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To the memory of Oleg Izhboldin

Abstract. Let X be an anisotropic projective quadric over a field F of
characteristic not 2. The essential dimension dimes(X) of X, as defined by
Oleg Izhboldin, is

dimes(X) = dim(X) − i(X) + 1 ,

where i(X) is the first Witt index of X (i.e., the Witt index of X over its
function field).

Let Y be a complete (possibly singular) algebraic variety over F with
all closed points of even degree and such that Y has a closed point of odd
degree over F(X). Our main theorem states that dimes(X) ≤ dim(Y ) and
that in the case dimes(X) = dim(Y ) the quadric X is isotropic over F(Y ).

Applying the main theorem to a projective quadric Y , we get a proof of
Izhboldin’s conjecture stated as follows: if an anisotropic quadric Y becomes
isotropic over F(X), then dimes(X) ≤ dimes(Y ), and the equality holds if
and only if X is isotropic over F(Y ). We also solve Knebusch’s problem by
proving that the smallest transcendence degree of a generic splitting field
of a quadric X is equal to dimes(X).

Let (V, ϕ) be a non-degenerate quadratic form of dimension at least 2
over a field F of characteristic not 2 and let X = Q(ϕ) be the quadric
hypersurface given by the equation ϕ(x) = 0 in the projective space P(V ).
We say that the quadric X is anisotropic if ϕ is an anisotropic quadratic form.
By Springer’s theorem, every closed point of an anisotropic quadric X has
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even degree. Is it possible to compress X rationally, i.e., to find a rational
morphism X → Y to a variety Y of smaller dimension with all closed points
of even degree?

The quadratic form ϕ is isotropic over the function field F(X), hence,
by the general theory of quadratic forms, ϕF(X ) is isomorphic to ψ⊥kH for
some anisotropic quadratic form ψ over F(X) and some k ≥ 1, where H
stays for the hyperbolic plane. The number k is called the first Witt index
of ϕ (or X), and we denote it by i(ϕ) (or i(X)). Let V ′ ⊂ V be a subspace
of codimension i(X) − 1. Since V ′ ⊗ F(X) intersects nontrivially a totally
isotropic subspace of V ⊗ F(X), the anisotropic quadric X ′ = Q(ϕ|V ′)
becomes isotropic over F(X), i.e., X compresses to the subvariety X ′ of
dimension dim(X) − i(X) + 1. The latter integer is denoted dimes(X) and
called the essential dimension of X.

We prove in the paper (Corollary 3.4) that an anisotropic quadric X
cannot be compressed to a variety Y of dimension smaller than dimes(X)
with all closed points of even degree. Moreover, if there is a rational mor-
phism X → Y with dim(Y ) = dimes(X), then there is a rational morphism
Y → X, i.e., the quadric X is isotropic over F(Y ). Applying this result
to a projective quadric Y , we get a proof of Izhboldin’s conjecture (Theo-
rem 4.1) stated as follows (cf. [4]): if an anisotropic quadric Y becomes
isotropic over F(X), then dimes(X) ≤ dimes(Y ), and the equality holds if
and only if X is isotropic over F(Y ).

We work with correspondences rather than with rational morphisms.
The main result of the paper (Theorem 3.1) is formulated in terms of
correspondences that provide a more flexible tool for study of relations
between varieties.

A field in the paper is an arbitrary field of characteristic not 2 (the
characteristic restriction is important only there where quadratic forms are
involved). By scheme we mean a separated scheme of finite type over
a field, and by variety an integral scheme. We write CHd(Y ) for the Chow
group of rational equivalence classes of dimension d algebraic cycles on
a scheme Y .

1. First Witt index of generic subforms

Let ϕ be a (non-degenerate) quadratic form over F. Recall that ϕ � ϕan⊥kH
for an anisotropic form ϕan . The integer k is the Witt index iW (ϕ) of ϕ.

For a field extension L/F, ϕL denotes the form ϕ ⊗F L . If dim ϕ ≥ 3 or
dim ϕ = 2 and ϕ is anisotropic, we write F(ϕ) for the function field F(X)
of the (integral) quadric X defined by ϕ. The first Witt index i(ϕ) of an
anisotropic form ϕ is defined as iW(ϕF(ϕ)) ≥ 1.

