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Abstract. Let X be an orthogonal grassmannian of a nondegenerate quadratic form
q over a field. Let C be the subring in the Chow ring CH(X) generated by the Chern
classes of the tautological vector bundle on X. We prove Poincaré duality for C. For q
of odd dimension, the result was already known due to an identification between C and
the Chow ring of certain symplectic grassmannian. For q of even dimension, such an
identification is not available.

1. Introduction

Let q be an arbitrary nondegenerate quadratic form over an arbitrary field F of an
arbitrary dimension d = dim q (see [5, §7.A] for the definition of a nondegenerate quadratic
form in any characteristic including 2). We take any integer m with 1 ≤ m ≤ d/2 and
consider the Chow ring CH(Xm) of the orthogonal grassmannian variety Xm of totally
isotropic m-planes of q. Here we use the affine numbering of grassmannians so that X1 is
the projective quadric given by q.

Assume that the form q is split (it is automatically split if the field F is algebraically
closed). Then the group CH(Xm) is a free abelian group of finite rank. It does not depend
on the field F and has a canonical basis given by Schubert classes. The bilinear form
(a, b) 7→ deg(ab) ∈ Z on CH(Xm), where deg : CH(Xm) → Z is the degree map (vanishing
on the homogeneous components of CH(Xm) other than the component CH0(Xm) given
by the 0-cycles), turns out to be unimodular in this split case. In other words, CH(Xm)
satisfies Poincaré duality with respect to the bilinear form. Moreover, the Schubert basis
is weakly self-dual, i.e., dual to a permutation of itself. The unimodularity can also be
explained by the fact that the variety Xm is (absolutely) cellular (see [5, §66]). Therefore
its Chow motive is split (see [5, Corollary 66.4]). The latter fact implies the Poincaré
duality, c.f. [11, Remark 5.6] or [13, Proposition 1.5].
In general (for arbitrary F and nonsplit q), the change of field homomorphism

(1.1) CH(Xm) → CH((Xm)K),

for a field extensionK/F is neither injective nor surjective. Nevertheless, the ring CH(Xm)
contains a “core” subring C, called the tautological Chern subring, generated by the
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Chern classes of the tautological (rank m) vector bundle on Xm. By [9, Theorem 2.1],
the homomorphism (1.1) maps C isomorphically onto “itself” – the tautological Chern
subring of CH((Xm)K). In fact, C is determined by the integers d and m alone and does
not depend on F and q. Note that the additive group of C is free of finite rank and that
deg(C) = 2mZ (see, e.g., [9, Theorem 2.1] and [16, Statement 2.15]). By [9, Theorem 6.1],
if the quadratic form q is generic, the subring C coincides with the entire Chow ring of
Xm.
Not only the ring C itself, but also the restriction of the degree map deg : CH(Xm) → Z

to C ⊂ CH(Xm) is determined by d and m. We consider the bilinear form on C given
by the modified degree map 2−m deg : C → Z and show that C satisfies Poincaré duality
with respect to it:

Theorem 1.2. The bilinear form

C × C → Z, (a, b) 7→ 2−m deg(a · b)
is unimodular. In other terms, every Z-basis for C admits a dual basis.

The idea of considering Poincaré duality for C originated in [15, §4], where it was proven
for m = [d/2] and then successfully applied in order to determine the torsion index of
spin groups.

The unimodularity means invertibility of the determinant of the Gramm matrix. There-
fore, replacing the coefficient ring Z by an arbitrary field k we get an equivalent version
of Theorem 1.2:

Theorem 1.3. For any field k, the bilinear form on the finite dimensional k-vector space
C ⊗ k, given by 2−m deg, is nondegenerate.

Nondegeneracy in Theorem 1.3 is the precise analogue of unimodularity in Theorem
1.2. Both mean that the induced map of the space to its dual is an isomorphism. But
since the coefficient ring in Theorem 1.3 is a field, it is enough to only have injectivity of
the map. In other terms, it is enough to check triviality of the radical.

For odd d, Theorems 1.2 and 1.3 have already been shown in [7, Proof of Theorem
4.1] by the argument of [15, §4] – using an identification of C with the entire Chow ring
of the m-th symplectic grassmannian Ym of a nondegenerate alternating bilinear form of
dimension dim q−1. It also identifies the modified degree map on C with the usual degree
map on CH(Ym). The Schubert classes form a basis for the additive group of CH(Ym) and
this basis is weakly self-dual.

