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Abstract. Let A be a separable algebra (with an involution). The vari-
eties of flags of (isotropic) ideals of A are considered and certain decom-
positions of these varieties in the category of Chow-correspondences are
produced. As a consequence, decompositions in various cohomology theo-
ries are obtained.
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0. Introduction

Let ϕ be a quadratic form over a field and let ψ be the anisotropic part
of ϕ (i.e., an anisotropic quadratic form with the same Witt class as ψ). It
was probably first observed by M. Rost that though the precise relationship
between the projective quadrics Xϕ and Xψ, determined by ϕ and ψ, is rather
messy, their relationship in the motivic category is quite clear (see [16]). This
relationship allows to compute various cohomological invariants of Xϕ in terms
of the invariants of Xψ because of the universal property of motives.

Similar result is obtained in [10] for the Severi-Brauer varieties: for a cen-
tral simple algebra A over a field, the motive of the Severi-Brauer variety XA

determined by A is computed in terms of the motive of XD, where D is the un-
derlying division algebra (i.e., a central division algebra with the same Brauer
class as A).

These two results solve particular cases of the following general problem. Let
G be a linear algebraic group (over an arbitrary field) and let X be a projec-
tive G-homogeneous variety. One likes to compute the motive of X in terms
of motives of some Gan-homogeneous varieties, where Gan is the semisimple
anisotropic kernel of G.

A computation of this type is known in the split case [12]. It is based on
the existence of a cellular structure on X. To attack the general situation,
a relative analog of this notion is needed. Here, we propose a notion of a
relative cellular space X (6.1). After that we express the motive of X via the
motives of the bases of its cells (6.5). More precisely, this result holds already
on the level of the category of correspondences (while the motivic category is
the pseudo-abelian completion of the category of correspondences). By that
reason, we don’t work with the motivic category at all.

We apply the theorem on relative cellular spaces to the case of an (isotropic)
flag variety X given by a separable algebra (with involution) A and compute
the motive of X in terms of the motives of some flag varieties given by the
anisotropic kernel (10.12, 14.5) of A. In other words, we solve the general
problem, formulated above, in the case where the linear algebraic group G is
of classical type.

We start the first part with a self-contained discussion of the category of
correspondences. Although, similar discussions exist already in the literature
(see e.g. [13]), there are at least two reasons to include it here. Usually, only
absolutely irreducible varieties (or only varieties with absolutely irreducible
components) are allowed. However, it is important for our purposes to be able
to work with non-absolutely irreducible varieties as well in order to be able to
handle all flag varieties. In fact, even computing the motive of an absolutely
irreducible flag variety, one may meet non-absolutely irreducible components in
the answer: for instance, if ϕ is an isotropic 4-dimensional quadratic form with
non-trivial determinant d, then the quadric Xϕ is absolutely irreducible, while
in the decomposition of its motive the spectrum of the quadratic extension
generated by

√
d occurs.
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Another reason to include some back-grounds on correspondences is the
following. We need a precise list of properties of a cohomology theory H which
guarantee that H determines a functor on the category of correspondences (and
therefore a computation of the motive of a variety X gives a computation of
H(X)), given in §2, and we don’t find a list like that in the literature.

The second part contains a construction of flag varieties via the language of
functors of points developed in [5]. Although in the split case it is already done
in the literature (see [5, Chap. I] or [8, §§9.7, 9.8] for construction of (flag)
varieties of subspaces), there is no reference even in the simplest non-split case,
the case of Severi-Brauer varieties. Indeed, the definitions of Severi-Brauer
varieties, which can be found in the literature, either determine the Severi-
Brauer variety XA of an algebra A by equations in a projective space and are
complicated, non-invariant (involving, e.g., the choice of a basis of A as in [1,
§1.2]), and difficult to work with; or they are sketched (when, e.g., only the
set of rational points of XA is defined as in [19, §6 of Chap. X]).

We think that the only natural and the most simple way to define and
to work with the flag varieties is the way of using the language of functors of
points. This way is already being mainly used for working with linear algebraic
groups. So, it is natural to expect that homogeneous varieties, being objects
closely related to linear algebraic groups, can be also convenient handled by
using this language. However, it is of course more complicated with non-affine
homogeneous varieties as with affine algebraic groups. Necessary back-grounds
on the language of functors of points (almost without proofs) are given in the
beginning of the second part.
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Part 1. Cohomology of relative cellular spaces

Conventions.
Let F be a field. By a variety over F or an F -variety, we mean a separated

F -scheme of finite type, so no assumptions like “integral” or “reduced” are
made. Thus any closed subscheme of an F -variety is an F -variety as well. An
F -variety is called geometrically reduced (resp. geometrically irreducible), if it
is reduced (resp. irreducible) over any field extension of F or equivalently over
an algebraic closure of F . A variety is called “smooth”, if it is “geometrically
regular”. A variety is called complete, if the structure morphism is proper.

1. Category of correspondences

Let F be a field, V the category of smooth, complete (or projective) F -
varieties. The category of (Chow-)correspondences CV has the same objects
as V , while the set of morphisms Hom(X, Y ) for two varieties X and Y is by
definition the Chow group CH(X × Y ) of algebraic cycles on X × Y modulo
rational equivalence [7]. Here are the properties of the Chow group which are
needed for constructing the category of correspondences (we have to apologize
for mixing the “data” and “axioms” together):

• for any X ∈ V , one has an abelian group CH(X);
• for any f ∈ Mor(X, Y ), one has

– the pull-back homomorphism

f ∗ : CH(Y )→ CH(X)

which gives a (contravariant) functor V → Ab to the category of
abelian groups;

– the push-forward homomorphism

f∗ : CH(X)→ CH(Y )

which gives a (covariant) functor V → Ab;
– if f is an isomorphism, then the isomorphisms f ∗ and f∗ are mutually
inverse;

• (“compatibility with products”) for any f ∈ Mor(X,Y ) and any
Z ∈ V , the composition pr ∗Y ◦f∗ coincides with (f × idZ)∗ ◦ pr ∗X , where
the morphisms in use are shown in the diagram:

X × Z f×idZ−−−→ Y × Z
prX

y yprY

X
f−−−→ Y

(prX and prY are the projections);
• (“compatibility with co-products”) for any Xi ∈ V , i = 1, 2, the
abelian group CH(X1

⨿
X2) is a direct sum of CH(X1) and CH(X2),

where the homomorphisms of inclusions and projections are given by
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the pull-backs and push-forwards with respect to the imbeddings Xi ↪→
X1

⨿
X2;

• for any X ∈ V , the abelian group CH(X) has a commutative unital ring
structure (we shall denote the unit of CH(X) by 1X);
• for any f ∈ Mor(X, Y )

– the pull-back f ∗ : CH(Y )→ CH(X) is a ring homomorphism, i.e.

f ∗(β1 · β2) = f ∗(β1) · f ∗(β2)

for β1, β2 ∈ CH(Y ) and f ∗(1Y ) = 1X ;
– (projection formula) the push-forward f∗ : CH(X) → CH(Y ) is a
homomorphism of CH(Y )-modules, i.e.

f∗
(
f ∗(β) · α

)
= β · f∗(α)

for β ∈ CH(Y ) and α ∈ CH(X).

The Chow group has also a gradation (by codimension of cycles) but we
don’t consider it yet. Up to §6, CH can be viewed formally as something
satisfying the properties listed.

Elements of Hom(X, Y ) are called correspondences.

Definition 1.1. For two correspondences α ∈ Hom(X,Y ) and β ∈ Hom(Y, Z)
the composition β ◦ α ∈ Hom(X,Z) is defined as

(prXZ)∗

(
pr ∗Y Z(β) · pr ∗XY (α)

)
where the dot stays for the multiplication in the Chow group, asterisks for
the pull-backs and push-forward and the morphisms are the projections of the
product X × Y × Z shown in the diagram:

X × Y prXY←−−− X × Y × Z prY Z−−−→ Y × ZyprXZ

X × Z

Definition 1.2. Let us define the graph class Γf of a morphism of varieties
f ∈ Mor(X, Y ) as

Γf = (idX , f)∗(1X) ∈ CH(X × Y )

where (idX , f) : X → X × Y is the morphism given by idX and f . The graph
class ΓidX

for a variety X ∈ V will be called the diagonal class and denoted
by δX .

Proposition 1.3. The category of correspondences CV is:
1) really a category; 2) an additive category; 3) additively self-dual.
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Proof. 1) Let us check that the diagonal class gives an identity. Take a corre-
spondence α ∈ Hom(X,Y ) and consider the diagram

X
prX←−−− X × Y

(idX , idX)

y y(idX , idX)×idY

X ×X pr12←−−− X ×X × Y pr23−−−→ X × Yypr13

X × Y
We have

α ◦ δX = (pr 13)∗

(
pr ∗23(α) · pr∗12(δX)

)
.

Substituting (idX , idX)∗(1X) for δX and using the “compatibility with prod-
ucts” for the square from the diagram, we get

α ◦ δX = (pr 13)∗

(
pr ∗23(α) ·

(
(idX , idX)× idY

)
∗ ◦ pr

∗
X(1X)

)
=

= (pr 13)∗ ◦
(
(idX , idX)× idY

)
∗

((
(idX , idX)× idY

)∗ ◦ pr ∗23(α) · pr ∗X(1X))
where for the last equality the projection formula is used. Since

pr 13 ◦
(
(idX , idX)× idY

)
= idX×Y = pr 23 ◦

(
(idX , idX)× idY

)
and pr ∗(1X) = 1X×Y , the expression obtained equals α.

The equality δY ◦ α = α can be checked analogously.
To verify that the composition rule is associative, choose some

α ∈ Hom(T,X), β ∈ Hom(X, Y ), and γ ∈ Hom(Y, Z) .

The composition γ ◦ (β ◦ α) will be computed with a help of the following
diagram:

T × Y

prTXY
TY ↗ ↖ prTY Z

TY

T ×X × Y
prTXY

XY

−−−→ X × Y Y × Z
prTY Z

Y Z

←−−− T × Y × Z

prTXY
TX ↓ prTXY ↖ ↑ prXY prY Z ↑ ↗ prTY Z ↓ prTY Z

TZ

T ×X prTX←− T ×X × Y × Z prTZ−→ T × Z
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We have

γ ◦ (β ◦ α) = (prTY ZTZ )∗(
(prTY ZY Z )∗(γ) · (prTY ZTY )∗ ◦ (prTXYTY )∗

(
(prTXYXY )∗(β) · (prTXYTX )∗(α)

))
.

Using the “compatibility with products” for the rhombus in the diagram, we
replace the composition (prTY ZTY )∗ ◦ (prTXYTY )∗ by (prTY Z)∗ ◦pr ∗TXY . After that,
the projection formula applied to the morphism prTY Z gives

γ ◦ (β ◦ α) =
=(prTY ZTZ )∗ ◦ (prTY Z)∗(

pr ∗TY Z ◦(prTY ZY Z )∗(γ) · pr ∗TXY
(
(prTXYXY )∗(β) · (prTXYTX )∗(α)

))
=

= (prTZ)∗

(
(prY Z)

∗(γ) · (prXY )∗(β) · (prTX)∗(α)
)
.

Computing (γ ◦ β) ◦ α in the analogous way, one gets the same expression.

2) For any X,Y ∈ CV the set Hom(X, Y ) = CH(X×Y ) is an abelian group
and the composition rule is evidently biadditive.

The zero object is given by ∅ (it follows from the “compatibility with co-
products” that CH(∅) = 0).

For any Xi ∈ V , i = 1, 2, the disjoint union X1

⨿
X2 is a direct sum of X1

and X2 in CV , where the morphisms of inclusions and projections are given by
the graph classes of the imbeddings Xi ↪→ X1

⨿
X2 and their transpositions

(use “compatibility with co-products”; see the next paragraph for the definition
of transposition).

3) ForX,Y ∈ V denote by t : X×Y → Y ×X the morphism of interchanging
the factors. Since t is an isomorphism and t ◦ t = idX×Y , we have t∗ = t∗.
For α ∈ Hom(X,Y ), one denotes by αt (and calls the transposition of α) the
correspondence

t∗(α) = t∗(α) ∈ Hom(Y,X) .

The identical on the objects (contravariant) functor CV → CV which puts
every α to αt is additive and inverse to itself.

Proposition 1.4. The rules

X ∈ V 7→ X ∈ CV , f ∈ Mor(X,Y ) 7→ Γf ∈ Hom(X, Y )

determine a (covariant) functor V → CV.

Proof. For any X ∈ V , we have ΓidX
= δX by the definition of δX (1.2).

Let us check the composition rule Γg ◦ Γf = Γg◦f for f ∈ Mor(X,Y ) and
g ∈ Mor(Y, Z). Since

(
idX , (g ◦ f)

)
can be decomposed in the composition

X
(idX , f)−−−−→ X × Y idX ×(idY , g)−−−−−−−→ X × (Y × Z) prXZ−−−→ X × Z
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one has
Γg◦f = (prXZ)∗ ◦

(
idX ×(idY , g)

)
∗(Γf ) .

For computation of Γg ◦ Γf we use the following diagram:

X × Y prY−−−→ Y

idX ×(idY , g)

y y(idY , g)

X × Y prXY←−−− X × Y × Z prY Z−−−→ Y × Z
prXZ

y
X × Z

By the “compatibility with products” applied to the square, we have

pr ∗Y Z ◦(idY , g)∗ =
(
idX ×(idY , g)

)
∗ ◦ pr

∗
Y

thereby Γg ◦ Γf is push-forward with respect to prXZ of the product(
idX ×(idY , g)

)
∗ ◦ pr

∗
Y (1Y ) · pr ∗XY (Γf ) =

=
(
idX ×(idY , g)

)
∗

(
pr ∗Y (1Y ) ·

(
idX ×(idY , g)

)∗ ◦ pr ∗XY (Γf ))
(the projection formula for the morphism idX ×(idY , g) is used). Since

prXY ◦
(
idX ×(idY , g)

)
= idX×Y and pr ∗Y (1Y ) = 1X×Y

the product insight of the big delimiters is simply Γf .

2. Geometric cohomology theories

We say that H is a geometric cohomology theory, if

• for any X ∈ V , one has an abelian group H(X);
• for any f ∈ Mor(X, Y ), one has

– a pull-back homomorphism

f ∗ : H(Y )→ H(X)

which gives a (contravariant) functor V → Ab;
– a push-forward homomorphism

f∗ : H(X)→ H(Y )

which gives a (covariant) functor V → Ab;
• (“compatibility with products”) for any square in V of the type

X × Y × Z prY Z−−−→ Y × Z
prXY

y yprY Z

X × Y prXY

−−−→ Y

the compositions (prY Z)∗ ◦ prXY∗ and (prY Z)∗ ◦ pr ∗XY coincide;
• for any X ∈ V , the abelian group H(X) has a structure of a (left) CH(X)-
module;
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• for any f ∈ Mor(X, Y )
– the pull-back f ∗ : H(Y ) → H(X) is a homomorphism of CH(Y )-
modules, i.e.

f ∗(β · y) = f ∗(β) · f ∗(y)

for β ∈ CH(Y ) and y ∈ H(Y );
– (first projection formula) the push-forward f∗ : H(X) → H(Y ) is
a homomorphism of CH(Y )-modules, i.e.

f∗
(
f ∗(β) · x

)
= β · f∗(x)

for β ∈ CH(Y ) and x ∈ H(X).
– (second projection formula)

f∗
(
α · f ∗(y)

)
= f∗(α) · y

for α ∈ CH(X) and y ∈ H(Y ).

Definition 2.1. Let H be a geometric cohomology theory. For any correspon-
dence α ∈ Hom(X, Y ), we define a group homomorphism H(α) : H(X)→ H(Y )
as the composition

H(X)
pr∗X−−−→ H(X × Y )

α·−−−→ H(X × Y )
(prY )∗−−−→ H(Y )

where the middle arrow is the multiplication by α ∈ CH(X × Y ).

Proposition 2.2. For any morphism of varieties f ∈ Mor(X, Y ), one has
H(Γf ) = f∗ and H(Γtf ) = f ∗. For any α ∈ CH(X) the homomorphism

H
(
(idX , idX)∗(α)

)
coincides with the multiplication by α.

