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Abstract. We classify the split simple affine algebraic groups G of types A and C over
a field with the property that the Chow group of the quotient variety E/P is torsion-free,
where P ⊂ G is a special parabolic subgroup (e.g., a Borel subgroup) and E is a generic
G-torsor (over a field extension of the base field). Examples of G include the adjoint
groups of type A. Examples of E/P include the Severi-Brauer varieties of generic central
simple algebras.

1. Introduction

Let G be a split semisimple affine algebraic group over a field k and let P be a parabolic
subgroup of G. The quotient G/P is a smooth projective algebraic k-variety sometimes
called a flag variety of G. The variety G/P is (absolutely) cellular (in the sense of [4,
§66]). In particular, its Chow group CH(G/P ) is torsion-free.
Given a G-torsor E over k, the quotient variety E/P is a twisted flag variety, a twisted

form of G/P . The Chow group CH(E/P ) may have a large torsion subgroup and is far
from being understood. The situation is still the same when we restrict our attention
to the case of a special parabolic subgroup P . Recall that P is special, if any P -torsor
over any field extension of k is trivial. (For instance, any Borel subgroup of G is special
parabolic.) For any special parabolic P , every G-torsor E over k splits over the function
field k(E/P ) (see [10, Lemma 6.5]), showing that E/P is a generically cellular variety,
i.e., becomes cellular over its own function field.
Let now E be a generic G-torsor. By this we mean a G-torsor over a certain field exten-

sion F/k, obtained by the following construction (see Remark 2.3). We fix an imbedding
of G into the general linear group GLN for some N . This makes GLN a G-torsor over the
quotient variety S := GLN /G. We define F to be the function field k(S) and we define
the generic G-torsor E to be the G-torsor over F given by the generic fiber of GLN → S.
For any other G-torsor E ′ over any field extension k′/k, there exists a k′-point of S such

that E ′ is isomorphic to the fiber of GLN → S over the point. Moreover, for infinite k′,
the set of such k′-points is dense in S, [18, §5.3]. This suggests that E, being the generic
fiber of GLN → S, is the most complicated G-torsor and that the variety E/P , which
we call a generically twisted flag variety, is the most complicated twisted flag variety (for
given G and P ). Nevertheless, the Chow group CH(E/P ) for a generic E turns out to be
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more accessible than in general. In this paper, we classify the split simple affine algebraic
groups G of types A and C over a field with the property that the Chow group CH(E/P )
of E/P is torsion-free – see Theorems 3.1 and 4.1. Examples of G include adjoint groups
of type A (Theorem 3.7). Examples of E/P include the Severi-Brauer varieties of generic
central simple algebras.

An application to computation of the topological (also called geometrical) filtration on
the Grothendieck ring of twisted flag varieties is provided as well as some other applica-
tions – see Corollaries 3.9, 3.10, 3.14.

For G of type Bn, an analogue of Theorems 3.1 and 4.1 is known. Note that G is
isomorphic to Spin2n+1 (the simply connected case) or to O+

2n+1 (the adjoint case). Since
Bn = Cn for n = 1, 2, let us assume that n ≥ 3. By [15] (see also [19]), CH(E/P ) is
torsion-free for G = O+

2n+1. And it is easy to see that CH2(E/P ) contains an element of
order 2 for G = Spin2n+1.

For the type Dn (with n ≥ 4), CH(E/P ) is torsion-free if G = O+
2n (see [15] or [19]),

and CH2(E/P ) has an element of order 2 for G = Spin2n. However, the analysis of the
remaining projective orthogonal and semi-spinor groups has not been completed so far.

For G of type G2 and any non-split G-torsor E over a field, CH2(E/P ) has an element
of order 2, see, e.g., [20]. See [20] as well for some other computations concerning Chow
groups of some other twisted flag varieties.

Acknowledgements. I am grateful to an anonymous referee for careful reading and nu-
merous remarks. Although I had a hard time implementing them, they certainly improved
readability of the paper.

2. Generic torsors

For G as in the introduction and P a parabolic subgroup of G, we consider a generically
twisted flag variety E/P , where E is the generic G-torsor over F obtained out of an
imbedding G ↪→ GLN for some N . Here F is the function field k(S) of the k-variety
S := GLN /G.

We consider the pull-back homomorphism of P -equivariant Chow groups (see [3])

CHP SpecF → CHP E

with respect to the (P -equivariant) structure morphism E → SpecF of the F -variety
E (where P acts on SpecF trivially). Note that the P -equivariant Chow group CHP E
coincides with the ordinary Chow group of E/P . The following statement is proved but
not formulated in [10]:

Lemma 2.1. The homomorphism CHP SpecF → CH(E/P ) is surjective.

