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Abstract. We prove the following conjecture due to Bryant Mathews (2008). Let Qi be
the orthogonal grassmannian of totally isotropic i-planes of a non-degenerate quadratic
form q over an arbitrary field (where i is an integer satisfying 1 ≤ i ≤ m := [(dim q)/2]).
Assume that for a given i, the form q has the following property (possessed by the
generic quadratic form): the degree of each closed point on Qi is divisible by 2i and
the Witt index of q over the function field of Qi is equal to i. Then the variety Qi is
2-incompressible.

Assuming that the form q is sufficiently close to the generic one in a different sense, we
prove a stronger property of Qi saying that its Chow motive with coefficients in F2 (the
finite field of 2 elements) is indecomposable. This result contrasts with recent results
of Zhykhovich (2010) [21] on decomposability of the motives of incompressible twisted
grassmannians.

The above two main results of the paper were known for the quadric Q1 and the
maximal grassmannian Qm due to the works of A. Vishik.

The proofs are based on the theory of upper motives. The results allow one to compute
the canonical 2-dimension of any projective homogeneous variety (i.e., orthogonal flag
variety) associated to the generic quadratic form.

This paper is an extended version of Karpenko (2011) [10] including the results of
Karpenko (2010) [5].

1. Introduction

The classical question [13, Question 4.13(i)] of M. Knebusch asks about the minimum
of the transcendence degree of the generic zero fields of the generic quadratic form (over a
field) of a fixed dimension. This question being implicitly answered in [16], in the present
paper we answer its extended version where, for a given i, the zero should be at least i-fold
in the sense of the Witt index (the original question corresponds to i = 1). Moreover,
we provide conditions on an arbitrary quadratic form which ensure that the form is close
enough to the generic one in the sense that the above question for that form has the same
answer.
This paper deals with motives of certain smooth projective varieties associated to qua-

dratic forms over fields of arbitrary characteristic. We refer to [4] for notation and basic
results concerning quadratic forms. By motives, we mean the Grothendieck Chow mo-
tives with coefficients in the finite field F2 as introduced in [4]. We are using the theory
of upper motives conceived in [11] and [9].
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Let q be a non-zero non-degenerate quadratic form over a field F (which may have
characteristic 2). For any integer i with 0 ≤ i ≤ m := [(dim q)/2] we write Qi for the
variety of i-dimensional totally isotropic subspaces of q.

For any i, the variety Qi is smooth and projective. It is geometrically connected if and
only if i ̸= m. In particular, Qi is connected for any i if dim q is odd. For even-dimensional
q and i = m, the variety Qi is connected if and only if the discriminant of q is non-trivial.

If a variety Qi is not connected, it has two connected components and they are iso-
morphic. In particular, the dimension of Qi is always the dimension of any connected
component of Qi. Here is a formula for the dimension, where n := dim q (see, e.g., [2]):

dimQi = i(i− 1)/2 + i(n− 2i).

In the case where the quadratic form q is “sufficiently generic” (the precise condition is
formulated in terms of the J-invariant of q introduced in [18], its definition and meaning
are recalled in the beginnings of Sections 3, 4, and 5), we are going to show (see Theorems
3.1, 4.1, and 5.1) that the motives of all Qi are indecomposable, if we stay away from the
two exceptional cases described below (where the motive evidently decomposes).

Each of the both exceptional cases arises only if the dimension of q is even and the
discriminant of q is trivial. The first case is the case of i = m, where the variety Qi = Qm

has two connected components. Our assumption on q ensures that the motive of each
component of Qm is indecomposable.

The second case is the case of i = m − 1, where the variety Qi = Qm−1 is a rank i
projective bundle over a component of Qi+1 = Qm (this statement is proved in the proof
of Theorem 4.1). Therefore, the motive of Qm−1 is a sum of shifts of m copies of the
motive of a component of Qm, and this is a complete motivic decomposition of Qm−1

(where complete means that the summands of this decomposition are indecomposable).
We recall that a connected smooth projective variety X is called 2-incompressible, if its

canonical 2-dimension, as defined in [4, §90] (see also Section 6 here), takes its maximal
value dimX. This in particular implies that any rational map X 99K X is dominant, i.e.,
that X is incompressible.

Any projective homogeneous variety X having indecomposable motive, is 2-incompres-
sible, [11, §2e]. Therefore our indecomposability results imply 2-incompressibility of the
corresponding varieties.

Let us point out that our incompressibility results compute the canonical 2-dimension
of any projective homogeneous variety (i.e., orthogonal flag variety) associated to a suffi-
ciently generic quadratic form. This is so indeed because for an arbitrary non-degenerate
quadratic form q and an arbitrary sequence of integers i1, . . . , ik with 0 ≤ i1 < · · · <
ik ≤ m we have an orthogonal flag variety Qi1,...,ik , the variety of flags of totally isotropic
subspaces of q of dimensions i1, . . . , ik, and the canonical 2-dimension (of a component)
of this variety coincides with the canonical 2-dimension of (a component of) Qik .