Proof. To compute H(Γf ) we use the following diagram:

Xy(idX , f)

X
prX←−−− X × Y prY−−−→ Y .

For x ∈ H(X), one has

H(Γf )(x) = (prY )∗

(
(idX , f)∗(1X) · pr ∗X(x)

)
=

= (prY )∗ ◦ (idX , f)∗
(
1X · (idX , f)∗ ◦ pr ∗X(x)

)
where the latter equality holds by the second projection formula. Since

prX ◦(idX , f) = idX and prY ◦ (idX , f) = f

we get f∗(x).
Computing H(Γtf ), we have to use (f, idX) instead of (idX , f):

Xy(f, idX)

Y
prY←−−− Y ×X prX−−−→ X .
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For y ∈ H(Y ), one has

H(Γtf )(y) = (prX)∗

(
(f, idX)∗(1X) · pr ∗Y (y)

)
=

= (prX)∗ ◦ (f, idX)∗
(
1X · (f, idX)∗ ◦ pr ∗Y (y)

)
=

= (idX)∗
(
f ∗(y)

)
= f ∗(y) .

For computation of H
(
(idX , idX)∗(α)

)
we use the diagram

Xy(idX , idX)

X
pr1←−−− X ×X pr2−−−→ X .

For x ∈ H(X), one has

H
(
(idX , idX)∗(α)

)
(x) = (pr 2)∗

(
(idX , idX)∗(α) · pr ∗1(x)

)
=

= (pr 2)∗ ◦ (idX , idX)∗
(
α · (idX , idX)∗ ◦ pr ∗1(x)

)
= α · x .

Proposition 2.3. The rules

X ∈ CV 7→ H(X) ∈ Ab,
α ∈ Hom(X,Y ) 7→ H(α) ∈ Hom

(
H(X),H(Y )

)
determine an additive functor H: CV → Ab.

Proof. First we check that H is a functor. Taking any X ∈ V and applying the
formula H(Γf ) = f∗ to the particular case f = idX or the formula

H
(
(idX , idX)∗(α)

)
= α·

to the particular case α = 1X , we see that H(δX) is the identity.
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Let us check the composition rule. Fix α ∈ Hom(X, Y ), β ∈ Hom(Y, Z),
and x ∈ H(X). Here is the diagram of morphisms we shall use:

Y

prXY
Y ↗ ↖ prY Z

Y

X × Y Y × Z

prXY
X ↓ prXY ↖ ↗ prY Z ↓ prY Z

Z

X
prX←− X × Y × Z prZ−→ Z

prXZ
X ↖ ↓ prXZ ↗ prXZ

Z

X × Z

We have

H(β) ◦ H(α)(x) = (prY ZZ )∗

(
β · (prY ZY )∗ ◦ (prXYY )∗

(
α · (prXYX )∗(x)

))
.

Since the rhombus in the diagram is of the type as in the axiom “compatibility
with products”, one can replace the composition (prY ZY )∗◦(prXYY )∗ by (prY Z)∗◦
(prXY )

∗. After that we use the first projection formula with respect to the
morphism prY Z . It gives

(prY ZZ )∗ ◦ (prY Z)∗
(
pr ∗Y Z(β) · pr ∗XY

(
α · (prXYX )∗(x)

))
=

= (prZ)∗

(
pr ∗Y Z(β) · pr ∗XY (α) · pr ∗X(x)

)
(besides of functoriality for the pull-back and push-forward, the module prop-
erty of the pull-back is used here).

From the other hand

H(β ◦ α)(x) = (prXZZ )∗

(
(prXZ)∗

(
pr ∗Y Z(β) · pr ∗XY (α)

)
· (prXZX )∗(x)

)
=

= (prXZZ )∗ ◦ (prXZ)∗
(
pr ∗Y Z(β) · pr ∗XY (α) · pr ∗XZ ◦(prXZX )∗(x)

)
=

= (prZ)∗

(
pr ∗Y Z(β) · pr ∗XY (α) · pr ∗X(x)

)
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(for the first equality we use the definition of β ◦ α (1.1), for the second one
— the second projection formula, for the third one — functorialities). This is
the same expression as above.

Thus H is a functor.
For any X, Y ∈ V the map

Hom(X,Y )→ Hom
(
H(X),H(Y )

)
is evidently a group homomorphism. Thus H is an additive functor.

Corollary 2.4. For any Xi ∈ V, i = 1, 2, the abelian group H(X1

⨿
X2) is a

direct sum of H(X1) and H(X2), where the homomorphisms of inclusions and
projections are given by the pull-backs and push-forwards with respect to the
imbeddings Xi ↪→ X1

⨿
X2.

3. Yoneda’s lemma or Manin’s identity principle

For X, Y ∈ CV , one could define the tensor product X ⊗ Y as the object of
CV given by the (direct) product of varieties X × Y ∈ V . However we prefer
not to use different signs for “the same thing” and shall write X × Y instead
of X ⊗ Y in spite of the fact that it is not the product of X and Y in CV .

Definition 3.1. Let α ∈ Hom(X1, X2) and β ∈ Hom(Y1, Y2). Consider the
projections

X1 ×X2
prX←−−− X1 × Y1 ×X2 × Y2

prY−−−→ Y1 × Y2

and define α⊗ β ∈ Hom(X1 × Y1, X2 × Y2) as

α⊗ β = pr ∗X(α) · pr ∗Y (β) .

If for any X ∈ V we consider CH(X) as a module over itself, we get a
geometric cohomology theory. In particular, for any α ∈ Hom(X,Y ), a homo-
morphism

CH(α) : CH(X)→ CH(Y )

is defined (2.1).

Lemma 3.2. For any α ∈ Hom(X, Y ) and β ∈ Hom(Y, Z), one has

CH(δX ⊗ β)(α) = β ◦ α .
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Proof. The morphisms in use are shown in the diagram:

X ×X (idX , idX)←−−−−−− X

pr13

x xprX

X × Y ×X × Z f←−−− X × Y × Z

pr12 ↘ ↙ prXY

X × Y
pr24 ↘ ↙ prY Z

Y × Z
pr14 ↘ ↙ prXZ

X × Z

Note that all the three triangles commute. By definition, f is obtained from
(idX , idX) by the base change with respect to pr 13. We have

CH(δX ⊗ β)(α) = (pr 14)∗

(
pr ∗13(δX) · pr ∗24(β) · pr ∗12(α)

)
.

Substituting (idX , idX)∗(1X) for δX , replacing the appeared composition

pr ∗13 ◦(idX , idX)∗ by f∗ ◦ pr ∗X
and applying the projection formula with respect to f , we get

(pr 14)∗ ◦ f∗
(
pr ∗X(1X) · f ∗( pr ∗24(β) · pr ∗12(α))) =

= (prXZ)∗

(
pr ∗Y Z(β) · pr ∗XY (α)

)
= β ◦ α .

Proposition 3.3 (Manin’s identity principle). A correspondence

α ∈ Hom(X, Y )

is an isomorphism (as a morphism in the category CV) if and only if

CH(δT ⊗ α) : CH(T ×X)→ CH(T × Y )

is a group isomorphism for any variety T ∈ V.

Proof. By the Yoneda’s lemma, α is an isomorphism if and only if

α◦ : Hom(T,X)→ Hom(T, Y )

is an isomorphism for any T ∈ CV . In our situation we have

Hom(T,X) = CH(T ×X), Hom(T, Y ) = CH(T × Y )

and by the lemma α◦ = CH(δT ⊗ α).



14 N. A. KARPENKO

4. Gradations

Now it comes the time to remember that for any X ∈ V the Chow group
CH(X) has a gradation

CH(X) =
⊕
p

CHp(X)

namely the gradation by codimension of cycles. One can also consider the
gradation by dimension of cycles

CH(X) =
⊕
p

CHp(X)

which can be determined by the rule

CHp(X) = CHdimX−p(X)

for an irreducible variety X and if X ∈ V is arbitrary then

CHp(X) =
⨿
k

CHp(X
k)

where Xk are components of X (we use the superscripts for components be-
cause we want to reserve the subscripts for a special use). Here are some
properties of the gradations:

• the pull-backs respect the gradation by codimension;
• the push-forwards respect the gradation by dimension;
• for every X ∈ V , the ring structure on CH(X) respects the gradation by
codimension.

Using the gradation on CH one defines a notion of degree for the correspon-
dences. We do it only for irreducible varieties.

Definition 4.1. A correspondence α ∈ Hom(X,Y ) between irreducible vari-
eties X and Y is called of degree p (notation: degα = p), if

α ∈ CHdimX+p(X × Y ) .

Suppose that H is a geometric cohomology theory and for every X ∈ V the
group H(X) has a gradation

H(X) = H∗(X) =
⊕
p

Hp(X) .

We shall also refer to this gradation as to the gradation by codimension. For
an irreducible variety X ∈ V , we put

Hp(X) = HdimX−p(X)

and for an arbitrary X ∈ V , we put

Hp(X) =
⨿
k

Hp(X
k)

where Xk are components of X. We refer to this secondary gradation as to
the gradation by dimension.
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We say that H∗ is a graded geometric cohomology theory, if

• the pull-backs respects the gradation (by codimension);
• the push-forwards respects the gradation by dimension;
• for every X ∈ V , the structure of CH(X)-module on H(X) respects the
gradations (by codimension).

Lemma 4.2. Let H∗ be a graded geometric cohomology theory, X,Y ∈ V be
irreducible varieties, and α ∈ Hom(X, Y ) be a correspondence of degree p.
Then H(α) : H∗(X) → H∗(Y ) is a homogeneous homomorphism of degree p,
i.e.

H(α)
(
Hq(X)

)
⊂ Hp+q(Y ) .

Proof. Let x ∈ Hq(X). Since a pull-back respects the gradation, we have

pr ∗X(x) ∈ Hq(X × Y ) .

Further, since α ∈ CHdimX+p(X × Y ) and the multiplication respects the
gradation, it holds

α · pr ∗X(x) ∈ HdimX+p+q(X × Y ) .

Although X and Y are assumed to be irreducible, the product X × Y needs
not to be. However, every component of the product is of the same dimension
dimX + dimY ([9, Prop. 10.1(d) of Chap. III]), thereby

HdimX+p+q(X × Y ) = HdimY−p−q(X × Y ) .

Since a push-forward respects the lower gradation, we obtain

H(α)(x) = (prY )∗

(
α · prX(x)

)
∈ HdimY−p−q(Y ) = Hp+q(Y ) .

Definition 4.3. Let us call a correspondence α ∈ Hom(X, Y ) homogeneous,
if for every component Xk of the variety X and for every component Y l of Y
the component αkl ∈ Hom(Xk, Y l) of α is a correspondence of some degree.

A correspondence α ∈ Hom(X, Y ) will be called dichotomous, if for every l
the component αkl ∈ Hom(Xk, Y l) of α is non-zero for at most one value of k.

Lemma 4.4. Suppose that a correspondence α ∈ Hom(X, Y ) is homogeneous,
dichotomous, and an isomorphism in CV; let Xk and Y l be components of X
and Y , and αkl ∈ Hom(Xk, Y l) be the corresponding components of α. For
every graded geometrical cohomological theory H∗ and every k, one has an
isomorphism of graded groups(

H(αkl)
)
l
: H∗(Xk) −−−→∼

⨿
l: αkl ̸=0

H∗(Y l)[degαkl]

where H∗(Y l)[degαkl] denotes the group H∗(Y l) with the gradation twisted by
the integer degαkl.
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Proof. Since α is dichotomous, the homomorphism H(α) decomposes in the
direct sum over k of the homomorphisms(

H(αkl)
)
l
: H(Xk)→

⨿
l: αkl ̸=0

H(Y l) .

Since H(α) is an isomorphism, every summand is an isomorphism as well. Since
α is homogeneous, the statement on the gradations follows from (4.2).

5. Some examples of graded geometric cohomology theories

Chow groups with coefficients
A big source of examples is the theory of Chow groups with coefficients, de-
veloped in [17]. We use the terminology and notation of [17]. Let M be a
cycle module over F [17, def. (2.1)]. For any variety X ∈ V , the Chow group
A∗(X;M) with coefficients in M is defined [17, §5] and is graded by codimen-
sion of cycles. We put

H∗(X) = A∗(X;M) .

Then H∗ is a graded geometric cohomology theory.
For instance, the Quillen’s and the Milnor’s K-cohomology (see also [11, §2])

occur this way We refer to [17] for a list of further examples of cycle modules.
Notice that if M is Z-graded, one has [17, §5]

A∗(X;M) =
⨿
n∈Z

A∗(X;M,n)

and every component A∗(X;M,n) gives a graded cohomology theory as well.

Higher Chow groups
Since the properties of higher Chow groups CH∗(X,n) are established in [3]
only for quasi-projective varieties X, for this example V has to be defined as
the category of smooth projective F -varieties. Fix n ∈ Z and put

H∗(X) = CH∗(X,n) .

Then H∗ is a graded geometric cohomology theory.

Adjoint K-groups
Fix n ∈ Z. For X ∈ V , consider the n-th Quillen’s K-group K ′

n(X) together
with the filtration by codimension of support [15, §7]. Let H∗(X) be the adjoint
graded group. Then H∗ is a graded geometric cohomology theory.

Étale cohomology
Fix n, l ∈ Z. For any p ∈ Z, let Hp(X) be the étale cohomology group
Hn+2p(X,µ⊗p

l ) [14], where µl is the sheaf of the l-th roots of unity. Then H∗

is a graded geometric cohomology theory.
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6. Relative cellular spaces

Definition 6.1. A variety X ∈ V supplied with the following data:

• with a finite increasing filtration by closed (not necessarily smooth) sub-
varieties

∅ = X(−1) ⊂ X(0) ⊂ · · · ⊂ X(n) = X ;

• and for every successive difference X(i\i−1) = X(i) \ X(i−1) with a vector
bundle

pi : X(i\i−1) → Yi
over a variety Yi ∈ V

will be called a (relative) cellular space. The varieties Yi will be called the
bases of cells and the union

Y =
n⨿
i=0

Yi

the (total) base of X.

Remark 6.2. One can also say that a variety X ∈ V supplied with the filtra-
tion is a relative cellular space over Y , if the “adjoint” variety

GrX =
n⨿
i=0

X(i\i−1)

is a vector bundle over Y . Note that there is a morphism GrX → X given by
the (locally closed) imbeddings X(i\i−1) ↪→ X.

Remark 6.3. Although in the definition of a cellular space the varieties X(i)

are not supposed to be reduced, GrX is geometrically reduced (even smooth)
as a vector bundle over a variety from V . If one likes, one can introduce the
reduced variety structure on every closed subset X(i) ⊂ X; since the adjoint
variety will be not changed by this procedure, we shall still have a cellular
space over the same base.

Remark 6.4. Up to this §, it was possible to replace the Chow group by
any other theory having the properties listed in the very beginning. From
now on, we begin to use more specific properties; in particular, proving the
theorem below, we work with the Chow groups of non-complete and non-
smooth varieties.

In the notation of the definition, the graph of the vector bundle

p =
n⨿
i=0

pi : GrX → Y

is a subset of (GrX)×Y . Take its closure in X×Y and denote by π the class of
this closure in the Chow group CH(X×Y ) (by definition, the class in the Chow
group of a closed subset is the sum of the classes of its irreducible components;
another way of defining is to introduce the reduced variety structure on the
closed subset and to use the definition of the class of a subvariety [7, §1.5];
notice that in our case the irreducible components are disjoint, i.e. coincide
with the connected components).
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Theorem 6.5. Let X be a cellular space with the total base Y . The corre-
spondence π ∈ Hom(X, Y ) defined above is

1. an isomorphism;
2. homogeneous and dichotomous (4.3).