Proof. The variety GLN is a GLN -equivariant open subvariety of the affine space End kN .
It is enough to prove that the composition

CHP Spec k → CHP SpecF → CH(E/P ) = CHP E

with the change of field homomorphism CHP Spec k → CHP SpecF is surjective. The
homomorphism CHP Spec k → CHP E decomposes as

CHP Spec k → CHP End kN → CHP GLN → CHP E.
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The first homomorphism here is the pull-back with respect to the structure morphism of
the k-variety End kN ; it is an isomorphism by homotopy invariance of equivariant Chow
groups. The second and the third homomorphisms are pull-backs with respect to the open
imbedding GLN ↪→ End kN and the localization morphism E → GLN ; they are surjective
by localization property of equivariant Chow groups. �

Example 2.2. For the quotient G := SLn /µm of the special linear group SLn by the
central subgroup µm of the m-roots of unity, where m ≥ 1 is a divisor of n ≥ 2, any
G-torsor over k gives rise to a central simple k-algebra of degree n and exponent m. We
refer to the algebra A, corresponding to a generic G-torsor, as a generic central simple
algebra of degree n and exponent m. In the decomposition n = n1n2 with n1 ≥ 1 having
the same prime divisors as m and with n2 relatively prime to m, the factor n1 is the index
of A. Let P be a parabolic subgroup in G with conjugacy class corresponding to the
subset of the Dynkin diagram of G obtained by removing the first vertex. The variety
E/P is the Severi-Brauer variety X of A. It is shown in [10, §8.1] that the graded ring
CHP SpecF is generated by some homogeneous elements with at most one element in
every codimension. Therefore, by Lemma 2.1, the Chow ring CHX is generated by some
homogeneous elements with at most one element in every codimension.
In the particular case of G := PGLn = SLn /µn, we refer to A as a generic central

simple algebra of degree n. The index and exponent of such A are equal to n as well.

Remark 2.3. The construction of a generic G-torsor we use in this paper is a particular
case of the construction of [18, Example 5.4], which nowadays became more common. For
two generic G-torsors E and E ′ over fields F/k and F ′/k produced by this more general
construction, there is a canonical construction of a field L/k, containing both F/k and
F ′/k, and of an isomorphism EL ≃ E ′

L such that the extensions L/F and L/F ′ are purely
transcendental. Since Chow groups do not change under purely transcendental base field
extensions, we get a canonical isomorphism CH(E/P ) ≃ CH(E ′/P ) for any P . Thanks
to A. Merkurjev for pointing this out.
The relationship between CH(E/P ) and CH(E/P ′) for different special parabolic sub-

groups P, P ′ ⊂ G is explained in the proof of Lemma 3.6.

Example 2.4. For any split semisimple G, a generic G-torsor E, and a Borel subgroup
B ⊂ G, the topological filtration on the Grothendieck ring K(E/B) coinsides with the
gamma filtration. Indeed, by [3, Proposition 6], the graded ring CHB SpecF is identified

with the symmetric algebra S(T̂ ) of the character group T̂ of a maximal split torus
T ⊂ B. It follows that the ring CHB SpecF is generated by elements of codimension
1. By Lemma 2.1, this implies that the ring CH(E/B) is generated by elements of
codimension 1. Therefore the ring CH(E/B) is generated by Chern classes. In particular,
the associated graded ring of the topological filtration on K(E/B) is generated by Chern
classes, which precisely means that the topological filtration coincides with the gamma
filtration, see [9, Remark 2.17].
The above considerations also show that the ring CH(E/B) is finitely generated. In

particular, its torsion subgroup TorsCH(E/B) is finite.
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3. Type An−1

Let n ≥ 2. Any split simple affine algebraic group G of type An−1 over any field k
is isomorphic to the quotient SLn /µm, where m ≥ 1 is a divisor of n. Here is the main
result of this section:

Theorem 3.1. For G := SLn /µm (with n and m as above) over any field k, let P ⊂ G
be a special parabolic subgroup and let E be a generic G-torsor over a field extension F/k.
The group CH(E/P ) is torsion-free if and only if the g.c.d. (m,n/m) of m and n/m is
bounded by 2. Moreover, for every odd prime divisor p of (m,n/m) as well as if p2 divides
(m,n/m) for p = 2, the group CH2(E/P ) contains an element of order p.

We will prove Theorem 3.1 after some preparation work. The most significant cases of
torsion-free CH(E/P ) are the cases of G = PGLn = SLn /µn and G = SL2r /µ2r−1 (for
any r ≥ 1). Since SLn is special, the case of G = SLn is trivial. We start with a result
covering the case of G = PGLn:

Proposition 3.2. Let F be a field and A a central simple F -algebra. Assume that the
Chow ring CHX of the Severi-Brauer variety X of A is generated (as a ring) by some
homogeneous elements with at most one element in every codimension. Then the group
CHX is p-torsion-free for every prime number p such that the p-primary parts of the
exponent and the index of A coincide.