The motivic indecomposability of the varieties Qi contrasts with a recent result of
M. Zhykhovich [21] (see [22] for an extended version) saying that for any prime p, any
central division F -algebra D of degree pn for some n, and any i with 0 < i < n (and
i ̸= 1 if p = 2), the motive with coefficients in Fp of the variety of the right ideals of
reduced dimension pi in D (this variety is known to be p-incompressible and is a twisted
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form of the grassmannian of pi-dimensional subspaces in a pn-dimensional vector space)
is decomposable.
The paper is organized as follows. In Section 2 we recall (and partially develop) the

necessary aspects of the theory of upper motives (with an arbitrary prime integer p in
place of 2). In the next three sections we establish our main result: in Section 3 for
odd-dimensional forms (Theorem 3.1), in Section 4 for even-dimensional forms of trivial
discriminant (Theorem 4.1), and finally in Section 5 for even-dimensional forms of non-
trivial discriminant (Theorem 5.1).
In Section 7, we prove a conjecture due to Bryant Mathews (see Theorem 7.1), another

main result of the paper. It gives 2-incompressibility of the orthogonal grassmannian
Qi for a given i under the assumption that the quadratic form is sufficiently close to
the generic one in a different from the above sense (expressed in terms of Qi). In the
preceding Section 6 we recall (and develop) the necessary aspects of the theory of canonical
dimension (with an arbitrary prime integer p in place of 2).
None of the two conditions on the quadratic form appearing in the two main results

of the paper is weaker (or stronger) than the other. According to this, none of the two
main results implies the other. Of course, a generic quadratic form (constructed in the
beginning of Sections 3, 4, and 5) is sufficiently generic in both senses so that both main
results apply to it.
We have to point out that both main results of the paper were known for the quadric

Q1 and the maximal grassmannian Qm due to the works of A. Vishik [16], [17], and [18]
(at least in characteristic ̸= 2).

2. Upper motives

Let us fix a prime integer p and consider Chow motives with coefficients in the prime
field Fp. We write Ch for the Chow groups with coefficients in Fp.
Let F be a field and K/F a finite separable field extension. Given a projective homo-

geneous (under an action of a semisimple affine algebraic group over K) K-variety X, we
consider X as an F -variety via the composition X → SpecK → SpecF .
We recall that the following Krull-Schmidt principle holds: any summand of the motive

M(X) of X decomposes and in a unique way in a finite direct sum of indecomposable
motives, [3] or [9, Corollary 2.2].
We define the upper motive U(X) of X as an indecomposable summand of the motive

M(X) ofX with the property that the Chow group Ch0 U(X) is non-zero (or, equivalently,
the property that U(X) over an algebraic closure of F contains the Tate summand Fp).
Since the Chow group Ch0X is a 1-dimensional vector space (over F2), any given complete
motivic decomposition of X contains precisely one upper summand. It follows by the
Krull-Schmidt principle that the isomorphism class of U(X) is uniquely determined by
X. (See [11, Corollary 2.15] for a more direct proof not relying on the Krull-Schmidt
principle.)
Given smooth complete irreducible F -varieties X1 and X2, we say that X1 dominates

X2, if there exists multiplicity 1 correspondence X1  X2. (Our correspondences are
with coefficients in Fp, their multiplicities are elements of Fp.) We say that X1 and X2

are equivalent, if they dominate each other.



4 NIKITA A. KARPENKO

Given projective homogeneous varieties X1 and X2 (under possibly different algebraic
groups) over finite separable field extensions K1 and K2 of F , the upper motives of the
F -varieties X1 and X2 satisfy the following isomorphism criterion:

Lemma 2.1 ([11, Corollary 2.15]). The upper motives U(X1) and U(X2) are isomorphic
if and only if the F -varieties X1 and X2 are equivalent.

Now let G be a semisimple affine algebraic group over F . The minimal (in a fixed
separable closure of F ) field extension E/F such that GE is of inner type, is finite and
galois (it corresponds to the kernel of the action of the absolute galois group of F on the
Dynkin diagram of G). Assuming that [E : F ] is a power of p (the possibility E = F is
included), we have the following basic result of the upper motive theory:

Theorem 2.2 ([9, Theorem 1.1]). Let X be a projective G-homogeneous F -variety. Any
indecomposable summand of the motive of X is a shift of the upper motive U(Y ) of some
projective GK-homogeneous variety Y dominating X, where K is some intermediate field
of the extension E/F .

Apparently, the above theorem, showing that the upper motives are important, does not
say anything about their structure. However, it makes it possible to prove the following
structure result, which means that the upper motive possesses the same kind of symmetry
as the whole motive of a variety. Let us define dimension dimU(X) of U(X) as the
biggest integer i such that the Tate motive Fp(i) is a summand of the motive U(X) over
an algebraic closure of F . (Putting M(X) in place of U(X) in the definition given, we
will get the usual dimension of the variety X.) We write U(X)∗ for the dual of the motive
U(X), [4, §65].
Proposition 2.3 ([7, Proposition 5.2]). U(X) ≃ U(X)∗

(
dimU(X)

)
.

