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Abstract
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The notion of the canonical dimension of an algebraic structure was introduced by
Berhuy and Reichstein in[1]. The canonical dimension measures the size of generic
splitting fields of the structure. The formal definition is given in §2. Here we present
two basic examples:

• Let X be a scheme over a fieldF . A field extensionL/F is called asplitting field of
X, if X has a point overL. A splitting field L is calledgeneric, if for any splitting
field K of X there exists anF -placeL→ K. The canonical dimension ofX is the
minimum of the transcendence degree (overF ) of all generic splitting fields ofX.

• Let G be an algebraic group overF . The canonical dimension ofG is the maxi-
mum of the canonical dimensions of all principal homogeneous varieties (G-torsors),
defined over field extensions ofF .

When dealing with a given algebraic structure, we usually have finitely many “signif-
icant” prime integers involved. For example, such primes associated with an algebraic
group G are the torsion prime integers ofG (see Remark6.7). In order to locate
contribution of a prime integerp to the canonical dimension, we definecanonical
p-dimensionin a similar fashion.
It turns out that canonical dimension andp-dimension of an arbitrary regular com-

plete varietyX is closely related to the algebraic cycles onX (see Corollaries 4.7 and
4.12). We express canonicalp-dimension of a generically cellular variety in terms of
its Chow group (see Theorem 5.8).
The main result of the paper is Theorem 6.9, giving a recipe to compute canonical

p-dimension of an arbitrary split semisimple algebraic group over an arbitrary field (of
arbitrary characteristic). The values of the canonicalp-dimension are given for all split
simple groups of classical type (see §8).
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1. Notational conventions and preliminaries

1.1. Varieties

We refer asschemesto separated schemes of finite type over a field (there is no
restrictions on the field, its characteristic is arbitrary). Avariety in the paper is an
integral scheme.
For a schemeX, the integerd(X) is defined as the g.c.d. of the degrees of all closed

points onX; for a prime integerp, dp(X) is thep-primary part ofd(X).

1.2. Chow groups

Let X be a scheme over a fieldF . We write CH(X) for the integral Chow group of
X (see[5]). Fixing a primep, we write Ch(X) for the modulop Chow group:

Ch(X) = CH(X)/p · CH(X).

Furthermore, we write Ch(X) (resp. CH(X)) for the colimit of Ch(XL) (resp. CH(XL))
with L running over all field extensionsL/F , and we writeCh(X) (resp.CH(X)) for
the image of the restriction homomorphism res: Ch(X) → Ch(X) (resp. CH(X) →
CH(X)). The groupCH(X) is called thereducedChow group ofX; the groupCh(X)

is called themodulop reducedChow group ofX. Note that

Ch(X) = CH(X)/
(
CH(X) ∩ pCH(X)

)
is not the same asCH(X)/pCH(X).

1.3. Places

Let K be a field. A valuation ring R of K is a subringR ⊂ K, satisfyingK =
R ∪ (R \ {0})−1. Any valuation ring is local;R = K is a trivial example of a valuation
ring.
Given two fieldsK andL, aplaceK → L is a local ring homomorphism� : R → L

of a valuation ringR ⊂ K (an embedding of fields is a trivial example of a place).
If K andL are extensions of a fieldF , an F -place (or a place overF ) is a place

K → L with � defined and identical onF .
Places are composable: ifK → L is a place, given by a ring homomorphism�, and

L→ E a place to a third fieldE, given by a homomorphism� of a ring S ⊂ L, then
the composition is the placeK → E, given the homomorphism� ◦ � : �−1(S) → E,
defined on the valuation ring�−1(S). In particular, any placeL→ E can be restricted
to any subfieldK ⊂ L.
In this paper, anF -placeK → L is said to begeometric, if it can be represented

as a composition ofF -places with valuation rings being discrete valuation rings.

1.4. Places and points

Let X be anF -variety and letL be a field extension ofF . If X is complete, then
for any valuation ringR of the field F(X) there exists anF -morphism SpecR → X
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[7, Chapter II, Theorem 4.7]; therefore anF -placeF(X) → L produces anL-point
of X.
Vice versa, ifX has anL-point and is regular, then there exists ageometricF -place

F(X) → L. Indeed, sinceX is regular at the imagex ∈ X of SpecL, there exists a
system of local parameters aroundx, which produces a geometric placeF(X)→ F(x);
composing with the embeddingF(x) ↪→ L, we get the required placeF(X)→ L.

2. Canonical dimension of determination functions

Let F be a field,FieldsF the category of all field extensions ofF . Let 20 be the
category of the subsets of a 1-elemental set 0. Adetermination functionD over F is
a continuous functorFieldsF → 20, where by continuity we mean thatD commutes
with the filtered colimits. In other words,D is a rule assigning to eachE ∈ FieldsF
a valueD(E) ∈ {∅,0} such that
• if D(E) = 0 for someE, thenD(E′) = 0 for any E′ admitting anF -embedding

E → E′;
• (continuity property) ifD(E) = 0 for some fieldE covered by a (possibly infinite)
filtered family of subfieldsEi , thenD(Ei) = 0 for someEi .

A field E ∈ FieldsF is called asplitting field of a determination functionD, if
D(E) = 0. A splitting field E of D is called generic, if for any splitting field L

there exists anF -placeE → L. If D has at least one generic splitting field,canonical
dimensioncd(D) of D is defined as the minimum of the transcendence degrees (over
F ) of all generic splitting fields ofD; if D does not admit a generic splitting field,
we set cd(D) = ∞.

Lemma 2.1. For a given determination function D, any splitting field of D, which is a
subfield of a generic splitting field, is also generic. Besides, any splitting field contains
a finitely generated splitting field andcd(D) = ∞ only if D does not admit generic
splitting.

Proof. If E is a generic splitting field andE′ a splitting field contained inE, then
for any splitting fieldL, restricting a placeE → L to E′, we get a placeE′ → L;
thereforeE′ is also generic.
Any splitting field contains a finitely generated splitting field by the continuity of

the determination function.
If D has a generic splitting field, then, taking a finitely generated splitting subfield,

we get a finitely generated generic splitting field, showing that cd(D) is finite. �

A determination functionD overF is split, if D(F) = 0. In this case,F is a generic
splitting field ofD and cd(D) = 0.
Our basic example of a determination function is the determination function associ-

ated with a schemeX over F :

L �→
{ ∅ if X(L) = ∅;
0 otherwise.
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Thecanonical dimensioncd(X) of anF -schemeX is defined as the canonical dimen-
sion of the associated determination function (as explained in Remark4.13, canonical
dimension of complete regularF -varieties is a birational invariant).

Example 2.2 (Karpenko and Merkurjev[11, Theorem 4.3]). Let F be a field of char-
acteristic�= 2. LetX be an anisotropic smooth projective quadric overF . Then cd(X) =
dim X − i1(X)+ 1, wherei1(X) is the first Witt index ofX.

Let PointedSetsbe the category of the pointed sets and letk be a field. A functor

F : Fieldsk → PointedSets

is calledcontinuous, if it commutes with filtered colimits. IfF is a continuous functor,
then for anyF ∈ Fieldsk and � ∈ F(F ), we get a determination functionD� over F
by setting

D�(L) =
{
0 if �L is the distinguished point of the setF(L);
∅ otherwise.

