ON ISOTROPY OF QUADRATIC PAIR
NIKITA A. KARPENKO

ABSTRACT. Let F be an arbitrary field (of arbitrary characteristic). Let A be a central
simple F-algebra endowed with a quadratic pair o (if char F # 2 then o is simply an
orthogonal involution on A). We show that the Witt index of ¢ over the function field
of the Severi-Brauer variety of A is divisible by the Schur index of the algebra A.

1. INTRODUCTION

Let F' be a field (of arbitrary characteristic). Let A be a central simple F-algebra
endowed with a quadratic pair o (cf.§2.1, a reader without interest in characteristic 2
may replace o by an orthogonal involution).

Let X be the Severi-Brauer variety of the algebra A (cf.§2.5) and let F'(X) stands for
the function field of X. We show (Theorem 3.3) that the Witt index ind op(x) of the
quadratic pair op(x) (cf. §2.4) is divisible by the Schur index ind A of the algebra A.

This result generalizes [6, Theorem 5.3] stating that op(x) is anisotropic provided that
A is a division algebra.

Besides, this result supports the affirmative answer to the following

Question 1.1. Assume that the quadratic pair op(x) is isotropic. Does the F-variety Yy
of right o-isotropic ideals in A of reduced dimension d = ind A possess a 0-dimensional
cycle of degree 17

Indeed, Yy(F(X)) # () by Theorem 3.3.

If ind A = 2, then Question 1.1 is answered in the affirmative for A and moreover
Y5(F) # 0 by [8, Corollary 3.4]. We recall that in general it is not known whether
Yi(F) # 0 provided that the variety Yy has a O-dimensional cycle of degree 1 (cf.[2,
Question after Proposition 4.1]).

2. PRELIMINARIES

A wariety is a separated scheme of finite type over a field.

2.1. Quadratic pairs. Let A be a central simple F-algebra. A quadratic pair o on A is
given by an involution of the first kind & on A together with a linear map o’ of the space
of the -symmetric elements of A to F', subject to certain conditions (cf.[7, Definition

(5.4) of Chapter I]).
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If char F # 2, then G is an arbitrary orthogonal involution on A and the map o’ is
determined by . Therefore the notion of quadratic pair is equivalent to the notion of
orthogonal involution in characteristic # 2.

If char F' = 2, then the algebra A is of even degree and the involution & is of symplectic
type.

In arbitrary characteristic, any quadratic form on a finite-dimensional vector space V'
over F' such that its polar bilinear form is non-degenerate, produces a quadratic pair on
the endomorphisms algebra End(V), called the quadratic pair adjoint to the quadratic
form (the involution of the adjoint quadratic pair is the involution adjoint to the polar
symmetric bilinear form of the quadratic form). This way one gets a bijection of the set
of quadratic forms on V' (up to a factor in F'*) having non-degenerate polar forms onto
the set of quadratic pairs on End(V).

A right ideal I of a central simple F-algebra A endowed with a quadratic pair o is called
isotropic or o-isotropic, if 6(I) -1 =0 and ¢’ is 0 on the part of I where ¢’ is defined (we
mean that ¢’ is 0 on the set of F-symmetric elements of 7).

Dimension over F' of any right ideal of A is divisible by the degree deg A of A; the
quotient is called the reduced dimension of the ideal.

Let r > 0 be an integer. The variety Y, of the right o-isotropic ideals in A of reduced
dimension 7 is empty if r > (deg A)/2. For r < (deg A)/2, Y, is a projective homogeneous
variety under the action of the linear algebraic group Aut(A, o). In particular, Y} is
Spec F' with the trivial action. If r < (deg A)/2 then Y, is a projective homogeneous
variety under the action of the connected linear algebraic group Aut(A,o)° (connected
component of Aut(A,o)); in particular, Y, is integral for such r. If r = (deg A)/2 (for
even deg A) and the discriminant of the quadratic pair o (cf.[7, §7B of Chapter II}) is
trivial, then the variety Y, has two connected components each of which is a projective
homogeneous variety under Aut(A, 0)°; these components are isomorphic to each other if
and only if the algebra A is split.

