A DESCENT OF MOTIVIC ISOMORPHISMS

NIKITA A. KARPENKO

Let F be a field. By motive of a smooth projective algebraic variety over F we simply mean its classical integral Chow motive of Grothendieck.

In view of the example of a geometrically connected projective homogeneous variety without rational points, possessing a 0 -cycle of degree 1 , recently constructed by Parimala, the following observation seems to be of interest:

Theorem 0.1. Let X and X^{\prime} be projective homogeneous varieties over F (under some linear algebraic groups G and G^{\prime}, defined over F, which may coincide as well as be different from each other). Let Y be a geometrically connected smooth projective variety possessing a 0 -cycle of degree 1.

If over the function field $F(Y)$ the motives of the varieties $X_{F(Y)}$ and $X_{F(Y)}^{\prime}$ are isomorphic, then the motives of X and X^{\prime} are isomorphic already over F.

Proof. We write \bar{F} for an algebraic closure of the field F. We refer to elements of Chow groups as to cycles. We choose a 0 -cycle of degree 1 on Y and denote it by $\mathbf{p t} \in \mathrm{CH}_{0}(Y)$.

We assume that the motives of the varieties $X_{F(Y)}$ and $X_{F(Y)}^{\prime}$ are isomorphic. Let $\alpha \in \mathrm{CH}\left(\left(X \times X^{\prime}\right)_{F(Y)}\right)$ be a cycle giving such an isomorphism (with CH staying for the total Chow group of the variety). Let $\beta \in \mathrm{CH}\left(X \times X^{\prime} \times Y\right)$ be a cycle mapped to α under the surjective homomorphism

$$
g^{*}: \mathrm{CH}\left(X \times X^{\prime} \times Y\right) \rightarrow \mathrm{CH}\left(\left(X \times X^{\prime}\right)_{F(Y)}\right)
$$

given by pull-back with respect to the morphism of F-schemes

$$
g:\left(X \times X^{\prime}\right)_{F(Y)} \rightarrow X \times X^{\prime} \times Y
$$

obtained from the generic point morphism of Y by the base change by $X \times X^{\prime}$. Using the multiplication of cycles on the smooth variety $X \times X^{\prime} \times Y$, we multiply β by the external product $[X] \times\left[X^{\prime}\right] \times \mathbf{p t} \in \mathrm{CH}\left(X \times X^{\prime} \times Y\right)$. Finally, we set

$$
\gamma=p r_{*}\left(\beta \cdot\left([X] \times\left[X^{\prime}\right] \times \mathbf{p t}\right)\right) \in \mathrm{CH}\left(X \times X^{\prime}\right),
$$

where

$$
p r_{*}: \mathrm{CH}\left(X \times X^{\prime} \times Y\right) \rightarrow \mathrm{CH}\left(X \times X^{\prime}\right)
$$

is the push-forward homomorphism with respect to the projection pr of the product $\left(X \times X^{\prime}\right) \times Y$ onto the first factor.

In the remaining part of the proof we will show that $\gamma_{\bar{F}(Y)}=\alpha_{\bar{F}(Y)}$. In particular, $\gamma_{\bar{F}(Y)}$ gives a motivic isomorphism of X and X^{\prime} over a field extension

[^0]of F (namely, over $\bar{F}(Y)$). Therefore, by [1, cor. 8.4] (which is a recent result on arbitrary projective homogeneous varieties generalizing an old result [4] of M. Rost on projective quadrics), γ gives a motivic isomorphism of X and X^{\prime} already over F.

We are going to prove that $\gamma_{\bar{F}(Y)}=\alpha_{\bar{F}(Y)}$. In order to simplify the notation, we replace F by \bar{F}. We will check a more general relation, namely, for an arbitrary projective homogeneous variety P (replacing the product $X \times X^{\prime}$) and for an arbitrary cycle $\beta \in \mathrm{CH}(P \times Y)$ (replacing the cycle β used in the above construction of γ), we show that

$$
g^{*}(\beta)=\left(p r_{*}(\beta \cdot([P] \times \mathbf{p t}))\right)_{F(Y)},
$$

where $g: P_{F(Y)} \rightarrow P \times Y$ is the morphism given by the generic point of Y, while $p r: P \times Y \rightarrow P$ is the projection.

Since our base field F is now algebraically closed, the variety P is cellular as any projective homogeneous variety over an algebraically closed filed is (see, e.g., [1] or an earlier, may be original, proof given in [3]). Therefore the group $\mathrm{CH}(P \times Y)$ is generated by the external products of cycles on P and Y (see, e.g., $[2, \S 6])$, and it suffices to check the relation on β only for $\beta=\pi \times \zeta$ with some homogeneous cycle $\zeta \in \mathrm{CH}(Y)$ (and an arbitrary $\pi \in \mathrm{CH}(P)$). To do so, we consider two complementary cases: the case where the codimension of ζ is positive and the case where ζ is a multiple of $[Y]$.

We start with the second case, where we obviously may assume that $\zeta=[Y]$. Then $g^{*}(\beta)=\pi_{F(Y)}$. On the other hand, $\beta \cdot([P] \times \mathbf{p} \mathbf{t})=\pi \times \mathbf{p t}$ and consequently $p r_{*}(\beta \cdot([P] \times \mathbf{p t}))=\operatorname{deg}(\mathbf{p t}) \cdot \pi=\pi$. The second case is done.

In the first case, we clearly have $g^{*}(\beta)=0$. In the same time,

$$
\beta \cdot([P] \times \mathbf{p} \mathbf{t})=\pi \times(\zeta \cdot \mathbf{p} \mathbf{t})=0
$$

simply because $\zeta \cdot \mathbf{p t} \in \mathrm{CH}_{<0}(Y)=0$. Therefore the both sides of the equality under proof are 0 .

References

[1] V. Chernousov, S. Gille, A. Merkurjev. Motivic decomposition of isotropic projective homogeneous varieties. Preprint, Preprintreihe des SFB 478 des Mathematischen Instituts der Westfälischen Wilhelms-Universität Münster, Heft 264 (2003). To appear in Duke Math. J.
[2] N. A. Karpenko. Cohomology of relative cellular spaces and isotropic flag varieties. Algebra i Analiz 12 (2000), no. 1, 3-69(in Russian). Engl. transl.: St. Petersburg Math. J. 12 (2001), no. 1, 1-50.
[3] B. Köck. Chow motives and higher Chow theory of G / P. Manuscripta Math. 70 (1991), no. 4, 363-372.
[4] M. Rost. The motive of a Pfiter form. Preprint, 1998.
Laboratoire des Mathématiques de Lens, Faculté des Sciences Jean Perrin, Université d’Artois, rue Jean Souvraz SP 18, 62307 Lens Cedex, France

E-mail address: karpenko@euler.univ-artois.fr

[^0]: Supported in part by IFCPAR project 2501-1 and by the European Community's Human Potential Programme under contract HPRN-CT-2002-00287, KTAGS.