Berhuy-Reichstein canonical dimensionof a continuous functorF [1, §10] is the supre-
mum of cd(D�) for all F and � ∈ F(F ). If G is an algebraic group over the fieldk,
canonical dimension ofG is defined as canonical dimension of the (continuous) func-
tor TorsG, taking a fieldF to the set of isomorphism classes TorsG(F) of G-torsors
over F . We note that canonical dimension of an algebraic groupG/k is not the same
as canonical dimension of the underlying variety ofG (which is always 0 because
G(k) �= ∅).

3. Canonical p-dimension

Let us fix an arbitrary primep and refer to a splitting fieldE of a determination
function D as p-generic, 3 if for any splitting fieldL of D there exists a finite field
extensionL′/L of degree prime top admitting a placeE → L′. Replacing generic
splitting fields by thep-generic ones in the definitions of section 2, we get a modified
notion of canonical dimension which we callcanonicalp-dimensionand denote cdp.
We refer to a finite field extension asp-coprime, if its degree is not divisible byp.
The following two lemmas are useful when working with cdp.

Lemma 3.1 (cf. [11, Lemma 3.3]). Let K be an arbitrary field, p a prime, K ′/K a
p-coprime field extension, and L/K an arbitrary field extension. Then there exists a
field L′, containingK ′ and L, such that the extensionL′/L is alsop-coprime.

Proof. We argue as in the proof of[11, Lemma 3.3], where the case ofp = 2 was
treated. We may assume thatK ′ is generated overK by one element; letf (t) ∈ F [t]
be its minimal polynomial. Since the degree off is coprime withp, there exists an

3Our notion of p-generic splitting is based on the notion ofp-generic splitting varietiesof symbols
in a modulop Milnor’s K-group of a field, introduced in[14].
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irreducible divisorg ∈ L[t] of f over L such that deg(g) is coprime withp as well.
We setL′ = L[t]/(g). �

Replacing the field embeddingK ↪→ L by a place, one generalizes Lemma3.1 as
follows:

Lemma 3.2. Let K be a field extension ofF of finite transcendence degree overF ;
let K → L be a geometricF -place and letK ′ be a p-coprime field extension ofK.
Then there exists ap-coprime field extensionL′/L such that the placeK → L extends
to a placeK ′ → L′.

Proof. By Lemma 3.1 it suffices to prove Lemma 3.2 in the case where the place
K → L is surjective and its valuation ringR is a discrete valuation ring. Also it is
clear, that is suffices to consider only two cases: (1)K ′/K is purely inseparable and
(2) K ′/K is separable.
In the first case, the degree[K ′ : K] is a power of a primeq �= p. We take an

arbitrary valuation ringR′ of K ′, lying over R, i.e., such thatR′ ∩ K = R and the
embeddingR → R′ is local (suchR′ exists in the case of an arbitrary field extension
K ′/K, [15, Chapter VI, Theorem 5′]). Let L′ be the residue field ofR′ so that we
have a surjective placeK ′ → L′. We show thatL′ is also purely inseparable overL
(and therefore[L′ : L], being a power of the sameq, is coprime top). For this, we
take an elementl ∈ L′ and show thatlq

n ∈ L for somen: let k ∈ R′ be a preimage of
l; then kq

n ∈ K for somen and consequentlylq
n ∈ L for the samen.

In the second case we consider all valuation ringsR1, . . . , Rr of K ′, lying overR (the
number of such valuation rings is finite by [15, Chapter VI, Theorem 12, Corollary 4]).
The residue field of eachRi is a finite extension ofL. Moreover,

∑r
i=1 eini = [K ′ : K]

[15, Chapter VI, Theorem 20, and p. 63] (the discrete valuation ring assumption and
the separability assumption are needed for this equality), whereni is the degree over
L of the residue field ofRi , and ei is the reduced ramification indexof Ri over
R, [15, Definition on pp. 52–53]. It follows that at least one ofni is not divisible
by p. �

Let us make some first general observations on cdp. Clearly, a generic splitting field
of a determination function is alsop-generic; therefore we always have cd�cdp.
Also it is clear, that cdp is not interesting, if the determination function in question

has ap-coprime splitting field. More precisely, one has a simple

Lemma 3.3. Assume that a determination functionD is split by ap-coprime extension
E/F . Thencdp(D) = 0.

Proof. It follows by Lemma3.1, that the splitting fieldE of D is p-generic. �

Example 3.4. The computation of cd(X) for an anisotropic smooth projective quadric
X (over a field of characteristic�= 2), given in [11] (see Example 2.2), shows in fact
also that cd2(X) = cd(X).
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Example 3.5. Let X be a Severi-Brauer variety. Ifd(X) = dp(X) (that is, d(X) is a
power of the primep), then cd(X) = cdp(X) = dp(X) − 1, [1, Theorem 11.4]. Now
if d(X) is not a power of a prime, the value of cd(X) is not known, while cdp(X) is
still dp(X)− 1 (see Example 5.10).

Example 3.6. The computation of cd(SOn), given in [10], also shows that cd2(SOn) =
cd(SOn) (see also Example 5.11 as well as (8.2) and (8.4)).

Remark 3.7. Let F and F ′ be continuous functorsFieldsk → PointedSetswith a
morphismf : F → F ′. If the kernel off is trivial, then for anyF ∈ Fieldsk and any
� ∈ F(F ) the determination function of� coincides with the determination function
of f (�) (cf. [1, Lemma 10.2(a)]); therefore cd(F)�cd(F ′) (cf. [1, Lemma 10.2(b)])
and cdp(F)�cdp(F ′) (for any p). If moreover f is surjective (but not necessarily
injective), then cd(F) = cd(F ′) (cf. [1, Lemma 10.2(c)]) and cdp(F) = cdp(F ′).

4. Canonical (p-)dimension of regular complete varieties

Lemma 4.1. The function field of a regular varietyX is a generic splitting field ofX;
in particular, cd(X)� dim X for regular X.

Proof. The function fieldF(X) is a splitting field ofX (even in the non-regular case).
If L is an arbitrary splitting field of regularX, then by §1.4 there exists anF -place
F(X)→ L; this shows that the splitting fieldF(X) is generic. �

Remark 4.2. The F -placeF(X)→ L we get in the proof of Lemma4.1 is geometric
(as defined in §1.3).

We have the following generalization of Lemma 4.1:

Lemma 4.3. If Y is a closed subvariety of a regular varietyX, admitting a dominant
rational morphismX → Y , then the function field ofY is a generic splitting field of
X. In particular, cd(X)� dim Y .

Proof. Clearly, F(Y ) is a splitting field ofX. A dominant rational morphismX → Y

produces anF -embedding ofF(Y ) into the field F(X), which by Lemma4.1 is a
generic splitting field ofX. It follows by Lemma 2.1 thatF(Y ) is a generic splitting
field too. �

Lemma 4.4. Let Y be a scheme over a fieldF , X a variety overF .

(1) If Y admits a dominant rational morphismX → Y , then theF(X)-schemeYF(X)

has a closed rational point.
(2) If the F(X)-schemeYF(X) has a closed rational point, then there exists a closed

subvarietyY ′ ⊂ Y , admitting a dominant rational morphismX → Y ′.
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Proof. Existence of a rational morphismX → Y is equivalent to existence of a closed
rational point onYF(X). To prove the second statement, we take asY ′ the closure of
the image of the rational morphismX → Y . �

Proposition 4.5. Any regular complete varietyX has a closed subvarietyY ⊂ X of
dimensiondim Y = cd(X), admitting a dominant rational morphismX → Y .