By a subform of a quadratic form ϕ we mean the restriction of ϕ on
a linear subspace of the vector space of ϕ and by a subquadric of the quadric
X defined by ϕ we mean the closed subscheme of X given by a subform
of ϕ. For the reader’s convenience we collect some basic properties of the
Witt indices in the following
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Lemma 1.1. Let ϕ be an anisotropic quadratic form over F.

(1) The first Witt index i(ϕ) coincides with the minimal Witt index of ϕE,
when E runs over all field extension of F such that the form ϕE is
isotropic.

(2) For any field extension L/F such that ϕL is anisotropic, we have i(ϕL ) ≥
i(ϕ).

(3) For an r-codimensional subform ψ of ϕ and every field extension E/F,
one has iW (ψE ) ≥ iW(ϕE ) − r and therefore i(ψ) ≥ i(ϕ) − r.

Proof. The first statement is proven in [7] and the second follows from the
first one. The intersection of a maximal isotropic subspace U (of dimension
iW(ϕE )) of the form ϕE with the space of the subform ψE is of codimension
at most r in U , whence the third statement. 	


We are going to determine the first Witt index of certain subforms of
a given anisotropic quadratic form. These subforms are generic in a sense
(defined over certain purely transcendental extensions of the base field), at
least their first Witt indices turn out to be the minimal possible ones. The
construction of these subforms is borrowed from [3, Proof of Lemma 7.9]
(where a different property of these subforms is studied).

Proposition 1.2. Let ϕ be an anisotropic quadratic F-form, and let n be an
integer such that 0 ≤ n ≤ dim ϕ − 2. There exists a purely transcendental
field extension F̃/F and an n-codimensional subform ψ of ϕF̃ such that

i(ψ) =
{

i(ϕ) − n, if i(ϕ) > n;
1, if i(ϕ) ≤ n.

Proof. It suffices to give a proof for n = 1 in which case dim ϕ ≥ 3. Let t
be an indeterminate. We consider the quadratic F(t)-form η = ϕF(t)⊥〈−t〉
and let F̃ be the function field of η over F(t). The field extension F̃/F
is clearly purely transcendental. Moreover, the anisotropic form ϕF̃ repre-
sents t, therefore ϕF̃ � ψ⊥〈t〉 for a certain 1-codimensional subform ψ of
ϕF̃ over F̃.

We are going to determine the first Witt index of ψ. We set i = i(ϕ). First
of all, by Lemma 1.1(3), we have i(ψ) ≥ i − 1. Let ϕ′ be the anisotropic
part of the form ϕF(ϕ). We write τ for the form ϕ′⊥ 〈−t〉 over F(ϕ)(t).

There are following isomorphisms of F̃(ϕ)-forms (we omit the subscript
F̃(ϕ) in the formula):

ψ⊥H � ψ⊥〈t〉 ⊥ 〈−t〉 � ϕ⊥〈−t〉 � ϕ′⊥ 〈−t〉 ⊥iH = τ⊥iH.

Cancelling one copy ofH, we get ψ � τ⊥(i −1)H over F̃(ϕ). Note that the
form τF̃(ϕ) is anisotropic because the field extension F̃(ϕ)/F(ϕ)(t) is purely
transcendental (by reason of the isotropy of the form ηF(ϕ)(t)). Therefore
the Witt index of ψF̃(ϕ) is i − 1. If i − 1 is positive, then i(ψ) ≤ i − 1 by
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Lemma 1.1(1), and we are done with this case. Otherwise i = 1, ψ � τ
over F̃(ϕ) and by Lemma 1.1(2),

1 ≤ i(ψ) ≤ i(ψF̃(ϕ)) = i(τF̃(ϕ)).(1)

The field extension F(ϕ)(t)(τ)/F(ϕ) is clearly purely transcendental. The
form η is isotropic over F(ϕ)(t)(τ), hence the field F̃(ϕ)(τ) = F(ϕ)(t)(τ)(η)
is purely transcendental over F(ϕ)(t)(τ) and therefore over F(ϕ). It follows
that the form ϕ′ remains anisotropic over F̃(ϕ)(τ). The form ϕ′ is a subform
of τ of codimension 1 over F(ϕ)(t), hence by Lemma 1.1(3),

1 ≤ iW(τF̃(ϕ)(τ)) ≤ iW (ϕ′
F̃(ϕ)(τ)

) + 1 = 1

and therefore, i(τF̃(ϕ)) = 1 and i(ψ) = 1 by (1). 	

