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Abstract. For a smooth projective quadric X, Alexander Vishik introduced the notion
of connections. He discovered connections arising from the splitting pattern of X as well
as the so-called excellent connections. Recently, Victor Petrov and Nikita Semenov found
new connections arising from the J-invariant J(X), which is a layer of the Elementary
Discrete invariant ED(X), both further Vishik’s inventions. In this note we give a new
proof for Peterov-Semenov’s connections and extend them to the remaining layers of
ED(X). Also, we briefly discuss connections on nonsmooth quadrics.
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0. Prehistory

We work over an arbitrary base field F with a fixed algebraic closure F̄ . Given an
F -variety Y , we write Ȳ for the F̄ -variety YF̄ . We write Ch(Y ) for the Chow ring modulo
2 (i.e., with coefficients in F2 := Z/2Z) of a smooth variety Y . An element of Ch(Ȳ ) is
rational, if it is in the image of the change of field homomorphism Ch(Y ) → Ch(Ȳ ).
Let X be a smooth projective quadric over a field F (of any characteristic) of dimension

n ≥ 0. It is given by a nondegenerate (= nonsingular) quadratic form which is determined
by X up to similarity, see [1] – our main reference on quadrics.
Recall that the F2-vector space Ch(X̄) has the basis {hi, li}mi=0, where m := [n/2]

(so that n = 2m or n = 2m + 1), h ∈ Ch1(X̄) is the class of a hyperplane section,
and li ∈ Chi(X̄) is the class of a linear subspace in X̄ of dimension i. In particular,
l0 ∈ Ch0(X̄) is the class of a rational point. For i < n/2, the element li does not depend
on the choice of the linear subspace; for n = 2m, the element lm does depend on it and
has to be chosen, the only existing different choice being equal to lm + hm.
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These additive generators satisfy the multiplicative relations hli = li−1 for i ∈ {1, . . . ,m}
and hm+1 = 0. Moreover,

l2m =

{
0, if n is not divisible by 4;

l0, if n is divisible by 4.

The external product homomorphism

Ch(X̄)⊗ Ch(X̄) → Ch(X̄ × X̄)

is an isomorphism. Therefore a basis of the F2-vector space Chn(X̄ × X̄) is given by the
external products

B := {hi × li, li × hi}mi=0

and – in the case of even n – two additional elements hm × hm and lm × lm.
Given α ∈ Ch(X̄ × X̄) and a basis element b, we say that α contains b if b appears

(with the coefficient 1 ∈ F2) in the decomposition of α.
Our main interest are rational elements in Chn(X̄× X̄) (= Chn(X̄× X̄)), the codimen-

sion n (and dimension n) component of Ch(X̄ × X̄). Knowing them means knowing the
complete decomposition of the Chow motive of X (not only with coefficients F2 but also
with integer coefficients! see [2]). Driven by this interest, Alexander Vishik introduced
in [6, Theorem 4.3] the notion of connections on the set B: two given elements of B are
connected, if for any rational α ∈ Chn(X̄ × X̄) one of these two elements is contained in
α if and only if the other is.

The set B is rational in the sense that the sum of all elements in B is rational ([1,
Lemma 73.1]). It follows that the complement of any rational subset in B is also rational.
In particular, if some rational subset contains some b ∈ B and does not contain some
b′ ∈ B, then there exists a rational subset containing b′ and not containing b.
The basis element hm × hm (which we have for even n) is always rational. It follows

that connections (inside the set B) “do not depend” on the choice of lm for even n, made
in the beginning.

The quadric X is split, if all Chn(X̄ × X̄) is rational. This is the case if and only if
no distinct elements of B are connected. For nonsplit X and even n, no rational element
contains lm × lm ([1, Lemma 73.2]).

Being connected is an equivalence relation on B and so B is a disjoint union of its
connected components. The sums of the elements in each connected component are
rational ([1, Lemma 73.3]) and (together with hm × hm for even n, plus lm × lm for even
n and split X) they form a basis of the space of rational elements. Therefore knowing all
connections means knowing this space.