Another drawback of Theorem 2.2 is absence of a precise indication concerning the
varieties Y whose upper motives do really appear in the complete motivic decomposition
of X. Although this drawback can be recovered in many particular cases, there is no
recipe to recover it in general. But the information on possible Y given in Theorem 2.2
can be made more precise using the following argument.

Let X and Y (and K) be as in Theorem 2.2. We assume that U(Y ) is, up to a shift, a
motivic summand of X and we want to say something more on Y besides the fact that it
dominates X claimed in Theorem 2.2. Let X ′ be a projective G-homogeneous F -variety
dominated by X (for instance, X ′ = X). Let us consider the complete motivic decompo-
sition of XF (X′). (If X

′ is non-trivial, the algebraic group acting on X is isotropic over the
field F (X ′); using the motivic decompositions of projective homogeneous varieties under
isotropic groups constructed in [1], we may know the complete motivic decomposition of
XF (X′) by induction on the rank of the group.) The complete decomposition of U(Y )F (X′)

is (up to a shift) a part of this decomposition. It follows that there exist an intermediate
field K ′ of the extension E/F and a projective GK′(X′)-homogeneous variety Y ′ such that
U(Y ′) (without shift) is a summand of U(Y )F (X′).

Proposition 2.4. The F (X ′)-varieties YF (X′) and Y ′ are equivalent. This property deter-

mines the equivalence class of the F -variety Y . The motive U(Y ′)
(
dimU(Y )−dimU(Y ′)

)
is also a summand of U(Y )F (X′).
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Proof. The upper motives of the F (X ′)-varieties YF (X′) and Y ′ are isomorphic, therefore
the varieties are equivalent by Lemma 2.1.
To prove the second statement, let us take one more intermediate field L of the extension

E/F and a dominating X projective GL-homogeneous variety Z such that the F (X ′)-
varieties YF (X′) and ZF (X′) are equivalent. Since YF (X′) dominates ZF (X′), the F (X ′)(Y ) =
F (X ′ × Y )-variety ZF (X′×Y ) has a closed point of coprime with p degree (a p-coprime
closed point for short). Since Y dominates X which dominates X ′, Y dominates X ′ and
it follows that X ′

F (Y ) has a p-coprime closed point. Let F ′ be the residue field of such a

point. The tensor product F ′′ := F ′ ⊗F (Y ) F (X ′ × Y ) is a field containing F (X ′ × Y ).
Moreover, the field extension F ′′/F ′ is isomorphic to the function field of the projective
homogeneous F ′-variety X ′

F ′ with rational point. Therefore the field extension F ′′/F ′ is
purely transcendental. It follows by [4, Lemma 75.2] that ZF ′ has a p-coprime closed point.
Since p does not divide [F ′ : F (Y )], ZF (Y ) has a p-coprime closed point and therefore Y
dominates Z.
Exchanging the roles of Y and Z, we get that Z dominates Y as well so that Y and Z

are equivalent. This finishes the proof of the second statement of Proposition 2.4.
Finally, since U(Y ′) is a summand of U(Y )F (X′), U(Y ′)∗ is a summand of U(Y )∗F (X′).

Applying Proposition 2.3, we get the third statement of Proposition 2.4. �

Example 2.5. Let p = 2 and G = O+(q) (in notation of [14, §23]) for a non-degenerate
quadratic form q over F . We have E = F if dim q is odd or disc q is trivial. Otherwise E/F
is the quadratic galois field extension given by the discriminant of q. We set n := dim q.
For any integer i with 0 ≤ i < n/2, let Qi be the variety (orthogonal grassmannian) of
i-dimensional totally isotropic subspaces in q. (Note that we do not consider the variety
Qn/2 here.) In particular, Q0 = SpecF and Q1 is the projective quadric of q. The
varieties Qi are projective G-homogeneous (while the projective variety Qn/2 is never
homogeneous) and form a complete system of representatives of the equivalence classes
of all projective G-homogeneous varieties. (If n is even and disc q trivial, a component of
Qn/2 is a projective G-homogeneous variety equivalent to Qn/2−1.) Moreover, for i ≥ j,
Qi dominates Qj so that if Qj also dominates Qi then Qj is equivalent to Qi. Therefore,
by Theorem 2.2, any indecomposable summand of the motive of Qi is a shift of the upper
motive U(Qj) or U(Qj E) for some j ≥ i.
In order to apply Proposition 2.4, we will use the following motivic decomposition of

Qi F (Q1) obtained in [1] (see also [6]). We assume that n ≥ 3 and i ≥ 1. Let q′ be an
(n− 2)-dimensional quadratic form over the field F (Q1) Witt-equivalent to qF (Q1). Write
Q′

j for the orthogonal grassmannians of q′. Then

(2.6) M(Qi F (Q1)) ≃
M(Q′

i−1)⊕M(Q′
i)
(
(dimQi − dimQ′

i)/2
)
⊕M(Q′

i−1)(dimQi − dimQ′
i−1).

