On topological filtration for Severi-Brauer varieties II

N. Karpenko

May, 1993

Abstract

The topological filtration on K_{0}^{\prime} of a Severi-Brauer variety is computed if the quotient of its index and exponent is a squarefree number and for each prime p dividing this quotient the p-primary component of the corresponding division algebra is decomposable. This gives in particular a description of Ch^{2} for such varieties.

Let D be a central simple algebra over a field F and $X=S B(D)$ the SeveriBrauer variety of D [1]. In [3] the topological filtration on the Grothendieck group $K(X)$ has been computed provided that ind $D=\exp D$. The topic of this note is the case when the quotient $\operatorname{ind} D / \exp D$ is any squarefree number but with one more additional restriction on D : for each prime $p \mid$ ind $D / \exp D$ the p-primary component of the corresponding division algebra should be decomposable (i.e. isomorphic to a tensor product $D_{1} \otimes_{F} D_{2}$ with $D_{j} \neq F$ for both j).

In addition to notations introduced above we fix the following: notations relative to the Grothendieck group as introduced in [3], in particular $G^{i} K(X)$ is the factorgroup of the topological filtration of codimension i; $\overline{G^{i} K}(X)$ is the image of the homomorphism $G^{i} K(X) \rightarrow G^{i} K(\bar{X})=\mathbf{Z}$ where \bar{X} is the variety X over the algebraic closure of F.

For a prime p, v_{p} is the p-adic valuation on $\mathbf{Q} ; C_{n}^{k}$ is the binomial coefficient; $($,$) is the greatest common divisor.$

I owe to A.S. Merkurjev the idea that the cycle $S B\left(D_{1}\right) \times S B\left(D_{2}\right)$ on the variety $S B\left(D_{1} \otimes D_{2}\right)$ might be an interesting one.

Theorem 1 Let D be a central simple algebra with ind $D=r, \exp D=e$ and let $X=S B(D)$.

If r / e is a squarefree number and for each prime $p \mid r / e$ the p-primary component of the similar to D division algebra is decomposable then the map $G^{i} K(X) \rightarrow$ $G^{i} K(\bar{X}) \quad(0 \leq i \leq \operatorname{dim} X)$

1. is injective;
2. Las the image $\frac{r}{(i, r) \Pi^{p}} \cdot \mathbf{Z}$ where the product Πp is taken over all prime $p \mid r / e$ such that $0<v_{p}(i+p-1)<v_{p}(r)$.

Example. Let D be a division algebra of index p^{2} and exponent $p, X=S B(D)$. If D is decomposable then for all $1 \leq i \leq p^{2}-1$

$$
G^{i} K(X)= \begin{cases}p \mathbf{Z}, & \text { if } i \vdots p \text { or } i-1 \vdots p \text { without } i=p^{2}-p+1 \\ p^{2} \mathbf{Z} \text { otherwise. }\end{cases}
$$

Proof of Theorem. It suffices to consider only the case when $r=p^{n}$ for a prime p. Then e equals to p^{n} or p^{n-1}. The first case was done in [3]. We suppose that $e=p^{n-1}$ below.

The proof consists of several lemmas.
Consider at first the case when D is a division algebra.
Lemma 2 If $D=D_{1} \otimes_{F} D_{2}$ is a nontrivial decomposition of a division algebra D with ind $D=p^{n}$ and $\exp D=p^{n-1}$ then the index and exponent of one of the factors equal p while the index and exponent of the other one equal p^{n-1}.

Proof. Put ind $D_{j}=p^{k_{j}}, \exp D_{j}=p^{l_{j}}$. Then $k_{1}+k_{2}=n$ and $n-1 \geq \max \left\{k_{1}, k_{2}\right\} \geq$ $\max \left\{l_{1}, l_{2}\right\} \geq n-1$. So, all inequalities are in fact equalities which implies the statement.

We fix a decomposition $D=D_{1} \otimes_{F} D_{2}$ with ind $D_{1}=\exp D_{1}=p$ and ind $D_{2}=$ $\exp D_{2}=p^{n-1}$ for below.