Connections arising from the splitting pattern of X, have been discovered by Alexander
Vishik. Recall that the Witt index iW (X) of X is the maximal i with rational li−1. Here
we set l−1 := 0 so that iW (X) ≥ 0. This is the classical Witt index of the quadratic form
defining X. For instance, X is split if and only if iW (X) takes its maximal possible – with
respect to n – value m + 1. Splitting pattern of X is the set of the integers {iW (XL)}L
with L ranging over all extension fields of F . We have {iW (XL)}L = {j0, . . . , jh} for some
0 ≤ j0 < · · · < jh = m+ 1 (with h the height of X). For any i with j0 ≤ i < jh, we have
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jq ≤ i < jq+1 for some (unique) q and we define i′ := jq + jq+1 − 1− i. Then hi × li and
li′ × hi′ are connected, [1, Lemma 73.19].
Since i′′ = i, hi′ × li′ is also connected to li × hi by the above rule. In fact, this second

connection is a consequence of the first one because of the transposition automorphism
of X ×X.
Note that j0 = iW (X). For 0 ≤ i < iW (X), the elements {hi × li} and {li × hi} are

isolated in the sense that the corresponding singletons are connected components of B.
However, for anisotropic X (i.e., for X with iW (X) = 0), there are no isolated points in
B: by the above rule, every point is connected to some other.

If X is excellent (i.e., X is given by an excellent quadratic form [1, §28]) and anisotropic,
then the splitting pattern of X is determined by n and the above connections are all
connections that exist: every connected component of B consists of two elements. It has
been shown in [9] that an arbitrary anisotropic n-dimensional X has the connections of
the excellent one. The proof makes use of Steenrod operations on Ch(Y ) for the smooth
varieties Y = X and Y = X×X and because of recent [5] works in arbitrary characteristic
including 2.

In a recent [4], Victor Petrov and Nikita Semenov found new connections arising from
the so-called J-invariant J(X) of Alexander Vishik. To define J(X), one considers the
variety X(m) of m-dimensional linear subspaces in X, the flag variety

X(0,m) ⊂ X ×X(m),

and its projections pr(0) and pr(m) to X and to X(m). The J-invariant of X is the
following information: for i ∈ {0, . . . ,m}, which of the elements

ei := pr(m)∗
(
pr(0)∗(li)

)
∈ Chn−m−i(X̄(m))

are rational.
The elements ei are usually indexed differently – by their codimension; in the original

[7, Definition 5.1] J(X) is defined as the set of codimensions of the rational elements;
in [1, §88], for some convenience reason, it is defined as the set of codimensions of the
irrational ones.
In the case of n = 2m, em ∈ Ch0(X̄(m)) is the class of one (from two) connected

components of X̄(m) (the choice of lm we made is equivalent to picking up a connected
component of X̄(m)); it is rational if and only if the discriminant of X is trivial.

To explain the motivation behind the notion of the J-invariant, let us mention that
the elements {ei}mi=0 generate the ring Ch(X̄(m)) (see original [7] or [1, Theorem 86.12]).
Moreover, the subring of rational elements is generated by those ei which are rational
(original [7] or [1, Theorem 87.7]). Therefore knowing the J-invariant means knowing
this subring.

An element of B is an external product determined by its first component. To simplify
notation we denote below the elements of B by their first components. This way B
becomes the set

B = {h0, . . . , hm, lm, . . . , l0}
(the elements are ordered by their codimension).

Here is the result by Petrov and Semenov:
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Theorem 0.1 ([4, Theorem 7.7]). If for some i ∈ {0, . . . ,m} the element ei is irrational,
then or every j ∈ {0, . . . ,m− i} the elements lm−j and hi+j of B are connected.

(For even n, only X of trivial discriminant is considered in [4]. However the statement
holds without this restriction. See §1 for the proof.)

The proof of Theorem 0.1, given in [4], makes use of the general machinery developed
in that paper, where the group Ch(X̄) is considered as comodule over the Hopf algebra
given by the Chow ring of the special orthogonal group acting on X̄. Here we provide a
more direct proof (see §1) which consists of just a few manipulations with the (rational)
incidence correspondence [X̄(0,m)] ∈ Ch(X̄ × X̄(m)). This new proof easily generalizes
to remaining layers of the ED-invariant (see §2). (The J-invariant is one of such layers.)

We conclude this note with a brief discussion of nonsmooth X (see §3).

