By Theorem 5.1, it means that ¢p(y, is
anisotropic.

Together with results described in §1, Theorem 5.4 gives rise to the following

Corollary 5.6. Let ¢ be a 6 - dimensional quadratic form with ind(Cyo()) = 4. In
the case where ) § GPo(F), the quadratic form ¢p(y) is isotropic if and only if ¢ is
similar to a subform of ¢. In the case where ¢ € GPy(F), the form ¢p(y) is isotropic
if and only if a 3 - dimensional subform of ¢ is similar to a subform of ¢.
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