If A =End(V) and o is adjoint to a quadratic form ¢ on V', then for any r, Morita
equivalence identifies the variety Y, with the variety of r-dimensional totally isotropic
subspaces of V. In particular, Y] is the projective quadric of ¢.

2.2. Chow groups. Let X be a variety over F'. A splitting field of X is a field extension
E/F such that the Chow motive of X is a direct sum of twists of the motive of the point
Spec E. Any projective homogeneous (under an action of a linear algebraic group) variety
(in particular, each variety Y, of §2.1) has a splitting field.

Given a variety X over F, we write Ch(X) for the Chow group modulo 2 (i.e., with
coefficients Z/27) of X. As in [4, §72], we write Ch(X) for the colimit colim; Ch(X})
over all field extensions L of F. Note that for any splitting field £/F of X the canonical
homomorphism Ch(Xg) — Ch(X) is an isomorphism.

We write Ch(X) for the image of the homomorphism Ch(X) — Ch(X). An element of
Ch(X) is called rational or F-rational, if it is inside of Ch(X).

2.3. Varieties of isotropic ideals. Let A be a central simple F-algebra endowed with
a quadratic pair 0. Let Y = Y] be the variety of right o-isotropic ideals in A of reduced
dimension 1. Note that for any splitting field L/F of the algebra A, the variety Y7 is



ON ISOTROPY OF QUADRATIC PAIR 3

isomorphic to a projective quadric. Therefore Ch(Y") has an F,-basis given by the elements
h'l;,i=0,...,[dimY/2], introduced in [4, §68].

For any 7 > 0, the element A’ is the ith power of the hyperplane section & (in particular,
h® =[Y] and h' =0 for i > dimY"). The element i can be non-rational. It is L-rational,
where L is a splitting field of the algebra A.

The element [; is the class of an i-dimensional linear subspace lying inside of Yy (where
E is a splitting field of V). If ¢ # dim Y/2, then this class does not depend on the choice
of the linear subspace. However in the case of even dimY and i = dimY/2, there are
(exactly) two different classes of i-dimensional linear subspaces on Yz (and their sum is
equal to h%). An orientation of the variety Y is a choice of one of these two classes.

The basis elements of Ch(Y) introduced above satisfy the formula hl; = [;_; for i =
1,...,[dimY/2].

2.4. Witt index. Let o be a quadratic pair on a central simple F-algebra A. There
exists an integer ind o such that {0,ind A,2ind A,..., (indo)(ind A)} is the set of the
reduced dimensions of the right o-isotropic ideals in A. We call ind o the (Witt) index of
the quadratic pair o. It satisfies the inequalities 0 < indo < (deg A)/(2ind A).

Now we assume that the algebra A is split (this is in fact the only case where we
use the definition of the Witt index of a quadratic pair). Then the quadratic pair o is
adjoint with respect to some non-degenerate quadratic form ¢ (whose similarity class is
uniquely determined by o) and ind ¢ is the Witt index of . If Y is the variety of right
o-isotropic ideals in A of reduced dimension 1 and ¢ is a nonnegative integer, then the
element [; € Ch(Y)) is rational if and only if i < ind o, cf. [4, Corollary 72.6].

2.5. Severi-Brauer varieties. Let A be a central simple F-algebra. Let X be the Severi-
Brauer variety of A, that is, the variety of all right ideals in A of reduced dimension 1.
Over any splitting field (of A or, equivalently, of X), the variety X is isomorphic to a
projective space of dimension (deg A) —1. For any i > 0, we write h* € Ch*(X) for the ith
power of the hyperplane class h € Ch'(X). Therefore, for any i with 0 < i < dim X, A’
is the only nonzero element of the group Ch’(X). Note that A’ is rational if 7 is divisible
by ind A (cf. [1]).