Possession of a self-dual basis is a stronger property than just the unimodularity. To
prove the latter, one can argue (as we already did for CH(Xm) with split q) without
involving the Schubert basis: since the variety Ym is cellular, its Chow motive is split
implying the integral Poincaré duality for CH(Ym).

For even d however, an identification like above is not available (aside from the extreme
values 1 and d/2 of m – see Examples 1.4 and 1.5) and therefore a different approach is
needed. A proof of Theorem 1.3 for even d is given in §2.

Example 1.4. For even d = 2n+2 and split q, the quadric X1 has dimension 2n and the
Schubert basis for CH(X1) consists of the powers hi for i = 0, 1, . . . , n − 1 of the class h
of a hyperplane section, the classes li of linear subspaces of dimensions i = 0, 1, . . . , n− 1,



POINCARÉ DUALITY FOR TAUTOLOGICAL CHERN SUBRINGS 3

and two distinct classes l′n and l′′n of linear subspaces of dimension n (see [5, §68]). The
subring C ⊂ CH(X1) has a weakly self-dual basis consisting of hi for i = 0, 1, . . . , 2n.
Note that hn = l′n + l′′n and h2n−i = 2li for i = 0, 1, . . . , n − 1. The ring C endowed with
the modified degree map 2−1 deg : C → Z, is isomorphic to the entire Chow ring of the
projective space P2n, endowed with its usual degree map.

Example 1.5. For m = d/2 (with even d) and split q, the variety Xm has two connected
components isomorphic (to each other as well as) to the (m − 1)-st grassmannian X ′

m−1

of any nondegenerate (d − 1)-dimensional subform q′ of q. Via this isomorphism, the
tautological Chern subring of CH(Xm) together with its modified (by 2m) degree map is
identified with the tautological Chern subring of CH(X ′

m−1) endowed with its modified
(by 2m−1) degree map. As already discussed, the latter can be identified with the entire
Chow ring of the corresponding symplectic grassmannian.

Theorems 1.2 and 1.3 for odd d are crucial for [7, Theorem 4.1] providing an algorithm
for computation of indexes of generic Spin(d)-grassmannians. A similar algorithm for
even d is not available yet; we expect that our results will help to obtain it.

2. Proof of Theorem 1.3 for even d

Below we provide a proof of the Poincaré duality with coefficients in a field k for even
d = 2n by reduction to the duality for d = 2n+ 1.
We choose a nondegenerate (2n+ 1)-dimensional quadratic form q, containing a given

nondegenerate (2n)-dimensional quadratic form q′ as a subform. Writing X ′
m for the

m-th orthogonal grassmannian of q′, we have a closed imbedding in : X ′
m ↪→ Xm. The

tautological vector bundle T ′ on X ′
m is the pull-back of the tautological vector bundle T

on Xm. Therefore the pull-back homomorphism of Chow rings in∗ : CH(Xm) → CH(X ′
m)

maps C surjectively onto C ′. Note that by [9, Theorem 2.1], in∗(c2n−m(−T )) = 0. Here
and below we write ci(E) for the i-th Chern class of a vector bundle E and we write ci(−E)
for the i-th Chern class of −E (or, in other terms, for the i-th Segre class of E , see [6,
Chapter 3]).

Lemma 2.1. The class [X ′
m] ∈ CH(Xm) of X

′
m ⊂ Xm coincides with cm(T ).

Proof. Let V be the vector space of definition of q and let V ′ ⊂ V be the hyperplane on
which q′ is defined. The grassmannian Γm(V

′) of m-planes in V ′ is a closed subvariety
in the grassmannian Γm(V ) and [Γm(V

′)] ∈ CH(Γm(V )) is the m-th Chern class of the
tautological vector bundle on Γm(V ), [6, §14.7]. We have a pull-back square of closed
embeddings:

Γm(V
′) −−−→ Γm(V )x x

X ′
m −−−→ Xm

Since dimΓm(V )− dimΓm(V
′) = m = dimXm − dimX ′

m, the statement follows from [5,
Corollary 57.20]. �
In particular, it follows that in∗(C

′) ⊂ C: any element of C ′ has the form in∗(x) with
x ∈ C and in∗(in

∗(x)) = cm(T ) · x ∈ C by projection formula.



4 N. KARPENKO AND A. MERKURJEV

The push-forward map in∗ : CH(X ′
m) → CH(Xm) satisfies deg ◦ in∗ = deg′ with

deg′ : CH(X ′
m) → Z

the degree map of X ′
m.

