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Canonical Dimension
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Abstract

Canonical dimension is an integral-valued invariant of algebraic structures. We
are mostly interested in understanding the canonical dimension of projective
homogeneous varieties under semisimple affine algebraic groups over arbitrary
fields. Known methods, results, applications, and open problems are reviewed,
some new ones are provided.
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0. Introduction

A smooth projective variety X is incompressible, if any rational map X --+ X
is dominant. Canonical dimension cdim X, an invariant measuring the level of
compressibility of X, is the minimum of the dimension of the image of a rational
map X --» X. Formally introduced by G. Berhuy and Z. Reichstein only in
2005, [3], this invariant has been implicitly studied for a long time before.
For instance, an old question of M. Knebusch, [19, Question 4.13], answered
in Example 1.5, was about the canonical dimension of a quadric. Also the
incompressibility of the Severi-Brauer variety of a primary division algebra —
see Example 2.3 — has been known and intensively applied since 1995.

In this talk we look at the canonical dimension of a projective homoge-
neous variety X, mainly, through the motive of X. This approach is justified
by Theorem 5.1.
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1. Definitions of Canonical Dimension

By wvariety we mean an integral separated scheme of finite type over a field.
Since we are mainly interested in canonical dimension of projective homo-
geneous varieties, we define it for smooth projective varieties only. We refer to
[25] for the case of a more general variety.
Let X be a smooth projective variety over a field F'.

Definition 1.1. Canonical dimension cdim X of X is the minimum of dim Y,
where Y runs over the closed subvarieties of X admitting a rational map X --»
Y. Equivalently, Y runs over the closed subvarieties of X such that the scheme
Yr(x) has a rational point.

Of course, cdim X = 0 if X has a rational point. We are basically interested
in varieties without rational points.
In general, cdim X is an integer satisfying

0 <cdimX < dim X.

Let p be a positive prime integer. We write Ch for the Chow group [7, §57]
with coefficients in IF,,, the finite field of p elements. By a correspondence X ~ Y
we mean an element of the Chow group Chgim x (X x Y). The multiplicity
mult a € F,, of a correspondence o : X ~ Y (also called degree in the literature)
is its image under the push-forward homomorphism

ChdimX(X X Y) — ChdimX(X) = ]Fp

with respect to the projection X xY — X. Finally, a 0-cycle class is an element
of Cho(X), its degree is therefore an element of Chy(Spec F) =F),.

Our actual subject of study is the canonical p-dimension, a p-local version
of the above notion, defined as follows:

Definition 1.2. Canonical p-dimension cdim, X of X is the minimum of
dim Y, where Y runs over the closed subvarieties of X admitting a multiplicity
1 correspondence X ~~ Y. Equivalently, Y runs over the closed subvarieties of
X such that the scheme Yp(x) has a 0-cycle class of degree 1.

Of course, cdim, X = 0if X has a O-cycle class of degree 1. We are basically
interested in varieties without 0-cycle classes of degree 1, that is, varieties where
the degree of each closed point is divisible by p.

In general, cdim, X is an integer satisfying

0 < cdimy X < cdim X.

There are at least two more definitions of the canonical (p-)dimension look-
ing quite differently. We refer to [25] for a proof that they are equivalent to the
initial one. We start by the definition via the essential dimension. We refer to
[25, §1.1] for the definition of the essential (p-)dimension of an arbitrary functor
Fieldsyp — Sets of the category of the field extensions of F' to the category of
sets.
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Definition 1.3. Let Fx : Fieldsp — Sets be the functor defined by the
formulas Fx (L) = 0 if X(L) = @ and Fx(L) = {L} (a singleton) otherwise.
We define cdim X as the essential dimension of the functor Fx, and we define
cdim, X as its essential p-dimension.

We come to the last definition. It makes use of the notion of a generic
splitting field of a variety. We say that a field L/ F is a splitting field (or isotropy
field) of X is X (L) # 0. A splitting field E/F is generic, if for each splitting field
L/F of X there exists an F-place E --» L. A splitting field E/F is p-generic,
if for each splitting field L/F of X there exist a finite field extension L'/L of a
p-prime degree and an F-place E --» L’. Of course, any generic splitting field
is also p-generic (for any p); the function field F/(X) is a generic splitting field.

