MOTIVIC DECOMPOSITION OF COMPACTIFICATIONS OF CERTAIN GROUP VARIETIES

NIKITA A. KARPENKO AND ALEXANDER S. MERKURJEV

Abstract

Let D be a central simple algebra of prime degree over a field and let E be an $\mathbf{S L}_{1}(D)$-torsor. We determine the complete motivic decomposition of certain compactifications of E. We also compute the Chow ring of E.

Contents

U. Introduction 1
2. K-cohomology 3
3. BGQ spectral sequence 4
4. Specialization 4
5. A source of split motives 5
6. Compactifications of algebraic groups 6
7. Some computations in $\mathrm{CH}\left(\mathrm{SL}_{1}(D)\right]$ 9
8. Rost's theorem 10
9 . The category of D-motives 12
10. Motivic decomposition of compactifications of $\operatorname{SL}_{1}(D)$ 14
References 16

1. Introduction

Let p be a prime number. For any integer $n \geq 2$, a Rost motive of degree n is a direct summand \mathcal{R} of the Chow motive with coefficients in $\mathbb{Z}_{(p)}$ (the localization of the integers at the prime ideal (p)) of a smooth complete geometrically irreducible variety X over a field F such that for any extension field K / F with a closed point on X_{K} of degree prime to p, the motive \mathcal{R}_{K} is isomorphic to the direct sum of Tate motives

$$
\mathbb{Z}_{(p)} \oplus \mathbb{Z}_{(p)}(b) \oplus \mathbb{Z}_{(p)}(2 b) \oplus \cdots \oplus \mathbb{Z}_{(p)}((p-1) b),
$$

[^0]where $b=\left(p^{n-1}-1\right) /(p-1)$. The isomorphism class of \mathcal{R} is determined by X, [$\left.\mathbb{T}\right]$, Proposition 3.4]; \mathcal{R} is indecomposable as long as X has no closed points of degree prime to p.

A smooth complete geometrically irreducible variety X over F is a p-generic splitting variety for an element $s \in H_{e t t}^{n}(F, \mathbb{Z} / p \mathbb{Z}(n-1))$, if s vanishes over a field extension K / F if and only if X has a closed point of degree prime to p over K. A norm variety of s is a p-generic splitting variety of dimension $p^{n-1}-1$.

A Rost motive living on a p-generic splitting variety of an element s is determined by s up to isomorphism and called the Rost motive of s. In characteristic 0 , any symbol s admits a norm variety possessing a Rost motive. This played an important role in the proof of the Bloch-Kato conjecture (see [3]]). It is interesting to understand the complement to the Rost motive in the motive of a norm variety X for a given s; this complement, however, depends on X and is not determined by s anymore.

For $p=2$, there are nice norm varieties known as norm quadrics. Their complete motivic decomposition is a classical result due to M. Rost. A norm quadric X can be viewed as a compactification of the affine quadric U given by $\pi=c$, where π is a quadratic $(n-1)$-fold Pfister form and $c \in F^{\times}$. The summands of the complete motivic decomposition of X are given by the degree n Rost motive of X and shifts of the degree $n-1$ Rost motive of the projective Pfister quadric $\pi=0$. It is proved in [[6], Theorem A.4] that $\mathrm{CH}(U)=\mathbb{Z}$ if the equation $\pi=c$ has no solutions over F. In the present paper we extend these results to arbitrary prime p (and $n=3$).

For arbitrary p, there are nice norm varieties in small degrees. For $n=2$, these are the Severi-Brauer varieties of degree p central simple F-algebras. Any of them admits a degree 2 Rost motive which is simply the total motive of the variety.

The first interesting situation occurs in degree $n=3$. Let D be a degree p central division F-algebra, $G=\mathbf{S L}_{1}(D)$ the special linear group of D, and E a principle homogeneous space under G. The affine variety E is given by the equation $\operatorname{Nrd}=c$, where Nrd is the reduced norm of D and $c \in F^{\times}$. Any smooth compactification of E is a norm variety of the element $s:=[D] \cup(c) \in H_{e t}^{3}(F, \mathbb{Z} / p \mathbb{Z}(2))$. It has been shown by N. Semenov in [[ZZ] for $p=3$ (and char $F=0$) that the motive of a certain smooth equivariant compactification of E decomposes in a direct sum, where one of the summands is the Rost motive of s, another summand is a motive ε vanishing over any field extension of F splitting D, and each of the remaining summands is a shift of the motive of the Severi-Brauer variety of D. All these summands (but ε) are indecomposable and ε was expected to be 0 .

Another proof of this result (covering arbitrary characteristic) has been provided in [30$]$ along with the claim that $\varepsilon=0$, but the proof of the claim was incomplete.
In the present paper we prove the following main result (see Theorem [0.3):

Theorem 1.1. Let F be a field, D a central division F-algebra of prime degree p, X a smooth compactification of an $\mathbf{S L}_{1}(D)$-torsor, and $M(X)$ its Chow motive with $\mathbb{Z}_{(p)}{ }^{-}$ coefficients. Assume that $M(X)$ over the function field of the Severi-Brauer variety S of D is isomorphic to a direct sum of Tate motives. Then $M(X)$ (over F) is isomorphic to the direct sum of the Rost motive of X and several shifts of $M(S)$. This is the unique decomposition of $M(X)$ into a direct sum of indecomposable motives.

We note that the compactification in [26] (for $p=3$) has the property required in Theorem [ID (see Example [0.6).

In Section we show that the condition that $M(X)$ is split (i.e., isomorphic to a finite direct sum of Tate motives) over $F(S)$ is satisfied for all smooth $G \times G$-equivariant compactifications of $G=\mathbf{S L}_{1}(D)$. Moreover, we prove that the motive $M(X)$ is split for all smooth equivariant compactifications X of split semisimple groups (see Theorem 6. ${ }^{\text {(}}$).

We also compute the Chow ring of G in arbitrary characteristic as well as the Chow ring of E in characteristic 0 (see Theorem $\mathbb{Q} .7$ and Corollary [1.8):

Theorem 1.2. Let D be a central division algebra of prime degree p and $G=\mathbf{S L}_{1}(D)$.

1) There is an element $h \in \mathrm{CH}^{p+1}(G)$ such that

$$
\mathrm{CH}(G)=\mathbb{Z} \cdot 1 \oplus(\mathbb{Z} / p \mathbb{Z}) h \oplus(\mathbb{Z} / p \mathbb{Z}) h^{2} \oplus \cdots \oplus(\mathbb{Z} / p \mathbb{Z}) h^{p-1}
$$

2) Let E be a nonsplit G-torsor. If char $F=0$, then $\mathrm{CH}(E)=\mathbb{Z}$.

Acknowledgements. We thank Michel Brion for teaching us the theory of equivariant compactifications. We also thank Markus Rost and Kirill Zainoulline for helpful information.

2. K-COHOMOLOGY

Let X be a smooth variety over F. We write $A^{i}\left(X, K_{n}\right)$ for the K-cohomology groups as defined in [[2.]. In particular, $A^{i}\left(X, K_{i}\right)$ is the Chow group $\mathrm{CH}^{i}(X)$ of classes of codimension i algebraic cycles on X.

Let G be a simply connected semisimple algebraic group. The group $A^{1}\left(G, K_{2}\right)$ is additive in G, i.e., if G and G^{\prime} are two simply connected group, then the projections of $G \times G^{\prime}$ onto G and G^{\prime} yield an isomorphism (see [[].], Part II, Proposition 7.6 and Theorem 9.3])

$$
A^{1}\left(G, K_{2}\right) \oplus A^{1}\left(G^{\prime}, K_{2}\right) \xrightarrow{\sim} A^{1}\left(G \times G^{\prime}, K_{2}\right) .
$$

The following lemma readily follows.
Lemma 2.1. 1) The map

$$
A^{1}\left(G, K_{2}\right) \rightarrow A^{1}\left(G \times G, K_{2}\right)=A^{1}\left(G, K_{2}\right) \oplus A^{1}\left(G, K_{2}\right)
$$

induced by the product homomorphism $G \times G \rightarrow G$ is equal to $(1,1)$.
2) The map $A^{1}\left(G, K_{2}\right) \rightarrow A^{1}\left(G, K_{2}\right)$ induced by the morphism $G \rightarrow G, x \mapsto x^{-1}$ is equal to -1 .
Proof. 1) It suffices to note that the isomorphism

$$
A^{1}\left(G \times G^{\prime}, K_{2}\right) \xrightarrow{\sim} A^{1}\left(G, K_{2}\right) \oplus A^{1}\left(G^{\prime}, K_{2}\right)
$$

inverse to the one mentioned above, is given by the pull-backs with respect to the group embeddings $G, G^{\prime} \hookrightarrow G \times G^{\prime}$.
2) The composition of the embedding of varieties $G \hookrightarrow G \times G, g \mapsto\left(g, g^{-1}\right)$ with the product map $G \times G \rightarrow G$ is trivial.