Remark 3.3. According to Example 2.2, Proposition 3.2 applies to any generic central
simple algebra A of any given degree (without restriction on its exponent), implying that
the Chow ring of the Severi-Brauer variety of A is torsion-free.

Remark 3.4. In the case where expA = indA, Proposition 3.2 provides a complete
description of the ring CHX. Indeed, for any n ≥ 1 and any central simple F -algebra A
of degree n, the kernel of the change of field homomorphism

CHX → CHXL = CHPn−1 = Z[H]/(Hn),

given by any splitting field L/F of the algebra, where H corresponds to the hyperplane
class in CHPn−1, is the torsion subgroup of CHX. Moreover, by [8, Theorem 1], if
expA = indA =: d, then for any 0 ≤ j ≤ n − 1 = dimX, the image of CHj X in
CHj Pn−1 = Z is generated by d/(j, d).

Proof of Proposition 3.2. Let n be the degree of A. Let xi ∈ CHi(X), i = 0, 1, . . . , n− 1,
be elements generating the ring CHX.

We fix an arbitrary prime number p such that the p-primary parts of the exponent
and the index of A coincide. For the remainder of the proof, we switch to the Chow
groups CH⊗Z(p) with coefficients in Z(p) – the localization of Z at the prime ideal (p)
generated by p. To prove Proposition 3.2 it suffices to show that the group CHX ⊗ Z(p)

is torsion-free.
Let pr be the p-primary part of indA. By Lemma 3.5, we only need to check that

CHj X ⊗ Z(p) is torsion-free for j < pr.
Let L/F be a finite Galois field extension splitting A. Let Lr be the intermediate field

corresponding to a p-Sylow subgroup of Gal(L/F ) so that [Lr : F ] is prime to p and
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[L : Lr] is a p-power. Let L0 be a minimal subfield of L containing Lr and splitting A.
We have [L0 : Lr] = pr. By [5, Theorem 4.2.1], there is a chain of subfields

Lr ⊂ Lr−1 ⊂ · · · ⊂ L0

with [Li−1 : Li] = p for every i = r, . . . , 1. Note that indALi
= pi for i = 0, 1, . . . , r.

We claim that for any j = 1, . . . , pr − 1, the norm map

N j
i : CHj XLi

⊗ Z(p) → CHj X ⊗ Z(p)

is surjective, where i = vp(j) and vp is the p-adic valuation. Since indALi
= pi divides j,

we have CHj XLi
= Z (by [7, Corollary 1.3.2]). More precisely, CHj XL = CHj Pn−1 = Z,

where 1 ∈ Z corresponds to the class in CHj Pn−1 of a linear subspace in Pn−1 of codimen-
sion j, and the change of field homomorphism CHj XLi

→ CHj XL is an isomorphism.
Therefore the claim implies that CHj X ⊗ Z(p) is torsion-free.
We prove the claim by induction on j. Given an arbitrary positive j ≤ pr−1, we assume

that the claim holds in positive codimensions < j. We first check that every element of
CHj X ⊗ Z(p) which is a polynomial in x1, . . . , xj−1 (without xj) is in the image of the

norm map N j
i . It suffices to consider the case where the polynomial is a monomial. Since

the degree j of the monomial is not divisible by pi+1, the monomial contains a factor
xk for some k ∈ {1, . . . , j − 1} not divisible by pi+1. Since vp(k) ≤ i, it follows by the
induction hypothesis that xk is in the image of Nk

i . Therefore, by the projection formula
[4, Proposition 56.8], the monomial is in the image of N j

i .
To finish the proof of the claim (and therefore the proof of Proposition 3.2), it suffices

to check that xj is also in the image of N j
i . For this we decompose the element N j

i (1) ∈
CHj X ⊗ Z(p), where 1 is the generator of CHj XLi

⊗ Z(p) = Z(p), in a linear combination
of the degree-j monomials in x1, x2, . . . , xj and check that the coefficient λ ∈ Z(p) at the
monomial xj is invertible.

Let us observe that vp(N
j
i (1)L) = vp([Li : F ]) = r − i. On the other hand, if λ is

not invertible, then (λxj)L is divisible by pr−i+1 because xL is divisible by pr−i for any
element x ∈ CHj X, see Remark 3.41 Also ML is divisible by pr−i+1 for any monomial
M ∈ CHj X in x1, . . . , xj−1 because M contains xk with some k not divisible by pi+1: xkL

is then divisible by pr−i; in the same time M necessarily contains another factor xl with
some l = 1, . . . , j − 1 (l = k is also possible). Our assumption that j < pr ensures that l
is not divisible by pr so that xlL is divisible by p. �
Here is the lemma used in the proof of Proposition 3.2:

Lemma 3.5. Let A be a central simple algebra over a field F of degree n ≥ 1. Let p be a
prime number and pr the p-primary part of indA. Let X be the Severi-Brauer variety of
A. For any integer 0 ≤ j ≤ dimX = n− 1, the group CHj X ⊗ Z(p) is isomorphic to the

group CHj′ X ⊗ Z(p), where 0 ≤ j′ ≤ pr − 1 is the remainder after division of j by pr.