1. J-connections

In this section we prove Theorem 0.1.
For the incidence correspondence

α := [X̄(0,m)] ∈ Ch(X̄ × X̄(m))

one has the formula

α :=

{
α̃, if n is not divisible by 4;

hm × [X̄(m)] + α̃, if n is divisible by 4,

where α̃ := lm × [X̄(m)] +
∑m

i=0 h
i × ei (see [1, §86] or Lemma 2.1). Note that the

correspondences α and α̃ are rational.
To prove Theorem 0.1, let us assume that for some i ∈ {0, . . . ,m} and for some j ∈

{0, . . . ,m−i}, the elements lm−j and hi+j of B are not connected. Then there is a rational
element β ∈ Chn(X̄ × X̄) containing lm−j × hm−j and not containing hi+j × li+j. In the
case of even n, we may additionally assume that β contains neither lm × lm nor hm × hm.

Let us multiply the correspondence α by hj × [X̄(m)] and call the result α′. Then
consider β and α′ as correspondences and take their composition γ := α′ ◦ β. Finally, we
take the product

γ · α · (hm−i−j × [X̄(m)]).

Its push-forward with respect to the second projection is rational and equals ei.

2. ED-connections

The Elementary Discrete invariant ofX is also – like the J-invariant J(X) – an invention
by Alexander Vishik, [8, §2]. We take here the liberty to shorten to ED(X) the original
notation EDI(X).

Let r be an integer with 0 ≤ r ≤ m and consider the varietyX(r) of linear r-dimensional
subspaces in X. In particular, X(0) = X. One defines the rth layer of the Elementary
Discrete invariantED(X) repeating the definition of the J-invariant with the varietyX(m)
replaced by X(r): we consider the flag variety X(0, r) ⊂ X ×X(r) with the projections
pr(0) and pr(r), look at the elements

ei(r) := pr(r)∗
(
pr(0)∗(li)

)
∈ Chn−r−i(X̄(r))
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and collect the information which of them are rational. For visualization, we refer to [8,
§2], where ED(X) was originally defined. Together with the Segre classes of the tauto-
logical vector bundle, which appear right below and are rational, the elements {ei(r)}mi=0

generate the ring Ch(X̄(r)).
In this section we generalize Theorem 0.1, replacing J(X) – the mth layer of ED(X) –

by the rth layer. To start, we compute the incidence correspondence

α(r) := [X̄(0, r)] ∈ Ch(X̄ × X̄(r)).

Let us define

α̃(r) :=
m−r∑
i=0

li+r × si +
m∑
i=0

hi × ei(r) ∈ Ch(X̄ × X̄(r)),

with si ∈ Chi(X̄(r)) the ith Segre class of the tautological vector bundle on the variety
X̄(r) (in particular, s0 = [X̄(r)]).

Lemma 2.1. For the incidence correspondence α(r) ∈ Ch(X̄ × X̄(r)) one has

α(r) =

{
α̃(r), if n is not divisible by 4;

hm × sm−r + α̃(r), if n is divisible by 4.

Proof. Since the external product homomorphism

Ch(X̄)⊗ Ch(X̄(r)) → Ch(X̄ × X̄(r))

is an isomorphism, we have

α(r) =
m−r∑
i=0

li+r × s′i +
m∑
i=0

hi × ti ∈ Ch(X̄ × X̄(r))

for some (uniquely determined) s′i ∈ Chi(X̄(r)) and ti ∈ Chn−r−i(X̄(r)). The homomor-
phism Ch(X̄) → Ch(X̄(r)) given by the incidence correspondence coincides with the com-
position pr(r)∗◦pr(0)∗ (see [1, Proposition 62.7]). It follows that s′i = pr(r)∗

(
pr(0)∗(hi)

)
.

This is the Segre class si by [8, Proposition 2.1]. We also get that

ti = pr(r)∗
(
pr(0)∗(li)

)
= ei(r)

except the case with even i = m = n/2. In the exceptional case,

pr(r)∗
(
pr(0)∗(lm)

)
= sm−r + tm. �

Note that the correspondences α(r) and α̃(r) are rational. Replacing m by r in the
remaining part of the proof of Theorem 0.1, we get the generalization:

Theorem 2.2. Assume that for some r, i ∈ {0, . . . ,m} with i ≤ r, the element ei(r) is
irrational and the elements ei+k(r) for k with 1 ≤ k ≤ m− r are rational. Then for every
j ∈ {0, . . . , r − i}, the element lr−j and hi+j of B are connected.