Proof. Let us take a generic splitting fieldE of X, having the transcendence degree
cd(X) overF . SinceE is a splitting field ofX, there exists a morphism SpecE → X;
let T ⊂ X be the closure of its image. Since the splitting fieldE is generic, there
exists anF -placeE → F(X); composing it with the embedding of the function field
F(T ) into E, we get anF -placeF(T ) → F(X), producing by completeness ofT a
morphism SpecF(X)→ T ; we defineY as the closure of its image. Clearly,Y admits
a dominant rational morphismX → Y and dimY � dim T � tr.degE = cd(X). On the
other hand, by Lemma4.3, dimY �cd(X). Therefore, dimY = cd(X). �

Combining Lemma 4.3 and Proposition 4.5, we get

Corollary 4.6. Canonical dimension of a regular complete varietyX is the minimal
dimension of the closed subvarietiesY ⊂ X, admitting a dominant rational morphism
X → Y .

Taking into account Lemma4.4, we get the following variant of Corollary 4.6:

Corollary 4.7. Canonical dimension of a regular complete varietyX is the minimal
dimension of the closed subvarietiesY ⊂ X, satisfyingY (F (X)) �= ∅.

Now we establish variants of Lemma4.3, Proposition 4.5, and Corollaries 4.6 and
4.7, related to the canonicalp-dimension.
We say that a closed subvarietyY of an F -variety X satisfies condition(∗), if the

function fieldF(Y ) embeds (overF ) into a p-coprime field extension ofF(X).

Lemma 4.8. If Y is a closed subvariety of a regular varietyX, satisfying condition
(∗), then the function field ofY is a p-generic splitting field ofX. In particular,

cdp(X)� dim Y.

Proof. Clearly, F(Y ) is a splitting field ofX. Let K ′/F (X) be a p-coprime field
extension with anF -embeddingF(Y ) ↪→ K ′. For an arbitrary splitting fieldL of
X we can find a geometricF -placeF(X) → L (see Lemma4.1 with Remark 4.2).
Applying Lemma 3.2 to this place and the field extensionK ′/F (X), we get a place
K ′ → L′ to somep-coprime field extensionL′/L. Restricting the latter place to the
subfieldF(Y ) ⊂ K ′, we get a placeF(Y )→ L′; therefore, the splitting fieldF(Y ) is
p-generic. �
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Lemma 4.9. Let Y be a scheme over a fieldF , X a variety overF .

(1) If Y satisfies condition(∗), then dp(YF(X)) = 1 (see Section1.1 for definition
of dp).

(2) If dp(YF(X)) = 1, then there exists a closed subvarietyY ′ ⊂ Y ⊂ X, satisfying
condition (∗).

Proposition 4.10.Any regular complete varietyX has a closed subvarietyY ⊂ X of
dimensiondim Y = cdp(X), satisfying condition(∗).

Proof. Let us take ap-generic splitting fieldE of X, having the transcendence degree
cdp(X) overF . SinceE is a splitting field ofX, there exists a morphism SpecE → X;
let T ⊂ X be the closure of its image. Since the splitting fieldE is p-generic, there
exists anF -placeE → K ′, whereK ′/F (X) is ap-coprime field extension. Restricting
to F(T ) ⊂ E, we get anF -place F(T ) → K ′. By completeness ofT , the place
F(T ) → K ′ produces a morphism SpecK ′ → T ; we defineY as the closure of its
image. Clearly,Y satisfied condition(∗) and dimY � dim T � tr.degE = cdp(X). On
the other hand, by Lemma4.8, dimY �cdp(X). Therefore, dimY = cdp(X). �

Lemma 4.8 and Proposition 4.10 together produce

Corollary 4.11. The canonicalp-dimension of a regular complete varietyX is the
minimal dimension of the closed subvarietiesY ⊂ X, satisfying(∗).

By Lemma4.9, the following variant of Corollary 4.11 also holds:

Corollary 4.12. The canonicalp-dimension of a regular complete varietyX is the
minimal dimension of the closed subvarietiesY ⊂ X with dp(YF(X)) = 1.

Remark 4.13.We would like to notice that the canonical (p-)dimension of acomplete
regular F -variety X is a birational invariant ofX. Indeed, cd(X) for suchX can be
determined in terms ofF(X) as the minimal transcendence degree of the field exten-
sionsL/F possessingF -places to and fromF(X); similarly, cdp(X) is the minimal
transcendence degree of the field extensionsL/F possessing anF -place fromF(X)

and anF -place to ap-coprime extension ofF(X).

5. Generically p-split varieties

In this sectionX stands for a smooth complete absolutely irreducible variety over a
field F .

Lemma 5.1. The degree homomorphismdeg: Ch0(X)→ Fp is an isomorphism if and
only if dimFp

Ch0(X) = 1.

Proof. The degree homomorphism is non-zero and therefore surjective.�
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Lemma 5.2. Assume thatdimFp
Ch0(X) = 1. Let T be an arbitraryF -scheme, let E1

andE2 be field extensions ofF , and letf1 : SpecE1→ X and f2 : SpecE2→ X be
F -morphisms. Then the diagram

Ch(T ×X)

Ch(TE1) Ch(TE2)

Ch(T )

�����
���

���(idT×f1)
∗

����������
(idT×f2)

∗

� �

���������� � �

����������

is commutative.

Proof. Let E be a field extension ofF , containingE1 and E2. ReplacingT andX

by TE andXE , we come to the following situation:E = E1 = E2 = F and for some
closed rational pointsx1, x2 ∈ X, fi is the embeddingT = T × {xi} ↪→ T × X. We
want to show thatf ∗1 = f ∗2 : Ch(T ×X)→ Ch(T ). Sincepr∗ ◦ fi∗ = id for i = 1,2,
wherepr is the projectionT ×X → T , it suffices to show that

f1∗ ◦ f ∗1 = f2∗ ◦ f ∗2 : Ch(T ×X)→ Ch(T ×X) .

The compositionfi∗ ◦f ∗i coincides with the multiplication by[T ×xi]. Since by the as-
sumption on dimFp

Ch0(X) and Lemma5.1, the degree homomorphism deg: Ch(X)→
Fp is an isomorphism, we have[x1] = [x2] ∈ Ch(X), and therefore[T ×x1] = [T ×x2]
in Ch(T ×X). The required assertion follows.�

Let in : Y ↪→ X be a closed subvariety ofX. The closed embedding

(idY , in)× idX : Y ×X → Y ×X ×X

is regular, and we define a paring

Ch(Y )⊗ Ch(X ×X)→ Ch(Y ×X)

by the formula�⊗ � �→ (
(idY , in)× idX

)∗
(�× �).

Proposition 5.3. Let Y be a closed subvariety ofX. Assume thatdimFp
Ch0(X) = 1

and that for any fieldE ⊃ F(X) the restriction homomorphismCh(XF(X))→ Ch(XE)

is an isomorphism. Then the above paring is surjective.