Proof. 1. Instead to deal with π, we shall check that πt is an isomorphism
(that is of course equivalent to the statement on π). For this, it suffices to
check that

CH(δT ⊗ πt) : CH(T × Y )→ CH(T ×X)

is an isomorphism for any variety T ∈ V (3.3). The variety T × X has a
structure of a cellular space induced from X, namely (T ×X)(i) = T ×X(i) and
the cell bases are T×Yi. Moreover, the correspondence from Hom(T×Y, T×X)
we could construct via this cellular space structure coincides with δT⊗πt. Thus
it is enough only to verify that

CH(πt) : CH(Y )→ CH(X)

is an isomorphism.
Fix some i between 0 and n and consider the exact sequence of Chow groups

[7, prop. 1.8]

CH(X(i−1))→ CH(X(i))→ CH(Ui)→ 0

where the first arrow is the push-forward with respect to the closed imbedding
X(i−1) ↪→ X(i) and the second arrow is the pull-back with respect to the open
imbedding Ui = X(i\i−1) ↪→ X(i). Since pi : Ui → Yi is a vector bundle, the
pull-back p∗i : CH(Yi) → CH(Ui) is an isomorphism [7, thm. 3.3] and so we
obtain an exact sequence

CH(X(i−1))→ CH(X(i))→ CH(Yi)→ 0 .

Now we are going to fulfill the following program:

a): to construct a splitting of the epimorphism;
b): to show that the left-hand side arrow is injective;
c): to show that the resulting (obtained by induction on i) isomorphism

CH(Y ) =
⨿
i

CH(Yi) −−−→∼
CH(X)

coincides with CH(πt).

a) Denote by Vi ⊂ Yi × Ui the “transposition” of the graph of pi : Ui → Yi;
let Zi be its closure in Yi ×X(i) and let

Yi
prYi←−−− Zi

prX(i)−−−→ X(i)

be the projections. In the following lemma we consider Zi as a reduced variety.
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Lemma 6.6. The following square commutes:

CH(X(i))
in∗

Ui−−−→ CH(Ui)

(prX(i)
)∗

x xp∗i
CH(Zi)

pr∗Yi←−−− CH(Yi)

Proof. Note that pr ∗Yi is defined since Yi is smooth (Zi might be not) [7, §8.1]
while in∗

Ui
is defined since inUi

is flat (the variety X(i) is not supposed to be
regular) [7, thm. 1.7].

Consider the following commutative diagram:

X(i)

inUi←↩ Ui

prX(i)
↑ prUi

↑ ↖idUi

Zi
inVi←↩ Vi

(pi, idUi
)

←−−− Ui

prYi↘ prVi↓ ↙pi

Yi

Since Vi is closed in Yi × Ui as a graph of a morphism of varieties, we have

Vi = Zi ∩ (Yi × Ui)
(first of all, this formula holds on the level of sets; since all varieties involved
are reduced (Zi is so by construction, Yi is from V , Ui is a vector bundle over
Yi, Vi is isomorphic to Ui) the same formula holds on the level of varieties as
well, where ∩ means the fiber product of the imbeddings). Thus the square is
cartesian and so [7, prop. 1.7]

in∗
Ui
◦(prX(i)

)∗ = (prUi
)∗ ◦ in∗

Vi

since inUi
is flat (an open imbedding) and prX(i)

proper. For any α ∈ CH(Yi),

we have

in∗
Ui
◦(prX(i)

)∗ ◦ pr ∗Yi(α) = (prUi
)∗ ◦ in∗

Vi
◦ pr ∗Yi(α) =

= (prUi
)∗ ◦ (prVi)∗(α) = (prUi

)∗ ◦ (pi, idUi
)∗ ◦ (pi, idUi

)∗ ◦ (prVi)∗(α) =
= (idUi

)∗ ◦ p∗i (α) = p∗i (α)

(for the third equality notice that the composition (pi, idUi
)∗ ◦ (pi, idUi

)∗ is an
identity since (pi, idUi

) : Ui → Vi is an isomorphism).

Due to the lemma, we get a splitting of the epimorphism

CH(X(i))→→ CH(Yi) ,

namely the composition (prX(i)
)∗ ◦ pr ∗Yi . So, a) is complete.
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b) Let us extend the exact sequence of Chow groups to the left by using the
K-cohomology groups [17]:

H∗(X(i), K∗+1)→ H∗(Ui, K∗+1)→ CH(X(i−1))→ CH(X(i))→ CH(Ui)→ 0

where for a variety T

H∗(T,K∗+1) =
⊕
l≥0

H l(T,Kl+1) .

The third arrow is injective, if the first arrow is surjective, and it is really
surjective because of the following

Lemma 6.7. The square commutes:

H∗(X(i), K∗+1)
in∗

Ui−−−→ H∗(Ui, K∗+1)

(prX(i)
)∗

x xp∗i
H∗(Zi, K∗+1)

pr∗Yi←−−− H∗(Yi, K∗+1)

and p∗i is an isomorphism.

Proof. Everything goes in the same way as in the proof of the previous lemma.
The crucial point is that we have a construction of the pull-back (with “right”
properties) for any morphism into a smooth variety [17, §12]; p∗i is an isomor-
phism by [17, prop. 8.6].

c) The steps a) and b) together give an isomorphism⨿
i

CH(Yi) −−−→∼
CH(X)

where for every i the corresponding map CH(Yi) → CH(X) is defined as the
composition

CH(Yi)
pr∗Yi−−−→ CH(Zi)

(prX(i)
)∗

−−−−−→ CH(X(i))
(inX(i)

)∗
−−−−−→ CH(X) .

To complete the proof of the first statement of the theorem, it remains to show
that the composition written up coincides with the homomorphism CH((πi)

t),
where πi ∈ CH(X×Yi) is the component of π ∈ CH(X×Y ). Since the element
(πi)

t coincides with the class [Zi] ∈ CH(Yi×X) of the subvariety Zi ⊂ Yi×X,
it suffices to verify the following general fact:

Lemma 6.8. Let X, Y ∈ V, Z ⊂ Y × X be a closed subvariety (we do not
assume that Z ∈ V and we do not assume that Z is irreducible) and let

Y
prZY←−−− Z

prZX−−−→ X

be the projections. The composition

CH(Y )
(prZY )∗

−−−→ CH(Z)
(prZX)∗−−−−→ CH(X)

coincides with the homomorphism CH([Z]) (see [7, §1.5] for the definition of
[Z]).
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Proof. Consider a diagram:

Y

prZY ↗ ↑ prY

Z
in
↪→ Y ×X

prZX ↘ ↓ prX

X

By the definition of CH([Z]) (2.1), for any α ∈ CH(Y ), we have

CH([Z])(α) = (prX)∗

(
[Z] · pr ∗Y (α)

)
.

Since the multiplication by [Z] on CH(Y ×X) coincides with the composition
in∗ ◦ in∗, we get

(prX)∗ ◦ in∗ ◦ in∗ ◦ pr ∗Y (α) = (prZX)∗ ◦ (prZY )∗(α)
since both the triangles commutes.

2. Let Y l be a component of the total base Y . Since the morphism p :
GrX → Y is a vector bundle, the inverse image T = p−1(Y l) is irreducible
and thereafter contained in a component of X, say in Xk. It is clear that
for every other k′ ̸= k the component πk

′l of π is zero. It means that the
correspondence π is dichotomous (4.3).

Moreover, πkl coincides with the class of the closure in Xk×Y l of the graph
of the morphism p|T : T → Y l. Since the graph is irreducible (since T is),

the closure is irreducible as well and thus the component πkl is the class of a
simple cycle. Thereby π is homogeneous (4.3). The theorem is proven.

Remark 6.9. Although π and πt are isomorphisms acting in the mutually
inverse directions they are not mutually inverse (in general).

Remark 6.10. In the absolute case, i.e. in the case where Yi = SpecF for all
i, the proof of the theorem is much more simple. For instance, a splitting for
step a) is given simply by the pull-back with respect to the structure morphism
X(i) → SpecF .

Corollary 6.11. Denote by Xk the components of the cellular spaces X, by
Y l the components of its total base and by πkl ∈ Hom(Xk, Y l) the components
of the correspondence π. In every graded geometric cohomology theory H∗, one
has (for any k) an isomorphism of graded groups(

H(πkl)
)
l
: H∗(Xk)→

⨿
l: πkl ̸=0

H∗(Y l)[−rl]

where rl is the rank of the vector bundle over Y l given by the cellular structure
on X.



22 N. A. KARPENKO

Proof. Follows from (4.4), the theorem and an easy observation that deg πkl =
−rl.

7. Operations with relative spaces

Definition 7.1. A variety X supplied with a filtration by closed subvarieties
and with a morphism p : GrX → Y is called a relative space over Y (so,
a relative space is a cellular space if and only if X, Y ∈ V and p admits a
structure of a vector bundle).

Definition 7.2 (Product). Let X and X ′ be relative spaces over Y and Y ′

respectively (we use the standard notation for the relative structure data on
X and the ′-notation for the data on X ′). The product of varieties X×X ′ can
be supplied by a structure of a relative space over Y × Y ′ as follows:
we use the lexicographic ordering on the set

{0, 1, . . . , n} × {0, 1, . . . , n′},
i.e. (j, j′) < (i, i′), if j < i or if j = i and j′ < i′; we put

(X ×X ′)(i,i′) =
∪

(j,j′)≤(i,i′)

X(j) ×X ′
(j′) = X(i−1) ×X ′ ∪X(i) ×X ′

(i′) ⊂ X ×X ′ ;

thus Gr(X ×X ′) = GrX ×GrX ′ and we have a morphism

p× p′ : Gr(X ×X ′)→ Y × Y ′ .

The definition can be expanded to the case of several (finitely many) factors
in the evident way. A product of cellular spaces is a cellular space as well.

Example 7.3. Let X be a relative space over Y and let T ∈ V . Then T ×X
is a relative space over T × Y . This structure is a particular case of (7.2), if
we consider T with the (trivial) structure over itself.

Definition 7.4 (Composition). Let X be a relative space over Y and sup-
pose that Y is in turn a relative space over Z. Then X is a relative space
over Z in the following way: one takes the refinement of the filtration on X
such that GrnewX for this new filtration coincides with the inverse image of
GrY ⊂ Y with respect to the morphism GrX → Y ; the structure morphism
is given by the composition

GrnewX → GrY → Z .

Remark 7.5. The structure (7.2) can be defined via (7.3) and (7.4): if X
(resp. X ′) is a relative space over Y (resp. Y ′), then X×X ′ is a relative space
over Y × X ′, which is in turn a relative space over Y × Y ′; the composition
structure on X ×X ′ coincides with (7.2).

Definition 7.6 (Restriction). LetX be a relative space over Y and letX ′ ⊂
X, Y ′ ⊂ Y be some subvarieties. Suppose that the restriction of the morphism
GrX → Y to X ′ ∩ GrX is a morphism into Y ′. Then X ′ together with the
induced filtration X ′

(i) = X ′ ∩X(i) is a relative space over Y ′. We refer to this

structure on X ′ as to the structure induced from X.
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Part 2. Cohomology of isotropic flag varieties

It seems to be rather convenient to use the language of functors of points
(developed in [5]) while working with flag varieties. In §8 we recall some basic
notions and facts and fix certain terminology. The terminology used here
slightly differs from that of [5]. For instance, we like to preserve the usual
meaning for the word “scheme” and will not use this word for functors. To
avoid the difficulty that the F -functors (defined below) do not form a category
(because the morphisms of an F -functor to another one do not always form a
set) we speak only of categories of representable F -functors. A more refined
approach, using the notion of universe, can be found in [5].

We consider only rings and algebras which are associative and unital; ho-
momorphisms of rings or algebras are supposed to respect 1. If the contrary is
not explicitly stated, a module (or vector space) means a right module (right
vector space).

In §8, F is an arbitrary commutative ring; starting from §9, F is a field.

8. Language of functors of points

Let F be a commutative ring (in our applications F will be a field). Covari-
ant functors F -alg→ Sets of the category of commutative F -algebras into the
category of sets will be called F -functors. For any F -scheme (i.e. a scheme
over F ) X one has an F -functor X, namely

R ∈ F -alg 7→ X(R) = MorF (SpecR,X)

called the functor of points of the F -scheme X. An F -functor isomorphic to
the functor of points of an F -scheme (say, X) will be called representable (or
represented by X); the usual categorical sense of the expression “representable
functor” means in our terms “F -functor represented by an affine F -scheme”
and will be expressed by the words “affine F -functor”. The evident functor
from the category of F -schemes to the category of representable F -functors (a
morphism in the latter category is by definition simply a natural transforma-
tion of functors) is an equivalence of categories [5, thm. de comparaison on p.
18]. In particular, the category of schemes is equivalent to that of representable
Z-functors.

So, any representable F -functor F determines a unique (up to a canonical
isomorphism) F -scheme which is called the geometric realization of F or F -
scheme representing F and will be denoted by F as well.

Example 8.1. Let V be a free F -module of finite rank. The F -functor V
with V (R) = V ⊗F R (defined on the morphisms in the natural way) is called
affine space and is represented by the variety “affine space V ”.

Let F and G be F -functors; G is called a subfunctor of F if G(R) is a subset
of F(R) and the map G(φ) : G(R) → G(S) is the restriction of the map F(φ)
for any R,S ∈ F -alg and any φ ∈ HomF -alg(R,S).
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The inverse image of a subfunctor G ⊂ F with respect to a morphism
of F -functors F ′ → F is by definition the subfunctor G ′ ⊂ F ′ with G ′(R)
being the inverse image of the subset G(R) ⊂ F(R) with respect to the map
F ′(R)→ F(R).

Let R be a commutative F -algebra. Consider the F -functor SpecR; we have

SpecR(S) = HomF -alg(R, S) for any S ∈ F -alg .
Fixing an ideal I ⊂ R, one can construct two subfunctors of SpecR: for every
S the corresponding subsets of Hom(R, S) are{

φ ∈ Hom(R, S)| φ(I) · S = S
}

and
{
φ ∈ Hom(R,S)| φ(I) = 0

}
.

A subfunctor G of an F -functor F is called open (resp. closed) if for every
R ∈ F -alg and every morphism SpecR → F the inverse image of G is a
subfunctor of SpecR of the first (resp. second) type for an appropriate ideal
I ⊂ R. This definition is of practical use; note the that morphisms SpecR→ F
are in one-to-one correspondence with the set F(R). It turns out that every
open (resp. closed) subfunctor of a representable F -functor F is representable
(and moreover) by a unique open (resp. closed) subscheme of the F -scheme
F .

One says that a family of subfunctors {Gα} of an F -functor F covers F , if

F(R) =
∪
α

Gα(R)

for any F -algebra R which is a field. In the case where F is representable and
every Gα is open or closed (or locally closed) F is covered by Gα if and only if
the F -scheme F is covered by the corresponding subschemes.

In contrast to that, the intersection of a family of subfunctors can be (and
is) defined in the simple way:(∩

α

Gα

)
(R) =

∩
α

Gα(R) for any R ∈ F -alg .

An F -functor F is called local if for any R ∈ F -alg and any elements
r1, . . . , rl ∈ R generating the unit ideal the sequence of maps of sets

F(R)→
l∏

i=1

F(Rri)
→→

l∏
i,j=1

F(Rrirj)

is exact (“exactness” also means injectivity of the first map) or, in other words,
if F is a sheaf in the Zariski topology on F -alg. It turns out that an F -functor
F is representable if and only if it is local and admits a covering by open affine
subfunctors [5, thm. de comparaison on p. 18] (in this case, the geometric
realization of F is obtained as the direct limit of the schemes SpecR for all
morphisms of F -functors SpecR → F , where the limit is taken with respect
to the morphisms of schemes SpecR → SpecR′ such that the corresponding
morphism of F -functors is a morphism over F). So, one can “forget” on
schemes and work with the category of such F -functors instead. However we
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do not do it because we like to use several results and notions from the theory
of schemes which is developed better as one of F -functors.

For two F -functors F1 and F2 their (direct) product F1×F2 is the F -functor
with

(F1 ×F2)(R) = F1(R)×F2(R) and (F1 ×F2)(φ) = F1(φ)×F2(φ) .

For two morphisms of F -functors F1 → F and F2 → F the fiber product
F1 ×F F2 of F1 and F2 over F is the subfunctor of F1 ×F2 with(

F1 ×F F2

)
(R) = F1(R)×F(R) F2(R)

(the intersection of two subfunctors and, more generally, the inverse image of
a subfunctor with respect to a morphism of F -functors are examples of fiber
products we already met).