We now switch to coefficients k considerations. As in Theorem 1.3, we assume that k
is a field.

Let in∗ ⊗k be the additive homomorphism C ′⊗ k → C⊗ k given by in∗. By projection
formula, Poincaré duality with coefficients k for C ′ will follow from that for C once we
know that in∗ ⊗k is injective. Indeed, given any nonzero a′ ∈ C ′ ⊗ k, we find a ∈ C ⊗ k
non-orthogonal to in∗(a

′) and get that a′ is not orthogonal to in∗(a).
Since C ′ = in∗(C), the injectivity we need is implied by the following property of C

alone (making no reference to C ′ anymore):

Proposition 2.2. Any element f ∈ C ⊗ k, vanishing under multiplication by cm(T ), is
divisible by c2n−m(−T ).

Proof. In the beginning of this proof we allow k to be an arbitrary commutative ring.
As already mentioned in §1, C is identified with the Chow ring CH(Ym) of the m-th
grassmannian of a 2n-dimensional nondegenerate alternating bilinear form b. Under this
identification, the Chern classes in C of the tautological vector bundle on Xm correspond
to the respective Chern classes in CH(Ym) of the tautological vector bundle ′T on Ym.

We have Ym = G/P for certain parabolic subgroup P ⊂ G := Sp(2n). Namely, P is the
standard maximal parabolic subgroup given by the m-th vertex of the Dynkin diagram
of Sp(2n). Therefore C ⊗ k is identified with the coefficient k version

Ch(G/P ) := CH(G/P )⊗ k

of the Chow ring.
Note that the group G is special meaning that every G-torsor over every extension field

of F is trivial. In other terms, the torsion index of G is 1. It follows from [1, Proposition
20.5] that every parabolic subgroup of G is also special.

We are going to operate with the Chow rings of the classifying spaces of algebraic groups
introduced in [14]. The Weyl group W of P acts on the integral Chow ring CH(BT ) of the
classifying space BT of the standard split maximal torus T ⊂ P . Note that CH(BT ) is a
ring of polynomials over Z in n = dimT variables. Namely, it is the symmetric Z-algebra
of the character group of T .

The ring of W -invariants CH(BT )W coincides with CH(BP ) (see [4, Proposition 6])
and therefore maps surjectively onto CH(G/P ) (see, e.g., [8, Lemma 2.1]):

(2.3) CH(BT )W →→ CH(G/P ).

Let B ⊂ P ⊂ G be the standard Borel subgroup. The pull-back homomorphism
CH(G/P ) → CH(G/B) with respect to the projection G/B → G/P is injective (see, e.g.,
[3, Proof of Lemma 2.2]). The composition

CH(BT )W → CH(G/P ) → CH(G/B)

is the restriction of the characteristic map CH(BT ) → CH(G/B), studied in [2]. Since G
has no torsion primes, it follows by [2, Corollaire 2] (together with [2, §8]) that the kernel
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of the characteristic map is the ideal generated by the image of

CH>0(BG) :=
⊕
i>0

CHi(BG)

under the (injective) ring homomorphism CH(BG) → CH(BT )W from the Chow ring of
the classifying space of G. By [2, Théorème], the graded CH(BT )W -algebra CH(BT ) is a
free graded module over CH(BT )W . In particular, the embedding of rings CH(BT )W ↪→
CH(BT ) is a split monomorphism of CH(BT )W -modules. It follows that the kernel of
(2.3) is also generated by the image of CH>0(BG).
The ring CH(BT ) is identified with the polynomial ring

Z[x1, . . . , xm, y1, . . . , yl]

in the n variables x1, . . . , xm, y1, . . . , yl, where l := n−m. The ring Ch(BT ) is therefore
identified with the polynomial ring

R̃ := k[x1, . . . , xm, y1, . . . , yl].