Proof. We proceed by induction on dimY . We have a commutative diagram
⊕

Y ′ Ch(Y ′)⊗ Ch(X ×X) −−−−−→ Ch(Y )⊗ Ch(X ×X) −−−−−→ Ch(X ×X) −−−−−→ 0� � �⊕
Y ′ Ch(Y ′ ×X) −−−−−→ Ch(Y ×X) −−−−−→ Ch(XF(Y )) −−−−−→ 0
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where Y ′ runs over closed subvarieties of codimension 1 inY . The rows are exact.
Indeed, the upper row is the obvious exact sequence

⊕
Y ′ Ch(Y

′)→ Ch(Y )→ Z → 0,
tensored byCh(X × X) over Fp. To see that the lower row is exact, one notices
that the row with Ch in place ofCh is exact and that the restriction homomorphism
Ch(XF(Y ))→ Ch(X) is injective as the composite of the homomorphism Ch(XF(Y ))→
Ch(XF(Y )(X)), which is injective due to the specialization of[5, §20.3], and the iso-
morphism Ch(XF(Y )(X)) → Ch(X) (see the assumption on Ch(XF(X))). Furthermore,
the left vertical map of the diagram is surjective by the induction hypothesis. The right
vertical map is surjective because the rhombus

Ch(X ×X)

Ch(XF(Y )) Ch(XF(X))

Ch(X)

���������
�� ���������

� �

���������

�������
�������

is commutative (as guaranteed by the assumption on Ch0(X) and Lemma 5.2 applied
to T = X). �

Corollary 5.4. Under the assumptions of Proposition5.3, if the push-forward

(in× idX)∗ : Ch(Y ×X)→ Ch(X ×X)

is non-zero, then the push-forward in∗ : Ch(Y ) → Ch(X) is also non-zero and, in
particular, Chi (X) �= 0 for at least onei� dim Y .

Proof. The square

Ch(Y )⊗ Ch(X ×X) Ch(Y ×X)

Ch(X)⊗ Ch(X ×X) Ch(X ×X)

�� ��

��
� �
� �
� �
�

in∗⊗id
��
� �
� �
� �
�

(in×id)∗

��

is commutative. �

Definition 5.5. We say that a (complete smooth absolutely irreducible) varietyX over
F is p-balanced, if the symmetric bilinear form

Ch(X)× Ch(X)→ Fp, (�, �) �→ deg(� · �)
is non-degenerate (in the sense that its radical is trivial; note that dimFp

Ch(X) can be
infinite).
A variety X over F is calledcellular, if there is a filtration

∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X
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by closed subschemes such that for everyi = 0,1, . . . , n− 1 the schemeXi+1 \Xi is
isomorphic to an affine space overF .

Remark 5.6. Let X be a geometrically cellular variety, that is,XE is cellular for some
field extensionE/F . We claim thatX is p-balanced (for anyp). Indeed, the Chow-
motive of the cellular varietyXE decomposes into a finite direct sum of twists of
the motive of the point (see, e.g.,[9, Theorem 6.5]). Therefore CH(XE) = CH(X).
Moreover, the mutually inverse isomorphisms of the motive ofXE with the above direct
sum are given by certain sequencese0, . . . , en ande′0, . . . , e′n of homogeneous elements
in CH(XE), which are bases of CH(XE) mutually dual with respect to theZ-bilinear
form (�, �) �→ deg(� · �) (simply because they define mutually inverse isomorphisms
of motives).

Note that for anyp-balancedX and any integeri, one has dimFp
Chi (X) = dimFp

Chi (X), if at least one of these two dimensions is finite. Since dimFp
Ch0(X)=1, the

above equality withi = 0 implies that dimFp
Ch0(X) = 1 for a p-balancedX.

Definition 5.7. A p-balanced varietyX overF is calledp-split, if for any fieldE ⊃ F

the restriction homomorphism Ch(X)→ Ch(XE) is an isomorphism (in particular, one
hasCh(X) = Ch(X) for a p-split X).

A cellular variety isp-split.
We say that a varietyX has a propertygenerically, if X over its own function field

has this property. This way we get a notion ofgenericallyp-split variety. According
to above remarks, agenerically cellularvariety is genericallyp-split.
We are ready to prove the main result of the first half of the paper, interpreting

the canonicalp-dimension of a genericallyp-split variety in terms of its modulop
reduced Chow group:

Theorem 5.8. If X is a genericallyp-split variety (see Definitions5.7 and 5.5), then

cdp(X) = min{i | Chi (X) �= 0}.

In particular, the formula holds for a generically cellularX.

Proof. Two inequalities are proved separately.

� Let i be an integer such that the groupChi (X) is non-zero. Then[Y ] �= 0 for

a closedi-dimensional subvarietyY ⊂ X. We are going to show thatdp(YF(X)) = 1
for suchY (this suffices for our purposes by Corollary 4.12).
Since the varietyXF(X) is p-split, there exists a prime cycleZ ⊂ XF(X) such that

deg([YF(X)] · [Z]) �= 0. Since the product[YF(X)] · [Z] can be represented by a cycle
on the intersectionYF(X)∩Z (see [5, §8.1]), the schemeYF(X) has a closedp-coprime
point, meaning thatdp(YF(X)) = 1.
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� Let now in : Y ↪→ X be a closed subvariety ofX, satisfying condition(∗), that
is, F(Y ) ↪→ K for somep-coprime extensionK/F(X). We will show thatChi (X) �= 0
for somei� dim Y . The desired inequality will then follow by Proposition4.10.
Let Z be the closure of the image of the morphism SpecK → Y × X. The cycle

(in×idX)∗([Z]) ∈ Ch(X2) is non-zero, because for the second projectionpr : X2→ X,
we have

pr∗(in× idX)∗[Z] = [K : F(X)] · [X] �= 0 ∈ Ch(X).

It follows by Corollary 5.4 thatChi (X) �= 0 for somei� dim Y . �

Remark 5.9. If we take Y with dim Y = cdp(X) in the beginning of the (�)-part
of the proof of Theorem5.8, then, since we have already proved the (�)-part of
the theorem, we come to the conclusion that the (dimY )-dimensional component of
the homomorphismin∗ : Ch(Y )→ Ch(X) is non-zero. Since the (dimY )-dimensional
component of the image ofin∗ is generated by[Y ] ∈ Ch(X), we see that in fact the
class inCh(X) of Y itself is non-zero.

Example 5.10.Let X be the Severi-Brauer variety of a central simpleF -algebraA.
Since by Theorem5.8, cdp(X) = cdp(XL) for any p-coprime field extensionL/F ,
cdp(X) = cdp(Y ), whereY is the Severi-Brauer variety of a division algebra, Brauer-

equivalent to thep-primary part ofA. Furthermore,Ch(Y ) = Ch
0
(Y ) by [8, Proposition

2.1.1]. Therefore, by Theorem 5.8, cdp(Y ) = dim Y , so that we get

cdp(X) = cdp(Y ) = dim Y = dp(X)− 1.

Example 5.11. In this examplep = 2. Let X/F be the orthogonal grassmannian of
n-dimensional totally isotropic subspaces of a (2n + 1)-dimensional non-degenerate

quadratic form. Ifd2(X) = 2n, then Ch(X) = Ch
0
(X) by [10, Proposition 1.4] and

therefore
cd2(X) = dim(X) = n(n+ 1)/2.

Without any restriction ond2(X), canonical 2-dimension ofX can be expressed as the
sum of all i such that theith special Schubert classei ∈ Chi (X) is non-rational, i.e,
does not lie inCh(X): indeed, by [16, Main Theorem 5.7], the product of allrational
ei is a non-zero element ofCh(X) of the smallest possible dimension.