Let L be a commutative F -algebra. Since an L-scheme is “the same” as an
F -scheme together with a morphism to SpecL over F the category of (rep-
resentable) L-functors should be equivalent to the category of (representable)
“F -functors over L” whose objects are (representable) F -functors together
with a morphism to the F -functor SpecL. It really is: if F → SpecL is
an object of the latter category the corresponding L-functor G is defined di-
rectly as follows: G(R) for R ∈ L-alg is the inverse image of the structural
homomorphism of R with respect to the map of sets

F(R)→ Spec(L,R) = HomF -alg(L,R)

where R is considered as an F -algebra in the natural way. Conversely, if G is
an L-functor, one constructs an F -functor F by putting

F(R) =
⨿

HomF-alg (L,R)

G(R)

and takes the evident morphism F → SpecL.
For example, if F is an F -functor the product F × SpecL is an F -functor

over L. The corresponding L-functor is denoted by F⊗F L. For any R ∈ L-alg
one has (F ⊗F L)(R) = F(R) where from the right-hand side R is considered
as an F -algebra.

Another example is the definition of a fiber. If f : F ′ → F is a morphism
of F -functors and x ∈ F(R), where R ∈ F -alg is an R-point of F , the fiber
product of F -functors SpecR and F ′ over F (where SpecR → F is the mor-
phism defined by x ∈ F(R)) is an F -functor over R in the natural way. The
corresponding R-functor is called the fiber of f over x. To obtain its value
on S ∈ R-alg, one should take the image of x ∈ F(R) in F(S), where S is
considered as an F -algebra, and the inverse image of the result in F ′(S).

The definitions given are evidently related to the corresponding scheme def-
initions (in the theory of schemes the definition of fiber is mostly applied to
the case where x is a geometric point, i.e. where R is a field).
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It turns out that the language of functors is also suitable for describing
sheaves, e.g. sheaves of modules. We discuss it because we have no reference
for this matter, however we discuss it shortly since it is only the notion of a
vector bundle obtained in the conclusion we do really need for the consequence.

Let F be a representable F -functor. An algebra R ∈ F -alg together with
a fixed element from F(R) will be called an F -algebra; the category of F -
algebras (by definition, a morphism in this category is a homomorphism of the
underlying F -algebras respecting the fixed points) will be denoted by F -alg
(note that in the case where F is the spectrum of an F -algebra L the category
F -alg “coincides” with L-alg). Analogously to happened above, considering
F -functors over F is equivalent to considering F -functors, i.e. functors from
F -alg to Sets. For instance, the category of F -schemes, i.e. schemes over F ,
is equivalent to the category of representable F -functors. One can give the
following definitions:

Definition 8.2. An F -functor G is called a sheaf of modules (over F), if it
is local and for every R ∈ F -alg the set G(R) is supplied with a structure of
module over the ring R such that for any homomorphism R→ S of F -algebras
the map G(R)→ G(S) is a homomorphism of R-modules.

Definition 8.3. A sheaf of modules G over F is called quasi-coherent, if for
any homomorphism of F -algebras R → S the induced homomorphism of S-
modules G(R)⊗R S → G(S) is an isomorphism.

Definition 8.4. A quasi-coherent sheaf of modules G over F is called coherent,
if for every R ∈ F -alg the R-module G(R) is finitely generated (careful: in the
theory of schemes, there are several definitions of quasi-coherentness which
coincide only in the noetherian case [9, chap. II, exercise 5.4]; the definition
given here is equivalent to [9, def. on p. 111]).

Definition 8.5. A coherent sheaf of modules G is called locally free (or a
vector bundle), if all modules G(R) are projective.

Notice that in this language the notions of a locally free sheaf of modules
and a vector bundle are not only equivalent, they coincide! The only thing
which should be mentioned additionally is an easy observation that a locally
free sheaf of modules, defined as above, admits an open covering by affine
subfunctors and hence is representable.

Summarizing and decoding, one can give the following

Definition 8.6. A morphism f : G → F of representable F -functors is a
vector bundle, if for any R ∈ F -alg and any R-point x ∈ F(R) the inverse
image f(R)−1(x) of x with respect to the map of sets f(R) : G(R) → F(R)
is supplied with a structure of a finitely generated projective R-module such
that for any homomorphism of F -algebras φ : R→ S the map

f(R)−1(x)→ f(S)−1(y)
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where y is the image of x ∈ F(R) in F(S), is a homomorphism of R-modules
and the induced homomorphism of S-modules

S ⊗R f(R)−1(x)→ f(S)−1(y)

is an isomorphism.

Remark 8.7. We have defined a vector bundle as a morphism with an ad-
ditional structure. Sometimes in the literature and also here, a morphism
(without additional structure) is called vector bundle, if it admits a structure
of a vector bundle in the above sense.

It is easy to check that the definition of vector bundles given is equivalent
to common scheme definitions, e.g. to the (extremely non-invariant) definition
from [9, chap. II, exercise 5.18].

9. Grassmanians

From now on F is a field, V a finite-dimensional vector space over F .

Definition 9.1. The (full) grassmanian IΓ(V ) of V is the F -functor defined
as follows:

• for any R ∈ F -alg, the set IΓ(V )(R) consists of all direct summands
of the R-module VR = V ⊗F R; in other words, IΓ(V )(R) consists of
all (projective) submodules N ⊂ VR such that the quotient VR/N is
projective (as well);
• for any φ ∈ HomF -alg(R, S), the map IΓ(V )(R) → IΓ(V )(S) is defined
with the help of tensoring by S over R:

N ⊂ VR 7→ N ⊗R S ⊂ VS .

Proposition 9.2. The F -functor IΓ(V ) is represented by a complete smooth
F -variety.

Proof. First, one checks that the functor IΓ(V ) is local. Let R ∈ F -alg and
let r1, . . . , rl ∈ R be some elements generating the unit ideal. For any N ∈
IΓ(V )(R), it holds

N = VR ∩
l∏

i=1

Nri ⊂
l∏

i=1

VRri
.

Thus the first arrow in the sequence

IΓ(V )(R)→
l∏

i=1

IΓ(V )(Rri)
→→

l∏
i,j=1

IΓ(V )(Rrirj)

is injective. If for every i we are given an Rri-module Ni ∈ IΓ(V )(Rri), the
condition that (Ni)

l
i=1 “goes to zero to the right” in our sequence means com-

patibility on the intersections SpecRri ∩ SpecRrj , so we can glue the corre-
sponding sheaves on all SpecRri together to a locally free sheaf on SpecR. Let
N ⊂ VR be the corresponding (projective) R-module. The quotient VR/N is
projective, since every localization (VR/N)ri is. Thus N ∈ IΓ(V )(R).



28 N. A. KARPENKO

In order to construct an open affine covering, let us take an epimorphism
p : V →→ U and consider the subfunctor U ⊂ IΓ(V ) with

U(R) =
{
N ∈ IΓ(V )(R)| (pR)|N : N → UR is an isomorphism

}
where pR : VR → UR is the homomorphism of R-modules induced by p. First
of all, fixing a splitting of p and setting U ′ = Ker p, we get a bijection

U(R) ≃ HomR(UR, U
′
R) ≃ HomF (U,U

′)⊗F R
for any R. It gives an isomorphism of the F -functors, identifying U with the
affine space HomF (U,U

′).
To show that the subfunctor U is open in IΓ(V ), take a morphism SpecR→

IΓ(V ) and the corresponding R-point N ∈ IΓ(V )(R). We have

N ∈ U(R) ⇔ pR|N is an isomorphism ⇔ Coker(pR|N ) = 0 and rkN ≤ n

where n = dimU . The condition rkN ≤ n can be replaced by vanishing of the
(n + 1)-th exterior power Λn+1N . Put P = Coker(pR|N ) ⊕ Λn+1N . For any

φ ∈ HomF -alg(R, S), we consequently have

N ⊗R S ∈ U(S) ⇔ P ⊗R S = 0 ⇔ φ(AnnP ) · S = S

where AnnP stays for the annihilator of P ; the latter equivalence holds by

Lemma 9.3. Let φ : R → S be a homomorphism of commutative rings, P a
finitely generated R-module. One has P ⊗R S = 0, if and only if the subset
φ(AnnP ) ⊂ S generates the unit ideal.

Proof. If φ(AnnP ) generates the unit ideal, the S-module P ⊗RS is generated
by the elements p⊗φ(r) with r ∈ AnnP and p ∈ P ; since p⊗φ(r) = p·r⊗1 = 0,
it implies that P ⊗R S = 0.

Now suppose that φ(AnnP ) ·S ̸= S. Take a maximal ideal M ⊂ S contain-
ing φ(AnnP ) and put p = φ−1(M). Since p is a prime ideal containing AnnP
and since P is finitely generated, we have Pp ̸= 0. By the Nakoyama lemma
(we use again P is finitely generated) (P/Pp)p ̸= 0. Since (R/p)p ↪→ S/M
is a field extension, the S/M-module P ⊗R S/M is non-zero as well. Hence
P ⊗R S ̸= 0.

We see that the inverse image of the subfunctor U with respect to a morphism
SpecR→ IΓ(V ) is the open subfunctor of SpecR defined by the ideal AnnP ⊂
R. Thus U is an open subfunctor of the grassmanian.

Lemma 9.4. Finitely many of the subfunctors U cover IΓ(V ).

Proof. Let E be an F -basis of V . By definition, we have to check that the
set IΓ(V )(L) is covered by (finitely many of) the subsets U(L) for any field
L ∈ F -alg.

Take an arbitrary N ∈ IΓ(V )(L) and consider a maximal subcollection of
E such that the L subspace U ′

L ⊂ VL spanned on this subcollection has the
trivial intersection with N . Then U ′

L ⊕ N = VL and consequently N ∈ U(L)
for the subfunctor U given by U = V/U ′ and the projection p : V →→ U .
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Therefore, taking for every subcollection of E the corresponding subfunctor
U , we obtain a (finite) covering of IΓ(V ).

So, we get a finite open covering by affine spaces. Consequently, the grass-
manian is represented by a smooth F -scheme of finite type.

This scheme is proper by the valuative criterion [5, cor. 2.9 and 2.10 on
p. 134] or [9, chap. II, thm. 4.7]: for any R ∈ F -alg which is a (discrete)
valuation ring the map

IΓ(V )(R)→ IΓ(V )(quotient field of R)

is evidently bijective (injectivity means separateness, surjectivity means uni-
versal closeness).

Remark 9.5. One can also directly check that IΓ(V ) is separated: the diago-
nal is the subfunctor of IΓ(V )×2 with the set of R-points{

(N1, N2) ∈ IΓ(V )×2| N1 ⊂ N2 and N2 ⊂ N1

}
and hence it is the intersection of two closed flag subfunctors in IΓ(V )×2 (11.2).

Remark 9.6. We shall construct several closed subfunctors of the products
IΓ(V )×m, m ∈ N. They will be automatically represented by complete F -
varieties. However we shall need additional attempts to show that some of
them will be smooth or at least (geometrically) reduced.

Cellular structure
Let p : V →→ W be an epimorphism of vector F -spaces. We define an

increasing filtration

∅ = IΓ(V )(−1) ⊂ IΓ(V )(0) ⊂ · · · ⊂ IΓ(V )(dimW ) = IΓ(V )

as follows:
IΓ(V )(i) =

{
N ∈ IΓ(V )| Λi+1pR(N) = 0

}
where pR : VR → WR is induced by p and Λi+1 stays for the (i+ 1)-th exterior
power.

Lemma 9.7. Every IΓ(V )(i) is a closed subfunctor of IΓ(V ).

Proof. It is really a subfunctor clearly. To show that it is closed, take a mor-
phism SpecR → IΓ(V ) and the corresponding R-point N ∈ IΓ(V )(R). Put
M = Λi+1pR(N). It is a submodule of the free module Λi+1WR. By definition
we have

N ∈ IΓ(V )(i)(R) ⇔ M = 0 .

Hence, if φ : R → S is a homomorphism of commutative F -algebras and
φΛi+1W : Λi+1WR → Λi+1WS the induced homomorphism of R-modules, we
have

N ⊗R S ∈ IΓ(V )(i)(S) ⇔ φΛi+1W (M) = 0 .

The condition from the right-hand side means that φ(r) = 0 for any coordinate
r ∈ R of an element fromM in a fixed basis of Λi+1WR. Thus the inverse image
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of the subfunctor IΓ(V )(i) ⊂ IΓ(V ) with respect to the morphism SpecR →
IΓ(V ) is the closed subfunctor of SpecR determined by the ideal consisting of
these r.

Lemma 9.8. For every i ≥ 0, the difference IΓ(V )(i\i−1) is the subfunctor of
IΓ(V ) with

IΓ(V )(i\i−1)(R) =

=
{
N ∈ IΓ(V )(R)| pR(N) is a direct summand of WR of rank i

}
.

Proof. Let IΓ(V )(i\i−1) denotes the subfunctor of IΓ(V ) defined as above. We
have to show that it is the difference of IΓ(V )(i) and IΓ(V )(i−1). First of all
it is really a subfunctor. Moreover, it is contained in IΓ(V )(i) and has no
intersection with IΓ(V )(i−1). It is also evident that IΓ(V )(i−1) and IΓ(V )(i\i−1)

together cover IΓ(V )(i). Hence, we finish the proof, when we show that the
F -functor IΓ(V )(i\i−1) is local and admits a covering by subfunctors open in
IΓ(V )(i).

Since IΓ(V )(i\i−1) is a subfunctor of a local F -functor, the injectivity of the
first arrow in the sequence

IΓ(V )(i\i−1)(R)→
l∏

j=1

IΓ(V )(i\i−1)(Rrj)
→→

l∏
j,k=1

IΓ(V )(i\i−1)(Rrjrk)

needs no proof. Taking an element in the middle term which “vanishes”
in the right-hand side term and using locality of IΓ(V )(i), we get a module
N ∈ IΓ(V )(i)(R) such that the quotient WR/pR(N) is locally (in the Zariski
topology on SpecR) projective of rank dimW − i. Hence the quotient has
these properties globally, i.e. N ∈ IΓ(V )(i\i−1)(R). Thereby the F -functor
IΓ(V )(i\i−1) is local.

Let q : W →→ U be an epimorphism with dimU = i. Define a subfunctor
U ⊂ IΓ(V ) as

U(R) =
{
N ∈ IΓ(V )| (qR)|pR(N)

: pR(N)→ UR is an isomorphism
}
.

It is clear that in fact U ⊂ IΓ(V )(i\i−1) and that all U (obtained this manner)
together cover IΓ(V )(i\i−1). To see that U is open in IΓ(V )(i), take an R-point
N ∈ IΓ(V )(i)(R). We have

N ∈ U(R) ⇔ (qR)|pR(N)
is an isomorphism ⇔

⇔ Coker
(
(qR)|pR(N)

)
= 0 ⇔ Coker

(
(qR ◦ pR)|N

)
= 0 .

Let us explain why the second equivalence holds: since the R-module UR is
free of rank i and and since Λi+1pR(N) = 0, the homomorphism

(qR)|pR(N)
: pR(N)→ UR

is bijective if and only if it is surjective.
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Putting P = Coker
(
(qR ◦ pR)|N

)
, for any φ ∈ HomF -alg(R,S) we conse-

quently have

N ⊗R S ∈ U(S) ⇔ P ⊗R S = 0 ⇔ φ(AnnP ) · S = S

the latter equivalence holds according to (9.3). It shows that the inverse image
of the subfunctor U ⊂ IΓ(V )(i) with respect to the morphism SpecR→ IΓ(V )(i),
given by the R-point N ∈ IΓ(V )(i)(R), is the open subfunctor of SpecR deter-
mined by the ideal AnnP ⊂ R.

Corollary 9.9. Put Gr IΓ(V ) =
⨿

IΓ(V )(i\i−1) as in (6.2). Then

Gr IΓ(V )(R) =
{
N ∈ IΓ(V )(R)| pR(N) is a direct summand of WR

}
for any R ∈ F -alg.