If G is an absolutely simple simply connected group, then $A^{1}\left(G, K_{2}\right)$ is an infinite cyclic group with a canonical generator q_{G} (see [[]], Part II, §7]).

3. BGQ SpECTRAL SEQUENCE

Let X be a smooth variety over F. We consider the Brown-Gersten-Quillen coniveau spectral sequence

$$
\begin{equation*}
E_{2}^{s, t}=A^{s}\left(X, K_{-t}\right) \Rightarrow K_{-s-t}(X) \tag{3.1}
\end{equation*}
$$

converging to the K-groups of X with the topological filtration [[2.3, §7, Th. 5.4].
Example 3.2. Let $G=\mathbf{S L}_{n}$. By [[29], §2], we have $\mathrm{CH}(G)=\mathbb{Z}$. It follows that all the differentials of the BGQ spectral sequence for G coming to the zero diagonal are trivial.

Lemma 3.3 ([20], Theorem 3.4]). If δ is a differential of finite order in the spectral sequence (3.ل入) on the q-th page $E_{q}^{*, *}$, then for every prime divisor p of the order of δ, the integer $p-1$ divides $q-1$.

Let p be a prime integer, D a central division algebra over F of degree p and $G=$ $\mathrm{SL}_{1}(D)$. As D is split by a field extension of degree p, it follows from Example $\mathbf{B} .2$ that all Chow groups $\mathrm{CH}^{i}(G)$ are p-periodic for $i>0$ and the order of every differential in the BGQ spectral sequence for G coming to the zero diagonal divides p. The edge homomorphism $K_{1}(G) \rightarrow E_{2}^{0,-1}=A^{0}\left(G, K_{1}\right)=F^{\times}$is a surjection split by the pull-back with respect to the structure morphism $G \rightarrow \operatorname{Spec} F$. Therefore, all the differentials starting at $E_{*}^{0,-1}$ are trivial.

It follows then from Lemma [3.3] that the only possibly nontrivial differential coming to the terms $E_{q}^{i,-i}$ for $q \geq 2$ and $i \leq p+1$ is

$$
\partial_{G}: A^{1}\left(G, K_{2}\right)=E_{p}^{1,-2} \rightarrow E_{p}^{p+1,-p-1}=\mathrm{CH}^{p+1}(G) .
$$

By [[29, Theorem 6.1] (see also [[2], Theorem 5.1]), $K_{0}(G)=\mathbb{Z}$, hence the factors

$$
K_{0}(G)^{(i)} / K_{0}(G)^{(i+1)}=E_{\infty}^{i,-i}
$$

of the topological filtration on $K_{0}(G)$ are trivial for $i>0$. It follows that the map ∂_{G} is surjective. As the group $A^{1}\left(G, K_{2}\right)$ is cyclic with the generator q_{G}, the group $\mathrm{CH}^{p+1}(G)$ is cyclic of order dividing p. It is shown in [3:3, Theorem 4.2] (see also Theorem [.2) that the differential ∂_{G} is nontrivial. We have proved the following lemma.
Lemma 3.4. If D is a central division algebra of degree p, then $\mathrm{CH}^{p+1}(G)$ is a cyclic group of order p generated by $\partial_{G}\left(q_{G}\right)$.

4. Specialization

Let A be a discrete valuation ring with residue field F and quotient field L. Let \mathcal{X} be a smooth scheme over A and set $X=\mathcal{X} \otimes_{A} F, X^{\prime}=\mathcal{X} \otimes_{A} L$. By [\square, Example 20.3.1], there is a specialization ring homomorphism

$$
\sigma: \mathrm{CH}^{*}\left(X^{\prime}\right) \rightarrow \mathrm{CH}^{*}(X) .
$$

Example 4.1. Let X be a variety over $F, L=F(t)$ the rational function field. Consider the valuation ring $A \subset L$ of the parameter t and $\mathcal{X}=X \otimes_{F} A$. Then $X^{\prime}=X_{L}$ and we have a specialization ring homomorphism $\sigma: \mathrm{CH}^{*}\left(X_{L}\right) \rightarrow \mathrm{CH}^{*}(X)$.

A section of the structure morphism $\mathcal{X} \rightarrow \operatorname{Spec} A$ gives two rational points $x \in X$ and $x^{\prime} \in X^{\prime}$ ．By definition of the specialization，$\sigma\left(\left[x^{\prime}\right]\right)=[x]$ ．

Let F be a field of finite characteristic．By［ $[$ ，Ch．IX，$\S 2$ ，Propositions 5 and 1］，there is a complete discretely valued field L of characteristic zero with residue field F ．Let A be the valuation ring and D a central simple algebra over F ．By［［］］，Theorem 6．1］，there is an Azumaya algebra \mathcal{D} over A such that $D \simeq \mathcal{D} \otimes_{A} F$ ．The algebra $D^{\prime}=\mathcal{D} \otimes_{A} L$ is a central simple algebra over L ．Then we have a specialization homomorphism

$$
\sigma: \mathrm{CH}^{*}\left(\mathbf{S L}_{1}\left(D^{\prime}\right)\right) \rightarrow \mathrm{CH}^{*}\left(\mathbf{S L}_{1}(D)\right)
$$

satisfying $\sigma\left(\left[e^{\prime}\right]\right)=[e]$ ，where e and e^{\prime} are the identities of the groups．

5．A source of split motives

We work in the category of Chow motives over a field F ，［ $[山, \S 64]$ ．We write $M(X)$ for the motive（with integral coefficients）of a smooth complete variety X over F ．

A motive is split if it is isomorphic to a finite direct sum of Tate motives $\mathbb{Z}(a)$（with arbitrary shifts a ）．Let X be a smooth proper variety such that the motive $M(X)$ is split， i．e．，$M(X)=\coprod_{i} \mathbb{Z}\left(a_{i}\right)$ for some a_{i} ．The generating（Poincaré）polynomial $P_{X}(t)$ of X is defined by

$$
P_{X}(t)=\sum_{i} t^{a_{i}} .
$$

Note that the integer a_{i} is equal to the rank of the（free abelian）Chow group $\mathrm{CH}^{i}(X)$ ．
Example 5．1．Let G be a split semisimple group and $B \subset G$ a Borel subgroup．Then

$$
P_{G / B}(t)=\sum_{w \in W} t^{l(w)},
$$

where W is the Weyl group of G and $l(w)$ is the length of w（see［ $[\boxtimes, \S 3]$ ）．
Proposition 5.2 （P．Brosnan，［⿴囗十⺝刂 ，Theorem 3．3］）．Let X be a smooth projective variety over F equipped with an action of the multiplicative group \mathbb{G}_{m} ．Then

$$
M(X)=\coprod_{i} M\left(Z_{i}\right)\left(a_{i}\right),
$$

where the Z_{i} are the（smooth）connected components of the subscheme of $X^{\mathbb{G}_{m}}$ of fixed points and $a_{i} \in \mathbb{Z}$ ．Moreover，the integer a_{i} is the dimension of the positive eigenspace of the action of \mathbb{G}_{m} on the tangent space \mathcal{T}_{z} of X at an arbitrary closed point $z \in Z_{i}$ ．The dimension of Z_{i} is the dimension of $\left(\mathcal{T}_{z}\right)^{\mathbb{G}_{m}}$ ．

Let T be a split torus of dimension n ．The choice of a \mathbb{Z}－basis in the character group T^{*} allows us to identify T^{*} with \mathbb{Z}^{n} ．We order \mathbb{Z}^{n}（and hence T^{*} ）lexicographically．

Suppose T acts on a smooth variety X and let $x \in X$ be an T－fixed rational point．Let $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$ be all characters of the representation of T in the tangent space \mathcal{T}_{x} of X at x ．Write a_{x} for the number of positive（with respect to the ordering）characters among the χ_{i}＇s．

Corollary 5.3. Let X be a smooth projective variety over F equipped with an action of a split torus T. If the subscheme X^{T} of T-fixed points in X is a disjoint union of finitely many rational points, the motive of X is split. Moreover,

$$
P_{X}(t)=\sum_{x \in X^{T}} t^{a_{x}}
$$

Proof. Induction on the dimension of T.
Example 5.4. Let T be a split torus of dimension n and X a smooth projective toric variety (see [[0]). Let σ be a cone of dimension n in the fan of X and $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{n}\right\}$ a (unique) \mathbb{Z}-basis of T^{*} generating the dual cone σ^{\vee}. The standard T-invariant affine open set corresponding to σ is $V_{\sigma}:=\operatorname{Spec} F\left[\sigma^{\vee}\right]$. The map $V_{\sigma} \rightarrow \mathbb{A}^{n}$, taking x to $\left(\chi_{1}(x), \chi_{2}(x), \ldots, \chi_{n}(x)\right)$ is a T-equivariant isomorphism, where $t \in T$ acts on the affine space \mathbb{A}^{n} by componentwise multiplication by $\chi_{i}(t)$. The only one T-equivariant point $x \in V_{\sigma}$ corresponds to the origin under the isomorphism, so we can identify the tangent space \mathcal{T}_{x} with \mathbb{A}^{n}, and the χ_{i} 's are the characters of the representation of T in the tangent space \mathcal{T}_{x}. Let a_{σ} be the number of positive χ_{i} 's with respect to a fixed lexicographic order on T^{*}. Every T-fixed point in X belongs to V_{σ} for a unique σ. It follows that the motive $M(X)$ is split and

$$
P_{X}(t)=\sum_{\sigma} t^{a_{\sigma}}
$$

where the sum is taken over all dimension n cones in the fan of X.