3. Odd-dimensional quadratic forms

Let F be a field, m an integer ≥ 0, n := 2m + 1, q a non-degenerate n-dimensional
quadratic form over F . Let us recall the definition and meaning of the J-invariant J(q)
given in [18].
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Writing the bar ¯ over an F -variety we mean that we are considering it over an
algebraic closure of F . Let f : Ch∗(Q̄1) → Ch∗−m+1(Q̄m) be the composition of the
pull-back with respect to the projection Q1,m → Q1 followed by the push-forward with
respect to the projection Q1,m → Qm. For i = 1, . . . ,m, let us define zi ∈ Chi(Q̄m)
as the image under f of the class in Chm−i(Q̄1) of an (m − i)-dimensional projective
subspace on Q̄1. The J-invariant J(q) is defined as the subset of {1, . . . ,m} consisting
of those i for which the element zi rational by which we mean that it is in the image of
the homomorphism Chi(Qm) → Chi(Q̄m). The ring Ch(Q̄m) is known to be generated by
zi, i ∈ {1, . . . ,m}. The main result of [18] affirms that the ring of rational elements in
Ch(Q̄m) is generated by zi, i ∈ J(q). Note that J(q) = ∅ for the generic quadratic form
q := ⟨t0⟩⊥[t1, t2]⊥ . . .⊥[t2m−1, t2m] over the field F := k(t0, . . . , t2m), where k is any field
and t0, . . . , t2m are variables, [19, Statement 3.6] (for a treatment including characteristic
2 the reader might look at [4, §88]).

Theorem 3.1. Let q be a non-degenerate (2m + 1)-dimensional quadratic form over a
field F such that J(q) = ∅. Then for any i with 0 ≤ i ≤ m, the motive of the variety Qi

is indecomposable. In particular, all Qi are 2-incompressible.

Proof. We induct on m. The induction base is the trivial case of m = 0. Now we assume
that m ≥ 1.

We do a descending induction on i. The induction base is the case of i = m which
follows directly from [18, Main Theorem 5.8] (the characteristic ̸= 2 assumption made in
[18] is omitted in [4, Theorem 87.7]). Indeed, the result cited tells us that the image of
Chi(Qm) → Chi(Q̄m) is trivial for any i > 0 provided that J(q) = ∅. As the motive of
Qm ×Qm is a direct sum of shifted copies of M(Qm), it follows that the diagonal class is
the only non-zero rational element in ChdimQm(Q̄m × Q̄m).

Now we assume that i < m. Since the case of i = 0 is trivial, we may assume that
i > 0.

We are using notation of Example 2.5. According to [19, Corollary 3.5] (see [4, §88] for
a proof including a positive characteristic), the assumption on the J-invariant still holds
for the quadratic form q′. By the induction hypothesis, each of the three summands of
the decomposition (2.6) is indecomposable.

It follows by Proposition 2.4 that if the motive of Qi (over F ) is decomposable, then
it has an indecomposable summand M such that ML, where L := F (Q1), is a shift of
M(Q′

i) = U(Q′
i). Indeed, if one of the two extreme summands of the decomposition 2.6

is “defined over F”, then the other extreme summand is “defined over F” by the last
statement of Proposition 2.4, so that the remaining (interior) summand has also to be
“defined over F”.

Note that the varieties Q′
i and Qi+1L are equivalent. By Proposition 2.4, M ≃ U(Qi+1),

that is, U(Qi+1)L ≃ M(Q′
i). By the induction hypothesis, the motive of Qi+1 is indecom-

posable, i.e., U(Qi+1) = M(Qi+1). Therefore we have an isomorphismM(Qi+1)L ≃ M(Q′
i)

and, in particular, dimQi+1 = dimQ′
i. However

dimQi+1 − dimQ′
i = n− i− 2 = 2m− i− 1 > m− 1 ≥ 0. �
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4. Even-dimensional quadratic forms of trivial discriminant

Let F be a field, m an integer≥ 1, n := 2m, q a non-degenerate n-dimensional quadratic
form over F of trivial discriminant. In this case the variety Qm (of totally isotropic m-
dimensional subspaces in q) has two (isomorphic) connected components, and we write
Q+

m for a component of the variety Qm. The J-invariant J(q) is defined in [18] as the
subset J(q) := {0} ∪ J(q1) of {0, 1, . . . ,m − 1}, where q1 is an arbitrary non-degenerate
subform in q of codimension 1.
Note that the variety Q+

m is isomorphic to the variety Q1
m−1 of totally isotropic (m−1)-

dimensional subspaces in q1. Therefore we have J(q) = {0} for the generic n-dimensional
quadratic form q with trivial discriminant constructed as follows: the base field F is the
discriminant quadratic extension over k(t1, . . . , tn) of the quadratic form

[t1, t2]⊥ . . .⊥[tn−1, tn],

where k is a field and t1, . . . , tn are variables, and q = ([t1, t2]⊥ . . .⊥[tn−1, tn])F . The
motive of Q+

m is indecomposable and the variety is 2-incompressible for general q provided
that J(q) = {0}.