Proof. Let Gr IΓ(V ) denotes the subfunctor of IΓ(V ) with

Gr IΓ(V )(R) =
{
N ∈ IΓ(V )(R)| pR(N) is a direct summand of WR

}
for any R ∈ F -alg. The direct verification that the scheme

⨿
IΓ(V )(i\i−1)

represents the F -functor Gr IΓ(V ) is evident.
One can also argue without passing to the schemes: the F -functor Gr IΓ(V )

is local (the same business as in the previous proof), the subfunctors

IΓ(V )(i\i−1) ⊂ Gr IΓ(V )

are disjoint, cover Gr IΓ(V ), and each of them is open (and closed).

Lemma 9.10. There is a vector bundle

Gr IΓ(V )→ IΓ(W )× IΓ(W ′),

where W ′ = Ker(p : V →W ).

Proof. Let R ∈ F -alg, N ∈ IΓ(V )(R). Since in the exact sequence

0 −−−→ N ∩W ′
R −−−→ N

pR−−−→ pR(N) −−−→ 0

the module pR(N) is projective (as a direct summand of the free module WR),
the intersectionN∩W ′

R is a direct summand ofN . SinceN is a direct summand
of VR, the intersection is a direct summand of VR as well and hence it is also
a direct summand of an intermediate module W ′

R. Thus there is a map

Gr IΓ(V )(R) → IΓ(W )(R)× IΓ(W ′)(R)

N 7→
(
pR(N), N ∩W ′

R

)
which determines the morphism of F -functors we are meaning.

To get a structure of vector bundle, we fix a splitting of the epimorphism
p : V →W , i.e. identify W with a subspace of V complementary to W ′. Take
any M ∈ IΓ(W )(R) and M ′ ∈ IΓ(W ′)(R). The R-modules N ∈ Gr IΓ(V )(R)
such that

pR(N) =M and N ∩W ′
R =M ′

are in one-to-one correspondence with the elements of HomR(M,W ′
R/M

′): for
φ ∈ HomR(M,W ′

R/M
′) the corresponding submodule N of VR = WR ⊕W ′

R is
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the union of m + φ(m) ⊂ WR ⊕W ′
R for all m ∈ M ; for N ∈ Gr IΓ(V )(R) the

corresponding homomorphism pR(N)→ W ′
R/(N ∩W ′

R) maps pR(n) for every
n ∈ N to the class of the W ′

R-coordinate of n ∈ WR ⊕W ′
R modulo N ∩W ′

R.
Since M and W ′

R/M
′ are finitely generated projective R-modules, the R-

module HomR(M,W ′
R/M

′) is finitely generated projective as well. For checking
that we get a structure of a vector bundle, it remains to prove that for any
homomorphism of commutative F -algebras R→ S the natural homomorphism
of S-modules

f(M) : HomR(M,W ′
R/M

′)⊗R S → HomS(M ⊗R S,W ′
S/M

′ ⊗R S)
is an isomorphism. Since f(R) is an isomorphism and

f(M1 ⊕M2) = f(M1)⊕ f(M2),

f(M) is an isomorphism for any M isomorphic to a direct summand of Rn for
some n ≥ 1, i.e. for any finitely generated projective M .

Corollary 9.11. Let 0→ W ′ → V → W → 0 be an exact sequence of vector
F -spaces. The grassmanian IΓ(V ) together with the filtration (9.7) and the
vector bundle (9.10) is a relative cellular space over IΓ(W )× IΓ(W ′).

Remark 9.12. As seen in the proof of the last lemma, the structure of vector
bundle on the morphism Gr IΓ(V )→ IΓ(W )×IΓ(W ′) does depend on the choice
of a splitting of the epimorphism V →→ W ; nevertheless, the morphism itself
as well as the filtration, i.e. all the data, determining the cellular structure,
do not.

Corollary 9.13. In the category of correspondences CV, there is an isomor-
phism

IΓ(V ) ≃ IΓ(W )× IΓ(W ′) .

In particular,
H
(
IΓ(V )

)
≃ H

(
IΓ(W )× IΓ(W ′)

)
for any geometric cohomology theory H (§2).

Components

Definition 9.14. For every n ∈ Z, the n-grassmanian IΓn(V ) of V is the
subfunctor of IΓ(V ) for which IΓn(V )(R) (R ∈ F -alg) is the subset in IΓ(V )(R)
of direct summands having the constant rank n (of course IΓn(V ) is non-empty
only if 0 ≤ n ≤ dimV ).

Proposition 9.15. The F -functor IΓ(V ) is a direct sum of the subfunctors
IΓn(V ), n ∈ Z. The varieties IΓn(V ) are geometrically irreducible.

Proof. The statement on the direct sum can be proved analogously to (9.9) or
by using (9.9) as follows. Take the identity map p : V → V . Then

IΓ(V ) = Gr(V ) =
⨿
n

IΓ(V )(n\n−1) =
⨿
n

IΓn(V )
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where the first equality holds (for our particular p) by (9.9), the second one
— by the definition of Gr, the third one — since IΓ(V )(n\n−1) = IΓn(V ) for our
particular p.

To show that IΓn(V ) is geometrically irreducible, consider the general linear
group GL(V ). For every R ∈ F -alg the (abstract) group

GL(V )(R) = AutR(VR)

acts on the set IΓn(V )(R) in the natural way, so that one has a morphism of
F -functors

GL(V )× IΓn(V )→ IΓn(V )

defining an action of the algebraic group on the n-grassmanian. This action is
transitive in the sense that if R is a field, the action “on the level of R-points”
is transitive. Since the affine group GL(V ) is (geometrically) irreducible, it
follows that the variety IΓn(V ) is geometrically irreducible as well.

Remark 9.16. The varieties IΓn(V ) are projective: for any n ∈ Z, the map

N ∈ IΓn(V )(R) 7→ ΛnN ∈ IΓ1(Λ
nV )(R)

determines a morphism of F -functors, identifying IΓn(V ) with a closed subva-
riety of the projective space IΓ1(Λ

nV ).

Corollary 9.17. In the conditions of (9.11), let H∗ be a graded geometric
cohomology theory (§4). For any n ∈ Z, there is an isomorphism

H∗ (IΓn(V )
)
≃

n⨿
i=0

H∗ (IΓi(W )× IΓn−i(W
′)
)
[−i(dimW ′ − n+ i)] .

Proof. Follows from (6.11) and that

rkHomR(M,W ′
R/M

′) = rkM · rk(W ′
R/M

′) = i · (dimF W
′ − n+ i),

if M ∈ IΓi(W )(R) and M ′ ∈ IΓn−i(W
′)(R).

10. Varieties of ideals

Definition 10.1. Let f : V → V be a fixed endomorphism. One defines the
subfunctor IΓinv(V ) ⊂ IΓ(V ) as follows:

IΓinv(V )(R) =
{
N ∈ IΓ(V )(R)| fR(N) ⊂ N

}
for every R ∈ F -alg, where fR : VR → VR is the endomorphism given by f .

Lemma 10.2. The subfunctor IΓinv(V ) ⊂ IΓ(V ) is closed.

Proof. Take a morphism SpecR → IΓ(V ) and let N ∈ IΓ(V )(R) be the corre-
sponding R-point. Choose a splitting s of the projection p : VR → VR/N and
put

M = (s ◦ p)
(
f(N)

)
⊂ VR .

We have

N ∈ IΓinv(V )(R) ⇔ M = 0 .
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Hence, if φ : R → S is a homomorphism of commutative F -algebras and
φV : VR → VS the induced homomorphism of R-modules, we have

N ⊗R S ∈ IΓinv(V )(S) ⇔ φV (M) = 0 .

The condition φV (M) = 0 means that φ(r) = 0 for any coordinate r ∈ R
of an element from M in a fixed basis of VR. Thus the inverse image of the
subfunctor IΓinv(V ) ⊂ IΓ(V ) with respect to the morphism SpecR → IΓ(V ) is
the closed subfunctor of SpecR determined by the ideal of R consisting of all
these r.

Let A be an arbitrary F -algebra finite-dimensional over F , V a finitely
generated A-module (then V is finite-dimensional as a vector space over F ).

Definition 10.3. We define a subfunctor IΓA(V ) ⊂ IΓ(V ) as follows:

IΓA(V )(R) =
{
N ∈ IΓ(V )(R)| N is an AR-submodule of VR

}
for any R ∈ F -alg. The F -functor IΓA(A), where A is considered as a right
module over itself, will be called the variety of (right) ideals of A and denoted
shortly by IΓA.

Corollary 10.4. The subfunctor IΓA(V ) ⊂ IΓ(V ) is closed (and thereby rep-
resented by a complete F -variety).

Proof. Multiplication by any a ∈ A is an F -endomorphism of V , so it deter-
mines a closed subfunctor (10.2). Since N ∈ IΓ(V )(R) is an AR-submodule
of VR if and only if N is stable under multiplication by every a ∈ A, the
intersection of all of these closed subfunctors gives IΓA(V ).

Lemma 10.5. Let A1 and A2 be two arbitrary finite-dimensional F -algebras.
Then IΓA1×A2 ≃ IΓA1 × IΓA2.

Proof. For every R ∈ F -alg we still have

(A1 × A2)R ≃ (A1)R × (A2)R ;

thus IΓA1×A2(R) ≃ IΓA1(R)× IΓA2(R).

Definition 10.6. A finite-dimensional F -algebra A is called separable, if it is
semisimple after extending scalars to any field extension of F . An equivalent
definition: A is separable, if it is semisimple and the center of every simple
component of A is a (finite) separable extension of F [4, exercise 2 from §71].
Another equivalent definition: A is separable, if there exists a separable exten-
sion E/F such that the algebra AE is isomorphic to a direct product of matrix
algebras over E.

Let A be a separable F -algebra, V a finitely generated A-module.

Lemma 10.7 (Morita equivalence). Put B = EndA V . Then IΓA(V ) ≃
IΓB.
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Proof. By definition, the set IΓA(V )(R) for any R ∈ F -alg consists of the
AR-submodules N of VR such that the exact sequence

0→ N → VR → VR/N → 0(∗)

splits over R. However, since AR is a generalized Azumaya R-algebra and the
R-module VR/N is finitely presented, the sequence (∗) splits over AR as well
[20, prop. 3.1]; so, the set IΓA(V )(R) consists of the direct summands of the
AR-module VR.

For any R ∈ F -alg it holds: BR = B ⊗F R is a generalized Azumaya
R-algebra isomorphic to EndAR

VR and VR has also the structure of a left BR-
module. Since VR is finitely generated projective (even free) over R it is also
finitely generated projective over AR and over BR [20, cor. 3.2] and hence it
is a progenerator in the category of AR-modules [6, prop. and def. 4.3]. Thus
by the Morita theory [6, thm. 4.29] the functor

AR-mod → BR-mod
N 7→ HomAR

(VR, N)

is an equivalence of the category of (right) AR-modules and the category of
(right) BR-modules, where the abelian group HomAR

(VR, N) is considered as
a BR-module in the natural way. The inverse equivalence is defined as follows:

BR-mod → AR-mod
M 7→ HomBR

(V ∗
R,M)

where V ∗
R = HomAR

(VR, AR) ∈ B-mod. The equivalences are additive (also
inclusions preserving) and VR ∈ AR-mod corresponds to BR ∈ BR-mod. Thus,
restricting to the direct summands of VR and, on the other hand, to the direct
summands (ideals) of BR, we get a bijection

IΓA(V )(R) ≃ IΓB(R) .

It determines an isomorphism of F -functors since

HomAR
(VR, N)⊗R S ≃ HomAS

(VS, N ⊗R S)

for any R→ S ∈ HomF -alg(R, S).

Corollary 10.8. The variety IΓA(V ) is smooth.

Proof. Put B = EndA V and let F̄ be an algebraic closure of F . Since B is a
separable F -algebra, BF̄ is isomorphic to a product

EndF̄ W1 × · · · × EndF̄ Wn

for some vector F̄ -spaces W1, . . . ,Wn. We have

IΓA(V ) ≃ IΓB by (10.7) ;

IΓBF̄ ≃ IΓEndW1 × · · · × IΓEndWn by (10.5) .

Thus IΓA(V )F̄ is isomorphic to the smooth variety IΓ(W1)× · · · × IΓ(Wn).
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Theorem 10.9. Let A be a separable F -algebra and let

0→W ′ → V → W → 0

be an exact sequence of finitely generated A-modules. The variety IΓA(V ) is a
relative cellular space over IΓA(W )× IΓA(W ′).

Proof. We state that the cellular structure on IΓ(V ) (9.11) induces a cellular
structure on IΓA(V ) ⊂ IΓ(V ) in the sense of (7.6). We have to verify that the
restriction to

Gr IΓA(V ) = IΓA(V ) ∩Gr IΓ(V )

of the vector bundle

Gr IΓ(V )→ IΓ(W )× IΓ(W ′)

is a vector bundle over IΓA(W )× IΓA(W ′).
To obtain a vector bundle structure, one has to fix an A-splitting of the

epimorphism V →→ W , i.e. identify W with an A-submodule of V com-
plementary to W ′. Take any M ∈ IΓA(W )(R) and M ′ ∈ IΓA(W ′)(R). The
modules N ∈ Gr IΓA(V )(R) such that

pR(N) =M and N ∩W ′
R =M ′

are in one-to-one correspondence with the elements of the finitely generated
projective R-module HomAR

(M,W ′
R/M

′) (compare with the proof of (9.10)).
For any homomorphism of commutative F -algebras R→ S the natural homo-
morphism of S-modules

HomAR
(M,W ′

R/M
′)⊗R S → HomAS

(M ⊗R S,W ′
S/M

′ ⊗R S)

is an isomorphism. Thus we are done.

Corollary 10.10. In the category of correspondences CV, there is an isomor-
phism

IΓA(V ) ≃ IΓA(W )× IΓA(W ′) .

In particular,

H
(
IΓA(V )

)
≃ H

(
IΓA(W )× IΓA(W ′)

)
for any geometric cohomology theory H.

Corollary 10.11. Let Mn(A) stays for the algebra of n× n-matrices over A.
Then IΓMn(A) ≃ IΓA

×n
in CV.

Proof. Since Mn(A) = EndA(A
n), we have IΓMn(A) ≃ IΓA(An). Using the exact

sequence

0→ An−1 → An → A→ 0

and induction by n, we get an isomorphism IΓA(An) ≃ (IΓA)×n in CV . Now
apply (10.5).
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Definition 10.12. Every separable algebra A is isomorphic to a product

Mn1(D1)× · · · ×Mnm(Dm)

with separable division algebras D1, . . . , Dm. The separable algebra

D×n1
1 × · · · ×D×nm

m

will be called the anisotropic kernel of A and denoted by Aan (the definition
of Aan is non-canonical; however the isomorphism class of Aan is unique).

Theorem 10.13. For any separable algebra A, in the category CV there is an
isomorphism IΓA ≃ IΓAan.

Example 10.14. We consider a situation which occurs in §15. Suppose that
we are given a decomposition V = V1⊕V2⊕V3 into a sum of A-modules. Using
the exact sequences

0→ V2 ⊕ V3 → V → V1 → 0 and 0→ V2 → V2 ⊕ V3 → V3 → 0

and composing the relative structures (7.4) we turn IΓA(V ) into a relative
(cellular) space over IΓA(V1) × IΓA(V2) × IΓA(V3): for any R ∈ F -alg the set
Gr IΓA(V )(R) consists of N ∈ IΓA(V )(R) such that the projection of N to (V1)R
is in IΓA(V1)(R) and the projection of N ∩ (V2 ⊕ V3)R to (V3)R is in IΓA(V3)R
(then N ∩ (V2)R ∈ IΓA(V2)(R) automatically).

Fix a triple

(N1, N2, N3) ∈
(
IΓA(V1)× IΓA(V2)× IΓA(V3)

)
(R)

and AR-modules N ′
j such that (Vj)R = Nj ⊕ N ′

j for j = 2, 3. The set of

N ∈ Gr IΓA(V )(R) lying over the fixed triple is in one-to-one correspondence
with

HomAR
(N1, N

′
2)⊕ HomAR

(N1, N
′
3)⊕ HomAR

(N3, N
′
2) .

For an element f12⊕f13⊕f32 of this sum, the corresponding AR-module N ⊂ V
equals

N =
{
n1 + n2 + f12(n1) + f32(n3) + n3 + f13(n1)| n1 ∈ N1, n2 ∈ N2, n3 ∈ N3

}
.