Definition 1.4. We define the canonical (p-)dimension of X as the minimum
of the transcendence degree of a (p-)generic splitting field of X.

The last definition (as well as the previous one) naturally generalizes to
the case of an arbitrary “algebraic structure” A in place of X as soon as we
have a notion of a splitting field for A. We consider two examples of such a
generalization. (However, one easily comes back to varieties in both examples.)

Example 1.5. Let ¢ be a finite-dimensional non-degenerate quadratic form
over F. A field L/F is a splitting field (or isotropy field) of ¢ if the quadratic
form ¢, has a non-trivial zero. This way we get the notion of the canonical
(p-)dimension of ¢. Let X be the projective quadric of ¢. We have cdim ¢ =
cdim X and cdim, ¢ = cdim, X, because a splitting field of ¢ is the same as
a splitting field of X. These invariants are computed. If X (F) = 0, i.e., if the
quadric X is anusotropic, then we have cdimy = cdimy ¢ = dim X — i + 1,
where i; is the first Witt index of ¢, [7, Theorem 90.2]. (Of course, cdim, ¢ =0
for p # 2.)

Example 1.6. Let A be a finite p-subgroup of the Brauer group Br F' of F. A
field L/F is a splitting field of A if Ay =0, i.e., if A vanishes under the change
of field homomorphism Br F' — Br L. We get the notion of the canonical (p-)
dimension of A. Let Aq,..., A, be central simple F-algebras such that their
classes are in A and generate A; let X be the direct product of the corresponding
Severi-Brauer varieties. We have cdim A = c¢dim X and cdim, A = c¢dim, X (for
any X obtained this way), because a splitting field of A is the same as a splitting
field of X. These invariants are computed as cdim A = cdim;, A = mindim X,
[18, §2]. (Of course, cdim, A =0 for p’ # p.)

The result of Example 1.6 has numerous applications. Many of them com-
pute the essential dimension of algebraic groups as the following series of papers
on finite p-groups. It was initiated by M. Florence who used the case of cyclic
A to compute the essential dimension of a finite cyclic p-group in [8]. Arbitrary
finite constant p-groups have been treated later on in [18]. Finally, the case of an
arbitrary finite p-group (as well as the case of an algebraic tori), still essentially
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using Example 1.6, has been recently done by R. Lotscher, M. Macdonald, A.
Meyer, and Z. Reichstein, [22].

Here is an example of a class of projective homogeneous varieties for which
the canonical p-dimension is computed in terms of their Chow groups. These
are the generically split projective homogeneous varieties. A projective homo-
geneous variety X is generically split, if the F'(X)-variety Xp(x is cellular.

Example 1.7 ([17, Theorem 5.8]). Let X be a generically split projective
homogeneous variety and let X := Xz with an algebraic closure F' of F. The
canonical p-dimension cdim, X coincides with the minimal integer ¢ such that
the change of field homomorphism Ch;(X) — Ch;(X) is non-zero.

Let G be a split simple affine algebraic group, T a generic G-torsor, B a
Borel subgroup of G. Using the result of Example 1.7, the canonical dimension
of the (generically split) projective homogeneous variety T/B is determined:
the case of a classical G is done in [17], the case of an exceptional G in [28].

Example 1.8. Let n be a positive integer and X be the variety of n-dimensional
totally isotropic subspaces of a 2n + 1-dimensional non-degenerate quadratic
form ¢. The variety X is homogeneous and generically split. Its canonical (2-)
dimension is the canonical (2-)dimension of ¢ if defining the splitting fields of
¢ we require that ¢ becomes completely split (i.e., almost hyperbolic). The
canonical 2-dimension of X is known, [7, Theorem 90.3]; cdim X, however, is
not known in general. It is conjectured in [27, Conjecture 6.6] that cdim X =
cdims X.

2. Incompressible Varieties

A smooth projective variety X is incompressible, if cdim X = dim X; X is p-
incompressible, if cdim, X = dim X. Equivalently, X is incompressible if any
rational map X --» X is dominant, that is, no proper closed subset ¥ C X
admits a rational map X --+ Y; X is p-incompressible, if no proper closed
subset Y C X admits a degree 1 correspondence X ~» Y.