Remark 1.3. In the case i(ϕ) > 1, the first Witt index of every 1-codimen-
sional subform is known to be i(ϕ) − 1. This result is due to A. Vishik [11,
Cor. 3] which we do not use in this paper. It readily follows from Theo-
rem 4.1.

2. Correspondences

Let X and Y be schemes over a field F. Suppose that X is equidimensional
and set d = dim(X). A correspondence from X to Y , denoted α : X � Y ,
is an element α ∈ CHd(X × Y ). A correspondence α is called prime if α
is represented by a prime (integral) cycle. Every correspondence is a linear
combination of prime correspondences with integer coefficients.

Let α : X � Y be a correspondence. Assume that X is a variety and Y
is complete. The projection morphism p : X × Y → X is proper and hence
the push-forward homomorphism

p∗ : CHd(X × Y ) → CHd(X) = Z · [X]
is defined [2, § 1.4]. The number mult(α) ∈ Z such that p∗(α) = mult(α) ·
[X] is called the multiplicity of α. Clearly, mult(α+β) = mult(α)+mult(β)
for any two correspondences α, β : X � Y .

A correspondence α : Spec F → Y is represented by a 0-cycle z on Y .
We set deg(z) = mult(α). This coincides with the usual notion of degree
for 0-cycles as defined in [2, def. 1.4].

The image of a correspondence α : X � Y under the pull-back homo-
morphism

CHd(X × Y ) → CH0(YF(X ))

with respect to the flat morphism YF(X ) → X ×Y is represented by a 0-cycle
on YF(X ). The degree of this cycle is equal to mult(α) (see [6, Lemma 1.4]).

Lemma 2.1. Let F̃/F be a purely transcendental field extension. Then

deg CH0(Y ) = deg CH0(YF̃) .
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Proof. It suffices to consider the case where F̃ is the function field of
the affine line A1. The statement follows from the fact that the restriction
homomorphism CH∗(Y ) → CH∗(YF(A1)) is surjective (cf. [5, Proof of
Prop. 3.12]) as the composite of the surjections

CH∗(Y ) → CH∗+1(Y × A1) and CH∗+1(Y ×A1) → CH∗(YF(A1))

(for the surjectivity of the first map see [2, Prop. 1.9]). 	

Let X and Y be varieties over F and dim(X) = d. The generic point of

a multiplicity r > 0 prime d-dimensional cycle Z ⊂ X ×Y defines a degree
r closed point of the generic fiber YF(X ) of the projection X × Y → X and
vice versa. Hence the following two sets are naturally bijective for every
r > 0:

1) multiplicity r prime d-dimensional cycles on X × Y ;
2) closed points of YF(X ) of degree r.

A rational morphism X → Y defines a multiplicity 1 prime correspon-
dence X � Y as the closure of its graph. Conversely, a multiplicity 1 prime
cycle Z ⊂ X ×Y is birational to X and therefore the projection to Y defines
a rational map X ∼ Z → Y . Hence there are natural bijections between the
sets of:

0) rational morphisms X → Y ;
1) multiplicity 1 prime d-dimensional cycles on X × Y ;
2) rational points of YF(X ).

A multiplicity r prime correspondence X � Y can be viewed as a
“generically r-valued map” between X and Y .

Let g : Y → Y ′ be a morphism of complete schemes. The image β of
a correspondence α : X � Y under the push-forward homomorphism

(idX × g)∗ : CHd(X × Y ) → CHd(X × Y ′)

is a correspondence from X to Y ′. The following statement is a consequence
of functoriality of the push-forward homomorphisms:

Lemma 2.2. mult(β) = mult(α). 	

Let X ′ ⊂ X be a closed subvariety such that the embedding i : X ′ ↪→ X is

regular of codimension r [2, B.7.1]. Then for every scheme Y , the embedding
i × idY : X ′ × Y ↪→ X × Y is also regular of codimension r, hence the pull-
back homomorphism

(i × idY )∗ : CHd(X × Y ) → CHd−r(X ′ × Y )

is defined [2, § 6]. The pull-back γ of a correspondence α : X � Y is
a correspondence from X ′ to Y .