6. Compactifications of algebraic groups

A compactification of an affine algebraic group G is a projective variety containing G as a dense open subvariety. A $G \times G$-equivariant compactification of G is a projective variety X equipped with an action of $G \times G$ and containing the homogeneous variety $G=(G \times G) / \operatorname{diag}(G)$ as an open orbit. Here the group $G \times G$ acts on G by the left-right translations.

Let G be a split semisimple group over F. Write $G_{a d}$ for the corresponding adjoint group. The group $G_{a d}$ admits the so-called wonderful $G_{a d} \times G_{a d}$-equivariant compactification \mathbf{X} (see [6], §6.1]). Let $T \subset G$ be a split maximal torus and $T_{a d}$ the corresponding maximal torus in $G_{a d}$. The closure \mathbf{X}^{\prime} of $T_{a d}$ in \mathbf{X} is a toric $T_{a d}$-variety with fan consisting of all Weyl chambers in $\left(T_{a d}\right)_{*} \otimes \mathbb{R}=T_{*} \otimes \mathbb{R}$ and their faces.

Let B be a Borel subgroup of G containing T and B^{-}the opposite Borel subgroup. There is an open $B^{-} \times B$-invariant subscheme $\mathbf{X}_{0} \subset \mathbf{X}$ such that the intersection $\mathbf{X}_{0}^{\prime}:=$ $\mathbf{X}_{0} \cap \mathbf{X}^{\prime}$ is the standard open $T_{a d}$-invariant subscheme of the toric variety \mathbf{X}^{\prime} corresponding to the negative Weyl chamber Ω that is a cone in the fan of \mathbf{X}^{\prime}. Note that the Weyl group W of G acts simply transitively on the set of all Weyl chambers.

A $G \times G$-equivariant compactification X of G is called toroidal if X is normal and the quotient map $G \rightarrow G_{a d}$ extends to a morphism $\pi: X \rightarrow \mathbf{X}$ (see [3, §6.2]). The closed subscheme $X^{\prime}:=\pi^{-1}\left(\mathbf{X}^{\prime}\right)$ of X is a projective toric T-variety. Note that the diagonal subtorus $\operatorname{diag}(T) \subset T \times T$ acts trivially on X^{\prime}. The fan of X^{\prime} is a subdivision of the fan consisting of the Weyl chambers and their faces. The scheme X is smooth if and only if so is X^{\prime}.

Conversely，if F is a perfect field，given a smooth projective toric T－variety with a W－invariant fan that is a subdivision of the fan consisting of the Weyl chambers and their faces，there is a unique smooth $G \times G$－equivariant toroidal compactification X of G with
 ［［］］，such a smooth toric variety exists for every split semisimple group G ．In other words， the following holds．

Proposition 6．1．Every split semisimple group G over a perfect field admits a smooth $G \times G$－equivariant toroidal compactification．

Let X be a smooth $G \times G$－equivariant toroidal compactification of G over F ．Recall that the toric T－variety X^{\prime} is smooth projective．Set $X_{0}:=\pi^{-1}\left(\mathbf{X}_{0}\right)$ and $X_{0}^{\prime}:=\pi^{-1}\left(\mathbf{X}_{0}^{\prime}\right)=$ $X^{\prime} \cap X_{0}$ ．Then the T－invariant subset $X_{0}^{\prime} \subset X^{\prime}$ is the union of standard open subschemes V_{σ} of X^{\prime}（see Example［．］）corresponding to all cones σ in the negative Weyl chamber Ω ．The subscheme $\left(V_{\sigma}\right)^{T}$ reduces to a single rational point if σ is of largest dimension．In particular，the subscheme $\left(X_{0}^{\prime}\right)^{T}$ of T－fixed points in X_{0}^{\prime} is a disjoint union of k rational points，where k is the number of cones of maximal dimension in Ω ．It follows that $\left|\left(X^{\prime}\right)^{T}\right|=k|W|$ ，the number of all cones of maximal dimension in the fan of X^{\prime} ．

Let U and U^{-}be the unipotent radicals of B and B^{-}respectively．
Lemma 6.2 （［通，Proposition 6．2．3］）．1）Every $G \times G$－orbit in X meets X_{0}^{\prime} along a unique T－orbit．
2）The map

$$
U^{-} \times X_{0}^{\prime} \times U \rightarrow X_{0}, \quad(u, x, v) \mapsto u x v^{-1}
$$

is a $T \times T$－equivariant isomorphism．
3）Every closed $G \times G$－orbit in X is isomorphic to $G / B \times G / B$ ．
Proposition 6．3．The scheme $X^{T \times T}$ is the disjoint union of $W x_{0} W$ over all $x_{0} \in\left(X_{0}^{\prime}\right)^{T}$ and $W x_{0} W$ is a disjoint union of $|W|^{2}$ rational points．

Proof．Take $x \in X^{T \times T}$ ．Let \mathbf{x} be the image of x under the map $\pi: X \rightarrow \mathbf{X}$ ．Computing dimensions of maximal tori of the stabilizers of points in the wonderful compactification \mathbf{X} ，we see that \mathbf{x} lies in the only closed $G \times G$－orbit \mathbf{O} in \mathbf{X}（e．g．，［⿴囗⿴囗丨］，Lemma 4．2］）． By Lemma $6.2(3)$ ，applied to the compactification \mathbf{X} of $G_{a d}, \mathbf{O} \simeq G / B \times G / B$ ．In view
 rational T－invariant point in \mathbf{X}_{0}^{\prime} ．The group $W \times W$ acts simply transitively on the set of $T \times T$－fixed point in $G / B \times G / B$ ．It follows that $|W \mathbf{x} W|=|W|^{2}$ and $W \mathbf{x} W$ intersects \mathbf{X}_{0}^{\prime} ． Therefore，$W x W$ intersects $X^{T \times T} \cap X_{0}^{\prime}=\left(X_{0}^{\prime}\right)^{T}$ ，that is the disjoint union of k rational points．Hence x is a rational point，$x \in W\left(X_{0}^{\prime}\right)^{T} W$ and $|W x W|=|W|^{2}$ ．

Note that for a point $x_{0} \in\left(X_{0}^{\prime}\right)^{T}$ ，the $G \times G$－orbit of x_{0} intersects X_{0}^{\prime} by the T－orbit $\left\{x_{0}\right\}$ in view of Lemma $6.2(1)$ ．It follows that different $W x_{0} W$ do not intersect and therefore， $X^{T \times T}$ is the disjoint union of $W x_{0} W$ over all $x_{0} \in\left(X_{0}^{\prime}\right)^{T}$ ．

Let X be a smooth $G \times G$－equivariant toroidal compactification of a split semisimple group G of rank n ．By Proposition［．3］，every $T \times T$－fixed point x in X is of the form $x=w_{1} x_{0} w_{2}^{-1}$ ，where $w_{1}, w_{2} \in W$ and $x_{0} \in\left(X_{0}^{\prime}\right)^{T}$ ．Recall that X_{0}^{\prime} is the union of the standard affine open subsets V_{σ} of the toric T－variety X^{\prime} over all cones σ of dimension n in the Weyl chamber Ω ．Let σ be a（unique）cone in Ω such that $x_{0} \in V_{\sigma}$ ．

By Lemma $\operatorname{L2}(2)$, the map

$$
f: U^{-} \times V_{\sigma} \times U \rightarrow X, \quad\left(u_{1}, y, u_{2}\right) \mapsto w_{1} u_{1} x_{0} u_{2}^{-1} w_{2}^{-1}
$$

is an open embedding. We have $f\left(1, x_{0}, 1\right)=x$. Thus, f identifies the tangent space \mathcal{T}_{x} of x in X with the space $\mathfrak{u}^{-} \oplus \mathfrak{a} \oplus \mathfrak{u}$, where \mathfrak{u} and \mathfrak{u}^{-}are the Lie algebras of U and U^{-}respectively and \mathfrak{a} is the tangent space of V_{σ} at x^{\prime}. The torus $T \times T$ acts linearly on the tangent space \mathcal{T}_{x} leaving invariant $\mathfrak{u}^{-}, \mathfrak{a}$ and \mathfrak{u}. For convenience, we write $T \times T$ as $S:=T_{1} \times T_{2}$ in order to distinguish the components. Let Φ_{1}^{-}and Φ_{2}^{-}be two copies of the set of negative roots in T_{1}^{*} and T_{2}^{*} respectively. The set of characters of the S representation \mathfrak{u}^{-}(respectively, \mathfrak{u}) is $w_{1}\left(\Phi_{1}^{-}\right)$(respectively, $w_{2}\left(\Phi_{2}^{-}\right)$).