Now we assume that the Schur index of A is a power of 2. Then by [5, Proposition
2.1.1], we have Ch'(X) = 0 for all 4 not divisible by ind A. Let us additionally assume that
A is a division algebra. Since the (say, first) projection X? — X is a projective bundle, we
have a (natural with respect to the base field change) isomorphism Chgiy, x (X?) ~ Ch(X)
Passing to Ch, we get an isomorphism Chgj, x(X?) ~ Ch(X) = ChO(X) showing that
dimp, Chgin x (X?) = 1. Since the diagonal class

hO % h(degA)fl + hl % h(degA)72 4ot h(degA)fl % hO c CThdimX<X2)
is nonzero, it follows that this is the only nonzero element of the group. This result is

generalized in Lemma 3.1 below.

3. WITT INDEX
Let F' be a field.
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Lemma 3.1. Let A be a central simple F-algebra such that the Schur index of A is a
power of 2. Let d =ind A and n = (deg A)/(ind A). Let X 4 be the Severi-Brauer variety
of A. Let X be the Severi-Brauer variety of a central division F-algebra Brauer-equivalent
to A. Then for anyr =1,...,n, the element

hO % hrd—l + hl % hrd—2 I hd—l % h(r—l)d
is the only nonzero element of the group dhrd_l(X X Xa).

Proof. Let r be an integer satisfying 1 < r < n. '

Since the projection X x X4 — X is a projective bundle and Ch'(X) = 0 for i # 0
(cf.§2.5), we have an isomorphism Ch’(X x X,) ~ C_hO(X) for any j = 0,...,dim X4
(and, in particular, for j = rd — 1). Therefore the group Ch’(X x X4) has only one
nonzero element for such j (for j > dim X4 this group is zero).

We write D for a central division F-algebra Brauer equivalent to A. We fix an isomor-
phism of A with the tensor product D ® M, (F') where M, (F') is the algebra of square
n-matrices over F. Tensor product of ideals produces a closed embedding X x P! < X 4
(which is a twisted form of the Segre embedding). Picking up a rational point of P"~! we
get a closed embedding in : X < X4 such that for any splitting field £ of X the image
of X is a linear subspace of the projective space (X4)g. The image of the diagonal class
under the push-forward with respect to the closed embedding idx x in : X% < X x X4
is equal to

, = ho % hnd—l + hl % hnd—? 4t hd—l % h(n—l)d )

It follows that oy, is the only nonzero element of the group Chnd_l(X X X4).
A basis of Ch™ (X x X,) is given by the elements

hO % hrd—l’ hl % hv"d—Z7 N hd—l % h(r—l)d‘

)

Let
a, = aph® x K"+ ayht x B2 4o ag R x R
with some ag, aq,...,aq4-1 € Z/2Z be the nonzero element of the subgroup
Ch™ (X x X4) € Ch (X x Xy).
Since

a, - (]'LO % h(n—r)d) — CL()hO % hnd—l + (llhl % hnd—2 4ot a/d—lhd_l % h(n—l)d

is a nonzero element of the group thndfl(X X X ) (here we use the fact that the element
h("=1d ¢ Ch(X,) is rational, mentioned in §2.5), it follows that a, - (h® x h("~") = q,,
i.e.,agzalz---:ad_lzl. ]

Proposition 3.2. Let A be a central simple F-algebra. Let d = ind A. Let o be a
quadratic pair on A. Let X be the Severi-Brauer variety of a central simple F-algebra
Brauer-equivalent to A. Let Y be the variety of o-isotropic ideals of reduced dimension
1 in A. If for some integer r > 0 the cycle l,q € Ch(Y) is F(X)-rational, then (for an
appropriately chosen orientation of Y') the cycle Iy 11)4—1 € Ch(Y) is F-rational.
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Proof. Let D be a central division F-algebra Brauer-equivalent to A. We may assume
that X is the Severi-Brauer variety of D.