Components
We compute the components of the variety IΓA(V ) only for a central simple
algebra A. So, let A be a finite-dimensional central simple F -algebra, V a
finitely generated A-module.

We denote by degA (degree of A) the square root of dimF A and by rkA V
(rank of V over A) the integer dimF V/ degA.

The decomposition of the grassmanian into the sum of its components (9.15)
produces the decomposition

IΓA(V ) =
⨿
n

IΓA(V ) ∩ IΓn(V ) .

Lemma 10.15. The intersection IΓA(V ) ∩ IΓn(V ) is empty whenever the in-
teger n is not divisible by degA.



38 N. A. KARPENKO

Proof. Take any R ∈ F -alg and N ∈ IΓn(V )(R). Let R → L be a homomor-
phism of F -algebras and L be a field. If the R-module N is an AR-module,
then N ⊗RL is a module over the central simple algebra AL; thus n = dimLN
is divisible by degAL = degA.

Hence it is natural to give the following

Definition 10.16. We put

IΓAn (V ) = IΓA(V ) ∩ IΓn·degA(V ) ⊂ IΓ(V ) .

The analogously defined F -functors IΓAn are called the generalized Severi-Brauer
varieties of A [2]; IΓA1 is the Severi-Brauer variety of A [1].

Lemma 10.17 (Morita equivalence). Put B = EndA V . Then IΓAn (V ) ≃
IΓBn for every n ∈ Z.

Proof. We state that the restrictions of the mutually inverse isomorphisms
between IΓA(V ) and IΓB, constructed in the proof of (10.7), are isomorphisms
between IΓAn (V ) and IΓBn . Let us check that for every R ∈ F -alg the image of
IΓAn (V ) is contained in IΓBn :

The condition N ∈ IΓAn (V )(R) means that N has the constant rank n ·degA
as an R-module. Thus for every commutative R-algebra L, which is a field,
the AL-module N ⊗R L is of the rank n. Consequently

dimLHomAL
(VL, N ⊗R L) = rkAL

VL · dimL(N ⊗R L) = rkA V · n = degB · n

and hence HomAR
(VR, N) ∈ IΓBn (R).

Corollary 10.18. The varieties IΓAn (V ) are geometrically irreducible; IΓA(V )
is their direct sum.

Proof. Let us show that IΓAn (V )F̄ is irreducible, where F̄ is an algebraic closure
of F . Put B = EndA V . Since BF̄ splits, there is a vector space W over F̄
such that BF̄ ≃ EndF̄ W . We have

IΓAn (V )F̄ ≃ (IΓBn )F̄ ≃ IΓBF̄
n ≃ IΓn(W ) .

Now use (9.15).

Corollary 10.19. In the conditions of (10.9), assume that the F -algebra A
is central simple. Let H∗ be a graded geometric cohomology theory. For any
n ∈ Z, there is an isomorphism

H∗ (IΓAn (V )
)
≃

n⨿
i=0

H∗ (IΓAi (W )× IΓAn−i(W
′)
)
[−i(rkAW ′ − n+ i)] .

Proof. Follows from (6.11) and that

rkRHomAR
(M,W ′

R/M
′) = rkAR

M · rkAR
(W ′

R/M
′) = i · (rkAW ′ − n+ i)

if M ∈ IΓAi (W )(R) and M ′ ∈ IΓAn−i(W
′)(R) (compare with (9.17).
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Example 10.20 (Decomposition of Severi-Brauer varieties).

H∗(IΓ
Mn(A)
1 ) ≃

n⨿
i=0

H∗(IΓA1 )[−i · degA] .

This decomposition was obtained in [10].

11. Varieties of flags of subspaces

We return to the situation of the §9: V is again simply a finite-dimensional
vector space over a field F .

Definition 11.1. For anym ∈ N, one defines a subfunctor ΦΦm(V ) ⊂ IΓ(V )×m,
called the variety of m-flags (of subspaces) as follows:

ΦΦm(V )(R) =
{
(N1, . . . , Nm) ∈ IΓ(V )(R)×m| N1 ⊂ · · · ⊂ Nm

}
.

Note that ΦΦ1(V ) = IΓ(V ).

Lemma 11.2. The subfunctor of m-flags ΦΦm(V ) ⊂ IΓ(V )×m is closed (and
hence represented by a complete F -variety).

Proof. If m > 2 then

ΦΦm(V ) =
m−2∩
i=0

IΓ(V )×i × ΦΦ2(V )× IΓ(V )×(m−2−i) ⊂ IΓ(V )×m .

Thus it is enough only to check that ΦΦ2(V ) is closed in IΓ(V )×2.
Take N1, N2 ∈ IΓ(V )(R) for some R ∈ F -alg and denote by s a splitting of

the surjection p : VR →→ VR/N2. Put M = (s ◦ p)(N1) ⊂ VR. We have

(N1, N2) ∈ ΦΦ2(V )(R) ⇔ N1 ⊂ N2 ⇔ M = 0 .

Thus for any homomorphism of commutative F -algebras, we have

(N1 ⊗R S,N2 ⊗R S) ∈ ΦΦ2(V )(S) ⇔ φV (M) = 0

where φV : VR → VS is the map induced by φ. The end of the proof is standard
(see the proofs of (9.7) or (10.2)).

Proposition 11.3. For every m ∈ N, the variety ΦΦm(V ) is smooth.

Proof. Let U1 ⊂ · · · ⊂ Um and U ′
1 ⊃ · · · ⊃ U ′

m be two chains of subspaces in V
such that U ′

i⊕Ui = V for every i. Take the epimorphisms pi : V →→ V/U ′
i ≃ Ui

and consider the open subfunctors Ui ⊂ IΓ(V ) defined as in the proof of (9.2).
It is clear that the F -functor ΦΦm(V ) is covered by the open subfunctors of the
type

U = ΦΦm(V ) ∩
m∏
i=1

Ui .

We are going to show that U is an affine space.
For any R ∈ F -alg, the set

∏
Ui(R) is identified with

m∏
i=1

HomR

(
(Ui)R, (U

′
i)R
)
.
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An element (fi)
m
i=1 from the latter product corresponds to an element from

ΦΦm(V )(R) if and only if the following diagram commutes:

(U ′
1)R ←↩ (U ′

2)R ←↩ . . . ←↩ (U ′
m)R

↓ f1 ↓ f2 ↓ fm
(U1)R ←← (U2)R ←← . . . ←← (Um)R

In this way we get a structure of an R-module on the set U(R). Moreover,
U(R) ≃ U(F ) ⊗F R. Thus U is isomorphic to the affine space on the vector
space U(F ).

Proposition 11.4. Let 0 → W ′ → V → W → 0 be an exact sequence of
vector F -spaces. The variety ΦΦm(V ) is a relative cellular space over ΦΦm(W )×
ΦΦm(W

′).

Proof. Let us consider IΓ(V )×m as a cellular space over IΓ(W )×m×IΓ(W ′)×m us-
ing the product (7.2) of the cellular structures (9.11). We state that ΦΦm(V ) ⊂
IΓ(V )×m is a cellular subspace in the sense of (7.6). To see that the morphism

GrΦΦm(V )→ ΦΦm(W )× ΦΦm(W
′)

is a vector bundle, identify W with a complementary to W ′ subspace of V and
choose an R-point

(M1, . . . ,Mm;M
′
1, . . . ,M

′
m) ∈

(
ΦΦm(W )× ΦΦm(W

′)
)
(R) .

The set of R-points of GrΦΦm(V ) lying over the fixed point is in one-to-one
correspondence with the elements (fi)

m
i=1 of the product

m∏
j=1

HomR(Mj,W
′
R/M

′
j)

such that the following diagram commutes:

M1 ↪→ M2 ↪→ . . . ↪→ Mm

↓ f1 ↓ f2 ↓ fm
W ′
R/M

′
1 →→ W ′

R/M
′
2 →→ . . . →→ W ′

R/M
′
m

For every j we can find an R-module M ′′
j such that Mj−1 ⊕M ′′

j = Mj. Our
set is an R-module isomorphic to

m∏
j=1

HomR(M
′′
j ,W

′
R/M

′
j) .

Corollary 11.5. For every m ∈ N, in the category of correspondences CV,
there is an isomorphism

ΦΦm(V ) ≃ ΦΦm(W )× ΦΦm(W
′) .

In particular,
H
(
ΦΦm(V )

)
≃ H

(
ΦΦm(W )× ΦΦm(W

′)
)

for any geometric cohomology theory H.
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Components

Definition 11.6. For every sequence of integers n1, . . . , nm the intersection

ΦΦm(V ) ∩
m∏
i=1

IΓni
(V ) ⊂ IΓ(V )×m

is called the variety of (n1, . . . , nm)-flags and denoted by ΦΦ(n1,...,nm)(V ). Of
course it is non-empty only if 0 ≤ n1 ≤ · · · ≤ nm ≤ dimV ; if ni = ni+1 for
some i then

ΦΦ(n1,...,nm)(V ) = ΦΦ(n1,...,ni,ni+2,...,nm)(V ) .

Proposition 11.7. The varieties ΦΦ(n1,...,nm)(V ) are geometrically irreducible;
ΦΦm(V ) is their direct sum.

Proof. Since IΓ(V ) is a direct sum of
∏

IΓni
(V ), the latter statement is clear.

Since the algebraic group GL(V ) acts transitively on every ΦΦ(n1,...,nm)(V )
(compare with the proof of (9.15)), these varieties are geometrically irreducible.

Corollary 11.8. In the conditions of (11.4), let H∗ be a graded geometric
cohomology theory. For any sequence of integers n1, . . . , nm, there is an iso-
morphism

H∗ (ΦΦ(n1,...,nm)(V )
)
≃

≃
⨿

i1,...,im

H∗ (ΦΦ(i1,...,im)(W )× ΦΦ(n1−i1,...,nm−im)(W
′)
)

[−i1(d− n1 + i1)− (i2 − i1)(d− n2 + i2)− · · · − (im − im−1)(d− nm + im)]

where d = dimW ′.

Proof. Follows from (6.11) and that (we use notation of (11.4))

rk
m∏
j=1

HomR(M
′′
j ,W

′
R/M

′
j) =

= i1(d− n1 + i1) + (i2 − i1)(d− n2 + i2) + · · ·+ (im − im−1)(d− nm + im),

if (Mj)
m
j=1 ∈ ΦΦ(i1,...,im)(W )(R) and (M ′

j)
m
j=1 ∈ ΦΦ(n1−i1,...,nm−im)(W

′)(R).

12. Varieties of flags of ideals

Again, A stays for an arbitrary finite-dimensional F -algebra; V is a finitely
generated A-module.

Definition 12.1. For any m ∈ N, we put

ΦΦA
m(V ) = ΦΦm(V ) ∩ IΓA(V )×m ⊂ IΓ(V )×m .

The shorten notation ΦΦA
m in the case V = A is used. The F -functor ΦΦA

m (as
well as its geometric realization) is called the variety of m-flags of (right) ideals
(of A).

Lemma 12.2. Let A1 and A2 be two arbitrary finite-dimensional F -algebras.
Then ΦΦA1×A2

m ≃ ΦΦA1
m × ΦΦA2

m for any m ∈ N.
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Proof. Evident.

For the further consideration we restrict ourself to the case where the algebra
A is separable.

Lemma 12.3 (Morita equivalence). Put B = EndA V . Then ΦΦA
m(V ) ≃

ΦΦB
m for any m ∈ N.

Proof. In the proof of (10.7), mutually inverse isomorphisms of IΓA(V ) and
IΓB are described. They induce mutually inverse isomorphisms of ΦΦA

m(V ) ⊂
IΓA(V )×m and ΦΦB

m ⊂ (IΓB)×m.

Corollary 12.4. For every m ∈ N, the variety ΦΦA
m(V ) is smooth.

Proof. Put B = EndA V and let F̄ be an algebraic closure of F . Since B is a
separable F -algebra, BF̄ is isomorphic to a product

EndF̄ W1 × · · · × EndF̄ Wn

for some vector F̄ -spaces W1, . . . ,Wn. We have

ΦΦA
m(V ) ≃ ΦΦB

m by (12.3) ;

ΦΦBF̄
m ≃ ΦΦEndW1

m × · · · × ΦΦEndWn
m by (12.2) .

Thus ΦΦA
m(V )F̄ is isomorphic to the smooth variety ΦΦm(W1)× · · · × ΦΦm(Wn).

Theorem 12.5. Let A be a separable F -algebra and let

0→W ′ → V → W → 0

be an exact sequence of finitely generated A-modules. For every m ∈ N, the
variety ΦΦA

m(V ) is a relative cellular space over ΦΦA
m(W )× ΦΦA

m(W
′).

Proof. The proof is standard — compare with (10.9) or (11.4).

Corollary 12.6. In the category of correspondences CV, there is an isomor-
phism

ΦΦA
m(V ) ≃ ΦΦA

m(W )× ΦΦA
m(W

′) .

In particular,
H
(
ΦΦA
m(V )

)
≃ H

(
ΦΦA
m(W )× ΦΦA

m(W
′)
)

for any geometric cohomology theory H.

Theorem 12.7. For any separable algebra A, in the category CV there is an
isomorphism ΦΦA

m ≃ ΦΦAan
m (for any m ∈ N), where Aan is the anisotropic kernel

of A (10.12).

Components
We compute the components of the varieties ΦΦA

m(V ) only for a central simple
algebra A. So, let A be a finite-dimensional central simple F -algebra, V a
finitely generated A-module.
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Definition 12.8. For every sequence of integers (n1, . . . , nm), we put

ΦΦA
(n1,...,nm)(V ) = ΦΦm(V ) ∩

m∏
i=1

IΓAni
(V ) = ΦΦA

m(V ) ∩ ΦΦ(n1 degA,...,nm degA)(V ) .

The shorten notation ΦΦA
m in the case V = A is used.

Lemma 12.9 (Morita equivalence). Put B = EndA V . Then

ΦΦA
(n1,...,nm)(V ) ≃ ΦΦB

(n1,...,nm)

for any sequence of integers (n1, . . . , nm).

Corollary 12.10. The varieties ΦΦA
(n1,...,nm)(V ) are geometrically irreducible

and ΦΦA
m(V ) is their direct sum.

Proof. The latter statement is evident. Let us show that ΦΦA
(n1,...,nm)(V )F̄ is

irreducible, where F̄ is an algebraic closure of F . Put B = EndA V . Since BF̄

splits, there is a vector space W over F̄ such that BF̄ ≃ EndF̄ W . We have

ΦΦA
(n1,...,nm)(V )F̄ ≃

(
ΦΦB

(n1,...,nm)

)
F̄
≃ ΦΦ

BF̄

(n1,...,nm) ≃ ΦΦ(n1,...,nm)(W ) .

Now use (11.7).

Corollary 12.11. In the conditions of (12.5), assume that the F -algebra A
is central simple. Let H∗ be a graded geometric cohomology theory. For any
sequence of integers (n1, . . . , nm), there is an isomorphism

H∗ (ΦΦA
(n1,...,nm)(V )

)
≃

≃
⨿

i1,...,im

H∗ (ΦΦA
(i1,...,im)(W )× ΦΦA

(n1−i1,...,nm−im)(W
′)
)

[−i1(d− n1 + i1)− (i2 − i1)(d− n2 + i2)− · · · − (im − im−1)(d− nm + im)]

where d = rkAW
′.

13. Varieties of isotropic subspaces

We return to the situation when V is simply a finite-dimensional vector
F -space.

Definition 13.1. Let h : V × V → W be a fixed F -bilinear map to a finite-
dimensional vector F -space W . One defines the subfunctor IΓ(V, h) ⊂ IΓ(V ) of
(more precisely — totally) isotropic subspaces as follows:

IΓ(V, h)(R) =
{
N ∈ IΓ(V )(R)| h(N,N) = 0

}
.

Lemma 13.2. The subfunctor IΓ(V, h) ⊂ IΓ(V ) is closed (and hence repre-
sented by a complete F -variety).