Proof. Let Ap be the p-primary part of the underlying division algebra of A (so that
indAp = pr). Let Xp be the Severi-Brauer variety of Ap.

1This is the only place in the proof where we use the fact that the p-primary part of the exponent of
A coincides with the p-primary part of its index.
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Let L/F be a finite Galois field extension splitting the algebra A. Let K/F be the
subextension corresponding to a p-Sylow subgroup of Gal(L/F ). Therefore the degree of
K/F is prime to p, the degree of L/K is a p-power, and the algebra AK is isomorphic to
a matrix algebra over ApK .

Below we work in the category of Chow motives, [4, §64]: first with integral coefficients,
then with coefficients in Z(p). The integral Chow motive M(XK) of the K-variety XK

is isomorphic to the direct sum of shifts of the Chow motive of XpK with the shifting
numbers of the summands being the multiples of pr from 0 to n− pr, [7, Corollary 1.3.2]:

M(XK) ≃
n/pr−1⊕
i=0

M(XpK){ipr}.

We switch to the Chow motives with coefficients in Z(p). Let f be the above isomorphism
after the switch. We apply the norm NK/F to f and divide the result by [K : F ] ∈ Z×

(p).

This way we get a morphism g : M(X) →
⊕n/pr−1

i=0 M(X){ipr} with the property that
gL = fL. In particular, gL is an isomorphism. It follows by [4, Corollary 92.7 with Remark
92.3], a consequence of Nilpotence Theorem for projective homogeneous varieties, that g

is an isomorphism. Thus CHj X ⊗ Z(p) ≃ CHj′ Xp ⊗ Z(p) ≃ CHj′ X ⊗ Zp. �
Lemma 3.6. Let G be a split semisimple linear algebraic group over a field k and let E
be a G-torsor over k. If the Chow group CH(E/P ) is torsion-free for at least one special
parabolic subgroup P of G, then it is torsion-free for every special parabolic. The same
holds with CH2(E/P ) in place of CH(E/P ).

Proof. Let P and P ′ be special parabolic subgroups ofG with torsion-free CH(E/P ). Since
E splits over F (E/P ) (see [10, Lemma 6.5]), the Chow motive of the variety E/P×E/P ′ is
a direct sum of shifts of the motive of E/P , [14, Corollary 3.4]. Therefore CH(E/P×E/P ′)
is torsion-free. In the same time, the Chow motive of E/P × E/P ′ is a direct sum of
shifts of the motive of E/P ′ so that CH(E/P ′) is torsion-free as well.

The same chain of conclusions goes through for CH2(E/P ) in place of CH(E/P ), be-
cause one shifting number is 0 and the remaining shifting numbers are positive in both
motivic decompositions mentioned. (Recall that for any projective homogeneous variety,
the groups CH0 and CH1 are torsion-free.) �

At this point we already proved Theorem 3.1 for m = n, i.e., for G = PGLn:

Theorem 3.7. For any field k and any n ≥ 2, let G be the projective linear group PGLn

over k, let P be a special parabolic subgroup of G, and let E be a generic G-torsor (over
a field extension of k). Then the Chow group of the generically twisted flag variety E/P
is torsion-free. �

The Severi-Brauer variety X of a degree-n central simple algebra A is by definition a
closed subvariety of the Grassmannian of n-dimensional subspaces in the n2-dimensional
vector space A. The tautological bundle on X has rank n and is the restriction of the
tautological bundle on the Grassmannian.

Corollary 3.8. For any n, let X be the Severi-Brauer variety of a generic central simple
algebra of degree n. Then the Chow ring CHX is generated by the Chern classes of the
tautological vector bundle on X.
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Proof. Let X̄ be X over a splitting field of the algebra. As shown in [10], the image of the
change of field homomorphism CHX → CH X̄ is generated by the Chern classes of the
tautological vector bundle. Since CHX is torsion-free, the change of field homomorphism
CHX → CH X̄ is injective and it follows that CHX itself is generated by the Chern
classes of the tautological vector bundle. �
Here is a couple of applications:

Corollary 3.9. Let X be the Severi-Brauer variety of a central simple algebra A over a
field k satisfying indA = expA. Then the torsion subgroup TorsCHX ⊂ CHX splits off
canonically as a direct summand of CHX.