Let $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{n}\right\}$ be a (unique) \mathbb{Z}-basis of T^{*} generating the dual cone σ^{\vee}. By Example [.4. the set of characters of the S-representation \mathfrak{a} is

$$
\left\{\left(w_{1}\left(\chi_{i}\right),-w_{2}\left(\chi_{i}\right)\right)\right\}_{i=1}^{n} \subset S^{*}=T_{1}^{*} \oplus T_{2}^{*}
$$

Let Π_{1} and Π_{2} be (ordered) systems of simple roots in Φ_{1} and Φ_{2} respectively. Consider the lexicographic ordering on $S^{*}=T_{1}^{*} \oplus T_{2}^{*}$ corresponding to the basis $\Pi_{1} \cup \Pi_{2}$ of S^{*}. As $\chi_{i} \neq 0$, we have $\left(w_{1}\left(\chi_{i}\right),-w_{2}\left(\chi_{i}\right)\right)>0$ if and only if $w_{1}\left(\chi_{i}\right)>0$. For every $w \in W$, write $b(\sigma, w)$ for the number of all i such that $w\left(\chi_{i}\right)>0$. Note that the number of positive roots in $w\left(\Phi^{-}\right)$is equal to the length $l(w)$ of w. By Corollary [.3], we have

$$
\begin{equation*}
P_{X}(t)=\sum_{w_{1}, w_{2} \in W, \sigma \subset \Omega} t^{l\left(w_{1}\right)+b\left(\sigma, w_{1}\right)+l\left(w_{2}\right)}=\left(\sum_{w \in W, \sigma \subset \Omega} t^{l(w)+b(\sigma, w)}\right) \cdot P_{G / B}(t), \tag{6.4}
\end{equation*}
$$

as by Example [.].

$$
P_{G / B}(t)=\sum_{w \in W} t^{l(w)} .
$$

We have proved the following theorem.
Theorem 6.5. Let X be a smooth $G \times G$-equivariant toroidal compactification of a split semisimple group G. Then the motive $M(X)$ is split into a direct sum of $s|W|$ Tate motives, where s is the number of cones of maximal dimension in the fan of the associated toric variety X^{\prime}. Moreover,

$$
P_{X}(t)=\left(\sum_{w \in W, \sigma \subset \Omega} t^{l(w)+b(\sigma, w)}\right) \cdot P_{G / B}(t) .
$$

In particular, the motive $M(X)$ is divisible by $M(G / B)$.
Example 6.6. Let G be a semisimple adjoint group and X the wonderful compactification of G. Then the negative Weyl chamber Ω is the cone $\sigma=\Omega$ in the fan of X^{\prime}. The dual cone σ^{\vee} is generated by $-\Pi$. Hence $b(w, \sigma)$ is equal to the number of simple roots α such that $w(\alpha) \in \Phi^{-}$.
Example 6.7. Let $G=\mathbf{S L}_{3}, \Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$. Bisecting each of the six Weyl chambers we get a smooth projective fan with 12 two-dimensional cones. The two cones dual to the ones in the negative Weyl chamber are generated by $\left\{-\alpha_{1},\left(\alpha_{1}-\alpha_{2}\right) / 3\right\}$ and $\left\{-\alpha_{2},\left(\alpha_{2}-\alpha_{1}\right) / 3\right\}$ respectively. Let X be the corresponding $G \times G$-equivariant toroidal compactification of G. By (6.4),

$$
P_{X}(t)=\left(t^{5}+t^{4}+4 t^{3}+4 t^{2}+t+1\right)\left(t^{3}+2 t^{2}+2 t+1\right) .
$$

Now consider arbitrary (not necessarily toroidal) $G \times G$-equivariant compactifications.
Theorem 6.8. Let X be a smooth $G \times G$-equivariant compactification of a split semisimple group G over F. Then the subscheme $X^{T \times T}$ is a disjoint union of finitely many rational points. In particular, the motive $M(X)$ is split.
Proof. By [], Proposition 6.2.5], there is a $G \times G$-equivariant toroidal compactification \widetilde{X} of G together with a $G \times G$-equivariant morphism $\varphi: \widetilde{X} \rightarrow X$. Let $x \in X^{T \times T}$. By Borel's fixed point theorem, the fiber $\varphi^{-1}(x)$ has a $T \times T$-fixed point, so the map $\widetilde{X}^{T \times T} \rightarrow X^{T \times T}$ is surjective. By Proposition $\left[.3, \widetilde{X}^{T \times T}\right.$ is a disjoint union of finitely many rational points, hence so is $X^{T \times T}$.

Example 6.9. Let Y be a smooth $H \times H$-equivariant compactification of the group $H=$ $\mathbf{S L}_{n}$ over F. In particular the projective linear group $\mathbf{P G L}_{n}$ acts on Y by conjugation. Let D be a central simple F-algebra of degree n and J the corresponding $\mathbf{P G L}_{n}$-torsor. The twist of H by J is the group $G=\mathbf{S L}_{1}(D)$, hence the twist X of Y is a smooth $G \times G$-equivariant compactification of G. If E is a G-torsor, one can twist X by E to get a smooth compactification of E. By Theorem [.8, the motives of these compactifications are split over every splitting field of D.

7. Some computations in $\mathrm{CH}\left(\mathbf{S L}_{1}(D)\right)$

Let D be a central simple algebra of prime degree p over F and $G=\mathbf{S L}_{1}(D)$.
Lemma 7.1. Let X be a smooth compactification of G. Then D is split by the residue field of every point in $X \backslash G$.

Proof. Let Y be the projective (singular) hypersurface given in the projective space $\mathbb{P}(D \oplus$ F) by the equation $\mathrm{Nrd}=t^{p}$, where Nrd is the reduced norm form. The group G is an open subset in Y, so we can identify the function fields $F(X)=F(G)=F(Y)$. Let $x \in X \backslash G$. As x is smooth in X, there is a regular system of local parameters around x and therefore a valuation v of $F(G)$ over F with residue field $F(x)$. Since Y is projective, v dominates a point $y \in Y \backslash G$. Over the residue field $F(y)$ the norm form Nrd is isotropic, hence D is split over $F(y)$. Since v dominates y, the field $F(y)$ is contained in $F(v)=F(x)$. Therefore, D is split over $F(x)$.

Lemma 7.2. If D is a division algebra, then the group $\mathrm{CH}_{0}(G)=\mathrm{CH}^{p^{2}-1}(G)$ is cyclic of order p generated by the class of the identity e of G.

Proof. The group of R-equivalence classes of points in $G(F)$ is equal to $\mathrm{SK}_{1}(D)$ (see [32], Ch. 6]) and hence is trivial by a theorem of Wang. It follows that we have $[x]=[e]$ in $\mathrm{CH}_{0}(G)$ for every rational point $x \in G(F)$. If $x \in G$ is a closed point, then $\left[x^{\prime}\right]=[e]$ in $\mathrm{CH}_{0}\left(G_{K}\right)$, where $K=F(x)$ and x^{\prime} is a rational point of G_{K} over x. Taking the norm homomorphism $\mathrm{CH}_{0}\left(G_{K}\right) \rightarrow \mathrm{CH}_{0}(G)$ for the finite field extension K / F, we have $[x]=[K: F] \cdot[e]$ in $\mathrm{CH}_{0}(G)$. It follows that $\mathrm{CH}_{0}(G)$ is a cyclic group generated by [e].

As $p \cdot \mathrm{CH}_{0}(G)=0$ it suffices to show that $[e] \neq 0$ in $\mathrm{CH}_{0}(G)$. Let Y be the compactification of G as in the proof of Lemma \mathbb{Z} and let $Z=Y \backslash G$. As D is a central division algebra, the degree of every closed point of Z is divisible by p by Lemma \mathbb{R}.