Theorem 4.1. Let q be a non-degenerate (2m)-dimensional quadratic form over a field
F such that the discriminant of q is trivial and J(q) = {0}. Then for any i with 0 ≤ i ≤
m−2, the motive of the variety Qi is indecomposable. In particular, Qi is 2-incompressible
for such i.

Proof. We induct on m. The induction base is the vacuous case of m = 1. Now we assume
that m ≥ 2.
We do a descending induction on i ≤ m− 2. Since the case of i = 0 is trivial, we may

assume that i > 0 (and, in particular, m ≥ 3).
We are using notation of Example 2.5. The discriminant of the quadratic form q′ is

also trivial. According to [19, Corollary 3.5] (see [4, §88] for a proof including a pos-
itive characteristic), the assumption on the J-invariant holds for q′. By the induction
hypothesis, the motive M(Q′

i−1) appearing in the decomposition (2.6) is indecomposable.
However the motive M(Q′

i) – the middle summand of the decomposition (up to a shift)
– is indecomposable if i ̸= m− 2. Let us treat the case i = m− 2 first.
The variety Q′

m−2 is a rank m−2 projective bundle over Q′+
m−1 (a component of Q′

m−1).
Indeed, any totally isotropic (m− 2)-dimensional subspace in q′ is contained in a unique
totally isotropic (m − 1)-dimensional subspace in q′ lying on Q′+

m−1. This provides us

with a morphism Q′
m−2 → Q′+

m−1 which is a projective bundle: the fiber over a point

of Q′+
m−1 given by a space W is given by all 1-codimensional subspaces in W and is the

dual projective space of W . Therefore the complete decomposition of M(Q′
m−2) looks as

follows:

M(Q′
m−2) ≃ M(Q′+

m−1)⊕M(Q′+
m−1)(1)⊕ · · · ⊕M(Q′+

m−1)(m− 2).

It follows that U(Qm−1) = U(Q+
m) = M(Q+

m) is not a shift of a summand of M(Qm−2).
Indeed, otherwise

M(Q+
m)L ≃ M(Q′+

m−1)⊕M(Q′+
m−1)(m− 1),
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where L := F (Q1), would be a shift of a summand of M(Qm−2)L but it is not because
the motives M(Q′

m−3) = U(Q′
m−3) and U(Q′+

m−1) = M(Q′+
m−1) are not isomorphic (e.g.,

because dimQ′
m−3 ̸= dimQ′+

m−1).
It follows that the motive of Qm−2 is indecomposable. This is the base case of our

descending induction on i. Below we assume that i < m− 2.
Now each of the three summands of the decomposition of M(Qi)L, given in (2.6),

is indecomposable. It follows by Proposition 2.4 that if the motive of Qi (over F ) is
decomposable, then it has an indecomposable summand M with ML isomorphic to a shift
of M(Q′

i). By Proposition 2.4, M (over F ) is isomorphic to a shift of U(Qi+1), so that
U(Qi+1)L ≃ M(Q′

i). By the induction hypothesis, the motive of Qi+1 is indecomposable,
i.e., U(Qi+1) = M(Qi+1). Therefore we have an isomorphism M(Qi+1)L ≃ M(Q′

i) and, in
particular, dimQi+1 = dimQ′

i. However

dimQi+1 − dimQ′
i = n− i− 2 = 2m− i− 2 > m ≥ 3. �

5. Even-dimensional quadratic forms of non-trivial discriminant

Let F be a field, m an integer≥ 1, n := 2m, q a non-degenerate n-dimensional quadratic
form over F of non-trivial discriminant. In this case, the J-invariant J(q) is defined in [18]
as the subset J(q) := J(q1E) of {0, 1, . . . ,m− 1}, where q1 is an arbitrary non-degenerate
subform in q of codimension 1 and E is the quadratic extension field of F given by the
discriminant of q. We have J(q) = ∅ for the generic n-dimensional quadratic form q.

Theorem 5.1. Let q be a non-degenerate (2m)-dimensional quadratic form over a field F
such that J(q) = ∅ (in particular, the discriminant of q is non-trivial and the variety Qm

is connected). For any i with 0 ≤ i ≤ m, the motive of the variety Qi is indecomposable.
In particular, all Qi are 2-incompressible.

Proof. We induct on m. The induction base is the trivial case of m = 1. Now we assume
that m ≥ 2.