Proof. By [7, Corollary 1.3.2], we may assume that A is a division algebra. By spe-
cialization, all relations between the Chern classes of the tautological vector bundle on
the Severi-Brauer variety of a generic central simple algebra of degree degA hold for
the Chern classes of the tautological vector bundle on our X. It follows that the sub-
ring C ⊂ CHX, generated by these Chern classes, is mapped under the quotient map
CHX → CHX/TorsCHX isomorphically onto the quotient (see Remark 3.4), whence
the statement. �
The following result has been proved in [9] for division algebras of p-primary index.

Those assumptions can be dropped:

Corollary 3.10. Let X be the Severi-Brauer variety of a central simple algebra A over a
field k satisfying indA = expA. Then the topological filtration on the Grothendieck ring
K(X) coincides with the gamma filtration. Moreover, for any finite product Y of any
generalized Severi-Brauer varieties of any tensor powers of A, the topological filtration on
the Grothendieck ring K(Xk(Y )) coincides with the gamma filtration.

Proof. Let X̃ be the Severi-Brauer variety of a generic central simple algebra Ã of degree
degA over a field F . Note that exp Ã = ind Ã = deg Ã. By Corollary 3.8, the ring CH X̃
is generated by Chern classes. Therefore, the topological filtration on the Grothendieck
ring K(X̃) coincides with the gamma filtration. Let T be the generalized Severi-Brauer
variety SBindA(Ã) (of right ideals in Ã of reduced dimension indA; the usual Severi-Brauer
variety SB(Ã) is SB1(Ã) in this notation). By the index reduction formula [12, (5.11)],
the index and the exponent of the central simple F (T )-algebra ÃF (T ) are equal to indA.

Since the projection T × X̃ → X̃ is a Grassmann bundle, the topological filtration on the
Grothendieck ring K(X̃F (T )) coincides with the gamma filtration, cf. [9]. Moreover, by

[8], since ind ÃF (T ) = exp ÃF (T ), the topological filtration on K(X̃F (T )) coincides with the

filtration induced by the topological filtration on the Grothendieck ring of X̃ considered
over an algebraic closure of F (T ).
Turning back to A and X over k, we have three embedded filtrations on K(X): the

gamma filtration, which is contained in the topological filtration, which in its turn is
contained in the filtration induced by the topological filtration over an algebraic closure
of k. By [16], since for any i ≥ 1, the indexes of the ith tensor powers of the algebras A
and ÃF (T ) coincide (cf. [9, Example 3.9]), the rings K(X) and K(X̃F (T )) are identified.
Under this identification, both gamma filtrations and both filtration induced from the
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respective algebraic closures are identified as well. It follows that all three filtrations on
K(X) coincide. In particular, the topological filtration on the Grothendieck ring K(X)
coincides with the gamma filtration.

From this point, the deduction of the statement on K(Xk(Y )) is standard, cf. [9]. �
The following statement will be of help in the proof of Proposition 3.12:

Corollary 3.11. Let A be an arbitrary central simple algebra over a field F and let L
be a maximal subfield of the underlying division algebra. Let p be a prime integer. For
i > 0, let ci ∈ CHi X ⊗Z(p) be the ith Chern class of the tautological vector bundle on the
Severi-Brauer X variety of A, considered in the Chow group with coefficients in Z(p). For
any i > 0 coprime with p, ci is in the image of the norm map NL/F .

Proof. We fix some i > 0 coprime with p and set n := degA. The image of 1 ∈ Z =
CHi XL under NL/F : CHiXL → CHiX equals hi

∗(e), where e ∈ CH0X is the class of a
closed point of degree indA (the canonical generator of the torsion-free group CH0 X, see
[13] or [2]) and h ∈ CH1(X ×X) is the first Chern class of the canonical line bundle on
X ×X. (In particular, NL/F (1) does not depends on the choice of L.) We need to show
that ci is a multiple of hi

∗(e) (in the Chow group with coefficients in Z(p)).
By Theorem 3.7, ci is a multiple of hi

∗(e) provided that A is replaced by a generic central
simple algebra of degree n (over a field extension of F ). Indeed, for generic A, the Chow
group with integer coefficients is torsion-free (by Theorem 3.7) and, by Remark 3.4, the
image of CHiX ⊗ Z(p) in CHi XL ⊗ Z(p) = Z(p) is generated by the image [L : F ] = indA
of hi

∗(e).
It follows by specialization that ci is a multiple of hi

∗(e) for our initial A as well. �
Here is the result serving the case of G = SLn /µn/2:

Proposition 3.12. Let F be a field and let A be a central simple F -algebra such that the
2-primary part of its exponent is equal to the half of the 2-primary part of its index d (this
implied that d is divisible by 4) and the index of the tensor power A⊗(d/4) is divisible by 4.
Assume that the Chow ring CHX of the Severi-Brauer variety X of A is generated (as a
ring) by some element of codimension 1 and the Chern classes of the tautological vector
bundle. Then the group CHX is 2-torsion-free.