Of course, any p-incompressible variety (for some p) is incompressible. An
example of an incompressible and p-compressible (for any p) projective homo-
geneous variety is obtained in [21] with a help of the birational classification of
geometrically rational surfaces:

Example 2.1. Let X; be the Severi-Brauer variety of a quaternion (i.e., degree
2 central) division algebra and let X5 be the Severi-Brauer variety of a degree 3
central division algebra. The (projective homogeneous, 3-dimensional) variety
X := X1 X X5 is incompressible. However, cdims X = cdims X; = dim X; =1
and cdimg X = cdimy Xy = dim X = 2 (and cdim, X = 0 for any other p).
An important source of p-incompressible varieties is Proposition 2.2 below

which is a consequence of the A. Merkurjev degree formula [24, Theorem 6.4],
a generalization of the M. Rost degree formula.
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For any sequence R = (r1,72,...) of non-negative almost all zero integers r;,
a homogeneous integral polynomial Tr € Z[o1, 02, ...] in variables o1, 0, ... of
degree |R| :=Y,o, mi(p'—1) is defined in [24, §4], where for any i > 1 the degree
of the variable o; is defined as i. (The polynomial Tk also depends on the prime
p which we have fixed before.) For any smooth projective variety X of dimension
|R|, the characteristic number R(X) is defined as R(X) := degcr(—Tx) € Z,
where cp is the characteristic class cg := Tg(c1,c2,...) (the polynomial Tg
evaluated on the Chern classes c1,c¢a,...) and Tx (which has nothing to do
with Tg) is the tangent bundle of X.

For any integer n, we write v,(n) for the value on n of the p-adic valuation.
For any F-scheme X, we write v,(X) for the value of the p-adic valuation on
the greatest common divisor of the degrees of the closed points on X.

Clearly, vp(R(X)) > vp(X) for any R. A smooth projective variety X is
p-rigid, if v,(R(X)) = vp(X) for some R.

A smooth projective variety X is strongly p-incompressible, if for any pro-
jective variety Y with v,(Y) > v,(X), dimY < dim X, and a multiplicity 1
correspondence X ~» Y, one has: dimY = dim X (in particular, any strongly
p-incompressible variety is p-incompressible) and there also exists a multiplicity
1 correspondence Y ~~ X.

Proposition 2.2 ([24, Theorem 7.2]). Assume that char F # p. Then any
p-rigid F-variety is strongly p-incompressible.

For any projective scheme X and any positive integer [ < v,(X), we define
a homomorphism deg/p' : Cho(X) — F,, associating to the class [z] € Cho(X)
of a closed points x € X the class in F, of the integer (degz)/p'. Of course,
deg/p' = 0 for | < v,(X). For any morphism f : X — Y of projective schemes
X and Y and any ! < min{v,(X),v,(Y)}, the push-forward homomorphism
fe : Chg(X) — Cho(Y) satisfies (deg/p') o f. = deg/p.

Since char F' # p, any sequence R as above determines certain degree |R)|
homological operation Sg on the (modulo p) Chow group Ch, [24, §5]. This
means that for any projective (not necessarily smooth) F-scheme Z, we are
given a degree —|R| homogeneous group homomorphism

SZ:Ch,(Z) — Ch._|g|(2)

commuting with the push-forward homomorphisms and such that
S#(1Z]) = cr(~Tz) mod p

if Z is smooth.

Proof of Proposition 2.2. Let X be a p-rigid variety and let R be a sequence
such that v,(R(X)) = v,(X). For checking the strong p-incompressibility of X,
let us take a projective variety Y with v,(Y) > v,(X), dimY < dim X, and
a multiplicity 1 correspondence X ~~» Y. Then there exists a closed subvariety
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Z C X x Y such that the degree deg pry € I, of the projection pry : Z — X
is non-zero. The proof plays with the following commutative diagram:

(prx) Cthl(Z) (pry)
pry Y *
Chyp|(X) 5% Chyp (V)
5% Cho(2) Sk
(prx )« (Pry )«
Cho(X)/ dcg/p’\\ Cho(Y)

Since the operation Sgr commutes with the push-forward (pry). and
(prx)«([2]) = (degpry) - [Z], we have (deg/p')(SE([Z])) = (degpry) -
(deg/p") (S# ([X])) # 0, where | = v,(X). Since the operation Sg also com-
mutes with the push-forward with respect to the projection pry : Z = Y,
we have (deg/p')(SZ([Z])) = (deg/p")(Sk o (pry).([Z2])). It follows that
(pry)«([Z]) # 0, that is, dimY = dim Z (= dim X) and deg pry # 0. There-
fore the the class in Chginy (Y x X) of the transposition of Z is a required
correspondence Y ~» X. O