Lemma 2.3. mult(γ) = mult(α). 	
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Proof. The statement follows from the commutativity of the diagram [2,
Th. 6.2]:

CHd(X × Y )
(i×idY )∗−−−−→ CHd−r(X ′ × Y )

p∗
�

�p′∗

CHd(X)
i∗−−−→ CHd−r(X ′),

where p and p′ are the projections. 	

Let α : X � Y be a correspondence between varieties of dimension d.

We write αt for the element in CHd(Y × X) corresponding to α under the
exchange isomorphism X × Y � Y × X. The correspondence αt : Y � X
is called the transpose of α.

3. Main theorem

In this section X is an anisotropic projective quadric over a field F. We
recall that the essential dimension dimes(X) of X is defined as the integer
dim(X) − i(X) + 1.

Theorem 3.1. Let X be an anisotropic projective F-quadric and let Y be
a complete F-variety with all closed points of even degree. Suppose Y has
a closed point of odd degree over F(X). Then

(1) dimes(X) ≤ dim(Y );
(2) if, moreover, dimes(X) = dim(Y ), then X is isotropic over F(Y ).

Proof. A closed point of Y over F(X) of odd degree gives rise to a prime
correspondence α : X � Y of odd multiplicity. By Springer’s theorem [8,
ch. VII, Th. 2.3], to prove the statement (2) it is sufficient to find a closed
point of X F(Y ) of odd degree or equivalently, to find an odd multiplicity
correspondence Y � X.

Assume first that i(X) = 1, so that dimes(X) = dim(X). We prove both
statements simultaneously by induction on n = dim(X) + dim(Y ).

If n = 0, i.e., X and Y are of dimension zero, we have X = Spec K and
Y = Spec L , where K and L are field extensions of F with [K : F] = 2 and
[L : F] even. Taking the push-forward to Spec F of the correspondence α
we get the formula

[K : F] · mult(α) = [L : F] · mult(αt).

Since mult(α) is odd, αt : Y � X is a correspondence of odd multiplicity.
Assume that n > 0 and let d be the dimension of X. We are going to

prove (2), so that we have dim(Y ) = d > 0. It is sufficient to show that
mult(αt) is odd. Assume that the multiplicity of αt is even. Let x ∈ X be
a closed point of degree 2. Since the multiplicity of the correspondence
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Y × x : Y � X is 2 and the multiplicity of x × Y : X � Y is zero, we can
modify α by an appropriate multiple of x × Y and therefore assume that
mult(α) is odd and mult(αt) = 0. Hence the degree of the pull-back of αt

on X F(Y ) is zero. By [5, Prop. 2.6] or [10], the degree homomorphism

deg : CH0(X F(Y )) → Z

is injective. Therefore there is a nonempty open subset U ⊂ Y such that the
restriction of α on X × U is trivial. Write Y ′ for the reduced scheme Y \ U ,
i : X × Y ′ → X × Y and j : X × U → X × Y for the closed and open
embeddings respectively. The sequence

CHd(X × Y ′) i∗−→ CHd(X × Y )
j∗−→ CHd(X × U)

is exact [2, Prop. 1.8]. Hence there exists α′ ∈ CHd(X × Y ′) such that
i∗(α′) = α. We can view α′ as a correspondence X � Y ′. By Lemma 2.2,
mult(α′) = mult(α), hence mult(α′) is odd. Since α′ is an integral linear
combination of prime correspondences, we can find a prime correspondence
β : X � Y ′ of odd multiplicity, i.e., Y ′ has a closed point of odd degree over
F(X). The class β is represented by a prime cycle, hence we may assume
that Y ′ is irreducible. Since dim(Y ′) < dim(Y ) = dim(X) = dimes(X), by
induction hypothesis, we get a contradiction with the statement (1).

In order to prove (1) assume that dim(Y ) < dim(X). Let Z ⊂ X × Y
be a prime cycle representing α. Since mult(α) is odd, the field exten-
sion F(X) ↪→ F(Z) is of odd degree. The restriction of the projection
X × Y → Y gives a proper morphism Z → Y . Replacing Y by the image
of this morphism, we come to the situation where Z → Y is a surjection
and so, the function field F(Z) is a field extension of F(Y ).