Remark 3.13. In the case where d := indA = 2 expA and 4 | indA⊗(d/4), Proposition
3.12 provides a complete description of the ring CHX. Indeed, for any n ≥ 1 and any
central simple F -algebra A of degree n, the kernel of the change of field homomorphism
CHX → CHPn−1 = Z[H]/(Hn), given by any splitting field of the algebra, is the torsion
subgroup of CHX. Moreover, if expA = d/2, where d := indA, and 4 | indA⊗(d/4), then
for any 0 ≤ j ≤ n− 1 and any prime integer p, the p-adic valuation of a generator of the
image of CHj X in CHj Pn−1 = Z is determined as follows: for odd p it is vp(d/(j, d)); for
p = 2 it is v2(d/(j, d)) provided that v2(j − 1) < v2(d) and it is v2(d)− 1 otherwise. This
is a consequence of Remark 3.4 (for odd p) and of [9, proof of Proposition 4.9] (for p = 2),
since by the proof of Lemma 3.5 we only need to consider the case where d is a p-power.

Proof of Proposition 3.12. We obtain a proof of Proposition 3.12 appropriately modifying
the proof of Proposition 3.2. Let n be the degree of A. For i ≥ 2, let xi ∈ CHiX be the
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ith Chern class of the tautological vector bundle on X. As a ring, CHX is generated by
some element x1 ∈ CH1 X and the elements xi ∈ CHiX, i = 1, . . . , dimX = n− 1.
For the remainder of the proof, we switch to the Chow groups with coefficients in Z(2)

– the localization of Z in the prime ideal generated by 2. To prove Proposition 3.12, it
suffices to show that the group CHX ⊗ Z(2) is torsion-free.
Let 2r be the 2-primary part of d = indA. Recall that d is divisible by 4, that is to say,

r ≥ 2. By Lemma 3.5, we only need to check that CHj X ⊗Z(2) is torsion-free for j < 2r.
Let L/F be a finite Galois field extension splitting A. Let Lr be the intermediate field

corresponding to a 2-Sylow subgroup of Gal(L/F ) so that [Lr : F ] is odd and [L : Lr] is
a 2-power. Let L0 be a minimal subfield of L containing Lr and splitting A. We have
[L0 : Lr] = 2r. By [5, Theorem 4.2.1], there is a chain of subfields

Lr ⊂ Lr−1 ⊂ · · · ⊂ L0

with [Li−1 : Li] = 2 for every i = r, . . . , 1. Note that indALi
= 2i for i = 0, 1, . . . , r.

We claim that for any j = 2, . . . , 2r − 1, the norm map

N j
i : CHj XLi

⊗ Z(2) → CHj X ⊗ Z(2)

is surjective, where i = v2(j) and v2 is the 2-adic valuation. In contrast with the proof
of Proposition 3.2, where exponent of A was equal to the index of A, not to its half, the
norm map N1

0 is not surjective; moreover, none of the maps N1
1 , . . . , N

1
r−1 is surjective.

However, and this will be used in the proof below, the image of the change of field
homomorphism CH1 X ⊗ Z(2) → CH1XLr−1 ⊗ Z(2) coincides with the image of the norm

map NL0/Lr−1 : CH1 XL0 ⊗ Z(2) → CH1 XLr−1 ⊗ Z(2). This is so because the change of

field homomorphism CH1X → CH1XL = Z is injective and its image is generated by the
integer expA, [1, §2].
Since indALi

= 2i divides j, we have CHj XLi
= Z (by [7, Corollary 1.3.2]). More

precisely, CHj XL = CHj Pn−1 = Z, where 1 ∈ Z corresponds to the class in CHj Pn−1

of a linear subspace in Pn−1 of codimension j, and the change of field homomorphism
CHj XLi

→ CHj XL is an isomorphism. Therefore the claim implies that CHj X ⊗ Z(2) is
torsion-free.
We prove the claim by induction on j. Given an arbitrary j with 2 ≤ j ≤ 2r − 1,

we assume that the claim holds in codimensions 2, . . . , j − 1. We first check that every
element of CHj X⊗Z(2) which is a polynomial in x1, . . . , xj−1 (without xj), is in the image

of the norm map N j
i . It suffices to consider the case where the polynomial is a monomial.

Since the degree j of the monomial is not divisible by 2i+1, the monomial contains the
factor xk for some k ∈ {1, . . . , j− 1} not divisible by 2i+1. If k ̸= 1, then it follows by the
induction hypothesis that xk is in the image of Nk

i ; therefore, by the projection formula,
the monomial is in the image of N j

i .
Now assume that k = 1. There is at least one more factor xl with some l ∈ {1, . . . , j−1}.