It follows that the class $[e]$ in $\mathrm{CH}_{0}(Y)$ does not belong to the image of the push-forward homomorphism i in the exact sequence

$$
\mathrm{CH}_{0}(Z) \xrightarrow{i} \mathrm{CH}_{0}(Y) \rightarrow \mathrm{CH}_{0}(G) \rightarrow 0
$$

Therefore, $[e] \neq 0$ in $\mathrm{CH}_{0}(G)$.
Consider the morphism $s: G \times G \rightarrow G, s(x, y)=x y^{-1}$. Note that s is flat as the composition of the automorphism $(x, y) \mapsto\left(x y^{-1}, y\right)$ of the variety $G \times G$ with the projection $G \times G \rightarrow G$.

Let $h=\partial_{G}\left(q_{G}\right) \in \mathrm{CH}^{p+1}(G)$.
Lemma 7.3. We have $s^{*}(h)=h \times 1-1 \times h$ in $\mathrm{CH}^{p+1}(G \times G)$.
Proof. By Lemma [四, we have $s^{*}\left(q_{G}\right)=q_{G} \times 1-1 \times q_{G}$ in $A^{1}\left(G \times G, K_{2}\right)$. The differentials ∂_{G} commute with flat pull-back maps, hence we have

$$
\begin{aligned}
s^{*}(h)=s^{*}\left(\partial_{G}\left(q_{G}\right)\right)=\partial_{G \times G}\left(s^{*}\left(q_{G}\right)\right) & =\partial_{G \times G}\left(q_{G} \times 1-1 \times q_{G}\right)= \\
\partial_{G}\left(q_{G}\right) \times 1-1 \times \partial_{G}\left(q_{G}\right) & =h \times 1-1 \times h .
\end{aligned}
$$

Proposition 7.4. Let c be an integer with $h^{p-1}=c[e]$ in $\mathrm{CH}^{p^{2}-1}(G)$. Then

$$
c \Delta_{G}=\sum_{i=0}^{p-1} h^{i} \times h^{p-1-i},
$$

where Δ_{G} is the class of the diagonal $\operatorname{diag}(G)$ in $\mathrm{CH}^{p^{2}-1}(G \times G)$.
Proof. The diagonal in $G \times G$ is the pre-image of e under s. Hence by Lemma [.3],

$$
c \Delta_{G}=c s^{*}([e])=s^{*}\left(h^{p-1}\right)=(h \times 1-1 \times h)^{p-1}=\sum_{i=0}^{p-1} h^{i} \times h^{p-1-i}
$$

as $\binom{p-1}{i} \equiv(-1)^{i}$ modulo p and $p h=0$.

8. Rost's theorem

We have proved in Lemma 3.4 that if D is a central division algebra, then $\partial_{G}\left(q_{G}\right) \neq 0$ in $\mathrm{CH}^{p+1}(G)$. This result is strengthened in Theorem $区 .2$ below.
Lemma 8.1. If there is an element $h \in \mathrm{CH}^{p+1}(G)$ such that $h^{p-1} \neq 0$, then $\partial_{G}\left(q_{G}\right)^{p-1} \neq$ 0.

Proof. By Lemma [.], h is a multiple of $\partial_{G}\left(q_{G}\right)$.
Theorem 8.2 (M. Rost). Let D be a central division algebra of degree $p, G=\mathbf{S L}_{1}(D)$. Then $\partial_{G}\left(q_{G}\right)^{p-1} \neq 0$ in $\mathrm{CH}^{p^{2}-1}(G)=\mathrm{CH}_{0}(G)$.

Proof. Case 1: Assume first that $\operatorname{char}(F)=0, F$ contains a primitive p-th root of unity and D is a cyclic algebra, i.e., $D=(a, b)_{F}$ for some $a, b \in F^{\times}$.

Let $c \in F^{\times}$be an element such that the symbol

$$
u:=(a, b, c) \in H_{e ́ t}^{3}(F, \mathbb{Z} / p \mathbb{Z}(3)) \simeq H_{e ́ t}^{3}(F, \mathbb{Z} / p \mathbb{Z}(2))
$$

is nontrivial modulo p. Consider a norm variety X of u.

Then u defines a basic correspondence in the cokernel of the homomorphism

$$
\mathrm{CH}^{p+1}(X) \rightarrow \mathrm{CH}^{p+1}(X \times X)
$$

given by the difference of the pull-backs with respect to the projections. A representative in $\mathrm{CH}^{p+1}(X \times X)$ of the basic correspondence is a special correspondence. Let $z \in \mathrm{CH}^{p+1}\left(X_{F(X)}\right)$ be its pull-back. The modulo p degree

$$
c(X):=\operatorname{deg}\left(z^{p-1}\right) \in \mathbb{Z} / p \mathbb{Z}
$$

is independent of the choice of the special correspondence. The construction of $c(X)$ is natural with respect to morphisms of norm varieties (see [24]).

It is shown in [24] that there is an X such that $c(X) \neq 0$. We claim that $c\left(X^{\prime}\right) \neq 0$ for every norm variety X^{\prime} of u. As $F\left(X^{\prime}\right)$ splits u and X is p-generic, X has a closed point over $F\left(X^{\prime}\right)$ of degree prime to p, or equivalently, there is a prime correspondence $X^{\prime} \rightsquigarrow X$ of multiplicity prime to p. Resolving singularities, we get a smooth complete variety $X^{\prime \prime}$ together with the two morphisms $f: X^{\prime \prime} \rightarrow X$ of degree prime to p and $g: X^{\prime \prime} \rightarrow X^{\prime}$. It follows by [2Z, Corollary 1.19] that $X^{\prime \prime}$ is a norm variety of u. Moreover, $c\left(X^{\prime \prime}\right)=\operatorname{deg}(f) c(X) \neq 0$ in $\mathbb{Z} / p \mathbb{Z}$. As $c\left(X^{\prime \prime}\right)=\operatorname{deg}(g) c\left(X^{\prime}\right), c\left(X^{\prime}\right)$ is also nonzero. The claim is proved.

Let X be a smooth compactification of the G-torsor E given by the equation $\operatorname{Nrd}=t$ over the rational function field $L=F(t)$ given by a variable t. By the above, since $\{a, b, t\} \neq 0$, we have an element $z \in \mathrm{CH}^{p+1}\left(X_{L(X)}\right)$ such that $\operatorname{deg}\left(z^{p-1}\right) \neq 0$ in $\mathbb{Z} / p \mathbb{Z}$. The torsor E is trivial over $L(X)$, i.e. $E_{L(X)} \simeq G_{L(X)}$. Then the restriction of z to the torsor gives an element $y \in \mathrm{CH}^{p+1}\left(G_{L(X)}\right)$ with $y^{p-1} \neq 0$. The field extension $L(X) / F$ is purely transcendental. By Section $\mathbb{\square}$ and Lemma $\mathbb{Z 2}$, every specialization homomorphism $\sigma: \mathrm{CH}^{p^{2}-1}\left(G_{L(X)}\right) \rightarrow \mathrm{CH}^{p^{2}-1}(G)$ is an isomorphism taking the class of the identity to the class of the identity. Specializing, we get an element $h \in \mathrm{CH}^{p+1}(G)$ with $h^{p-1} \neq 0$. It follows from Lemma $\mathbb{C D}$ that $\partial_{G}\left(q_{G}\right)^{p-1} \neq 0$.
Case 2: Suppose that $\operatorname{char}(F)=0$ but F may not contain p-th roots of unity and D is an arbitrary division algebra of degree p (not necessarily cyclic). There is a finite field extension K / F of degree prime to p containing a primitive p-th root of unity and such that the algebra $D \otimes_{F} K$ is cyclic (and still nonsplit). By Case $1, \partial_{G}\left(q_{G}\right)_{K}^{p-1} \neq 0$ over K. Therefore $\partial_{G}\left(q_{G}\right)^{p-1} \neq 0$.

Case 3: F is an arbitrary field. Choose a field L of characteristic zero and a central
 there is an element $h^{\prime} \in \mathrm{CH}^{p+1}\left(G^{\prime}\right)$ such that $\left(h^{\prime}\right)^{p-1} \neq 0$. Applying a specialization σ (see Section (4), we have $h^{p-1} \neq 0$ for $h=\sigma\left(h^{\prime}\right)$. By Lemma $\mathbb{\square}$ again, $\partial_{G}\left(q_{G}\right)^{p-1} \neq 0$.