6. Canonical p-dimension of algebraic groups

If P is an algebraic group over a fieldF , we write CH(BP ) for the P -equivariant
Chow ring CHP (SpecF) of the point SpecF (see [4]).
Let G be a connected algebraic group overF and let P be a subgroup ofG.

Consider the homomorphism

�G = �G,P : CH(BP ) = CHP (SpecF)
q∗→CHP (G) = CH(G/P ),

whereq : G→ SpecF is the structure morphism.
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Remark 6.1. If G is a subgroup of a groupG′, then�G = i∗ ◦�G′ , wherei : G/P →
G′/P is the morphism, induced by the embedding ofG into G′.

Proposition 6.2. Let G = GLn. Then the map�G is surjective and the leftG-action
on G/P induces the trivial action onCH(G/P ).

Proof. The groupG is embedded into the affine space of End(F n) as aG-equivariant
open subset. The mapq∗ factors as the composite

CHP (SpecF)→ CHP (End(F n))→ CHP (G),

where the first pull-back map is an isomorphisms by the homotopy invariance property
and the second restriction map is surjective by the localization. Hence�G is surjective.
For a rational pointg of G, let �g : G→ G is the morphism of the left multiplication

by g. It follows from q ◦ �g = q that �∗g ◦ q∗ = q∗. Sinceq∗ is surjective,�∗g is the
identity, i.e.,G acts trivially on CH(G/P ). �

Recall that we write CH(G/P ) for the colimit of CH(GL/PL) over all field exten-
sionsL/F . We define a homomorphism�G as the composite

�G : CH(BP )
�G→CH(G/P )

res→CH(G/P ) .

Let E be a (right)G-torsor over a field extensionF ′ of F . SetK = F ′(E). Let
�E : CH(E/P ) → CH(GK/PK) be the pull-back map with respect to the morphism
GK/PK → E/P , induces by theG-equivariant morphismGK → E, taking the identity
of G to the generic point ofE. We define a homomorphism�E as the composite

�E : CH(E/P )
�E→CH(GK/PK)

resK→ CH(G/P ) .

We identifyG with a subgroup ofS = GLn for somen.

Lemma 6.3. Suppose that there is aG-equivariant morphismE → S over F and let
h : E/P → S/P be the induced morphism. Then�G = �E ◦ h∗ ◦ �S .

Proof. The compositionGK → EK → SK of the morphisms induced byGK → E and
E → S, differs from the inclusionGK ↪→ SK by a left multiplication by an element
of S(K). By Proposition6.2, the induced pull-back homomorphisms CH(SK/PK) →
CH(GK/PK) coincide. Composing with the restriction homomorphism CH(S/P ) →
CH(SK/PK), we get�E ◦h∗ = resK/F ◦ i∗, wherei : G/P → S/P is the morphisms,
induced by the embeddingG ↪→ S. We have:

�G = res◦ �G = resK ◦ resK/F ◦ i∗ ◦ �S = resK ◦ �E ◦ h∗ ◦ �S = �E ◦ h∗ ◦ �S

(for the second equality, see Remark 6.1).�

Theorem 6.4. (1) For anyG-torsor E (over any field extension ofF ) we have

Im(�G) ⊂ Im(�E).
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(2) There exists aG-torsor E (over a field extension ofF ) such that Im(�G) =
Im(�E).

Proof. (1) We may assume thatE is a G-torsor overF . By the Hilbert theorem 90,
the S-torsor (E × S)/G is trivial (where (E × S)/G stands for the quotient ofE × S

by the action(e, s) · g = (eg, g−1s) of G; the action ofG on this quotient is defined
by the formula(e, s) · g = (e, sg), so that the embeddingE = E×1 ↪→ E×S induces
a G-equivariant morphismE → (E × S)/G). In particular, there is aG-equivariant
morphismE → S. By Lemma6.3, Im(�G) ⊂ Im(�E).
(2) Let X = S/G andK = F(X). Denote byE → SpecK the generic fiber of the

projectionS → X. Clearly,E is aG-torsor overK. Denote byh : E/PK → S/P the
morphism induced by the canonicalG-equivariant morphismE → S. SinceE/PK is
a localization ofS/P , the pull-back homomorphismh∗ is surjective. By Proposition
6.2, �S is also surjective. It follows from Lemma 6.3 that Im(�G) = Im(�E). �

Let G be an algebraic group over a fieldF and let TorsG be the functorFieldsF →
PointedSets, taking a fieldK to the set of isomorphism classes TorsG(K) of G-torsors
over K. For aG-torsorE/K, the determination function ofE ∈ TorsG(K) coincides
with the determination function of theK-variety E.
Let P ⊂ G be a subgroup. We assume thatP is a special group, that is, the functor

TorsP is trivial.

Lemma 6.5. The determination functions of the varietiesE and E/P coincide.

Proof. SupposeE/P has a point overK. We need to show thatE(K) �= ∅. The fiber
of the natural morphismE → E/P over the point is aP -torsor. SinceP is special,
this torsor is trivial, i.e., the fiber has a point overK. �

Remark 6.6. Let G be a split semisimple algebraic group and letP be a parabolic
subgroup. The varietyG/P is cellular (see, e.g.,[2]), therefore CH(G/P ) = CH(G/P ).

Remark 6.7. Suppose further thatP is a Borel subgroup ofG. The image of the
composite

CH(BP )
�G→CH(G/P )

deg→Z

is a subgrouptGZ with a positive integertG known as thetorsion index ofG (see[6]).
It follows from Theorem 6.4 and Lemma 6.5 thattG is the l.c.m. of the numbersd(E)

over allG-torsors over all field extension. This statement is known as Grothendieck’s
theorem [6, Theorem 2]. The prime divisors of the torsion indextG are called the
torsion primes ofG.

LetG be a split semisimple group and letP ⊂ G be a parabolic subgroup. SupposeP

is a special group (for example,P is a Borel subgroup ofG). By Lemma 6.5, it follows
that the canonical dimension ofG (resp. cdp(G)) is the supremum of the canonical
dimension ofE/P (resp. cdp(E/P )) over all G-torsors over all field extensions of
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F . Let E be aG-torsor. Note that the varietyE/P is projective. In order to apply
Theorem5.8 to the varietyE/P , we need the following:

Corollary 6.8. The varietyE/P is generically cellular.

Proof. By Lemma6.5, the torsorE is split over the function fieldL = F(E/P ), hence
EL � GL and therefore(E/P )L � (G/P )L. The latter variety is cellular.�

Theorems 5.8 and 6.4 yield

Theorem 6.9. LetG be a split semisimple group and letP ⊂ G be a special parabolic
subgroup(for example, a Borel subgroup). Denote byC̃H(G/P ) the image of the graded
ring homomorphism�G : CH(BP )→ CH(G/P ). Thencdp(G) for a primep, is equal
to the smallest integeri such thatC̃Hi (G/P ) is not contained inpCHi (G/P ).

Remark 6.10. The canonical dimension cdp(G) is positive if and only ifp is a torsion
prime of G (see Remark6.7). Indeed, by Theorem 6.9, cdp(G) = 0 if and only if
C̃H0(G/P ) is not divisible byp in CH0(G/P ), whereP is a Borel subgroup ofG.
Since CH0(G/P ) is an infinite cyclic group generated by the class of a rational point,
the latter is equivalent to the condition thatp does not dividetG, i.e.,p is not a torsion
prime ofG.