If l ̸= 1, it follows by the induction hypothesis that xl is in the image of N l
r−1 (our

assumption that j < 2r ensures that l is not divisible by 2r) so that x1xl = N l
r−1(x1Lr−1y)

for some y ∈ CHl XLr−1 . Since x1Lr−1 is in the image of the norm map NL0/Lr−1 , the

product x1xl is in the image of N l+1
0 (and therefore in the image of N l+1

i for any i).
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It remains to consider the case with l = 1. We show that x2
1 is in the image of N2

0 . The
Chow group CH2 X coincides with the quotient K(X)(2)/K(X)(3) of the second term of
the topological filtration on the Grothendieck ring K(X) by the third term. The second
term of the topological filtration coincides with the second term of the gamma filtration.
The third topological term contains the third gamma term and the quotient consists of
torsion elements, see [9, Proposition 2.14]. Since 4 | indA⊗(d/4), the quotient of the second
gamma term by the third gamma term is torsion-free by [9, Proposition 4.9 with Lemma
3.10] and the proof of Lemma 3.5. It follows that the third gamma term coincides with the
third topological term. In particular, the quotient of the topological terms is torsion-free.
Therefore the group CH2X is torsion-free as well. So, by Remark 3.13, it is identified
with 2r−1Z ⊂ Z = CH2XL0 . The image of the norm map N2

0 is 2rZ(2). And x2
1 = 22r−2.

Since r ≥ 2, we have 2r − 2 ≥ r showing that x2
1 is indeed in the image of N2

0 .
To finish the proof of the claim (and therefore the proof of Proposition 3.12), it suffices

to check that xj is also in the image of N j
i . For odd j, this holds by Corollary 3.11 (we

recall that xj is the jth Chern class of the tautological vector bundle). For even j, we

decompose the element N j
i (1) ∈ CHj X in a linear combination of the degree-j monomials

in x1, x2, . . . , xj and check that the coefficient λ ∈ Z(2) at the monomial xj is invertible.

Let us observe that v2(N
j
i (1)L) = v2([Li : F ]) = r − i. On the other hand, if λ is

not invertible, then (λxj)L is divisible by 2r−i+1 because xL is divisible by 2r−i for any
element x ∈ CHj X, see Remark 3.13. Also ML is divisible by 2r−i+1 for any monomial
M ∈ CHj X in x1, . . . , xj−1 because M contains xk with some k not divisible by 2i+1:
xkL is then divisible by 2r−i (even if k = 1 – because i ≥ 1 since j is even); in the same
time M necessarily contains another factor xl with some l = 1, . . . , j − 1 (l = k is also
possible). Our assumption that j < 2r ensures that l is not divisible by 2r so that xlL is
divisible by 2. �
Proof of Theorem 3.1. Let A be the central simple F -algebra corresponding to the generic
G-torsor E. By Lemma 3.6, we may assume that E/P is the Severi-Brauer variety X of
A. By [6, Proof of Theorem 1.1], the ring CHX is generated by CH1 X and the Chern
classes of the tautological vector bundle. This, in particular, implies that the topological
filtration on K(X) coincides with the gamma filtration.

We start by assuming that the condition (m,n/m) ≤ 2 fails. Then the integer (m,n/m)
is divisible by an odd prime number p or by 4. In the first case, let us show that the group
CH2(E/P ) has an element of order p. The group CH2 X is isomorphic to the quotient
K(X)(2)/K(X)(3) of the topological filtration on the Grothendieck group K(X). Let L/F
be a finite extension of degree prime to p such that the index of the L-algebra AL is a
p-power. Note that indAL = pvp(n) and expAL = pvp(m) so that expAL < indAL. The
change of field homomorphism K(X)⊗ Z(p) → K(XL)⊗ Z(p) is an isomorphism of rings
with filtrations. The topological filtration on K(XL) ⊗ Z(p) coincides with the gamma
filtration. By [9, Proposition 4.7], the 2nd quotient of the gamma filtration on K(XL)
has an element of order p. So, we get an element of order p in CH2 X.