Certainly, the strength of the above approach to the p-incompressibility is
in the fact that it gives a stronger property — the strong p-incompressibility.
Moreover, if X is a p-rigid variety, then for any field extension L/F, any twisted
form X'/L of X with v,(X’) = v,(X) is also p-rigid. Therefore we get the p-
incompressibility not only for X, but also for any such X’. Sometimes, however,
this is too much, becoming a weakness of the approach: it cannot possibly
succeed for a variety possessing a p-compressible twisted form with the same
vp. Besides that, the approach does not exist in characteristic p at all because
a construction of the operations on the Chow group modulo p is not available
in characteristic p.

Example 2.3. Let n be a positive integer and let D be a central division
F-algebra of degree p™. The Severi-Brauer variety X of D is p-rigid, [24,
§7.2]. Therefore, if char F' # p, the variety X is strongly p-incompressible.
Consequently, X is p-incompressible. (This is the particular case of Exam-
ple 1.6 with cyclic A and char F' # p.) For F with char F' = p, it is not
known whether X is strongly p-incompressible. The general case of Example
1.6 (even with the characteristic p excluded) cannot be done by the degree
formula method. For instance, the product of two non-isomorphic anisotropic
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conics possessing a common quadratic splitting field is 2-incompressible but
not 2-rigid (and even not strongly 2-incompressible). In general, a product
X = X3 x--- x X, of arbitrary smooth projective varieties X3, ..., X, can be
p-rigid only if v, (X) = vp(X1) + -+ - + vp(Xn).

Example 2.4 ([13]). Here is another proof of the p-incompressibility for the
variety X of Example 2.3, which works for F' of arbitrary characteristic and
which also works in the general case of Example 1.6. Using the computation
of Ko(X) and the relationship between Ky(X) and Ch(X), one shows that the
image of Ch(X) — Ch(X) is generated by the class of X. Since the variety X
is projective homogeneous and generically split, it follows by Example 1.7 that
X is p-incompressible.

Example 2.5. An immediate consequence of the above result concerns an
orthogonal involution ¢ on a central division F-algebra D. An F-linear invo-
lution — a self-inverse anti-automorphism of the algebra D — is orthogonal, if
the induced involution on the split algebra Dp(x) ~ End(V) is adjoint to a
non-alternating bilinear form b on the vector space V. Possessing an involu-
tion, D has to be 2-primary, so that we have the incompressibility statement
which implies that b is anisotropic, or, equivalently, that o x) is anisotropic.
Indeed, otherwise the proper closed subvariety Y C X of the isotropic ideals
in D (i.e., ideals I C D with o(I) - I = 0) would have an F(X)-point. Note
that in contrast to the original paper [15], containing this observation, we do
not exclude the case of characteristic 2 here. Moreover, we can replace the in-
volution by a quadratic pair, [20, Definition 5.4]; the conclusion obtained this
way differs from the previous one in characteristic 2 (and coincides with it in
characteristic # 2).

Example 2.6 (cf. Example 1.5). Let X be an anisotropic smooth projective
quadric of the first Witt index 1. Then X is strongly 2-incompressible, [7,
Theorem 76.1]. The degree formula approach works only if dim X + 1 is a 2-
power: otherwise, X has a 2-compressible twisted form X’ (another quadric)
with vy (X') = va(X) = 1 so that the degree formula approach cannot possibly
work.

We terminate this Section by a criterion of p-incompressibility in terms of
the correspondence multiplicities:

Lemma 2.7. A projective homogeneous variety X is p-incompressible if and
only if mult o = mult o for any correspondence o : X ~ X, where ot is the
transposition of a.