Let D be a central division algebra of degree p over F and X a smooth compactification of G. Let $\bar{h} \in \mathrm{CH}^{p+1}(X)$ be an element such that $\left.\bar{h}\right|_{G}=\partial_{G}\left(q_{G}\right) \in \mathrm{CH}^{p+1}(G)$. Let $i=0,1, \ldots, p-1$. The element \bar{h}^{i} defines the following two morphisms of Chow motives:

$$
f_{i}: M(X) \rightarrow \mathbb{Z}((p+1) i), \quad g_{i}: \mathbb{Z}((p+1)(p-1-i)) \rightarrow M(X)
$$

Let

$$
R=\mathbb{Z} \oplus \mathbb{Z}(p+1) \oplus \mathbb{Z}(2 p+2) \oplus \cdots \oplus \mathbb{Z}\left(p^{2}-1\right)
$$

We thus have the following two morphisms:

$$
f: M(X) \rightarrow R, \quad g: R \rightarrow M(X) .
$$

The composition $f \circ g$ is c times the identity, where $c=\operatorname{deg} \bar{h}^{p-1}$. As c is prime to p by Theorem $\boxed{\boxed{2}}$, switching to the Chow motives with coefficients in $\mathbb{Z}_{(p)}$, we have a decomposition

$$
\begin{equation*}
M(X)=R \oplus N \tag{8.3}
\end{equation*}
$$

for some motive N.

9. The category of D-motives

Let D be a central simple algebra of prime degree p over F. For a field extension L / F, let $N_{i}^{D}(L)$ be the subgroup of the Milnor K-group $K_{i}^{M}(L)$ generated by the norms from finite field extensions of L that split the algebra D.

$$
L \mapsto K_{*}^{D}(L):=K_{*}^{M}(L) / N_{*}^{D}(L),
$$

and the corresponding cohomology theory with the "Chow groups"

$$
\mathrm{CH}_{D}^{i}(X):=A^{i}\left(X, K_{i}^{D}\right) .
$$

Note that $\mathrm{CH}_{D}^{i}(X)=0$ if D is split over $F(x)$ for all points $x \in X$.
Let $S=\mathrm{SB}(D)$ be the Severi-Brauer variety of right ideals of D of dimension p. We have $\operatorname{dim} S=p-1$.

Lemma 9.1. For a variety X over F, the group $\mathrm{CH}_{D}(X)$ is naturally isomorphic to the cokernel of the push-forward homomorphism pr $: \mathrm{CH}(X \times S) \rightarrow \mathrm{CH}(X)$ given by the projection pr : $X \times S \rightarrow X$.

Proof. The composition

$$
\mathrm{CH}(X \times S) \xrightarrow{p r_{*}} \mathrm{CH}(X) \rightarrow \mathrm{CH}_{D}(X)
$$

factors through the trivial group $\mathrm{CH}_{D}(X \times S)$ and therefore, is zero. This defines a surjective homomorphism

$$
\alpha: \operatorname{Coker}\left(p r_{*}\right) \rightarrow \mathrm{CH}_{D}(X) .
$$

The inverse map is obtained by showing that the quotient map $\mathrm{CH}(X) \rightarrow \operatorname{Coker}\left(p r_{*}\right)$ factors through $\mathrm{CH}_{D}(X)$.

The kernel of the homomorphism $\mathrm{CH}(X) \rightarrow \mathrm{CH}_{D}(X)$ is generated by $[x]$ with $x \in X$ such that the algebra $D_{F(x)}$ is split and by $p[x]$ with arbitrary $x \in X$. The fiber of $p r$ over x has a rational point y in the first case and a degree p closed point y in the second. The generators are equal to $p r_{*}([y])$ in both cases. It follows that they vanish in Coker $p r_{*}$.

Let $G=\mathbf{S L}_{1}(D)$.
Corollary 9.2. The natural map $\mathrm{CH}^{i}(G) \rightarrow \mathrm{CH}_{D}^{i}(G)$ is an isomorphism for all $i>0$.

Proof. The algebra D is split over S. More precisely, $D_{X}=\operatorname{End}_{X}\left(I^{\vee}\right)$ for the rank p canonical vector bundle I over S (see [27], Lemma 2.1.4]). By [[24], Theorem 4.2], the pullback homomorphism $\mathrm{CH}^{*}(S) \rightarrow \mathrm{CH}^{*}(G \times S)$ is an isomorphism. Therefore, $\mathrm{CH}^{j}(G \times S)=$ 0 if $j>p-1=\operatorname{dim}(S)$.

Let X be a smooth compactification of G. Write $X^{k}=X \times X \times \cdots \times X(k$ times $)$.
Lemma 9.3. The restriction homomorphism $\mathrm{CH}_{D}^{*}\left(X^{k}\right) \rightarrow \mathrm{CH}_{D}^{*}\left(G^{k}\right)$ is an isomorphism.
Proof. Let $Z=X^{k} \backslash G^{k}$. By Lemma $\mathbb{\square}$, , the residue field of every point in Z splits D, hence $\mathrm{CH}_{D}(Z)=0$. The statement follows from the exactness of the localization sequence

$$
\mathrm{CH}_{D}(Z) \rightarrow \mathrm{CH}_{D}\left(X^{k}\right) \rightarrow \mathrm{CH}_{D}\left(G^{k}\right) \rightarrow 0 .
$$

It follows from Lemma
Consider the category of motives of smooth complete varieties over F associated to the cohomology theory $\mathrm{CH}_{D}^{*}(X)$ (see [[[]) Write $M^{D}(X)$ for the motive of a smooth complete variety X. We call $M^{D}(X)$ the D-motive of X. Recall that the group of morphisms between $M^{D}(X)$ and $M^{D}(Y)$ for Y of pure dimension d is equal to $\mathrm{CH}_{D}^{d}(X \times Y)$. Let \mathbb{Z}^{D} the motive of the point $\operatorname{Spec} F$.

Recall that we write $M(X)$ for the usual Chow motive of X. We have a functor $N \mapsto N^{D}$ from the category of Chow motives to the category of D-motives.
Proposition 9.4. Let N be a Chow motive. Then $N^{D}=0$ if and only if N is isomorphic to a direct summand of $N \otimes M(S)$.
Proof. As $M^{D}(S)=0$, we have $N^{D}=0$ if N is isomorphic to a direct summand of $N \otimes M(S)$.

Conversely, suppose $N^{D}=0$. Let $N=(X, \rho)$, where X is a smooth complete variety of pure dimension d and $\rho \in \mathrm{CH}^{d}(X \times X)$ is a projector. By Lemma [.], we have $\rho=f_{*}(\theta)$ for some $\theta \in \mathrm{CH}^{d+p-1}(X \times(X \times S))$, where $f: X \times X \times S \rightarrow X \times X$ is the projection. Then

$$
f_{*}\left(\left(\rho \otimes \operatorname{id}_{S}\right) \circ \theta \circ \rho\right)=\rho
$$

and $\left(\rho \otimes \operatorname{id}_{S}\right) \circ \theta \circ \rho$ can be viewed as a morphism $N \rightarrow N \otimes M(S)$ splitting on the right the natural morphism $N \otimes M(S) \rightarrow N$.

The morphisms f and g in Section give rise to the morphisms $f^{D}: M^{D}(X) \rightarrow R^{D}$ and $g^{D}: R^{D} \rightarrow M^{D}(X)$ of D-motives.
Proposition 9.5. The morphism $f^{D}: M^{D}(X) \rightarrow R^{D}$ is an isomorphism in the category of D-motives.
Proof. As $\mathrm{CH}_{D}^{p^{2}-1}(X \times X) \simeq \mathrm{CH}_{D}^{p^{2}-1}(G \times G)$ by Lemma 2.3 , the composition $g^{D} \circ f^{D}$ is multiplication by $c \in \mathbb{Z}$ from Proposition [.7. . By Theorem 区.Z, c is not divisible by p. Finally, $p \mathrm{CH}_{D}(G \times G)=0$.

If D is a central division algebra, it follows from Proposition 0.5 and Corollary 2.2 that for every $i>0$,

$$
\mathrm{CH}^{i}(G)=\mathrm{CH}_{D}^{i}(X)=\mathrm{CH}_{D}^{i}(R)= \begin{cases}(\mathbb{Z} / p \mathbb{Z}) h^{j}, & \text { if } i=(p+1) j \leq p^{2}-1 \tag{9.6}\\ 0, & \text { otherwise }\end{cases}
$$

where $h=\partial_{G}\left(q_{G}\right)$.
We can compute the Chow ring of G.
Theorem 9.7. Let D be a central division algebra of prime degree $p, G=\mathbf{S L}_{1}(D)$ and $h=\partial_{G}\left(q_{G}\right) \in \mathrm{CH}^{p+1}(G)$. Then

$$
\mathrm{CH}(G)=\mathbb{Z} \cdot 1 \oplus(\mathbb{Z} / p \mathbb{Z}) h \oplus(\mathbb{Z} / p \mathbb{Z}) h^{2} \oplus \cdots \oplus(\mathbb{Z} / p \mathbb{Z}) h^{p-1}
$$

Proof. If F is a perfect field, G admits a smooth compactification X by Proposition I. The statement follows from ([56). In general, we proceed as follows.