Since the algebra A possesses an involution of the first type, the index d of A is a power
of 2.

If d = 1, then there is nothing to prove. We assume that d > 2 in the sequel.

For any field extension L/F, the pull-back homomorphism Ch(X, x Yz) — Ch(Yy(x))
with respect to the morphism Y7,xy = (Spec L(X)) x Y — X, x Y}, given by the generic
point of X is surjective by [4, Corollary 57.11]. These pull-backs give a surjection

F:Ch(X x Y) = Ch(Y)

such that the image of the subgroup of rational cycles in Ch(X x Y) is the subgroup of
F(X)-rational cycles in Ch(Y'). Since the external product Ch(X)®Ch(Y) — Ch(X xY)
is an isomorphism (cf. [4, Proposition 64.3]), the external products of the basis elements of
Ch(X) with the basis elements of Ch(Y’) form a basis of Ch(X x Y'). The homomorphism
Ch(X x Y) — Ch(Y) is easily computed in terms of this basis: for any basis element
B € Ch(Y), the image of h° x 3 is 3 and the image of any other basis element of Ch(X xY)
is 0.

We fix an integer r > 0 such that the cycle l,4 € Ch(Y) is F'(X)-rational. Let s stands
for the integer (deg A)/2 — 1. Note that rd < s (otherwise, the cycle [,4 is not defined at
all). Let a € Ch(X x Y) be a rational cycle whose image in Ch(Y") under the surjection
fis l,q. We have

a=h" X lLg+ah' X lg + -+ as_pgh® " x 1
+ bshs—rd x hS + bs_lhs—rd—i—l % hs—l 44 bOhQS—rd X h()

for some ay,...,as_rq,bs,...,bp € Z/27Z and for an arbitrary chosen orientation of Y (in
this sum, the summands with the first factor h' are of course 0 for i > d — 1).

The variety Y is a closed subvariety of X4. The image of o under the push-forward
Ch(X x Y) — Ch(X x X,) with respect to the base change X x Y — X x X4 of the
closed embedding Y — X4 is equal to

hO % hD—Td + alhl % hD—rd—l 4t as—rdhs_rd % hD_S,

where D = dim X4 = deg A — 1. It follows by Lemma 3.1 that d — 1 < s — rd and
a; = --- = aqg_1 = 1. Choosing an appropriate orientation of Y, we may assume that
bs = 0.

It follows that

a=h" < lg+h" X lgpr + -+ 2 X Lyt

Taking push-forward of o with respect to the projection X XY — Y we obtain l(;41)4-1 €
Ch(Y’). Therefore the cycle l(,;1)q—1 is rational. O

Theorem 3.3. Let A be a central simple algebra over a field F. Let o be a quadratic pair
on A. Then the Witt index of o over the function field of the Severi-Brauer variety of
any central simple F-algebra Brauer-equivalent to A is divisible by the Schur index of A.

Proof. Let Y be the variety of o-isotropic ideals of reduced dimension 1in A. Let d = ind A
and let 7 > 0 be the largest integer with ind op(x) > rd. If ind op(x) > rd, then the cycle



6 N. KARPENKO

l,¢ € Ch(Y) is F(X)-rational. Therefore, by Proposition 3.2, the cycle lir41)d—1 s F-
rational (and in particular F'(X)-rational) and it follows by §2.4 that ind op(x) > (r+1)d,
a contradiction with the choice of r. Consequently, ind op(x) = rd. 0

Remark 3.4. Proposition 3.2 is stronger than Theorem 3.3, because in the proof of
Theorem 3.3 we have only used the fact that the cycle [ 1yq—1 is F(X)-rational while
Proposition 3.2 states that this cycle is F-rational.

4. MOTIVIC DECOMPOSITION

Cycles constructed in the previous section produce a motivic decomposition which we
now describe. Our motivic category is the category of graded correspondences CR(F, Z/27)
defined in [4, §63]. We write M(X) for the motive of a smooth projective variety X.