7. Remarks on C̃H(G/P )

Let P be an arbitrary subgroup of an algebraic groupG. Let P → GL (V ) be a
finite-dimensional representation. The groupP acts (on the right) on the productG×V

by (g, v) · p = (g · p, p−1 · v). The factor variety(G× V )/P is a vector bundle over
G/P , we denote it by Bun(V ).
We can viewV as aP -equivariant vector bundle over the point SpecF . For any

n�0, thenth P -equivariant Chern classcn(V ) is an element of CHn(BP ) (see [4]).
Let T be a split torus. There is a canonical isomorphism

S(T̂ )
∼→ CH(BT ),

(where T̂ is the character group ofT , S stands for the symmetric algebra) defined by
the property that the image of a character� is the first Chern classc1(�) where� is
considered as a 1-dimensional representation ofT [4, 3.2].
Let P be a special parabolic subgroup of a split semisimple algebraic groupG. Let

T be a maximal split torus contained inP and letWP be the Weyl group ofP . Since
P is special, the canonical homomorphism

CH(BP )→ CH(BT )WP = S(T̂ )WP

is an isomorphism [4, Proposition 6]. Identifying CH(BP ) with S(T̂ )WP , we get a
homomorphism

�G : S(T̂ )WP → CH(G/P )

with the image the subring̃CH(G/P ).
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Lemma 7.1. Let �1, �2, . . . , �m ∈ T̂ be the characters(with multiplicities) of a repre-
sentationP → GL (V ). Let sn ∈ Sn(T̂ )WP be the elementary symmetric polynomials in
the characters�i . Then�G(sn) = cn(Bun(V )).

Proof. By naturality of the Chern classes, we have�G(cn(V )) = cn(Bun(V )). On
the other hand,cn(V ) is the nth elementary symmetric polynomial in the characters
of V . �

Remark 7.2. Let G be a split semisimple group over an arbitrary field (of an arbitrary
characteristic),B ⊂ G a Borel subgroup,T ⊂ B a split maximal torus,W the Weyl
group of G. The closuresXw of the cellsBwB/B of the cellular varietyG/B are
indexed by the elementsw ∈ W and calledgeneralized Schubert varietiesof G/B;
moreover, dimXw = l(w), where l : W → Z�0 is the length function. Taking the
unique maximal length elementw0 ∈ W and settingXw = Xw0w, we get a different
(preferable for us) indexation of the same varieties, for which codimXw = l(w). The
group CH(G/B) is free and the classes[Xw], calledgeneralized Schubert classes, form
its basis.
The following formula for the product of a 1-codimension Schubert class with an

arbitrary Schubert class is given in[3, §4.4 Corollary 2]:

[Xs� ] · [Xw] =
∑
�

〈�∨,	�〉 · [Xw·s� ],

where� is a simple root,	� its fundamental weight,s� ∈ W the reflection with respect
to �; � runs over the set of positive roots such thatl(w · s�) = l(w)+ 1, and�∨ is the
dual to� root. Note that the coefficients of this formula depend only on the root system;
in particular, they do not depend on the base field and its characteristic. Moreover, this
formula completely determines the multiplication table of the basis[Xw], w ∈ W ,
because theQ-algebra CH(G/B)⊗Q is generated by CH1(G/B) [3].

Remark 7.3. Let P = B be a Borel subgroup ofG. We haveWB = 1 and therefore
the subringC̃H(G/B) is generated by�G(T̂ ). In the case of simply connectedG, for
the weight	� of a simple root�, one has the formula

�G(	�) = −[Xs� ], [3, §4 formula (7)],

which also determines�G in the non simply connected case. This formula also shows
that if the groupG is simply connected, then�G(T̂ ) = CH1(G/B), and therefore
C̃H(G/B) is the subring of CH(G/B), generated by CH1(G/B).

Remark 7.4. From Theorem6.9 and Remark 7.3, we see that

(1) if G1 andG2 are split semisimple groups, then cdp(G1×G2) = cdp(G1)+cdp(G2);
(2) if G′ → G is a central isogeny of split semisimple groups, then cdp(G

′)�cdp(G).

Remark 7.5. Let us consider pairs(�, A), consisting of a root system� and a sub-
group of the quotient of the weight lattice of� by its root lattice. An isomorphism of
pairs (�, A) → (�′, A′) is an isomorphism of the root systems� → �′ such that the
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induced isomorphism of the lattice quotients mapsA to A′. To any split semisimple
algebraic groupG one attaches an isomorphism class of above pairs, to which we refer
asextended typeof G. Theorem6.9 with Remarks 7.2 and 7.3 shows that cdp(G) (for
any p) depends only on the extended type ofG. It does not depend on the base field
F and, in particular, on the characteristic ofF (so that computing cdp(G) one may
always assume thatG is defined overC).

8. Canonical p-dimension of split simple groups of classical types

In this section we compute canonicalp-dimension of all split simple groups of
classical types. We will need the following:

Lemma 8.1. Let R be a commutative ring, r ∈ R, and let A be the factor ring of
the polynomial ringR[x1, x2, . . . , xn] modulo the ideal generated by the polynomial
x1+ x2 + · · · + xn − r. The symmetric groupW = Sn acts onA by permuting thexi .
If R has trivial Z-torsion, then AW = R[s2, s3, . . . , sn], where si are the elementary
symmetric polynomials.

Proof. Consider the naturalW -action on the ringR[x] = R[x1, x2, . . . , xn]. We have
the exact sequence 0→ R[x] f→R[x] → A → 0, where the first map is the mul-
tiplication by f = x1 + x2 + · · · + xn − r. Passing toW -invariants we get an exact
sequence

0→ R[x]W f→R[x]W → AW → H 1(W,R[x]).
The ringR[x]W coincides withR[s] = R[s1, s2, . . . , sn]. The monomials in the variables
xi form a permutation basis of theR-moduleR[x]. By the Faddeev-Shapiro lemma,
the groupH 1(W,R[x]) is a direct sum of the groupsH 1(W ′, R) = Hom(W ′, R) for
certain subgroupsW ′ ⊂ W . SinceR has trivial Z-torsion, the latter group is trivial.
Therefore,

AW = R[s]/(f ) = R[s2, s3, . . . , sn]. �

8.1. TypeAn−1

A split simple group of typeAn−1 is isomorphic toG = SL(n)/�l , where l is a
divisor of n. Let P ⊂ SL(n) be the stabilizer of the lineU = [1 : 0 : . . . : 0] ∈ Pn−1
with respect to the natural action ofSL(n) on Pn−1. The semisimple part ofP is
SL(n− 1) and it intersects�l trivially. Hence the parabolic subgroupPl = P/�l of G
is special. We haveG/Pl = Pn−1.
The intersectionT of the group of diagonal matricesD(n) of GL (n) with SL(n) is

a maximal torus ofSL(n). The character group̂T is identified with the factor group
of Zn = D̂(n) with the standard basisx1, x2, . . . , xn by the subgroup generated by
x1 + x2 + · · · + xn. The character group of the maximal torusTl = T/�l of G is
the subgroup of̂T consisting of all sums

∑
aixi such that

∑
ai is divisible by l.
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Hence, T̂l is generated bylx1 and xi − x1 for all i = 2, . . . , n with the relation∑
i�2(xi − x1) = −nx1.