Proof. Let N ∈ IΓ(V )(R), R ∈ F -alg. Put M = h(N,N) ⊂ WR. We have

N ∈ IΓ(V, h)(R) ⇔ M = 0 .
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Hence, if φ : R → S is a homomorphism of F -algebras and φW : WR → WS is
the induced homomorphism of R-modules, we have

N ⊗R S ∈ IΓ(V, h)(S) ⇔ φW (M) = 0 .

The end of the proof is standard (compare with (9.7) or (10.2)).

From now on, the characteristic of the field F is assumed to differ from 2.
Suppose that the bilinear form h on V is:

• non-degenerate and
• symmetric or skew-symmetric.

Proposition 13.3. Under the assumptions made above, the variety IΓ(V, h)
is smooth.

Proof. We have to show that IΓ(V, h)F̄ is regular, where F̄ is an algebraic
closure of F . Since IΓ(V, h)F̄ ≃ IΓ(VF̄ , hF̄ ) we may simply assume that F itself
is algebraically closed. Under this assumption, we produce a covering by open
subvarieties isomorphic to affine spaces.

For any vector F -space U , the hyperbolic space on U , denoted by H(U), is
by definition the direct sum U⊕U∗ of U and the dual space U∗ = HomF (U,F )
supplied with the (context depending) symmetric or skew-symmetric bilinear
form, determined by the conditions: (U,U) = 0 = (U∗, U∗) and (u∗, u) = u∗(u)
for any u∗ ∈ U∗, u ∈ U .

For every orthogonal decomposition of V of the type

V ≃ H(U)⊥W

consider the projection p : V →→ U and the corresponding open subfunctor
U ⊂ IΓ(V ) (see the proof of (9.2)).

Lemma 13.4. The subfunctors U ∩ IΓ(V, h) cover IΓ(V, h).

Proof. Since F is algebraically closed, it suffices to check the covering on the
level of F only. For every U ∈ IΓ(V, h)(F ), there exists a decomposition
V ≃ H(U)⊥W . If U is the corresponding open subfunctor, then U ∈ U(F ).

Lemma 13.5. The variety U ∩ IΓ(V, h) is isomorphic to an affine space (the
assumption that F is algebraically closed is not needed here).

Proof. We know already that U itself is an affine space (see the proof of (9.2)).
Namely, for any R ∈ F -alg, we identify the set U(R) with

HomR(UR, U
∗
R ⊕WR) = Bil(UR)⊕ HomR(UR,WR)

where Bil(UR) denotes the R-module of R-bilinear forms on UR. A pair(
b ∈ Bil(UR), f ∈ HomR(UR,WR)

)
corresponds to an element from IΓ(V, h)(R) if and only if the submodule{

u+ b(u, ·) + f(u)| u ∈ U
}
⊂ U ⊕ U∗ ⊕W = V
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is totally isotropic, i.e. for any u1, u2 ∈ U the scalar product

h
(
u1 + b(u1, ·) + f(u1), u2 + b(u2, ·) + f(u2)

)
=

= b(u1, u2) + λb(u2, u1) + h
(
f(u1), f(u2)

)
(∗)

is zero, where λ = 1 (resp. λ = −1) in the symmetric (resp. skew-symmetric)
case.

Notice, that since charF ̸= 2, the R-module Bil(UR) decomposes in the
direct sum Bil1(UR)⊕ Bil−1(UR) of the submodules of the symmetric and the
skew-symmetric forms: for any b ∈ Bil(UR), its symmetric and skew-symmetric
components are

(x, y) 7→ b(x, y) + b(y, x)

2
and (x, y) 7→ b(x, y)− b(y, x)

2
.

The condition (∗) = 0 means that the λ-symmetric component of b is uniquely
determined by f . However, there is no restriction on the choice of the −λ-
symmetric component. Thus for any R, we obtain a bijection(

U ∩ IΓ(V, h)
)
(R) ≃ Bil−λ(UR)⊕ Hom(UR,WR)

giving an isomorphism with an affine space desired (note that U ∩ IΓ(V, h) is
(in general) not a linear subspace of the affine space U).

With this lemma, we completed the proof of the proposition.

A cellular structure is not considered in this § because it will be obtained
at once in a more general situation in §15.

Components

Definition 13.6. For every n ∈ Z, we put

IΓn(V, h) = IΓ(V, h) ∩ IΓn(V ) ⊂ IΓ(V )

(of course, IΓn(V, h) is non-empty only if 0 ≤ n ≤ dimV/2).

Proposition 13.7. The varieties IΓn(V, h) are geometrically irreducible ex-
cluding the symmetric case with n = dimV/2; IΓ(V, h) is their direct sum. In
the excluded case, the variety IΓn(V, h) either is irreducible, or consists of two
isomorphic (geometrically irreducible) components.

Proof. Set G = SO(V, h) in the symmetric and G = Sp(V, h) in the skew-
symmetric case. The affine algebraic group G is irreducible. If the exceptional
case is excluded, it acts on IΓn(V, h) transitively. Thus IΓn(V, h) is absolutely
irreducible.

In the exceptional case, the algebraic group O(V, h) acts transitively on
IΓn(V, h). Since SO(V, h) is the connected component of O(V, h) and [O(V, h) :
SO(V, h)] = 2, the statement on the exceptional case follows.
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14. Involutions and hermitian forms

Let A be a ring. An involution on A is an anti-automorphism of order ≤ 2.
An isomorphism of rings with involutions is an isomorphism of the rings

commuting with the involutions.
For two rings with involutions (A1, σ1) and (A2, σ2), the product (A1, σ1)×

(A2, σ2) is the ring A1 × A2 with the involution σ1 × σ2.
Let σ be an involution on A and suppose that the ring A is semisimple

[4, def. (24.5)]. Since σ acts on the set of simple components of A, every
component is either invariant or interchanged with another one. Thus (A, σ)
is isomorphic to a product of (already indecomposable) factors of the following
two types:

• a simple ring [4, def. (25.14)] with an involution;
• B × Bop, where B is a simple ring and Bop is its opposite ring, with the
switch involution τ :

τ(b, bop) = τ(bop, b) for b ∈ B, bop ∈ Bop.

Let (A, σ) be a ring with involution and let V ′, V be A-modules. A sesquilin-
ear mapping h on V ′ × V is a biadditive map h : V ′ × V → A such that

h(v′a′, va) = σ(a′) · h(a′, a) · a for any v′ ∈ V ′, v ∈ V , a′, a ∈ A.
The set of sesquilinear mappings on V ′ × V is denoted by Sesq(V ′, V ). It is
a module over the ring of σ-invariant elements of the center of A, isomorphic
to HomA(V

′, V ∗), where V ∗ = HomA(V,A) is considered as a right A-module
(using the involution).

In the case V ′ = V , we obtain the notion of a sesquilinear form on V . The
set of sesquilinear forms on V will be denoted simply by Sesq(V ).

If h is a sesquilinear form on V , then σh, defined as

(σh)(v′, v) = σ
(
h(v, v′)

)
is once again a sesquilinear form on V . Put λ = 1 or λ = −1. A sesquilinear
form h on V is called λ-hermitian, if h = λ · (σh); one also says hermitian for
1-hermitian and skew-hermitian for (−1)-hermitian. The set of λ-hermitian
forms on V is denoted by Hermλ(V ); it is a module over the ring of σ-invariant
elements of the center of A.

Example 14.1. For V = A put h(a′, a) = σ(a′) · a for any a′, a ∈ A. Then h
is a hermitian form on V .

Example 14.2 (Hyperbolic space). Let (A, σ) be a ring with involution,
U an A-module, λ = ±1. The λ-hermitian hyperbolic space on U , denoted as
Hλ(U) or simply H(U), is the direct sum U⊕U∗ supplied with the λ-hermitian
form hh, determined by the conditions

hh(U,U) = 0 = hh(U∗, U∗) and hh(u∗, u) = u∗(u) for any u∗ ∈ U∗, u ∈ U .
If U = U1 ⊕ U2, then H(U) = H(U1)⊥H(U2).
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Suppose that 2 ∈ A×. Any h ∈ Sesq(V ) can be decomposed in the sum

h =
h+ σh

2
+
h− σh

2
.

The first (resp. second) summand is a hermitian (resp. skew-hermitian) form
on V called hermitian (resp. skew-hermitian) component of h. Since a si-
multaneously hermitian and skew-hermitian form is necessarily 0, we have a
decomposition in a direct sum (of modules over the ring of σ-invariant elements
of the center of A)

Sesq(V ) = Herm1(V )⊕ Herm−1(V ) .

A λ-hermitian form on V is called non-degenerate, if the induced homomor-
phism of A-modules ĥ : V → V ∗ is an isomorphism. In this case, there is a
unique involution σh on the ring EndA V satisfying the condition

h
(
v′, f(v)

)
= h

(
σh(f)(v

′), v
)

for any v′, v ∈ V , f ∈ EndA V .

It is called the adjoint involution (with respect to h) and can be constructed
as follows:

σh(f) = ĥ−1 ◦ f ∗ ◦ ĥ for any f ∈ EndA V ,

where f ∗ is the endomorphism of V ∗ induced by f .

Proposition 14.3 ([18, cor. 9.2 of chap. 7]). Let A be a skew-field with an
involution, V a finite-dimensional vector A-space and h a non-degenerate λ-
hermitian form on V . There exists an orthogonal decomposition

(V, h) = H(U)⊥(W,h)
with anisotropic W ⊂ V (moreover, U and (W,h) are unique up to isomor-
phisms).

We specialize our consideration to the case where A is a finite-dimensional
semisimple algebra over a field F and charF ̸= 2. By an involution on A we
always mean an involution of the ring A which is F -linear or in other words
which is trivial on F .

Lemma 14.4 ([18, discussion after thm. 7.4 of chap.8]). Suppose that A is a
simple F -algebra, V a finitely generated A-module. Every involution on the
F -algebra EndA V is adjoint with respect to an appropriate chosen involution
on A and a non-degenerate λ-hermitian form on V .

Definition 14.5. For any semisimple F -algebra with an involution (A, σ), we
define an F -algebra with an involution (A, σ)an, called the anisotropic kernel
of (A, σ), by the following rules:

• if (A, σ) decomposes, (A, σ)an is the product of the anisotropic kernels of
the indecomposable components of (A, σ);
• if (A, σ) ≃

(
Mn(D) ×Mn(D)op, switch

)
, where D is a division algebra,

we put
(A, σ)an = (D ×Dop, switch)×n ;
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• let D be a division F -algebra with an involution, V a vector space over
D with a λ-hermitian form h and let

(V, h) = H(U)⊥(W,h)
be a decomposition as in (14.3); if A ≃ EndD V and if σ is the adjoint
involution on A, then

(A, σ)an = (D ×Dop, switch)× dimD U × (EndDW,σ) .

The anisotropic kernel of a semisimple F -algebra with an involution is once
again a semisimple F -algebra with an involution, defined up to an isomor-
phism.

Remark 14.6. The anisotropic kernel can be defined in a more intrinsic way
as follows. One proves an analogy of (14.3) for the case of a semisimple F -
algebra A and applies it to the case V = A and h as in (14.1) in order to get
a decomposition

V = H(U1)⊥ . . .⊥H(Un)⊥W
with anisotropic W and simple U1, . . . , Un. The anisotropic kernel of (A, σ) is
then the algebra

EndA U1 × (EndA U1)
op × · · · × EndA Un × (EndA Un)

op × EndAW

with the restriction of σ in the capacity of the involution.

15. Varieties of isotropic ideals

Definition 15.1. For a finite-dimensional F -algebra A witn an involution σ
and a finitely generated A-module V with a λ-hermitian form h, we put

IΓA(V, h) = IΓA(V ) ∩ IΓ(V, h) ⊂ IΓ(V ) .

In the case where V = A and where h is as in (14.1), we use the notation IΓA,σ

for IΓA(V, h) and call it the variety of (right) (totally) isotropic ideals of (A, σ).

Lemma 15.2. For two finite-dimensional F -algebras with involutions (A1, σ1)
and (A2, σ2), it holds IΓA1×A2,σ1×σ2 ≃ IΓA1,σ1 × IΓA2,σ2.

Definition 15.3. For a ring A and a right (resp. left) ideal I ⊂ A, we denote
by Ann I the left (resp. right) annihilator of I. It is a left (resp. right) ideal
of A.

Lemma 15.4. Let A be a generalized Azumaya algebra (over a commutative
ring R), I ⊂ A a right or a left ideal, which is a direct summand of A. Then:

• Ann I is a direct summand of A;
• AnnAnn I = I.

Proof. Since a left ideal in A is a right ideal in Aop, it suffices to consider the
case of a right ideal I only.

Let us identify A with EndAA. Then a right ideal I is identified with
HomA(A, I). Hence Ann I = HomA(A/I,A) and it becomes evident that Ann I
is a direct summand of A in the case where I is.
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Suppose that R is a field. Using the identification obtained, we can count
the dimensions and see that dimR I + dimRAnn I = dimRA.

For an arbitrary R, we evidently have I ⊂ AnnAnn I. By the dimension
formula of the previous paragraph, for any homomorphism of R into a field L,
it holds (AnnAnn I/I)⊗L = 0. Thus I = AnnAnn I (note that AnnAnn I is
a finitely generated R-module as a direct summand of A).

Lemma 15.5. Let A be a separable F -algebra. Set B = A×Aop and let τ be
the switch involution on B. Then IΓB,τ ≃ ΦΦA

2 .

Proof. Take any R ∈ F -alg. A right ideal of BR = AR × Aop
R is a product

I× I ′, where I is a right ideal, I ′ is a left ideal of AR. An ideal I× I ′ is totally
isotropic if and only if I ′ · I = 0, i.e. I ⊂ Ann I ′. Since Ann I ′ is a direct
summand of AR by the previous lemma, we obtain a map

I × I ′ ∈ IΓB,τ (R) 7→ (I,Ann I ′) ∈ ΦΦA
2 (R)

determining a morphism of the F -functors. The inverse morphism is given by
the map

(I ⊂ J) ∈ ΦΦA
2 (R) 7→ I × Ann J ∈ IΓB,τ (R)

and is really inverse by the previous lemma once again.

For the rest of the §, we fix a separable algebra A with an involution σ and
a finitely generated A-module V with a non-degenerate λ-hermitian form h
(where λ = 1 or λ = −1).

Lemma 15.6 (Morita equivalence). Put B = EndA V and let τ be the ad-
joint involution on B. Then IΓA(V, h) ≃ IΓB,τ .

Proof. By the definition of τ , we have

h
(
v, f(v′)

)
= h

(
τ(f)(v), v′

)
for any v, v′ ∈ V and f ∈ B. For an arbitrary R ∈ F -alg, consider the given
by Morita theory map (see the proof of (10.7))

IΓA(V )(R) → IΓB(R)
N 7→ HomAR

(VR, N)

Suppose that N is totally isotropic. We like to show that its image is totally
isotropic as well. Take any f, f ′ ∈ HomAR

(VR, N). We have

0 = h
(
f(v), f ′(v′)

)
= h

((
τ(f ′) ◦ f

)
(v), v′

)
for any v, v′ ∈ VR .

Since h is non-degenerate, it follows that
(
τ(f ′) ◦ f

)
(v) = 0 for any v ∈ VR,

i.e. τ(f ′) ◦ f = 0 ∈ BR. Thus the image of N is really a totally isotropic ideal
of BR.

Since the inverse map

IΓA(V )(R)← IΓB(R)
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is defined in an analogous manner (see the proof of (10.7)), a similar verification
shows that it preserves the property of being totally isotropic as well. Thus
we obtain mutually inverse isomorphisms of IΓA(V, h) and IΓB,τ .

Corollary 15.7. The variety IΓA(V, h) is smooth.

Proof. It is enough to handle only the variety IΓA,σ (15.6), under the as-
sumption that F is algebraically closed and (A, σ) is indecomposable (15.2).
Then there is a vector F -space W such that either A ≃ EndF W or A ≃
EndW × EndW ∗ and σ is the switch in the second case.

Consider the first case. Depending on the type of σ, there is a symmetric
or skew-symmetric non-degenerate bilinear form h on W such that σ is the
adjoint involution with respect to h (and the identity involution on F ). Thus
IΓA,σ ≃ IΓ(W,h) by (15.6) and is smooth by (13.3).