Proof. If X is p-compressible, there exists a multiplicity 1 correspondence « :
X ~~ Y to aproper closed subvariety Y C X. Considering « as a correspondence
X ~ X, we have mult « = 1 and mult o = 0. Therefore the “only if” part of
Lemma 2.7 holds for an arbitrary X, not only for a homogeneous one.
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The other way round, suppose that we are given a correspondence « : X ~~
X with mult @ # mult of. Adding a multiple of the diagonal class and multi-
plying by an element of F,,, we may achieve that mult @ = 1 and multa’ = 0.
In this case the pull-back of a with respect to the morphism Xpx) — X x X
induced by the generic point of the second factor of the product X x X, is a
0-cycle class of degree 0. Since X is homogeneous, the degree homomorphism
Cho(Xp(x)) — F, is an isomorphism. Therefore the pull-back of a is 0. By
the continuity property of Chow groups [7, Proposition 52.9], there exists a
non-empty open subset U C X such that the pull-back of a to X x U is already
0. By the localization sequence [7, Proposition 57.9], it follows that « is the
push-forward of some correspondence 8 : X ~» Y € Chgip x(X X Y), where YV
is the proper closed subset Y = X \ U of X. Since mult § = multa = 1, the
variety X is p-compressible. O

3. Motives

The classical Grothendieck Chow motives [7, Chapter XII] we are going to use
are simply a convenient language to work with the correspondences. Since our
correspondences live in the Chow groups with coefficients in F,, our motives
also have coefficients in F,. Thus, a motive is a direct sum of triples (X, 1),
where X is a smooth projective variety, m : X ~» X a projector, and 7 an
integer. Given two such triples (X7, 71,41) and (Xa, 72, i2), one defines

Hom ((X1,71,41), (X2, 2, i2)) := 2 0 Chdim X, 4i, —is (X1 X X2) 071

For any smooth projective X, the motive M (X) of X is the triple (X,idx,0).
For any integer j, the shift functor M — M(j) is identity on the homomor-
phisms, additive, and takes (X, 7,4) to (X, n, i+ j). The motive M (Spec F) is
denoted by F); any its shift F,(j) is called a Tate motive.

The Krull-Schmidt principle holds for the motives of projective homoge-
neous varieties: any direct summand of the motive of a projective homogeneous
variety decomposes — and in a unique way — into a direct sum of indecomposable
motives, see [6] or [12].

The nilpotence principle, initially discovered in the case of quadrics by M.
Rost, holds for the motives of projective homogeneous varieties, [5, Theorem
8.2]. In particular, a motivic summand of a projective homogeneous variety be-
coming 0 over an extension of F' is 0. However, in contrast to the Krull-Schmidt
principle, the nilpotence principle is not really required for our purposes. It al-
lows us to work with the usual Chow motives with coefficients in F,, (which is
probably more interesting from the view point of the theory of motives itself).
Alternatively, we could have constructed our motives out of the reduced Chow
groups Ch which are defined as Ch modulo everything vanishing over an ex-
tension of the base field. In this “simplified” motivic category, the nilpotence
principle vanishes as well.
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Let X be a projective homogeneous variety. The motive M(X) (which is
M (X) over an algebraic closure of F) is a sum of Tate motives F,(j), with j
varying between 0 and dim X; moreover, there is precisely one summand with
Jj = 0 (as well as with j = dim X). Therefore, there is one and unique (up to
an isomorphism) indecomposable summand U(X) of M (X) such that the Tate
motive F, is a summand of U(X). We call this U(X) the upper indecomposable
motivic summand of X or simply the upper motive of X. (The lower motive of
X is defined in the same way by taking the Tate motive F),(dim X)) in place of
Fp.)

Upper motives are easy to handle. For instance, U(X) ~ U(Y) for two
projective homogeneous varieties X and Y if and only if v,(Ypx)) = 0 =
vp(Xr(yy), [12].

Upper motives are important: any indecomposable summand of the motive
of a projective homogeneous variety under an algebraic group of inner type
is the upper motive of some (other) projective homogeneous variety. A more
precise statement is given in [12]. A generalization including the outer type case
is given in [16, Theorem 1.1].

A projector 7 : X ~» X determines an upper summand of M (X) if and only
if mult m = 1; © determines a lower summand if and only if mult 7* = 1 (see
[12]). Since moreover, an appropriate power of any correspondence X ~» X is
a projector (see [12]), Lemma 2.7 can be reformulated as follows:

Lemma 3.1. A projective homogeneous variety X is p-incompressible if and
only if its upper motive is lower. O

A simple but extremely useful tool for proving p-incompressibility is the
following lemma. For any direct summand M of the motive of a projective
homogeneous variety X, the rank rk M of M is the number of summands in the
complete decomposition of M.

Lemma 3.2 ([12]). v,(rtk M) > v,(X).