Let now assume that 4 divides (m,n/m) and prove that CH2(E/P ) has an element
of order 2. We proceed as above and come to a 2-primary algebra AL with expAL <
(indAL)/2. By [9, Proposition 4.9], the 2nd quotient of the gamma filtration on K(XL)
has an element of order 2. So, we get an element of order 2 in CH2X.
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Finally, let us assume that (m,n/m) ≤ 2. For an arbitrary prime number p we claim
that the p-torsion of CHX is trivial. If vp(m) = 0, then p does not divide the index of A so
that the claim is obvious. Below we assume that vp(m) > 0 in which case vp(m) = vp(n)
or p = 2 and v2(m) = v2(n)− 1.
If vp(m) = vp(n), Proposition 3.2 does the job.
If p = 2 and v2(m) = v2(n)−1, we are done by Proposition 3.12. Indeed, by [9, Lemma

3.10], there exists a central simple algebra A (over a field extension of k) of degree n and
exponent m, satisfying the condition 4 | indA⊗(d/4) of Proposition 3.12, where d := indA.
Therefore any generic algebra of degree n and exponent m satisfies this condition. �

The following statement is an application proved similarly to Corollaries 3.9 and 3.10:

Corollary 3.14. Let X be the Severi-Brauer variety of a central simple k-algebra A
such that d := indA = 2 expA and 4 | indA⊗(d/4). Then the torsion subgroup TorsCHX
splits off canonically as a direct summand of CHX. Besides, the topological filtration
on the Grothendieck ring K(X) coincides with the gamma filtration. Moreover, for any
finite product Y of any generalized Severi-Brauer varieties of any tensor powers of A,
the topological filtration on the Grothendieck ring K(Xk(Y )) coincides with the gamma
filtration. �

4. Type Cn

A split simple group G over k of type Cn (n ≥ 1) is isomorphic to Sp2n (the simply
connected case) or PGSp2n (the adjoint case). The group Sp2n is special. For this reason,
we only treat the adjoint case G = PGSp2n here below.
The set of isomorphism classes of G-torsors over k is identified with the set of iso-

morphism classes of central simple k-algebras of degree 2n endowed with a symplectic
involution. Let E be a G-torsor over k and let A be a corresponding k-algebra. Since A
possesses a k-linear involution, the exponent of A is 2 or A is split. The index of A is a
2-power, a divisor of the 2-primary part of 2n. If E is a generic G-torsor (over F ⊃ k),
then expA = 2 and indA is the 2-primary part of 2n.
Let P ⊂ G be a parabolic subgroup of type Cn−1. Then P is special and the variety

E/P can be viewed as the variety of isotropic right ideals in A of reduced dimension 1.
But every right ideal of reduced dimension 1 is isotropic with respect to any symplectic
involution on A, therefore E/P , which is a priori a closed subvariety in the Severi-Brauer
variety SB(A), coincides with SB(A).
If n is not divisible by 4, then indA divides 4 and it follows that the group CHX

of X := SB(A) is torsion-free. In more details, CHX is a direct sum of shifted copies
of CHX ′, where X ′ is the Severi-Brauer variety of a degree-4 central simple algebra A′

Brauer-equivalent to A. For i ≤ 2 the group CHiX ′ coincides with the ith quotient of the
topological filtration on K(X ′) which is torsion-free (for i = 2, see, e.g., [9, Proposition
4.9]). The group CH3 X ′ = CH0 X

′ is torsion-free by [2] (originally proved in [13]).
For any n and generic E (over F ⊃ k), it follows by Corollary 3.10 and specialization

that the topological filtration on K(X) coincides with the gamma filtration. Indeed,
over a suitable field extension k′′/k, there exists a central division algebra A′′ with 2n =
degA′′ = indA′′ = expA′′. Taking for Y in Corollary 3.10 the Severi-Brauer variety of
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the tensor square of A′′ and setting k′ := k′′(Y ), A′ := A′′
k′ , we get that for X ′ := SB(A′),

the topological filtration on K(X ′) coincides with the gamma filtration. By the index
reduction formula for Severi-Brauer varieties [17] (see also [12, (5.11)]]), the index of the
algebra A′ is the 2-primary part of 2n and its exponent is 2. In particular, A′ admits a
symplectic involution, [11, Theorem 3.1(1) and Corollary 2.8(2)]. The pair, consisting of
the algebra with a fixed symplectic involution on it, is given by a G-torsor E ′ over k′.
Using specialization, we identify K(X) with K(X ′). Under this identification, the gamma
filtration on K(X) is identified with the gamma filtration on K(X ′) while each term of
the topological filtration on K(X) is identified with a subgroup of the corresponding term
of the topological filtration on K(X ′). Since each term of the topological filtration on
K(X) contains the corresponding term of the gamma filtration, both filtrations on K(X)
coincide.

By [9, Proposition 4.9], if n is divisible by 4, the second quotient of the gamma filtration
contains an element of order 2. We have proven

Theorem 4.1. For G := PGSp2n (n ≥ 1) over any field k, let P ⊂ G be a special
parabolic subgroup and let E be a generic G-torsor over a field extension F/k. The group
CH(E/P ) is torsion-free if and only if n is not divisible by 4. Moreover, if n is divisible
by 4, the group CH2(E/P ) contains an element of order 2. �
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