In view of Proposition 1.2, extending the scalars to a purely transcen-
dental extension F̃ of F, we can find a subquadric X ′ of X of the same
dimension as Y having i(X ′) = 1. We note that according to Lemma 2.1,
the hypothesis on X and Y is still satisfied over F̃. By Lemma 2.3, the pull-
back of α with respect to the regular embedding X ′ ×Y ↪→ X ×Y produces
an odd multiplicity correspondence X ′ � Y . Since dim(X ′) < dim(X),
by the induction hypothesis, the statement (2) holds for X ′ and Y , that is,
there exists an odd multiplicity correspondence β : Y � X ′. We compose β
with the embedding X ′ ↪→ X to produce an odd multiplicity (in fact, of the
same multiplicity as β) correspondence γ : Y � X (Lemma 2.2). We may
assume that γ is prime. Let T ⊂ Y × X be a prime cycle representing γ .
Since the multiplicity of γ is odd, the projection T → Y is surjective, so
that F(T ) is a field extension of F(Y ) of odd degree.

Using the odd multiplicity prime correspondences α : X � Y and
γ : Y � X, we are going to construct an odd multiplicity correspondence
δ : X � X with even mult(δt) getting this way a contradiction with

Theorem 3.2 ([6, Th. 6.4]). Let X be an anisotropic quadric with i(X) = 1.
Then for every correspondence δ : X � X, one has mult(δ) ≡ mult(δt)
(mod 2).
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Note that in the case where Y is smooth we can simply take for δ the
composite of the correspondences α and γ (cf. [6, Proof of Prop. 7.1]).

Lemma 3.3. Let F ↪→ L and F ↪→ E be two field extensions with odd
degree [L : F]. Then there is a field K and field extensions L ↪→ K and
E ↪→ K such that [K : E] is odd.

Proof. We may assume that L is generated over F by one element, say θ. Let
f ∈ F[t] be the minimal polynomial of θ (of odd degree). Choose an odd
degree irreducible polynomial g ∈ E[t] dividing f and set K = E[t]/gE[t].

	

By Lemma 3.3 applied to the field extensions F(T ) and F(Z) of F(Y ), we

can find a field extension K of F(T ) and F(Z) such that [K : F(Z)] is odd.
Let S be a projective variety over F which is a model of the field extension
K/F. Replacing S by the closure of the graph of the rational morphism
S → Z × T , we come to the situation where the rational morphisms S → Z
and S → T are regular. Let f be the composite of S → Z with Z → X and g
be the composite of S → T and T → X. We write δ for the correspondence
X � X given by the image of the morphism ( f, g) : S → X × X. The
multiplicity

mult(δ) = [F(S) : F(X)] = [F(S) : F(Z)] · [F(Z) : F(X)]
is odd and the multiplicity of the transpose of δ is zero since g is not
surjective as dim T = dim Y < dim X, a contradiction.

We have proven Theorem 3.1 in the case i(X) = 1. Consider now the
general case (the first Witt index of X is arbitrary). Let X ′ be a subquadric
of X with dim(X ′) = dimes(X ′) = dimes(X) which we may find after
extending the scalars to a purely transcendental extension according to
Proposition 1.2. By Lemma 2.3, the pull-back β : X ′ � Y of α with respect
to the embedding of X ′×Y into X×Y is an odd multiplicity correspondence.
Therefore dim X ′ ≤ dim Y by the first part of the proof. If dim X ′ = dim Y ,
then again by the first part of the proof, X ′ and hence X have rational points
over F(Y ). 	


As the first corollary of the main theorem we get that an anisotropic
quadric X cannot be compressed to a variety Y of dimension smaller than
dimes(X) with all closed points of even degree:

Corollary 3.4. Let X be an anisotropic projective F-quadric and let Y be
a complete F-variety with all closed points of even degree. If dimes(X) >
dim(Y ), then there are no rational morphisms X → Y. 	

Remark 3.5. For X and Y as in part (2) of Theorem 3.1, assume additionally
that dim(X) = dimes(X), i.e., i(X) = 1. In the proof of Theorem 3.1, it
is shown that mult(αt) is odd for every odd multiplicity correspondence
α : X � Y .
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We have also the following more precise version of Theorem 3.1:

Corollary 3.6. Let X and Y be as in Theorem 3.1. Then there exists a closed
subvariety Y ′ ⊂ Y such that

(i) dim(Y ′) = dimes(X);
(ii) Y ′

F(X ) possesses a closed point of odd degree;
(iii) X F(Y ′) is isotropic.