Proposition 4.1. Let A be a central simple F-algebra endowed with a quadratic pair o.
Let'Y be the variety of right o-isotropic ideals in A of reduced dimension 1. Let d = ind A.
Let D be a central division algebra Brauer-equivalent to A. Let X be the Severi-Brauer
variety of D. Let w be the Witt index of the quadratic pair opxy. Then the Ch-motive
M) of Y has a direct summand isomorphic to

S=MX)oMX)d) @ dM(X)(w—d)

OMX)m)dMX)(m—-d)d - D M(X)(m—w+d)
where m = dimY —dim X. If op(x) is hyperbolic (i.e., if w = deg A/2), then M(Y) ~ S.
Proof. We have seen in the proof of Proposition 3.2 that the cycles
ap =h" X lg+h" X gy + -+ h X lya-1 € Ch(X x Y)

with r = 0,1,...,w/d — 1 are rational. For the same r, taking pull-back with respect to
the closed embedding X x Y < X x X4 of the rational cycle

A x RUrEDEt gl prtDa=2 4 g8t prd e Ch(X x X )
of Lemma 3.1, we get a rational cycle
By = h0 x RlrDa=L gl pribd=2 g pd=l s prd € Ch(X x V).

Let E//F be a splitting field of Y. Using the multiplication formula of §2.3, one checks
that the morphism

(060,051, cee 7aw/d—17507617 B 7/8w/d—1) : SE - M(YE)

is right inverse to the morphism
(Bé7ﬁi7 Tt 1tu/d717 046, Oé)i, ce 7afu/d71) : M(YE) - SE

(where  stands for the transposition). Moreover, these are mutually inverse isomorphisms
provided that op(x) is hyperbolic. Nilpotence theorem [4, Theorem 92.4 with Remark
92.3] finishes the proof. O

Remark 4.2. The summands of S are indecomposable by [5]. The decomposition of
M(Y) into a sum of indecomposable summands which we get in the case of hyperbolic o
(or, at least, of hyperbolic op(x)), is unique by [3].



(1]

ON ISOTROPY OF QUADRATIC PAIR 7

REFERENCES

ARTIN, M. Brauer-Severi varieties. In Brauer groups in ring theory and algebraic geometry (Wilrijk,
1981), vol. 917 of Lecture Notes in Math. Springer, Berlin, 1982, pp. 194-210.

BAYER-FLUCKIGER, E., SHAPIRO, D. B., AND TIGNOL, J.-P. Hyperbolic involutions. Math. Z. 214,
3 (1993), 461-476.

CHERNOUSOV, V., AND MERKURJEV, A. Motivic decomposition of projective homogeneous varieties
and the Krull-Schmidt theorem. Transform. Groups 11, 3 (2006), 371-386.

ELMAN, R. S., KARPENKO, N. A., AND MERKURJEV, A. S. Algebraic and Geometric Theory of
Quadratic Forms. American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2008.

KARPENKO, N. A. Grothendieck Chow motives of Severi-Brauer varieties. Algebra i Analiz 7, 4
(1995), 196-213.

KARPENKO, N. A. On anisotropy of orthogonal involutions. J. Ramanujan Math. Soc. 15, 1 (2000),
1-22.

KnNus, M.-A., MERKURJEV, A., RosT, M., AND TieNoOL, J.-P. The book of involutions, vol. 44
of American Mathematical Society Colloquium Publications. American Mathematical Society, Provi-
dence, RI, 1998. With a preface in French by J. Tits.

PARIMALA, R., SRIDHARAN, R., AND SURESH, V. Hermitian analogue of a theorem of Springer. J.
Algebra 243, 2 (2001), 780-789.

UPMC UN1v PARIS 06, INSTITUT DE MATHEMATIQUES DE JUSSIEU, F-75252 PARIS, FRANCE

Web page: www.math. jussieu.fr/ karpenko
E-mail address: karpenko ¢ math. jussieu.fr