Proof. Let w be a lifting of the projector on X defining M to the Chow group
with coefficients in Z/p'Z, where | = v,(X). Some power of the correspondence
7 is a projector and its pull-back with respect to the diagonal morphism X —
X x X is a (modulo p') 0-cycle class on X of degree rk M mod p'. O

Example 3.3. Let X be the Severi-Brauer variety of a p-primary central di-
vision F-algebra D. Lemma 3.2 shows that the motive of X is indecompos-
able. Indeed, if deg D = p™, where deg D := /dimp D € Z, then v,(X) = n
and it follows that the rank of any non-zero summand of M(X) is at least
p" =1k M(X). After the proofs of Examples 2.3 and 2.4, this is the third proof
of the p-incompressibility of X.

Let A be a central simple F-algebra. For any integer ¢ with 0 < i < deg A
we write SB;(A) for the following generalized Severi-Brauer variety of A: the
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variety of the right ideals in A of the reduced dimension i (that is, of the F-
dimension 7 - deg A). For instance, SB1(A) is the usual Severi-Brauer variety
SB(A).

For p = 2, the opposite to the Severi-Brauer case has been considered by B.
Mathews:

Example 3.4 ([23]). Let D be a non-trivial 2-primary central division F-
algebra. Then the variety X := SB(qeg py/2(D) is 2-incompressible. Indeed,
according to [4] or [5] or [14], the motive M (X)p(x) is a sum of one Fy, one
Fy(dim X)), and of shifts of M(Y'), where Y runs over some projective homo-
geneous ['(X)-varieties with vo(Y") > 0. It follows that U(X)p(x) contains the
summand Faz(dim X). Therefore X is 2-incompressible by Lemma 3.1. (This
proof differs from the original one.) In contrast to Example 3.3, the motive of
X is decomposable as far as va(deg D) > 2: this is a special case of motivic
decompositions found by M. Zhykhovich in [29].

Although the rank of U(X) in Example 3.4 is not determined, one can
show that vtk U(X) = 1, [12]. Together with the incompressibility of X, this
is a basement for the following result concerning isotropy of an orthogonal
involution on an arbitrary (not necessarily division) central simple algebra:

Theorem 3.5 ([11]). Assume that char F # 2. Any orthogonal involution o
on a central simple F-algebra A becoming isotropic over the function field of
SB(A), also becomes isotropic over a finite odd degree field extension of F.

An F-linear involution on a central simple F-algebra A is hyperbolic, if A
possesses a o-isotropic ideal of the reduced dimension (deg A)/2.

The following non-hyperbolicity result is an immediate consequence of The-
orem 3.5 and [1, Proposition 1.2]:

Theorem 3.6 ([9]). Assume that char F' # 2. Any non-hyperbolic orthogonal
involution o on a central simple F-algebra A remains non-hyperbolic over the
function field of SB(A).

The symplectic version of Theorem 3.6 has been obtained by J.-P. Tignol:

Theorem 3.7 ([26]). Assume that char F' # 2. Any non-hyperbolic symplectic
(i.e., non-orthogonal) involution o on a central simple F-algebra A remains
non-hyperbolic over the function field of SBa(A).

Tensor products of F-linear involutions on quaternion F-algebras are called
Pfister involutions. This is a generalization of the classical Pfister forms. Any
isotropic Pfister form is hyperbolic. An over 30 years old conjecture saying that
any isotropic Pfister involution on a central simple algebra A is hyperbolic, has
been proved for algebras A of index < 2 by K. Becher 3 years ago, [2]. Theorems
3.6 and 3.7 give the general case:

Theorem 3.8. Any isotropic Pfister involution (over a field of characteristic
# 2) is hyperbolic.



156 Nikita A. Karpenko

Proof. Let o be an isotropic Pfister involution on a central simple F-algebra
A. If ¢ is orthogonal, op(x) with X := SB(A) is hyperbolic by [2, Theorem 1];
therefore o is hyperbolic by Theorem 3.6. If o is symplectic, op(x) with X :=
SB2(A) is hyperbolic by [2, Corollary]; therefore o is hyperbolic by Theorem
3.7. O

4. General Generalized Severi-Brauer Varieties

The following result generalizes Examples 3.3 and 3.4:

Theorem 4.1 ([12]). Let n be a positive integer and let D be a central division
F-algebra of degree p™. For any integer i with 0 < i < n, the generalized Severi-
Brauer variety SByi (D) is p-incompressible.