We do a descending induction on i ≤ m. The induction base i = m holds by our
assumption on q. Below we are assuming that i < m. Since the case of i = 0 is trivial,
we may assume that i > 0.

We are using notation of Example 2.5 and set L := F (Q1). Since F is algebraically
closed in L, the discriminant of the quadratic form q′ is non-trivial. Moreover, according
to [19, Corollary 3.5] (see also [4, §88]), the assumption on the J-invariant holds for q′.
By the induction hypothesis, each of the three summands of the decomposition (2.6) is
indecomposable.

(We apologize for repeating almost word by word the end of the proof of Theorem
3.1 below.) It follows by Proposition 2.4 that if the motive of Qi (over F ) is decom-
posable, then it has an indecomposable summand M with ML isomorphic to a shift of
M(Q′

i). By Proposition 2.4, M (over F ) is isomorphic to a shift of U(Qi+1), so that
U(Qi+1)L ≃ M(Q′

i). By the induction hypothesis, the motive of Qi+1 is indecomposable,
i.e., U(Qi+1) = M(Qi+1). Therefore we have an isomorphism M(Qi+1)L ≃ M(Q′

i) and, in
particular, dimQi+1 = dimQ′

i. However dimQi+1−dimQ′
i = 2m− i−2 > m−2 ≥ 0. �
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6. Canonical dimension

In this section, we make some development of the theory of canonical dimension of
general projective homogeneous varieties which might be of independent interest and
which will be used in the next section. We fix a prime p. Let G be a semisimple affine
algebraic group over a field F such that GE is of inner type for some finite galois field
extension E/F of degree a power of p (E = F is allowed). Let X be a projective G-
homogeneous F -variety. We refer to [7] for a definition and discussion of the notion of
canonical p-dimension cdimp X of X. Actually, canonical p-dimension is defined in the
context of more general algebraic varieties. For any irreducible smooth projective variety
X, cdimpX is the minimal dimension of a closed subvariety Y ⊂ X with a 0-cycle of
p-coprime degree on YF (X). Recall that a smooth projective X is p-incompressible, if it
is irreducible and cdimpX = dimX. We write CH for the Chow groups with integer
coefficients.

Proposition 6.1. Let X be a projective G-homogeneous variety with G as above. For
d := cdimpX, there exist a cycle class α ∈ CHd XF (X) (over F (X)) of codimension d
and a cycle class β ∈ CHd X (over F ) of dimension d such that the degree of the product
βF (X) · α is not divisible by p.

Proof. We use Chow motives with coefficients in Fp := Z/pZ. By [7, Theorem 5.1 and
Proposition 5.2], the upper motive U(X) of X (being by definition a direct summand of
M(X)) is also a direct summand of M(X)(d−m), where m := dimX. The composition

M(X) → U(X) → M(X)(d−m)

is given by a correspondence f ∈ Chd(X ×X); the composition

M(X)(d−m) → U(X) → M(X)

is given by a correspondence g ∈ Chd(X × X). The composition of correspondences
g ◦ f ∈ Chm(X ×X) is a projector on X such that U(X) = (X, g ◦ f). In particular, the
multiplicity mult(g ◦ f) of the correspondence g ◦ f is 1 ∈ Fp. Taking for α an integral
representative of the pull-back of f with respect to the morphism

SpecF (X)×X → X ×X

induced by the generic point of the first factor, and taking for β an integral representative
of the push-forward of g with respect to the projection of X ×X onto the first factor, we
get that

deg(βF (X) · α) (mod p) = mult(g ◦ f) = 1 ∈ Fp. �
Corollary 6.2. The canonical p-dimension cdimpX of X is the minimal integer d such

that there exist a cycle class α ∈ Chd XF (X) and a cycle class β ∈ ChdX with deg(βF (X) ·
α) = 1 ∈ Fp.

Proof. We only need to show that cdimp X ≤ d. The proof is similar to [12, Proof of ≤ in
Theorem 5.8]. Since deg(βF (X)·α) = 1 ∈ Fp for some β ∈ Chd X (and some α), there exists
a closed irreducible d-dimensional subvariety Y ⊂ X such that deg([Y ]F (X) · α) ̸= 0 ∈ Fp

(with the same α). Since the product [Y ]F (X) · α can be represented by a cycle on YF (X),
the variety YF (X) has a 0-cycle of p-coprime degree. Therefore cdimp X ≤ dimY = d. �
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Corollary 6.3. In the situation of Proposition 6.1, for any field extension L/F , the
change of field homomorphism Chd X → Chd XL is non-zero.

Proof. The image of β mod p ∈ Chd X in Chd XL is non-zero because deg(βL(X) ·αL(X)) ̸≡
0 (mod p). �
Remark 6.4. If the variety X is generically split (meaning that the motive of XF (X) is
a sum of Tate motives (this implies that the adjoint algebraic group acting on X is of
inner type)), then [12, Theorem 5.8] says that cdimpX is the minimal d with non-zero
Chd X → Chd XL for any L. Corollary 6.3 can be considered as a generalization of a
part of [12, Theorem 5.8] to the case of a projective G-homogeneous variety X which
is not necessarily generically split with G not necessarily of inner type. Note that the
statement of [12, Theorem 5.8] in whole fails in such generality. Corollary 6.2 is its correct
replacement (giving the original statement in the case of generically split X).