Proof. Let X ′ ⊂ X be a subquadric with dim(X ′) = dimes(X). Then,
by Theorem 4.1, dimes(X ′) = dim(X ′). An odd degree closed point on
YF(X ) gives an odd multiplicity correspondence X � Y which in turn
gives an odd multiplicity correspondence X ′ � Y . We may assume that
the latter correspondence is prime and take a prime cycle Z ⊂ X ′ × Y
representing it. We define Y ′ as the image of the proper morphism Z → Y .
Clearly, dim(Y ′) ≤ dim(Z) = dim(X ′) = dimes(X). On the other hand,
Z gives an odd multiplicity correspondence X ′ � Y ′, therefore dim(Y ′) ≥
dim(X ′) by Theorem 3.1, and the condition (i) of Corollary 3.6 is satisfied.
Moreover, Y ′

F(X ′) has a closed point of odd degree. Since the field F(X × X ′)
is purely transcendental over F(X ′) as well as over F(X), Lemma 2.1 shows
that there is an odd degree closed point on Y ′

F(X ), that is, the condition
(ii) of Corollary 3.6 is satisfied. Finally the quadric X ′

F(Y ′) is isotropic by
Theorem 3.1; therefore X F(Y ′) is isotropic. 	


4. Application to the algebraic theory of quadratic forms

Now we apply Theorem 3.1 to a special (but may be the most interesting)
case where the variety Y is also a projective quadric:

Theorem 4.1. Let X and Y be anisotropic quadrics over F and suppose
that Y is isotropic over F(X). Then

(1) dimes(X) ≤ dimes(Y );
(2) moreover, the equality dimes(X) = dimes(Y ) holds if and only if X is

isotropic over F(Y ).

Proof. Let us choose a subquadric Y ′ ⊂ Y with dim(Y ′) = dimes(Y ) (we
can do it over a purely transcendental extension of the base field by Proposi-
tion 1.2). Since Y ′ becomes isotropic over F(Y ) and Y is isotropic over F(X),
Y ′ is isotropic over F(X). According to Theorem 3.1, dimes(X) ≤ dim(Y ′).
Moreover, in the case of equality, X is isotropic over F(Y ′) and hence over
F(Y ). Conversely, if X is isotropic over F(Y ), interchanging the roles of
X and Y , we get as above the inequality dimes(Y ) ≤ dimes(X), hence the
equality holds. 	


We have the following upper bound for the Witt index of Y over F(X).
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Corollary 4.2. Let X and Y be anisotropic quadrics over F and suppose
that Y is isotropic over F(X). Then

iW(YF(X )) − i(Y ) ≤ dimes(Y ) − dimes(X) .

Proof. If dimes(X) = 0, the statement is trivial. Otherwise, let Y ′ be a sub-
quadric of Y of dimension dimes(X) − 1. Since dimes(Y ′) ≤ dim(Y ′) <
dimes(X), the quadric Y ′ remains anisotropic over F(X) by the first part
of Theorem 4.1. Therefore, by Lemma 1.1(3), iW(YF(X )) ≤ codimY (Y ′) =
dim(Y ) − dimes(X) + 1, whence the inequality. 	


Let ϕ be an anisotropic quadratic form over F of dimension at least 2 and
let X be the quadric given by ϕ. A field extension K/F is called a generic
splitting field of X (and of ϕ) if X is isotropic over K and for every field
extension L/F with X L isotropic, there is an F-place from K to L . In [7, §4]
M. Knebusch raised the problem to determine the smallest transcendence
degree of a generic splitting field of a given quadric X (we thank J. Arason
for pointing out this question).

Theorem 4.3. The smallest transcendence degree of a generic splitting field
of a quadric X is equal to dimes(X).

Proof. Let X ′ be a subquadric of X of dimension dimes(X). Since X ′ has
a point over every field extension L/F with X L isotropic, the field F(X ′) is
a generic splitting field of X of transcendence degree dimes(X).