Lemma 3 For $X=S B(D)$ where $D=D_{1} \otimes_{F} D_{2}$ is a division algebra with ind $D_{1}=$ $\exp D_{1}=p$ and ind $D_{2}=\exp D_{2}=p^{n-1}$, it holds

$$
\log _{p}|K(\bar{X}) / K(X)|=n \cdot p^{n}-\alpha
$$

where $\alpha=v_{p}\left(p^{n}!\right)+p^{n-1}-1$.
Proof. It is known from [5] that

$$
|K(\bar{X}) / K(X)|=\prod_{i=1}^{p^{n}} \operatorname{ind} D^{\otimes i}
$$

Put $\log _{p}$ ind $D^{\otimes i}=n-\alpha_{i}$. If $v_{p}(i)=0$ then $\alpha_{i}=0$.
If $v_{p}(i)>0$ then ind $D^{\otimes i}=\operatorname{ind} D_{2}^{\otimes i}=\operatorname{ind} D_{2} /\left(i\right.$, ind $\left.D_{2}\right)$ (see [3] for the last equality), so $\alpha_{i}=\min \left\{v_{p}(i)+1, n\right\}$. Consequently

$$
\alpha=\sum_{i=1}^{p^{n}} \alpha_{i}=v_{p}\left(p^{n}!\right)+p^{n-1}-1 .
$$

Before to deal with Lemma 5 let's formulate a fact from [4] which will be needed below.

Proposition 4 ([4]) For $N \geq 1$ denote by X^{N} the variety $S B\left(M_{N}(D)\right)$ where $M_{N}(D)$ is the F-algebra of $N \times N$-matrices over an arbitrary central simple algebra D of degree d. Then

$$
\mathrm{Ch}_{*}\left(X^{N}\right)=\mathrm{Ch}_{*}(X) \oplus \mathrm{Ch}_{*-d}(X) \oplus \ldots \oplus \mathrm{Ch}_{*-(N-1) d}(X)
$$

where Ch_{*} denotes the Chow group graded by dimensions of cycles (so to say, $\left.\operatorname{Ch}\left(X^{N}\right)=(\operatorname{Ch}(X))^{N}\right)$.

Now the main spot in proving of Theorem is coming.
Lemma 5 As agreed before Proposition, D is a decomposed division algebra of index p^{n} and exponent p^{n-1}, $X=S B(D)$. If $i-1 \vdots p$ where $0 \leq i \leq p^{n}-1$ and $i \neq p^{n}-p+1$ then $\overline{G^{i} K}(X) \ni p^{n-1}$.

Proof. Replace the factorgroups of topological filtration by the Chow groups which we'll numerate by dimension. What we need to show is that $\overline{\mathrm{Ch}}_{i}(X) \ni p^{n-1}$ where $\overline{\mathrm{Ch}}_{i}(X)=\operatorname{Im}\left(\mathrm{Ch}_{i}(X) \rightarrow \mathrm{Ch}_{i}(\bar{X})=\mathbf{Z}\right)$ if $i=k p-2$ and $2 \leq k \leq p^{n-1}$.

Fix a large number N (it's enough to take any $N \geq p$) and consider a closed embedding $X_{1} \times X_{2}^{N} \hookrightarrow X^{N}$ where $X_{j}=S B\left(D_{j}\right)$ induced by tensor product of ideals [1]. According to Proposition it would suffice to show that $p^{n-1} \in \overline{\mathrm{Ch}}_{i}\left(X^{N}\right)$ if $i=k p-2$ (and $2 \leq k \leq p^{n-1}$ as above).

Consider a commutative diagram:

$$
\begin{gathered}
\mathrm{Ch}_{p-1}\left(\bar{X}_{1}\right) \otimes \underset{\uparrow}{\mathrm{Ch}_{(k-1) p-1}\left(\bar{X}_{2}^{N}\right)} \rightarrow \underset{\mathrm{Ch}_{i}\left(\bar{X}_{1} \times \bar{X}_{2}^{N}\right)}{ } \rightarrow \mathrm{Ch}_{i}\left(\bar{X}^{N}\right) \\
\mathrm{Ch}_{p-1}\left(X_{1}\right) \otimes \mathrm{Ch}_{(k-1) p-1}\left(X_{2}^{N}\right)
\end{gathered} \rightarrow \mathrm{Ch}_{i}\left(X_{1} \times X_{2}^{N}\right) \rightarrow \mathrm{Ch}_{i}\left(X^{N}\right) .
$$

The morphism $\bar{X}_{1} \times \bar{X}_{2}^{N} \hookrightarrow \bar{X}^{N}$ is a Segre embedding [1]. In the light of this we need now a couple of standard statements on the Segre embeddings.

Sublemma 6 ([2]) The image of the Segre embedding $\mathbf{P}^{a_{1}} \times \mathbf{P}^{a_{2}} \hookrightarrow \mathbf{P}^{a}$ where $a=a_{1} a_{2}+a_{1}+a_{2}$ has degree $C_{a_{1}+a_{2}}^{a_{1}}$. If $\mathbf{P}^{b_{j}} \subset \mathbf{P}^{a_{j}}(j=1,2)$ are linear subvarieties then the image of $\mathbf{P}^{b_{1}} \times \mathbf{P}^{b_{2}}$ is contained in some linear $\mathbf{P}^{b} \subset \mathbf{P}^{a}$ with $b=b_{1} b_{2}+b_{1}+b_{2}$ and the induced morphism $\mathbf{P}^{b_{1}} \times \mathbf{P}^{b_{2}} \hookrightarrow \mathbf{P}^{b}$ is a Segre embedding as well.