Lemma 6.5. In the situation of Proposition 6.1, let α, α′ ∈ Chd XF (X) and β, β′ ∈ Chd X
be cycle classes with deg(βF (X) · α) = 1 = deg(β′

F (X) · α′). Then

deg(βF (X) · α′) ̸= 0 ̸= deg(β′
F (X) · α).

Proof. We fix an algebraically closed field containing F (X) and write ·̄ when considering
a variety or a cycle class over that field. The surjectivity of the pull-back with respect
to the flat morphism SpecF (X)×X → X ×X induced by the generic point of the first
factor of the product X × X, tells us that the group Chd(X̄ × X̄) contains a rational
(i.e., coming from Chd(X × X)) cycle class of the form [X̄] × ᾱ + · · · + γ̄ × [X̄] with
some γ ∈ ChdXF (X), where . . . is in the sum of products Chi X̄ ⊗ Chj X̄ with 0 < i, j <
d and i + j = d. Multiplying by [X̄] × β̄, we get a rational cycle class of the form
[X̄]× [pt] + · · ·+ γ̄ × β̄, where pt is a rational point on X̄ and . . . is now in the sum of
Chi X̄⊗Chi X̄ with 0 < i < d. The composition of the obtained correspondence with itself
equals [X̄]×[pt]+· · ·+deg(γ ·β)(γ̄×β̄). Since an appropriate power of this correspondence
is a multiplicity 1 projector (cf. [8, Corollary 3.2] or [11]) and d = cdimp X, it follows by
[7, Theorem 5.1] that deg(γ ·β) ̸= 0. Now multiplying [X̄]× ᾱ+ · · ·+ γ̄× [X̄] by β̄× [X̄],
transposing, and raising to (p−1)th power (by means of composition of correspondences),
we get a rational cycle of the form [X̄]× [pt] + · · ·+ ᾱ× β̄.

Similarly, there is a rational cycle of the form [X̄] × [pt] + · · · + ᾱ′ × β̄′. One of its
compositions with the previous one produces [X̄]× [pt]+ · · ·+deg(β′ ·α)(ᾱ′× β̄), therefore
deg(β′ ·α) ̸= 0 ∈ Fp. The other composition produces [X̄]× [pt]+ · · ·+deg(β ·α′)(ᾱ× β̄′),
so that deg(β · α′) ̸= 0. �

Below we are using notation of Example 2.5:

Corollary 6.6. If cdim2Qi = cdim2 Q
′
i−1 = dimQ′

i−1 for some i with 0 < i < n/2, then
the variety Qi has a 0-cycle of degree 2i−1.

Proof. The statement is trivial for i = 1. Indeed, in this case n ≥ 3 so that the variety
Q1 is geometrically integral. The condition of Corollary 6.6 says that cdim2Q1 = 0, and
it follows that Q1 has a rational point. Below we are assuming that i ≥ 2.

For d := cdim2 Qi, using Proposition 6.1, we find some α ∈ CHd Qi F (Qi) and β ∈ CHdQi

with odd deg(βF (Qi) ·α). Note that cdim2 Qi F (Q1) = cdim2 Q
′
i−1 = d (because the varieties
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Qi F (Q1) and Q′
i−1 are equivalent). We construct some special α′ ∈ CHd Qi F (Q1)(Qi) and

β′ ∈ CHd Qi F (Q1) with deg(β′
F (Q1)(Qi)

· α′) = 1 as follows. Let us consider the variety

Q1,i of (1, i)-flags of totally isotropic subspaces in q together with the projections Q1,i →
Q1, Qi. We define β′ as the pull-back via Q1,i F (Q1) → Q1F (Q1) followed by the push-
forward via Q1,i F (Q1) → Qi F (Q1) of the rational point class l0 on Q1F (Q1) (notice that the
variety Q1F (Q1) has a rational point). Thus β̄′ is the d-dimensional standard elementary
class on Q̄i as defined in [20, §2] (notation Qi used here corresponds to F (Q, i − 1) of
[20]). Since d = dimQ′

i−1, the codimension of this standard elementary class is equal to
dimQi − dimQ′

i−1 = n− i− 1.