Let K/F be a generic splitting field of the quadric X. We will show that

tr. deg(K/F) ≥ dimes(X).(2)

Replace K by a finitely generated subextension of K/F that splits X. Let Y ′
be a projective variety over F which is a model of the field extension K/F.
Since X is isotropic over K , there is a rational morphism Y ′ → X. Let Y
be the closure of the graph of this morphism. Then Y is also a projective
model of K/F and every closed point of Y has even degree since there
is a morphism Y → X. Since X is isotropic over F(X), there is a place
from K to F(X) over F. The valuation ring of this place has a center
y ∈ Y and therefore, the place gives a morphism Spec F(X) → Y with the
image {y}. In particular, Y has a rational point over F(X). By Theorem 3.1,
dim(Y ) ≥ dimes(X), whence the inequality (2). 	


We write W(F) for the Witt ring of a field F and I for the fundamental
ideal of W(F), i.e., for the ideal of classes of even dimensional forms. For
every n ≥ 1 the ideal I n is additively generated by the classes of n-fold
Pfister forms. If ϕ is a nonzero anisotropic form such that ϕ ∈ I n then by the
Arason-Pfister theorem [9, Th. 5.6], dim(ϕ) ≥ 2n . The following theorem
was proved by A. Vishik. We give a simpler proof of this statement due to
D. Hoffmann.

Theorem 4.4. Let ϕ be an anisotropic quadratic form such that ϕ ∈ I n and
dim(ϕ) > 2n. Then dim(ϕ) ≥ 2n + 2n−1.
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Proof. We can write the class of ϕ in W(F) in the form ϕ = ϕ1 + ϕ2 +
· · · + ϕm, where each ϕi is similar to an anisotropic n-fold Pfister form.
Assume that the statement is not true (in particular, n ≥ 2) and choose
a counterexample ϕ of the smallest dimension with the smallest number m
of the ϕi’s (over all fields).

Since the anisotropic part ϕ′ of the form ϕF(ϕ) has dimension smaller
than ϕ, we must have dim(ϕ′) ≤ 2n . Then for the quadric Y given by ϕ we
have

i(Y ) ≥ (dim(ϕ) − 2n)/2 = (dim(Y ) − 2n)/2 + 1

and therefore,

dimes(Y ) = dim(Y ) − i(Y ) + 1(3)

≤ dim(Y )/2 + 2n−1 < 2n + 2n−2 − 1

since by assumption dim(ϕ) < 2n + 2n−1.
We are going to prove that all the ϕi are pairwise similar. Assume that

there are two non-similar forms ϕi and ϕ j . Consider the anisotropic part ψ
of the form ϕi⊥ϕ j . Note that ψ is not similar to an n-fold Pfister form by
the choice of m.

We claim that dim(ψ) ≥ 2n + 2n−1. By a theorem of Elman-Lam [1,
Th. 4.5], the Witt index of the form ϕi⊥ϕ j is either 0 of 2s, where s is the
linkage number of ϕi and ϕ j . We have s �= n since the forms ϕi and ϕ j are
non-similar and s �= n − 1 since ψ is not similar to an n-fold Pfister form.
Thus, s ≤ n − 2 and therefore, dim(ψ) ≥ 2n + 2n−1. The claim is proved.

It follows from [1, Th. 3.2] that ψ is not similar to an (n + 1)-fold
Pfister form. Therefore, by [9, Th. 5.4], ψ is not hyperbolic over F(ψ). The
Arason-Pfister theorem implies that the dimension of the anisotropic part
of ψF(ψ) is at least 2n . Hence i(ψ) ≤ (dim(ψ)− 2n)/2 and therefore, for the
quadric X given by ψ we have

dimes(X) = dim(ψ) − i(ψ) − 1(4)

≥ dim(ψ)/2 + 2n−1 − 1 ≥ 2n + 2n−2 − 1.

It follows from Theorem 4.1, (3), and (4) that ϕ is anisotropic over F(ψ),
so that ϕ over F(ψ) is also a minimal counterexample. But the dimension of
the anisotropic part of ψ (i.e., of ϕi⊥ϕ j) over F(ψ) is smaller than dim(ψ).
Iterating the construction we come to the situation when the dimension of the
anisotropic part of ϕi⊥ϕ j becomes smaller than 2n + 2n−1, a contradiction
to the claim.

We have proved that all the ϕi are similar to some n-fold Pfister form ρ,
so that the class of ϕ in the Witt ring is divisible by ρ and therefore dim(ϕ)
is divisible by 2n [9, Th. 5.4(iv)] since ϕ is anisotropic. This contradicts the
inequality 2n < dim ϕ < 2n + 2n−1. 	
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