A variety X over F is called D-complete is there is a compactification \bar{X} of X such that D is split by the residue field of every point in $\bar{X} \backslash X$. Note that the restriction map $\mathrm{CH}_{D}(\bar{X} \times U) \rightarrow \mathrm{CH}_{D}(X \times U)$ is an isomorphism for every variety U. By the proof of Lemma $\mathbb{R}], G$ is a D-complete variety.

We extend the category of D-motives by adding the motives $M^{D}(X)$ of smooth D complete varieties X. If X and Y are two smooth D-complete varieties with Y equidimensional of dimension d, we define $\operatorname{Hom}\left(M^{D}(X), M^{D}(Y)\right):=\mathrm{CH}_{D}^{d}(X \times Y)$. The composition homomorphism

$$
\mathrm{CH}_{D}^{d}(X \times Y) \otimes \mathrm{CH}_{D}^{r}(Y \times Z) \rightarrow \mathrm{CH}_{D}^{r}(X \times Z)
$$

is given by

$$
\alpha \otimes \beta \mapsto p_{13 *}\left(p_{12}^{*}(\alpha) \cdot p_{23}^{*}(\beta)\right),
$$

where $p_{i j}$ are the three projections of $X \times Y \times Z$ on X, Y and Z, and the push-forward map $p_{13 *}$ is defined as the composition

$$
p_{13 *}: \mathrm{CH}_{D}^{d+r}(X \times Y \times Z) \simeq \mathrm{CH}_{D}^{d+r}(X \times \bar{Y} \times Z) \rightarrow \mathrm{CH}_{D}^{r}(X \times Z)
$$

Here \bar{Y} is a compactification of Y satisfying the condition in the definition of a D-complete variety and the second map is the push-forward homomorphism for the proper projection $X \times \bar{Y} \times Z \rightarrow X \times Z$.

By Proposition $\mathbb{C . 4}$ and Theorem 区. decomposition of D-motives (with coefficients in $\mathbb{Z}_{(p)}$):

$$
M^{D}(G) \simeq \mathbb{Z}^{D} \oplus \mathbb{Z}^{D}(p+1) \oplus \cdots \oplus \mathbb{Z}^{D}\left(p^{2}-1\right)
$$

The result follows as $\mathrm{CH}^{i}(G)=\mathrm{CH}_{D}^{i}(G)$ for $i>0$ by Corollary 4.2.

10. Motivic decomposition of compactifications of $\mathbf{S L}_{1}(D)$

Let D be a central division F-algebra of degree a power of a prime p and $S=\mathrm{SB}(D)$. We work with motives with $\mathbb{Z}_{(p)}$-coefficients in this section.

Proposition 10.1. Let X be a connected smooth complete variety over F such that the motive of X is split over every splitting field of D and D is split over $F(X)$. Then the motive of X is a direct sum of shifts of the motive of S.
Proof. Note that the variety X is generically split, that is, its motive is split over $F(X)$. In particular, X satisfies the nilpotence principle, [30], Proposition 3.1]. Therefore, it suffices to prove the result for motives with coefficients in \mathbb{F}_{p} : any lifting of an isomorphism of the motives with coefficients in \mathbb{F}_{p} to the coefficients $\mathbb{Z}_{(p)}$ will be an isomorphism since it will become an isomorphism over any splitting field of D.

For \mathbb{F}_{p}-coefficients, here is the argument. The (isomorphism class of the) upper motive $U(X)$ is well-defined and, by the arguments as in the proof of [[8, Theorem 3.5], the motive of X is a sum of shifts of $U(X)$. Besides, $U(X) \simeq U(S)$, cf. [$\mathbb{\square}$, Corollary 2.15]. Finally, $U(S)=M(S)$ because the motive of S is indecomposable, [$\mathbb{\|}$, Corollary 2.22].

From now on, the degree of the division algebra D is p. Recall that we work with motives with coefficients in $\mathbb{Z}_{(p)}$. So, we set

$$
R=\mathbb{Z}_{(p)} \oplus \mathbb{Z}_{(p)}(p+1) \oplus \mathbb{Z}_{(p)}(2 p+2) \oplus \cdots \oplus \mathbb{Z}_{(p)}\left(p^{2}-1\right)
$$

now.
Theorem 10.2. Let F be a field, D a central division F-algebra of prime degree p, $G=\mathbf{S L}_{1}(D), X$ a smooth compactification of G, and $M(X)$ its Chow motive with $\mathbb{Z}_{(p))^{-}}$ coefficients. Assume that $M(X)$ is split over every splitting field of D (see Example 6.W). Then the motive $M(X)$ (over F) is isomorphic to the direct sum of R and a direct sum of shifts of $M(S)$.

Proof. By ((. 3) , $M(X)=R \oplus N$ for a motive N and by Proposition W.3, $N^{D}=0$. It follows from Proposition 0.4 that N is isomorphic to a direct summand of $N \otimes M(S)$. In its turn, $N \otimes M(S)$ is a direct summand of $M(X \times S)$. In view of Proposition [0.], $M(X \times S)$ is a direct sum of shifts of $M(S)$. By the uniqueness of the decomposition [6], Corollary 35] and indecomposability of $M(S)$ [[8], Corollary 2.22], the motive N is a direct sum of shifts of $M(S)$.

Theorem 10.3. Let E be an $\mathbf{S L}_{1}(D)$-torsor and X a smooth compactification of E such that the motive $M(X)$ is split over every splitting field of D (see Example 6.प). Then X satisfies the nilpotence principle. Besides, the motive $M(X)$ is isomorphic to the direct sum of the Rost motive \mathcal{R} of X and a direct sum of shifts of $M(S)$. The above decomposition is the unique decomposition of $M(X)$ into a direct sum of indecomposable motives.

Proof. By saying that X satisfies the nilpotence principle, we mean that it does it for any coefficient ring, or, equivalently, for \mathbb{Z}-coefficients. However, since the integral motive of X is split over a field extension of degree p, it suffices to check that X satisfies the nilpotence principle for $\mathbb{Z}_{(p)}$-coefficients, where we can simply refer to [$[\square$, Theorem 92.4] and Theorem

It follows that it suffices to get the motivic decomposition of Theorem $\mathbb{1 0 . 3]}$ for $\mathbb{Z}_{(p)^{-}}$ coefficients replaced by \mathbb{F}_{p}-coefficients. For \mathbb{F}_{p}-coefficients we use the following modification of []], Proposition 4.6]:

Lemma 10.4. Let S be a geometrically irreducible variety with the motive satisfying the nilpotence principle and becoming split over an extension of the base field. Let M be a summand of the motive of some smooth complete variety X. Assume that there exists a field extension L / F and an integer $i \in \mathbb{Z}$ such that the change of field homomorphism $\operatorname{Ch}\left(X_{F(S)}\right) \rightarrow \operatorname{Ch}\left(X_{L(S)}\right)$ is surjective and the motive $M(S)(i)_{L}$ is an indecomposable summand of M_{L}. Then $M(S)(i)$ is an indecomposable summand of M.

Proof．It was assumed in［［7］，Proposition 4．6］that the field extension $L(S) / F(S)$ is purely transcendental．But this assumption was only used to ensure that the change of field homomorphism $\mathrm{Ch}\left(X_{F(S)}\right) \rightarrow \operatorname{Ch}\left(X_{L(S)}\right)$ is surjective．Therefore the old proof works．

We apply Lemma［D． to our S and X（with $L=F(X)$ ）．First we take $M=M(X)$ and using Theorem［0．2，we extract from $M(X)$ our first copy of shifted $M(S)$ ．Then we apply Lemma way，we eventually extract from $M(X)$ the same number of（shifted）copies of $M(S)$ as we have by Theorem $\mathbb{0} .2$ over $F(X)$ ．Let \mathcal{R} be the remaining summand of $M(X)$ ．By uniqueness of decomposition，we have $\mathcal{R}_{F(X)} \simeq R$ so that \mathcal{R} is the Rost motive．It is indecomposable（over F ），because the degree of every closed point on X is divisible by p ．

The uniqueness of the constructed decomposition follows by［⿴囗丨 ，Theorem 3．6 of Chapter I］，because the endomorphism rings of $M(S)$ and of \mathcal{R} are local（see［［⿴囗

Remark 10．5．If X is an equivariant toroidal compactification of $\mathbf{S L}_{1}(D)$ ，the number of motives $M(S)$ in the decomposition of Theorem 10.3 is equal to $s(p-1)$ ！-1 ，where s is the number of cones of maximal dimension in the fan of the associated toric variety （see Theorem［6．5）．