The Weyl groupW = WPl
is the symmetric groupSn−1, permuting x2, . . . , xn.

Applying Lemma8.1 to the ringR = Z[lx1], the elementr = −nx1, the variables
xi − x1 and the groupW , we getS(T̂l)

W = Z[lx1, s2, s3, . . . , sn−1], where thesi are
the elementary symmetric polynomials in thexi − x1, i�2.
The groupP acts naturally on the spaceV = Fn. The characters of this representation

are x1, x2, . . . , xn. The corresponding vector bundle Bun(V ) over Pn−1 = SL(n)/P =
G/Pl is the trivial vector bundle of rankn. The lineU can be viewed as a 1-dimensional
representation ofP given by the characterx1. We have Bun(U) = L∨, whereL is
the canonical line bundle onPn−1 (with the sheaf of sectionsO(1)). Consider the
representationM = (V/U) ⊗ U∨ of the groupP with the charactersxi − x1 for all
i = 2, . . . , n. Note that the group�l is contained in the kernel of the representation,
henceM is a representation ofPl .
By Lemma 7.1, we have�G(lx1) = lc1(L

∨) = −lh, where h ∈ CH1(Pn−1) is
the class of a hyperplane, and also�G(si) = ci(Bun(M)) for all i. Hence the sub-
ring, C̃H(Pn−1) of CH(Pn−1) = Z[h]/(hn) is generated bylh and the Chern classes
ci(Bun(M)). Since

Bun(M) = (Bun(V )/Bun(U))⊗ Bun(U∨) = (Bun(V )/L∨)⊗ L,

the class[Bun(M)] is equal ton[L]−1 in K0(P
n−1). Hence,c•(Bun(M)) = c•(L)n =

(1+ h)n. Thus the subring̃CH(Pn−1) is generated bylh and

(
n

i

)
hi for i = 2, . . . ,

n− 1.
Let p a be prime integer and letpk be the largest power ofp dividing n. Note that

the binomial coefficient

(
n

i

)
is divisible byp unlessi is divisible bypk. The largest

value of i < n such that

(
n

i

)
is not divisible byp is n− pk. By Theorem 6.9,

cdp(SL(n)/�l ) =
{
pk − 1 if p dividesl,
0 otherwise.

Denote by CSAn,l(K) the set of isomorphism classes of central simpleK-algebras
of degreen and exponent dividingl. The exact sequence 1→ �l → SL(n) →
SL(n)/�l → 1 yields a surjective map TorsSL(n)/�l

(K) → CSAn,l(K) with trivial
kernel. By Remark 3.7,

cdp(CSAn,l) =
{
pk − 1 if p dividesl,
0 otherwise.

8.2. TypeBn

The only torsion prime isp = 2.
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Taking a (2n+1)-dimensional vector space, endowed with a completely split quadratic
form, let a vectorg together with vectorsei, fi , i = 1,2, . . . , n form a basis such that
{ei, fi} are pairwise orthogonal hyperbolic pairs, whileg is orthogonal to allei, fi .
Let G = SO(2n + 1) be the corresponding special orthogonal group. The inclusion
of D(n) into SO(2n + 1) given by t (ei) = tiei , t (fi) = t−1i fi and t (g) = g, where
t = diag(t1, . . . , tn), identifiesD(n) with a maximal torusT of SO(2n+1). In particular,
the group T̂ is identified withZn = D̂(n). We write x1, x2, . . . , xn for the standard
basis ofZn.
Let V be the totally isotropic subspace of dimensionn generated by all theei .

Denote byP the stabilizer ofV in G, so thatX = G/P is the variety of all dimension
n totally isotropic subspaces. The characters of the natural representationP → GL (V )

arex1, x2, . . . , xn. The vector bundle Bun(V ) overX is the tautological vector bundle.
The groupW = WP is the symmetric groupSn permuting thexi . The semisimple

part of P is SL(n), so thatP is special.
We haveS(T̂ )W = Z[s1, s2, . . . , sn], where sk are the elementary symmetric poly-

nomials in thexi . By Lemma7.1, the subringC̃H(X) of CH(X) is generated by the
Chern classes of Bun(V ). These Chern classes are divisible by 2 in CH(X) [13, Chapter

III, Theorem 6.11]. Thus,̃Chj (X) = 0 if j > 0. We conclude by Theorem 6.9 that

cd2SO(2n+ 1) = n(n+ 1)
2

(see also Examples 3.6 and 5.11). The set TorsSO(2n+1)(K) is identified with the set
of similarity classes Q2n+1(K) of non-degenerate quadratic forms of dimension 2n+ 1
overK. Thus,

cd2Q2n+1 = n(n+ 1)
2

.

Let G = Spin(2n+ 1) be the spinor group. There is an exact sequence
1→ �2→ T ′ → T → 1,

where T ′ is a maximal torus ofSpin(2n + 1). We haveT̂ ′ = T̂ + Zy = Zn + Zy,
wherey = (x1+· · ·+xn)/2. By Lemma 8.1 applied to the ringR = Z[y], the element
r = 2y and the groupW , the ringS(T̂ )W is the polynomial ringZ[y, s2, s3, . . . , sn].
By Lemma 7.1,�G(s1) = c1(Bun(V )). The latter class coincides with 2e wheree is

a generator of CH1(X) [13, Chapter III, Theorem 6.11]. Sinces1 = 2y and CH1(X)

is torsion free, we have�G(y) = e.
As noted above, the images of thesi in CH(X) are divisible by 2. Hence the image

of C̃H(X) in Ch(X) = CH(X)/2 is the subring generated bye mod 2. Letm be the
smallest integer such that 2m > n. Thene2

m = 0 ande2
m−1 �= 0 in Ch(X) [13, Chapter

III, Theorem 6.11]. Thus,

cd2Spin(2n+ 1) = n(n+ 1)
2

− 2m + 1.

Let Q2n+1(K) be the subset of Q2n+1(K) consisting of all classes of forms with triv-
ial even Clifford invariant. The exact sequence 1→ �2→ Spin(2n+1)→ SO(2n+1)
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→ 1 yields a surjective map TorsSpin(2n+1)(K) → Q2n+1(K) with trivial kernel.
In particular,

cd2Q2n+1 = n(n+ 1)
2

− 2m + 1.

8.3. TypeCn

The groupSp(2n) is special, so that cdpSp(2n) = 0 for all p.
Let G = PGSp(2n) be the projective symplectic group. The numberp = 2 is

the only torsion prime ofG. Instead of applying the general method, we proceed as
follows.
The set TorsPGSp(2n)(K) is identified with the set of isomorphism classes ASI2n(K)

of central simpleK-algebrasA of degree 2n with a symplectic involution[12, §29.22].
The forgetful functor ASI2n → CSA2n,2 has trivial kernel and is surjective. Therefore,
by Remark 3.7 and (8.1),

cd2PGSp(2n) = cd2ASI2n = cd2CSA2n,2 = 2k − 1,
where 2k is the largest power of 2 dividing 2n.