We define α′ as the product of the elements zj ∈ Chj Qi F (Q1)(Qi), j = n−i−2, . . . , n−2i
defined as the pull-back via the projection Q1,i F (Q1)(Qi) → Q1F (Q1)(Qi) followed by the
push-forward via the projection Q1,i F (Q1)(Qi) → Qi F (Q1)(Qi) of the class ln−i−1−j of an (n−
i−1−j)-dimensional projective subspace on Q1F (Q1)(Qi) (note that the quadric Q1F (Q1)(Qi)

contains an (i − 1)-dimensional projective subspace). (Thus z̄j is the j-codimensional
standard elementary class on Q̄i as defined in [20, §2].) Note that the codimension of α′

is indeed d.
The degree condition on α′ and β′ is satisfied by [20, Statement 2.15]. Fixing an

algebraically closed field containing F (Q1)(Qi), we see by Lemma 6.5 that the product
β̄ · ᾱ′ is an odd degree 0-cycle class on Q̄i. Moreover, the class β̄ is rational. Since 2z̄j is
rational for every j (by the reason that 2lj is rational), the class 2i−1β̄ᾱ is also rational
and it follows that Qi has a 0-cycle of degree 2i−1. �

7. Mathews’ conjecture

Theorem 7.1, proved below, has been conjectured in [15]. It is known for i = 1 by [16].
The case of maximal i, i.e., of i = [n/2], is also known by [18, Proposition 6.5]. For i = 2
and odd-dimensional q, Theorem 7.1 has been proved in [15] (the proof for i = 2 given
here is different; in particular, it does not make use of the motivic decompositions of [3]
for products of projective homogeneous varieties).

Theorem 7.1. Let q be a non-degenerate quadratic form over a field F . Let i be an integer
satisfying 1 ≤ i ≤ m. If the degree of every closed point on Qi is divisible by 2i and the
Witt index of the quadratic form qF (Qi) equals i, then the variety Qi is 2-incompressible
(i.e., cdim2 Qi = dimQi).

Proof. We set n := dim q. Note that for i = n/2 (and even n) the condition on closed
points on Qn/2 ensures that disc q is non-trivial. In particular, Qn/2 is irreducible. More-
over, the variety Qn/2 is isomorphic to the orthogonal grassmannian of totally isotropic
(n/2 − 1)-planes of q1 considered as a variety over F , where q1 is any 1-codimensional
non-degenerate subform in qE, and E/F is the quadratic field extension given by the
discriminant of q. Therefore the statement of Theorem 7.1 for i = n/2 follows from the
statement for i = (n−1)/2. By this reason, we do not consider the case of i = n/2 below.
In particular, Qi below is a projective G-homogeneous variety.
We induct on n. There is nothing to prove for n < 3. Below we are assuming that

n ≥ 3.
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Over the field F (Q1), the motive of Qi F (Q1) decomposes as in (2.6). Since n′ := dim q′ =
n−2 < n, the variety Q′

i−1 is 2-incompressible by the induction hypothesis (more precisely,
the induction hypothesis is applied if i ≥ 2, for i = 1 the statement if trivial). Indeed,
since the extension F (Q1)/F is a tower of a purely transcendental extension followed by a
quadratic one, the degree of any closed point on Q′

i−1 is divisible by 2i−1; the Witt index
of q′F (Q1)(Q′

i−1)
is i−1, that is, the Witt index of qF (Q1)(Q′

i−1)
is i because the field extension

F (Q1)(Q
′
i−1)(Qi)/F (Qi) is purely transcendental.

By Theorem 2.2 and Example 2.5, the motive of Q′
i−1 decomposes in a direct sum of

one copy of U(Q′
i−1) (we recall that the variety Q′

i−1 is 2-incompressible), shifts of U(Q′
j)

with various j ≥ i, and (in the case of even n and non-trivial disc q) shifts of U(Q′
j E)

with j ≥ i− 1 (where E/F is the quadratic field extension corresponding to disc q). The
motive of Q′

i decomposes in a direct sum of shifts of U(Q′
j) and (in the case of even n and

non-trivial disc q) shifts of U(Q′
j E) with various j ≥ i. Note that for any j ≥ i the motive

U(Q′
i−1) is not isomorphic to U(Q′

j) since the varieties Q′
i−1 and Q′

j are not equivalent
due to our condition on the Witt index of the form qF (Qi). Besides U(Q′

i−1) ̸≃ U(Q′
j E)

because every closed point on the F (Q′
i−1)-variety Q′

j E(Q′
i−1)

is of even degree. Therefore

the complete motivic decomposition of Qi F (Q1) contains one copy of U(Q′
i−1), one copy

of U(Q′
i−1)(dimQi − dimQ′

i−1) and no other shifts of U(Q′
i−1).

The complete decomposition of U(Qi)F (Q1) contains the summand U(Q′
i−1). If it

also contains the second (shifted) copy of U(Q′
i−1), then cdim2Qi = dimQi by the 2-

incompressibility of Q′
i−1, and we are done. Otherwise, by Proposition 2.4, cdim2Qi =

cdim2Q
′
i−1 = dimQ′

i−1, and we get by Corollary 6.6 that Qi has a closed point of degree
not divisible by 2i. �

Acknowledgements. I express my profound gratitude to the referee for careful reading
of the manuscript.
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