Example 10．6．Let X be the（non－toroidal）equivariant compactification of $\mathbf{S L}_{1}(D)$ with $p=3$ considered in［［26］．Since $P_{X}(t)=t^{8}+t^{7}+2 t^{6}+3 t^{5}+4 t^{4}+3 t^{3}+2 t^{2}+t+1$ ，we have

$$
M(X) \simeq \mathcal{R} \oplus M(S)(1) \oplus M(S)(2) \oplus M(S)(3) \oplus M(S)(4) \oplus M(S)(5)
$$

Example 10．7．Let X be the toroidal equivariant compactification of $\mathbf{S L}_{1}(D)$ with $p=3$ considered in Example 6.7 in the split case．We have

$$
M(X) \simeq \mathcal{R} \oplus M(S)(1)^{\oplus 3} \oplus M(S)(2)^{\oplus 5} \oplus M(S)(3)^{\oplus 7} \oplus M(S)(4)^{\oplus 5} \oplus M(S)(5)^{\oplus 3}
$$

Corollary 10．8．Let E be a nonsplit $\mathbf{S L}_{1}(D)$－torsor．Assume that char $F=0$ ．Then $\mathrm{CH}(E)=\mathbb{Z}$ ．
Proof．Since $p \mathrm{CH}^{>0}(E)=0$ ，it suffices to prove that $\mathrm{CH}^{>0}(E)=0$ for \mathbb{Z}－coefficients

We prove that $\mathrm{CH}(E)=\mathrm{CH}_{D}(E)$ by the argument of Corollary $\mathbf{Q} .2$ ．It remains to show that $\mathrm{CH}_{D}^{>0}(E)=0$ ．

Let X be a compactification of E as in Theorem［0．3］．Since $\mathrm{CH}_{D}(X)$ surjects onto $\mathrm{CH}_{D}(E)$ and $\mathrm{CH}_{D}(S)=0$ ，it suffices to check that $\mathrm{CH}_{D}^{>0}(\mathcal{R})=0$ ．Actually，we have $\mathrm{CH}_{D}(\mathcal{R}) \simeq \mathrm{CH}_{D}(E)$（see Section $\left.\mathbb{\square}\right)$ ．Moreover，the D－motive of \mathcal{R} is isomorphic to $M^{D}(E)$ ．

The Chow group $\mathrm{CH}^{>0}(\mathcal{R})$ has been computed in［四，Appendix RM］（the character－ istic assumption is needed here）．The generators of the torsion part，provided in［w］， Proposition SC．21］，vanish in $\mathrm{CH}_{D}(\mathcal{R})$ by construction．The remaining generators are norms from a degree p splitting field of D so that they vanish in $\mathrm{CH}_{D}(\mathcal{R})$ ，too．Hence $\mathrm{CH}_{D}^{>0}(\mathcal{R})=0$ as required．

References

[^1][2] Bourbaki, N. Éléments de mathématique. Masson, Paris, 1983. Algèbre commutative. Chapitre 8. Dimension. Chapitre 9. Anneaux locaux noethériens complets. [Commutative algebra. Chapter 8. Dimension. Chapter 9. Complete Noetherian local rings].
[3] Brion, M., and Kumar, S. Frobenius splitting methods in geometry and representation theory, vol. 231 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 2005.
[4] Brosnan, P. On motivic decompositions arising from the method of Białynicki-Birula. Invent. Math. 161, 1 (2005), 91-111.
[5] Brylinski, J.-L. Décomposition simpliciale d'un réseau, invariante par un groupe fini d'automorphismes. C. R. Acad. Sci. Paris Sér. A-B 288, 2 (1979), A137-A139.
[6] Chernousov, V., and Merkurjev, A. Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem. Transform. Groups 11, 3 (2006), 371-386.
[7] Colliot-Thélène, J.-L., Harari, D., and Skorobogatov, A. N. Compactification équivariante d'un tore (d'après Brylinski et Künnemann). Expo. Math. 23, 2 (2005), 161-170.
[8] Demazure, M. Désingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88. Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I.
[9] Elman, R., Karpenko, N., and Merkurjev, A. The Algebraic and Geometric Theory of Quadratic Forms. American Mathematical Society, Providence, RI, 2008.
[10] Evens, S., And Jones, B. On the wonderful compactification. arXiv:0801.0456v1 [mathAG] 3 Jan 2008.
[11] Fulton, W. Intersection theory. Springer-Verlag, Berlin, 1984.
[12] Fulton, W. Introduction to toric varieties, vol. 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
[13] Garibaldi, R., Merkurjev, A., and Serre, J.-P. Cohomological Invariants in Galois Cohomology. American Mathematical Society, Providence, RI, 2003.
[14] Grothendieck, A. Le groupe de Brauer. I. Algèbres d'Azumaya et interprétations diverses. In Dix Exposés sur la Cohomologie des Schémas. North-Holland, Amsterdam, 1968, pp. 46-66.
[15] Huruguen, M. Toric varieties and spherical embeddings over an arbitrary field. J. Algebra 342 (2011), 212-234.
[16] Karpenko, N. A. Characterization of minimal Pfister neighbors via Rost projectors. J. Pure Appl. Algebra 160, 2-3 (2001), 195-227.
[17] Karpenko, N. A. Hyperbolicity of orthogonal involutions. Doc. Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010), 371-389 (electronic).
[18] Karpenko, N. A. Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties. J. Reine Angew. Math. 677 (2013), 179-198.
[19] Karpenko, N. A., and Merkurjev, A. S. On standard norm varieties. Ann. Sci. Éc. Norm. Supér. (4) 46, 1 (2013), 175-214.
[20] Merkurjev, A. Adams operations and the Brown-Gersten-Quillen spectral sequence. In Quadratic forms, linear algebraic groups, and cohomology, vol. 18 of Dev. Math. Springer, New York, 2010, pp. 305-313.
[21] Nenashev, A., and Zainoulline, K. Oriented cohomology and motivic decompositions of relative cellular spaces. J. Pure Appl. Algebra 205, 2 (2006), 323-340.
[22] Panin, I. A. Splitting principle and K-theory of simply connected semisimple algebraic groups. Algebra i Analiz 10, 1 (1998), 88-131.
[23] Quillen, D. Higher algebraic K-theory. I. 85-147. Lecture Notes in Math., Vol. 341 (1973).
[24] Rost, M. On the basic correspondence of a splitting variety. September-November 2006, 42 pages. Available on the web page of the author.
[25] Rost, M. Chow groups with coefficients. Doc. Math. 1 (1996), No. 16, 319-393 (electronic).
[26] Semenov, N. Motivic decomposition of a compactification of a Merkurjev-Suslin variety. J. Reine Angew. Math. 617 (2008), 153-167.
[27] Shinder, E. On Motives of Algebraic Groups Associated to Division Algebras. ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)-Northwestern University.
[28] Suslin, A., and Joukhovitski, S. Norm varieties. J. Pure Appl. Algebra 206, 1-2 (2006), 245-276.
[29] Suslin, A. A. K-theory and K-cohomology of certain group varieties. In Algebraic K-theory, vol. 4 of Adv. Soviet Math. Amer. Math. Soc., Providence, RI, 1991, pp. 53-74.
[30] Vishik, A., and Zainoulline, K. Motivic splitting lemma. Doc. Math. 13 (2008), 81-96.
[31] Voevodsky, V. On motivic cohomology with \mathbb{Z} / l-coefficients. Ann. of Math. (2) 174, 1 (2011), 401-438.
[32] Voskresenskĭ, V. E. Algebraic groups and their birational invariants, vol. 179 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiī].
[33] Yagunov, S. On some differentials in the motivic cohomology spectral sequence. MPIM Preprint 2007-153 (2007).

Mathematical \& Statistical Sciences, University of Alberta, Edmonton, CAnADA
E-mail address: karpenko at ualberta.ca
Department of Mathematics, University of California, Los Angeles, CA, USA
E-mail address: merkurev at math.ucla.edu

[^0]: Date: February 14, 2014. Extended: February 22, 2014. Final: February 26, 2016.
 Key words and phrases. Central simple algebras, special linear groups, principle homogeneous spaces, compactifications, Chow groups and motives. Mathematical Subject Classification (2010): 20G15; 14C25.

 The first author acknowledges a partial support of the French Agence Nationale de la Recherche (ANR) under reference ANR-12-BL01-0005; his work has been also supported by a Discovery Grant from the National Science and Engineering Board of Canada. The work of the second author has been supported by the NSF grant DMS \#1160206 and the Guggenheim Fellowship.

[^1]: ［1］Bass，H．Algebraic K－theory．W．A．Benjamin，Inc．，New York－Amsterdam， 1968.