8.4. TypeDn

Let {ei, fi}, i = 1,2, . . . , n be pairwise orthogonal hyperbolic pairs of a hyperbolic
quadratic form of dimension 2n. The inclusion ofD(n) into SO(2n) given by t (ei) =
tiei and t (fi) = t−1i fi , where t = diag(t1, . . . , tn), identifiesD(n) with a maximal

torusT ′ of SO(2n). In particular, the group̂T ′ is identified withZn = D̂(n). We write
x1, x2, . . . , xn for the standard basis ofZn.
Let V be the totally isotropic subspace of dimensionn generated by all theei and

let U be the lineFe1. Denote byP the stabilizer of the flagU ⊂ V in G = Spin(2n)
and setX = G/P . The semisimple part ofP is isomorphic toSL(n−1) and intersects
trivially the center ofG. Hence the image ofP in any simple group of typeDn (under
a central isogeny ofG) is a special group.
Let Y be the connected component of the scheme of maximal (n-dimensional) totally

isotropic subspaces such thatV is a point ofY . The natural morphismf : X → Y is
the projective bundle associated with the tautological vector bundleE over Y of rank
n. In particular,

dim X = dim Y + (n− 1) = n(n− 1)
2

+ (n− 1).
Note that Y is isomorphic to the projective homogeneous variety of the group
Spin(2n − 1) considered in the typeBn−1. The Chern classes ofE in CH(Y ) are
divisible by 2 (see the typeBn), hence Ch(X) = Ch(Y )[h]/(hn), whereh = c1(L) for
the canonical line bundleL over X.
Similar to the caseBn, the character group of the maximal torusT of Spin(2n) is

equal toZn+Zy, wherey = (x1+x2+· · ·+xn)/2. Setx′i = xi−x1 for i = 2, . . . , n, so
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that x′2+· · ·+x′n = 2y−nx1. The symmetric groupW = WP permutes thex′i and acts
trivially on y and x1. Applying Lemma8.1 to the variablesx′i , the ringR = Z[y, x1]
and the elementr = 2y − nx1 we see thatS(T̂ )W = Z[y, x1, s2, . . . , sn−1], where the
si are the elementary symmetric polynomials in thex′i .
Consider the homomorphism (reduced modulo 2)

�G : Z[y, x1, s2, . . . , sn−1] → Ch(X) = Ch(Y )[h]/(hn).

As in the caseAn−1, we have Bun(U) = L∨ and therefore�G(x1) = c1(L
∨) = −h.

Similar to the caseBn, the classe = �G(y) is a generator of Ch1(Y ). Recall that
e2

m−1 �= 0 ande2
m = 0 wherem is the smallest integer such that 2m�n.

Similar to the caseAn−1, we observe by Lemma 7.1 that the images of thesi in
Ch(X) are the Chern classes of the vector bundle(f ∗(E)/L∨)⊗ L. The class of this
bundle inK0(X) is equal to[f ∗(E)⊗L]−1. Since the Chern classes ofE are divisible
by 2, we can replaceE by the trivial bundle of rankn and replace[f ∗(E) ⊗ L] by
n[L]. As in the caseAn−1, we see that�G(si) =

(
n

i

)
hi .

The subringC̃h(X) = Im(�G) is generated byh ande. The largest degree nontrivial
monomial inh and e is hn−1e2m−1. By Theorem 6.9,

cd2Spin(2n) = dim X − (n− 1)− (2m − 1) = n(n− 1)
2

− 2m + 1.

Let Q2n(K) be the subset of the set Q2n(K) of isomorphism classes of non-degenerate
quadratic forms of dimension 2n consisting of all classes of forms with trivial discrim-
inant and Clifford invariant. The exact sequence 1→ �2→ Spin(2n)→ SO(2n)→ 1
yields a surjective map TorsSpin(2n)(K)→ Q2n(K) with trivial kernel. In particular,

cd2Q2n = n(n− 1)
2

− 2m + 1.

Now letG = SO(2n). Recall that the character group̂T ′ of the maximal torusT ′ of
G is the subgroup of̂T generated by all thexi . Thus we haveS(T̂ ′) = Z[x1, x2, . . . , xn]
and therefore,S(T̂ ′)W = Z[x1, s1, . . . , sn−1]. The subringC̃h(X) is then generated by
h. The largest degree nontrivial monomial inh is hn−1. By Theorem 6.9,

cd2SO(2n) = dim X − (n− 1) = n(n− 1)
2

.

Let Q′2n(K) be the subset of the set Q2n(K) consisting of all classes of forms with

trivial discriminant. There is a canonical bijection TorsSO(2n)(K)
∼→ Q′2n(K). Therefore,

cd2Q
′
2n =

n(n− 1)
2

.

Let G = PGO+(2n) be the projective orthogonal group. LetT be the image of the
maximal torusT under the canonical isogenySpin(2n) → G. The character group

T is the subgroup of̂T generated by all the simple roots. Thus we haveS(T̂ ) =
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Z[2x1, x′2, . . . , x′n] and therefore,S(T̂ )W = Z[2x1, s1, . . . , sn−1]. The subringC̃h(X) is

then generated by

(
n

i

)
hi . Let 2k be the largest power of 2 dividingn. Note that

the binomial coefficient

(
n

i

)
is even unlessi is divisible by 2k. The largest value of

i < n such that

(
n

i

)
is odd isn− 2k. The largest degree nontrivial monomial inh is(

n

n− 2k
)
hn−2k . By Theorem6.9,

cd2PGO+(2n) = dim X − (n− 2k) = n(n− 1)
2

+ 2k − 1.

Let AQP2n(K) be the set of isomorphism classes of central simple algebras of degree
2n with a quadratic pair with trivial discriminant [12, §29.F]. The exact sequence 1→
PGO+(2n) → PGO(2n) → Z/2Z → 1 yields a surjective map TorsPGO+(2n)(K) →
AQP2n(K) with trivial kernel. In particular,

cd2 AQP2n = n(n− 1)
2

+ 2k − 1.

Suppose now thatn is even. There are two isomorphic semispinor groups. We set
Spin∼(2n) = Spin(2n)/H , whereH is the intersection of Ker(y) with the center of
Spin(2n). Let T ′′ be the image of the maximal torusT under the canonical isogeny
Spin(2n) → G. The character group ofT ′′ is the subgroup of̂T generated by all the
simple roots andy. Thus we haveS(T̂ ′′) = Z[y,2x1, x′2, . . . , x′n].
Applying Lemma 8.1 to the elementsx′i , the ringR = Z[y,2x1], and the element

r = 2y − nx1, we see thatS(T̂ ′′)W = Z[y,2x1, s2, . . . sn−1].
The subringC̃h(X) is then generated bye and

(
n

i

)
hi . The largest degree nontrivial

monomial inh and e is

(
n

n− 2k
)
hn−2k e2m−1. By Theorem 6.9,

cd2Spin∼(2n) = dimX − (n− 2k)− (2m − 1) = n(n− 1)
2

+ 2k − 2m.

Let AQP′2n(K) be the set of isomorphism classes of central simple algebras of degree
2n with a quadratic pair with trivial discriminant and trivial component of the Clifford
algebra. The exact sequence 1→ �2 → Spin∼(2n) → PGO+(2n) → 1 yields a
surjective map TorsSpin∼(2n)(K)→ AQP′2n(K) with trivial kernel. In particular,

cd2 AQP
′
2n =

n(n− 1)
2

+ 2k − 2m.
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Appendix. Type G2

The only torsion prime is 2. Since TorsG � Q8 for a split simpleG of typeG2, we
have cd2(G) = cd2(Q8) = 3 (see §8.4).
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