Proof. Assume that for some r, i ∈ {0, . . . ,m} with i ≤ r and for some j ∈ {0, . . . , r− i},
the elements lr−j and hi+j of B are not connected. Then there is a rational element
β ∈ Chn(X̄× X̄) containing lr−j ×hr−j and not containing hi+j × li+j. In the case of even
n, we may additionally assume that β contains neither lm × lm nor hm × hm.
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Let us multiply the element α(r) ∈ Ch(X̄×X̄(r)) (from Lemma 2.1) by hj×[X̄(m)] and
call the result α′. Then consider β and α′ as correspondences and take their composition
γ := α′ ◦ β. Finally, we take the product

γ · α · (hr−i−j × [X̄(m)]).

Its push-forward with respect to the second projection is rational and equals ei(r) plus a
linear combination of skei+k(r), 1 ≤ k ≤ m − r. So, if the elements ei+k(r) are rational
for such k, the element ei(r) is rational as well. �
Remark 2.3. For r = 0, the assumptions of Theorem 2.2 are satisfied if and only if
n ≤ 1 (i.e., m = 0) and X is anisotropic. The conclusion then is: the set B = {h0, l0} is
connected. This is not new (see §0) and easy to check directly.

Example 2.4. For an anisotropic Pfister quadric X, the conditions of Theorem 2.2 are
satisfied for any r > m/2 and i = m − r (see [8, Example 3.2]). A Pfister quadric is
excellent, so that we already know all existing connections (see §0). But at least we get
more examples with the assumptions of Theorem 2.2 fulfilled.

One may prefer to drop the rationality assumptions of Theorem 2.2. However the
conclusion becomes fuzzy then. We loose the determinism of original Petrov-Semenov’s
connections when we extend them this way:

Theorem 2.5. If for some r, i ∈ {0, . . . ,m} with i ≤ r the element ei(r) is irrational,
then for every j ∈ {0, . . . , r− i}, the element lr−j ∈ B is connected to at least one element
of the subset

S := {hi+j+k}0≤k≤m−r

∪
{lr−j+k}1≤k≤m−r ⊂ B.

Proof. Assume that for some r, i ∈ {0, . . . ,m} with i ≤ r and for some j ∈ {0, . . . , r− i},
the elements lr−j of B is connected to no element of the subset S ⊂ B. Then there is a
rational element β ∈ Chn(X̄ × X̄) containing lr−j (i.e., the external product lr−j × hr−j)
and no element of S. In the case of even n, we may additionally assume that β contains
neither lm × lm nor hm × hm.

Repeating with the rational cycles α(r) and β exactly the same manipulations as in the
proof of Theorem 2.2, we get a rational element which is equal to ei(r). �
Remark 2.6. Different layers of ED(X) are related by [8, Proposition 2.5]. Namely,
irrationality of ei(r) implies irrationality of ei(r − 1) and ei+1(r − 1). The conclusion
of Theorem 2.5 given by irrationality of ei(r) is stronger than the conclusions given by
irrationality of ei(r − 1) and ei+1(r − 1). So, combining [8, Proposition 2.5] with The-
orem 2.5 this way we do not get a stronger result. However, if we additionally assume
that ei+2(r − 1), . . . , em(r − 1) are rational, then [8, Proposition 2.5] gives rationality of
ei+1(r), . . . , em(r); in this case, Theorem 2.2 applied on the rth layer of ED(X) provides
more connections than it does with the (r − 1)th layer.

Remark 2.7. By Theorem 2.5, irrationality of e0(0) = l0 (meaning anisotropy of X)
simply implies that the element l0 ∈ B is not isolated. This is not new (see §0).

Instead of dropping all rationality assumptions of Theorem 2.2, one may want to drop
only a part of them. The conclusion will be then somewhere between that of Theorem
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2.2 and that of Theorem 2.5. More precisely, adding to the assumptions of Theorem 2.5
the rationality of ei+k(r) only for some k between 1 and m− r, allows one to remove from
the conclusion subset S the elements hi+j+k and lr−j+k given by these k.

3. Nonsmooth quadrics

Connections can also be considered for nonsmooth quadrics. These are defined by
singular (= degenerate) quadratic forms. Study of connections easily reduces to the
case of anisotropic quadrics. Anisotropic quadrics over a field F can be nonsmooth only if
charF = 2. Machinery developed in [3] allows one to extend to the nonsmooth anisotropic
setting the results on connections available in the smooth case. It also allows for their
motivic interpretation.
Note that the set B, on which connections are defined, is empty in the case of a nowhere

smooth X (defined by a totally singular quadratic form). Therefore, in this special case,
void is the theory of connections.

Acknowledgements. I thank Alexander Vishik and Anonymous Referee for valuable
comments.
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