In the second case, IΓA,σ ≃ ΦΦ2(W ) by (15.5) and is smooth by (11.3).

Theorem 15.8. Let A be a separable F -algebra with an involution, V a finitely
generated A-module with a non-degenerate λ-hermitian form h and

V = H(U)⊥W

an orthogonal decomposition. The variety IΓA(V, h) is a relative cellular space
over ΦΦA

2 (U)× IΓA(W,h).

Proof. Using the decomposition of the A-module V = U ⊕U∗⊕W , we obtain
a relative structure on IΓA(V ) over IΓA(U) × IΓA(U∗) × IΓA(W ) as in (10.14).
Restricting the morphism

Gr IΓA(V )→ IΓA(U)× IΓA(U∗)× IΓA(W )

to Gr IΓA(V, h) = IΓA(V, h) ∩ Gr IΓA(V ), we get a morphism into ΦΦA
2 (U) ×

IΓA(W,h). Indeed, let R ∈ F -alg and let

(N1, (UR/N2)
∗, N3) ∈

(
IΓA(U)× IΓA(U∗)× IΓA(W )

)
(R)

be the image of some N ∈ Gr IΓA(V )(R). If N is totally isotropic, then N3 is
totally isotropic as well; also the submodule N1⊕(UR/N2)

∗ is totally isotropic,
that is N1 ⊂ N2.

We are going to produce a structure of a vector bundle on the morphism

Gr IΓA(V, h)→ ΦΦA
2 (U)× IΓA(W,h)

constructed right now.
Fix R ∈ F -alg, (N1, N2) ∈ ΦΦA

2 (U)(R), N3 ∈ IΓA(W,h)(R), a splitting of
the inclusion N2 ↪→ UR and an AR-module N ′

3 such that N3 ⊕ N ′
3 = W . The

elements N ∈ Gr IΓA(V, h)(R), lying over the fixed R-point, are in one-to-one
correspondence with

HomAR
(N1, N

∗
2 )⊕ HomAR

(N1, N
′
3)⊕ Hom(N3, N

∗
2 ) =

= Sesq(N1, N2)⊕ HomAR
(N1, N

′
3)⊕ Sesq(N3, N2)
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(compare to (10.14)). An element h12⊕ f13⊕ h32 of the latter set corresponds
to

N =
{
n1 + n∗

2 + h12(n1, ·) + h32(n3, ·) + n3 + f13(n1) ∈ VR|
n1 ∈ N1, n

∗
2 ∈ (UR/N2)

∗, n3 ∈ N3

}
.

Let us compute the hermitian product of two elements from this N :

h
(
n1 + n∗

2 + h12(n1, ·) + h32(n3, ·) + n3 + f13(n1),

m1 +m∗
2 + h12(m1, ·) + h32(m3, ·) +m3 + f13(m1)

)
=

=h12(n1,m1) + λσ
(
h12(m1, n1)

)
+ h32(n3,m1) + λσ

(
h32)(m3, n1)

)
+(∗)

+ h
(
n3, f13(m1)

)
+ λσ

(
h
(
m3, f13(n1)

))
+ h
(
f13(n1), f13(m1)

)
where n1,m1 ∈ N1, n

∗
2,m

∗
2 ∈ (UR/N2)

∗, n3,m3 ∈ N3.
Suppose that (∗) = 0 for any n1, n3,m1,m3. Taking n3 = 0 = m3, we get a

condition

h12(n1,m1) + λσ
(
h12(m1, n1)

)
= −h

(
f13(n1), f13(m1)

)
for any n1,m1 ∈ N1 .

(i)

Thus the rest of (∗)

h32(n3,m1) + λσ
(
h32(m3, n1)

)
+ h
(
n3, f13(m1)

)
+ λσ

(
h
(
m3, f13(n1)

))
is zero as well. Taking m3 = 0 = n1, we get a condition

h32(n3,m1) = −h
(
n3, f13(m1)

)
for any n3 ∈ N3 and m1 ∈ N1(ii)

Conversely, the conditions (i) and (ii) together imply (∗).
The condition (ii) means that the restriction of h32 ∈ Sesq(N3, N2) toN3×N1

is uniquely determined by f13. The condition (i) means that the λ-hermitian
component of the restriction of the sesquilinear map h12 ∈ Sesq(N1, N2) to the
subset N1×N1 is uniquely determined by f13 as well. Thus we get a bijection
with the following set:

Sesq(N1, N
′
1)⊕ Herm−λ(N1)⊕ HomAR

(N1, N
′
3)⊕ Sesq(N3, N

′
1)

where N ′
1 is a fixed AR-module such that N2 = N1⊕N ′

1. It gives a structure of
a vector bundle, since the sum written down is a finitely generated projective
R-module compatible with tensor products by commutative R-algebras.

Corollary 15.9. In the category of correspondences CV, there is an isomor-
phism

IΓA(V, h) ≃ ΦΦA
2 (U)× IΓA(W,h) .

In particular,

H
(
IΓA(V )

)
≃ H

(
ΦΦA

2 (U)× IΓA(W,h)
)

for any geometric cohomology theory H.
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Theorem 15.10. For any separable algebra A with an involution σ, in the
category CV there is an isomorphism IΓA,σ ≃ IΓ(A,σ)an, where (A, σ)an is the
anisotropic kernel (14.5)

Components
Let A be a central simple F -algebra supplied with an involution σ (called an
involution of the first kind in the literature). We put

t =

{
1 in the case of orthogonal σ;

−1 in the case of symplectic σ.

As before, V is a finitely generated A-module, supplied with a non-degenerate
λ-hermitian form h (where λ = ±1).

Definition 15.11. For any n ∈ Z, we put

IΓAn (V, h) = IΓA(V, h) ∩ IΓAn (V ) ⊂ IΓA(V ) .

Analogously, the F -functors IΓA,σn are defined. The variety IΓA,σ1 in the orthog-
onal case was called the involution variety and studied in [21].

Lemma 15.12 (Morita equivalence). Put B = EndA V and let τ be the
adjoint involution on B. Then IΓAn (V, h) ≃ IΓB,τn .

Proof. Using (10.7), we identify IΓA(V ) with IΓB. By (10.17), the subfunctor
IΓAn (V ) is identified with IΓBn ; by (15.6), the subfunctor IΓA(V, h) is identified
with IΓB,τ . Thus the intersections are identified with each other.

Corollary 15.13. The varieties IΓAn (V, h) are geometrically irreducible exclud-
ing the case where tλ = 1 and n = rkA V/2; IΓ

A(V, h) is their direct sum. In
the excluded case, the variety IΓAn (V, h) either is irreducible, or consists of two
isomorphic (geometrically irreducible) components.

Proof. The last statement is straightforward. Let us prove the rest.
By the lemma, it suffices to handle the variety IΓB,τn only. We also may

assume that F is algebraically closed. Then B ≃ EndF W for a vector F -space
W and the involution on EndF W is adjoint with respect to a tλ-symmetric
non-degenerate bilinear form h on W . Thus IΓB,τn ≃ IΓn(W,h) by (15.12).
The variety IΓn(W,h) is either irreducible or consists of two (geometrically
irreducible) components by (13.7).

Corollary 15.14. In the conditions of (15.8), assume that the F -algebra A
is central simple and the involution σ is of the type t. Let H∗ be a graded
geometric cohomology theory. For any n ∈ Z, there is an isomorphism

H∗ (IΓAn (V, h)) ≃ ⨿
i+(rkU−j)+k=n

H∗ (ΦΦA
(i,j)(U)× IΓAk (W,h)

)
[−rijk]

where rijk = i(j − i) + i(i− tλ)/2 + i(rkAW − k) + k(j − i).
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Proof. We only have to check that the twisting numbers rijk are correct. In
the notation of the proof of (15.8), suppose that

(N1, N2) ∈ ΦΦA
(i,j)(U)(R) and N3 ∈ IΓAk (W,h)(R) .

Then

rijk =rkR Sesq(N1, N
′
1) + rkRHerm−λ(N1) +

+ rkRHomAR
(N1, N

′
3) + rkR Sesq(N3, N

′
1) .

Computing these ranks, we may assume that R is a field. To avoid additional
notation, we simply assume that R = F .

Lemma 15.15. Let A be a central simple F -algebra with an involution of type
t, N ′ and N finitely generated A-modules. Then

dimF Sesq(N ′, N) = rkAN
′ · rkAN ;(i)

dimF Hermλ(N) =
1

2
rkAN(rkAN + tλ) .(ii)

Proof. We have already observed that dimF HomA(N
′, N) = rkAN

′ · rkAN .
Since Sesq(N ′, N) ≃ HomA(N

′, N∗), the equality (i) needs no proof.
The equality (ii) is evidently fulfilled for N = A: the F -space Hermλ(A) is

isomorphic to the space of λ-symmetric elements of A; its dimension equals
degA(degA+ tλ)/2 by one of possible definitions of an orthogonal (resp. sym-
plectic) involution [18, def. 7.6 of chap. 8].

For an arbitrary A-module N and any n ∈ N, notice that

Hermλ(Nn) ≃ Sesq(N)n(n−1)/2 ⊕ Hermλ(N)n

and therefore (ii) is fulfilled for N if and only if it holds for Nn. This ends the
proof since Nn ≃ Am for some n,m ∈ N.

Since rkAN1 = i, rkAN
′
1 = j − i, rkAN3 = k and rkAN

′
3 = rkAW − k, we

get

rijk = i(j − i) + i(i− tλ)/2 + i(rkAW − k) + k(j − i) .

16. Varieties of flags of isotropic ideals

Definition 16.1. For a finite-dimensional F -algebra A witn an involution σ
and a finitely generated A-module V with a λ-hermitian form h, for anym ∈ N,
we put

ΦΦA
m(V, h) = ΦΦA

m(V ) ∩ IΓA(V, h)×m ⊂ IΓA(V )×m .

In the case where V = A and where h is as in (14.1), we use the notation ΦΦA,σ
m

for ΦΦA
m(V, h) and call it the variety of m-flags of (right) (totally) isotropic

ideals of (A, σ).
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Lemma 16.2. For two finite-dimensional F -algebras with involutions (A1, σ1)
and (A2, σ2), for any m ∈ N, it holds

ΦΦA1×A2,σ1×σ2
m ≃ ΦΦA1,σ1

m × ΦΦA2,σ2
m .

Lemma 16.3. Let A be a separable F -algebra. Set B = A×Aop and let τ be
the switch involution on B. Then ΦΦB,τ

m ≃ ΦΦA
2m for any m ∈ N.

Proof. The mutually inverse isomorphisms of the F -functors are defined as
follows (compare with the proof of (15.5)). For any R ∈ F -alg, an element

(I1 × I ′1 ⊂ · · · ⊂ Im × I ′m) ∈ ΦΦB,τ
m (R)

is identified with

(I1 ⊂ · · · ⊂ Im ⊂ Ann I ′m ⊂ · · · ⊂ Ann I ′1) ∈ ΦΦA
2m(R) ;

conversely, an element

(I1 ⊂ · · · ⊂ Im ⊂ Jm ⊂ · · · ⊂ J1) ∈ ΦΦA
2m(R)

is identified with

(I1 × Ann J1 ⊂ · · · ⊂ Im × Ann Jm) ∈ ΦΦB,τ
m (R) .

For the rest of §, we fix a separable algebra A with an involution σ and a
finitely generated A-module V with a non-degenerate λ-hermitian form h (as
always λ = 1 or λ = −1).

Lemma 16.4 (Morita equivalence). Put B = EndA V and let τ be the ad-
joint involution on B. Then ΦΦA

m(V, h) ≃ ΦΦB,τ
m for any m ∈ N.

Corollary 16.5. The varieties ΦΦA
m(V, h) are smooth.

Proof. It is enough to handle only the variety ΦΦA,σ
m (16.4), under the as-

sumption that F is algebraically closed and (A, σ) is indecomposable (16.2).
Then there is a vector F -space W such that either A ≃ EndF W or A ≃
EndW × EndW ∗ and σ is the switch in the second case.

Consider the first case. Depending on the type of σ, there is a symmetric
or skew-symmetric non-degenerate bilinear form h on W such that σ is the
adjoint involution with respect to h (and the identity involution on F ). Thus
ΦΦA,σ
m ≃ ΦΦF

m(W,h) by (16.4). The latter variety is smooth, since it can be
covered by affine spaces (compare to (11.3) and (13.3)).

In the second case, ΦΦA,σ
m ≃ ΦΦ2m(W ) by (16.3) and is smooth by (11.3).

Theorem 16.6. Let A be a separable F -algebra with an involution, V a finitely
generated A-module with a non-degenerate λ-hermitian form h and

V = H(U)⊥W
an orthogonal decomposition. For anym ∈ N, the variety ΦΦA

m(V, h) is a relative
cellular space over ΦΦA

2m(U)× ΦΦA
m(W,h).
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Corollary 16.7. In the category of correspondences CV, for any m ∈ N, there
is an isomorphism

ΦΦA
m(V, h) ≃ ΦΦA

2m(U)× ΦΦA
m(W,h) .

In particular,

H
(
ΦΦA
m(V, h)

)
≃ H

(
ΦΦA

2m(U)× ΦΦA
m(W,h)

)
for any geometric cohomology theory H.

Theorem 16.8. For any separable algebra A with an involution σ, for any
m ∈ N, in the category CV there is an isomorphism

ΦΦA,σ
m ≃ ΦΦ(A,σ)an

m

where (A, σ)an is the anisotropic kernel of (A, σ) (14.5).

Components
Let A be a central simple F -algebra supplied with an involution σ of type t,
V a finitely generated A-module supplied with a non-degenerate λ-hermitian
form h.

Definition 16.9. For any sequence of integers (n1, . . . , nm), we put

ΦΦA
(n1,...,nm)(V, h) = ΦΦA

m(V, h) ∩ ΦΦA
(n1,...,nm)(V ) ⊂ IΓA(V )×m .

Analogously, the F -functors ΦΦA,σ
(n1,...,nm) are defined.

Lemma 16.10 (Morita equivalence). Put B = EndA V and let τ be the

adjoint involution on B. Then ΦΦA
(n1,...,nm)(V, h) ≃ ΦΦB,τ

(n1,...,nm).

Corollary 16.11. The varieties ΦΦA
(n1,...,nm)(V, h) are geometrically irreducible

excluding the case where tλ = 1 and nm = rkA V/2; ΦΦ
A
m(V, h) is their direct

sum. In the excluded case, the variety ΦΦA
(n1,...,nm)(V, h) either is irreducible, or

consists of two isomorphic (geometrically irreducible) components.

Proof. The last statement is straightforward. Let us prove the rest.
By the lemma, it suffices to handle the variety ΦΦB,τ

(n1,...,nm) only. We also may

assume that F is algebraically closed. Then B ≃ EndF W for a vector F -space
W and the involution on EndF W is adjoint with respect to a tλ-symmetric
non-degenerate bilinear form h on W . Thus

ΦΦA,σ
(n1,...,nm) ≃ ΦΦF

(n1,...,nm)(W,h)

by (16.10). Put

G =

{
SO(W,h), if tλ = 1;

Sp(W,h), if tλ = −1.
If the exceptional case is excluded, the algebraic group G acts transitively on
ΦΦF

(n1,...,nm)(W,h), whence geometrically irreducibility.
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In the exceptional case, the group O(W,h) acts transitively on the variety
ΦΦF

(n1,...,nm)(W,h). Since SO(W,h) is the connected component of O(W,h) and

[O(W,h) : SO(W,h)] = 2, the statement on the exceptional case follows.

Corollary 16.12. In the conditions of (16.6), assume that the F -algebra A
is central simple. Let H∗ be a graded geometric cohomology theory. For any
sequence of integers (n1, . . . , nm), there is an isomorphism

H∗ (ΦΦA
(n1,...,nm)(V, h)

)
≃

≃
⨿

i1+(rkU−j1)+k1=n1

. . .
⨿

im+(rkU−jm)+km=nm

H∗
(
ΦΦA

(i1,...,im,jm,...,j1)
(U)× ΦΦA

(k1,...,km)(W,h)
)
[. . . ]

(a computation of the twisting numbers is omitted).
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