The proof is based on the properties of upper motives formulated in Section
3. It makes use of a double induction on n and i with a simultaneous computa-
tion of the p-adic valuation of the rank of the upper motive of SB,: (D) which
turns out to be

vp Tk U (SB,i (D)) = vtk M (SB,: (D)) = n —i.

Theorem 4.1 actually computes the canonical p-dimension of an arbitrary
generalized Severi-Brauer variety:

Corollary 4.2 ([12]). Let A be a central simple F-algebra, i any integer with
0<i<degA. Then

cdimy, SB;(A4) = dim SB v, (Dp) = pUr (@D (pvp(ind A) _ pup(i)y,

where Dy, is the p-primary part of a central division algebra Brauer-equivalent
to A.

Example 4.3 (J.-P. Tignol, [26]). The particular case of Theorem 4.1 with
p = 2 and ¢ = 1 has the following application to a symplectic involution o
on a central division F-algebra D: op(x) is anisotropic, where X = SBy(D).
Indeed, otherwise the proper closed subvariety Y C X of the isotropic ideals in
D would have an F'(X)-point. (This proof differs from the original one.) Note
that the characteristic 2 case is included here. We do not get the same result
for X = SBy(D) because Y = X for such X.

We have already spoken in Example 1.6 about the incompressibility of some
products of Severi-Brauer varieties. There is one more related class of incom-
pressible projective homogeneous varieties. It is useful in study of wnitary in-
volutions.

Given a finite separable field extension L/F, we write Ry /p X for the Weil
transfer of an L-variety X.
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Theorem 4.4 ([10]). Let F be a field, L/ F a quadratic separable field extension,
n a non-negative integer, and D a central division L-algebra of degree 2" such
that the norm algebra Ny, pD is trivial. For any integer i € [0, n], the variety
X :=Rp/p SBy:i (D) is 2-incompressible.

The proof, using induction on n, considers some indecomposable motivic
summands — the upper one, the lower one, and some of their shifts — of the
variety Xgy, where F = F(RL/F San—l(D)). “Connections” between these
summands existing over E (known by induction) and over L are represented in
the diagram below, where the ovals represent the summands. Since the upper
and the lower summand are connected (by a chain of connections), the variety
X is 2-incompressible.

™

B

) >
=/

Example 4.5 (J.-P. Tignol, [26]). Theorem 4.4 with ¢ = 0 has the following
application to a unitary involution ¢ on a 2-primary central division L-algebra
D (an F-linear involution ¢ on D is unitary if it acts on L by the non-trivial
F-automorphism): op(x) is anisotropic, where X = Ry, SB1(D). Indeed, oth-
erwise the proper closed subvariety Y C X of the isotropic ideals in D would
have an F'(X)-point. (This proof differs from the original one.) Characteristic 2
case is included here. Unlike [26], we do not need to assume that the exponent
of D is 2.

5. Dimension of Upper Motive

Let X be a projective homogeneous variety. In this final section we will show
that cdim,(X) is determined by the upper motive U(X). Since cdim,(X) is
not changed under field extensions of p-prime degrees, [25, Proposition 1.5], we
may assume that the semisimple affine algebraic group G acting on X has the



158 Nikita A. Karpenko

following property: G becomes of inner type over some p-primary field extension
of F.

Dimension dimU(X) of U(X) is the biggest integer ¢ such that the Tate
motive F, (i) is a summand of U(X). More generally, dimension of a summand
M of the motive of a projective homogeneous variety is the maximum of ¢ — j,
where ¢ and j run over the integers such that F, (i) and F,(j) are summands of
M.

Theorem 5.1. dimU(X) = cdim, X.

For a motive M, M* is its dual. The cofunctor M — M™* transposes the
homomorphisms, is additive, and takes (Y,n,) to (Y, n%,—dimY — i) for any
smooth projective variety Y, where 7 is the transposition of the projector 7.
In particular, M(Y)* = M(Y)(—dimY").

Proposition 5.2. U(X)* ~ U(X)( — dimU(X)). In other words, the lower
indecomposable motivic summand of X, that is, U(X)*(dim X), is isomorphic
to

U(X)(dim X — dimU(X)).