We view R̃ as a graded ring with respect to the standard grading deg xi = deg yj = 1.
Write ui for the i-th elementary symmetric polynomial in x1, . . . , xm (i = 1, . . . ,m) and
vj for the j-th elementary symmetric polynomial in y21, . . . , y

2
l (j = 1, . . . , l). Let R be

the subring k[u1, . . . , um, v1, . . . , vl] of R̃. The ring R is also a polynomial ring over k
in n = m + l variables. Since the Weyl group W acts on CH(BT ) by interchanging the
variables x1, . . . , xm, interchanging the variables y1, . . . , yl, and changing signs of the latter
variables, we have R = CH(BT )W ⊗ k. Note that in general R does not coincide with
Ch(BT )W , c.f. [2, Théorème (c)].
Write wi for the i-th elementary symmetric polynomial in the squares

x2
1, . . . , x

2
m, y

2
1, . . . , y

2
l

of our n variables (i = 1, . . . , n). Let I ⊂ R be the ideal generated by w1, w2, . . . , wn. The
computation of CH(BG) given in [14, §15] (see also [10, Example 5.2]) tells us that I is
the kernel of the surjective ring homomorphism (2.3)

(2.4) R = CH(BT )W ⊗ k →→ Ch(G/P ) = C ⊗ k.

To have a more complete understanding of the objects involved, let us mention that
the quotient of R̃ by the ideal IR̃, generated by w1, . . . , wn, is the Chow ring Ch(G/B).

Consider the monomials u := um = x1 · · · xm ∈ R and w := umvl = uy21 · · · y2l ∈ R.
Note that wn = uw. Besides, the image of u under (2.4) is cm(

′T ) whereas the image of w
is (−1)nc2n−m(−′T ). In order to justify the statement on the image of w, let us mention
that whereas the images of x1, . . . , xm are the roots of the vector bundle ′T , the roots of
the containing ′T trivial vector bundle, given by the 2n-dimensional vector space Vb of
definition of our alternating bilinear form b, are ±x1, . . . ,±xm,±y1, . . . ,±yl. Therefore
c2n−m(−′T ) = c2n−m(Vb/

′T ) is computed as claimed.
Proposition 2.2 translates as follows:

(2.5) Let f ∈ R be a polynomial such that uf ∈ I. Then f ∈ wR + I.
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To prove (2.5), since I is a homogeneous ideal, we may assume that the polynomial f
is also homogeneous. By assumption,

uf = w1f1 + w2f2 + . . .+ wnfn

for some f1, f2, . . . , fn ∈ R, or equivalently,

(2.6) uf0 + w1f1 + w2f2 + . . .+ wn−1fn−1 = 0,

where f0 = wfn − f .
From now on k is assumed to be a field. Let M ⊂ R be the ideal generated by

u1, . . . , um, v1, . . . , vl. Clearly, M is a maximal ideal of R containing I.
We claim that M is the radical

√
I of I. For a brief moment, let’s view u1, . . . , um

and v1, . . . , vl as integral polynomials and let p ∈ Z[x1, . . . , xm, y1, . . . , yl] be one of them.
The coefficients of the polynomial f(t) :=

∏
(t − σp) in a variable t, where σ runs over

the Weyl group WG of G, are WG-symmetric polynomials with trivial constant terms.
Since Z[x1, . . . , xm, y1, . . . , yl]

WG = Z[w1, . . . , wn], the coefficients of f(t), viewed now as a
polynomial over R, belong to I. Since p ∈ R is a root of the polynomial f(t) ∈ R[t], we

have p|WG| ∈ I, hence p ∈
√
I.

Let S = RM be the localization of R at the maximal ideal M . Then S is a regular local
ring of dimension n. Consider the sequence of polynomials in R:

(2.7) w0, w1, w2, . . . , wn−1

with w0 := u. Since u divides wn, the ideal in R generated by these polynomials contains
I and hence its radical is equal to M =

√
I. This means that the sequence (2.7) is a

system of parameters in S. Since S is a regular local ring, by [12, Theorem 31], the
sequence (2.7) is regular. It follows from [12, Theorem 43], that the sequence (which is a
part of the Koszul complex)

(2.8) Λ2(Sn)
d′−→ Sn d−→ S,

where d(ei) = wi and d′(ei ∧ ej) = wjei − wiej (here e0, e1, . . . en−1 is the standard basis
for Sn) is exact.

By (2.6), the n-tuple (f0, f1, . . . , fn−1) is in the kernel of d. The exactness of (2.8) yields
elements gi ∈ S such that

f0 = w1g1 + w2g2 + . . .+ wn−1gn−1 ∈ IS.

It follows that f = wfn − f0 ∈ wS + IS. As S = RM , there is a polynomial h ∈ R with a
nonzero constant term, satisfying fh ∈ wR+ I. Since the polynomial f is homogeneous,
it is also contained in wR + I. �
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