Remark 5.3. Note that Ch; U(X) = 0 = Ch'U(X) for any integer i >
dimU(X) by the very definition of dim U(X). Proposition 5.2 shows that ac-

tually
Ch; U(X)=0=Ch'U(X)

for ¢ as above. Indeed, for d := dim U (X)), we have:
Ch'U(X)=Ch_;U(X)* ~Ch_; U(X)(—d) = Chy_; U(X) C Chy_; X =0

and Ch; U(X) = Ch ™" U(X)* ~ Ch* " U(X) c Ch*™" X = 0. (Of course, since
U(X) is a summand of the motive of a variety, we also have Ch;(U) = 0 =
Ch*(U) for any i < 0.)

Proof of Proposition 5.2. For G as above, let r = r(X) be the rank of the
semisimple anisotropic kernel of G'p(x). We induct on 7.

The motive U(X)*(d), where now d := dim X, is an indecomposable sum-
mand of M (X). Therefore, by [16, Theorem 1.1] and according to the assump-
tion on G made in the beginning of this Section, there exists a finite separable
field extension L/F, a projective G;,-homogeneous L-variety Y, and an integer
n such that U(X)*(d) ~ U(Y)(n) and the Tits index of G'(y) contains the
Tits index of G (x). Here we consider the upper motive of Y, which originally
lives over L, as a motive over F (strictly speaking, we apply to the L-motive
U(Y') the functor cory,/p of [16, §3]).

Since ChqU(X)*(d) = ChoU(X)* = ChUX) = F, and
dimp, Chq U(Y)(n) is a multiple of [L : F], it follows that L = F. Besides,

n=min{i | Ch*U(Y)(n) # 0}
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and min{i | Ch’U(X)*(d) # 0} = d — dim U(X), therefore n = d — dim U (X),
and we have U(X)* ~ U(Y)( —dimU(X)).

If the Tits index of Gp(y) coincides with the Tits index of Gr(x), the mo-
tives U(X) and U(Y") are isomorphic, and we are done in this case. Otherwise,
the rank of the semisimple anisotropic kernel of G p(y) is smaller than r, and,
by the induction hypothesis, we have U(Y)* ~ U(Y)( — dim U(Y)). Dualizing
and substituting, we see that

UX)~U®Y)(dimU(X) —dimU(Y)).
It follows that dimU(X) = dimU(Y) and U(X) ~ U(Y). O
Proof of Theorem 5.1. We start by proving the easier inequality
dim U(X) < cdim, X.

We can find a closed subvariety ¥ C X with dimY = cdim, X and with a
multiplicity 1 correspondence w : X ~~ Y. Considering 7 as a correspondence
X ~» X, we can find an integer m > 1 such that 7°™ is a projector. Let
M = (X, 7°™). Since mult 7°™ = mult 7 = 1, the motivic summand M of X is
upper and so, dim U(X) < dim M. Since Ch; M C Im(Ch; Y — Ch; X) for any
integer 4, and Ch; Y = 0 for i > dim Y, we get the inequality dim M < dimY
proving that dim U(X) < cdim, X.

The opposite inequality dim U (X) > cdim, X requires Proposition 5.2. We
set n := dim X —dim U (X). Since U (X)(n) is a motivic summand of X, shifting,
we have morphisms

U(X) —— M(X)(-n) —2— U(X)

with g o f = id. Since U(X) is an upper summand of M(X), the subgroup
Ch®U(X) of Ch” X coincides with Ch® X and, in particular, the class [X] €
Ch® X belongs to Ch” U(X). Applying f. : Ch®U(X) — Ch® M(X)(-n) =
Ch"™ X, we get an element « := f,([X]) € Ch" X such that g.(a) = [X].
Therefore, there exists a closed subvariety Y C X of codimension n such that
g+([Y]) # 0. We claim that Yp(x) has a closed point of a p-prime degree, and
this claim proves Theorem 5.1.

To prove the claim, it suffices to notice that the relation g¢.([Y]) #
0 € Ch(X) implies that ¢*g.([Y]) # 0 € Ch®Spec F(X) = F,, where
& : SpecF(X) — X is the generic point. In the same time, the modulo p
integer £*g.([Y]) € F,, is the degree of the O-cycle class [Yp(x)] - (idx x £)*(g)
which is represented by a 0-cycle on Yp(x). O
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