As a corollary we see looking at the diagram that image of 1 from the upper left corner in the upper right corner equals C_{i}^{p-1}.

Further, $\overline{\mathrm{Ch}}_{p-1}\left(X_{1}\right) \ni 1$ in a trivial way and $\overline{\mathrm{Ch}}_{(k-1) p-1}\left(X_{2}^{N}\right) \ni p^{n-m-2}$ with $m=v_{p}(k-1)$ according to [3] since $X_{2}^{N}=S B\left(M_{N}\left(D_{2}\right)\right)$ and ind $\left(M_{N}\left(D_{2}\right)\right)=p^{n-1}$.

Thus, $\overline{\mathrm{Ch}}_{i}\left(X^{N}\right) \ni C_{i}^{p-1} \cdot p^{n-m-2}$ and the last observation we need is $v_{p}\left(C_{i}^{p-1}\right)=$ $m+1$.

End of Theorem's proof. Put $\log _{p}\left|G^{*} K(\bar{X}) / \overline{G^{*} K}(X)\right|=n \cdot p^{n}-\beta$. We would like to show that $\beta \geq \alpha$ for α from Lemma 2 (compare with [3]).

Put for each $i \quad\left(0 \leq i \leq p^{n}-1\right)$

$$
\beta_{i}=\left\{\begin{array}{cl}
n, & \text { if } i=0 \\
v_{p}(i), & \text { if } i \vdots p \text { and } i \neq 0 \\
1, & \text { if } i-1 \vdots p \text { and } i \neq p^{n}-p+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then $\log _{p}\left|G^{i} K(\bar{X}) / \overline{G^{i} K}(X)\right| \leq n-\beta_{i}$. Really, $\frac{p^{n}}{\left(i, p^{n}\right)} \in \overline{G^{i} K}(X)$ for each i [3] and $p^{n-1} \in \overline{G^{i} K}(X)$ if $i-1 \vdots p$ and $i \neq p^{n}-p+1$ by Lemma 5 what implies the inequality required.

Adding all the inequalities together we obtain that $\beta \geq \sum_{i=0}^{p^{n}-1} \beta_{i}$. It is easy to see that the last sum equals α. Consequently, by [3, proposition], $G^{*} K(X) \rightarrow G^{*} K(\bar{X})$ is an injection and $p^{n-\beta_{i}}$ generates $\overline{G^{i} K}(X)$ for each i.

To finish the proof we should consider the case when D is arbitrary, not necessary with division. Write $D \simeq M_{s}\left(D^{\prime}\right)$ with a skewfield D^{\prime} and put $X^{\prime}=S B\left(D^{\prime}\right)$. Then

$$
\left|G^{*} K\left(\bar{X}^{\prime}\right) / \overline{G^{*} K}\left(X^{\prime}\right)\right|=\left|K\left(\bar{X}^{\prime}\right) / K\left(X^{\prime}\right)\right|
$$

as shown above. Since $\left|G^{*} K(\bar{X}) / \overline{G^{*} K}(X)\right|=s\left|G^{*} K\left(\bar{X}^{\prime}\right) / \overline{G^{*} K}\left(X^{\prime}\right)\right|$ by Proposition and $|K(\bar{X}) / K(X)|=s\left|K\left(\bar{X}^{\prime}\right) / K\left(X^{\prime}\right)\right|$ [5] the same equality holds for X. It implies injectivity of $G^{*} K(X) \rightarrow G^{*} K(\bar{X})$ and the second assertion of Theorem in the same way as above.

Corollary 7 If X is a Severi-Brauer variety satisfying conditions of Theorem then $\mathrm{Ch}^{2}(X)=\frac{r}{(2, r)} \cdot \mathbf{Z}$.

References

[1] Artin, M. Brauer-Severi varieties. Lect. Notes Math., 1982, 917, 194-210.
[2] Hartshorne, R. Algebraic geometry. Springer-Verlag, 1977.
[3] Karpenko, N. On topological filtration for Severi-Brauer varieties. Preprint, 1993. To appear in Proc. Symp. Pure Math: Proceedings of 1992 summer research institute on quadratic forms and division algebras: connections with algebraic K-theory and algebraic geometry.
[4] Merkurjev, A. Certain K-cohomology groups of Severi-Brauer varieties. Preprint, 1993.
[5] Quillen, D. Higher algebraic K-theory I. Lect. Notes Math., 1973, 341, 85-147.

Mathematisches Institut
Westfälische Wilhelms-Universität
Einsteinstr. 62
W-4400 Münster
Germany
karpenk@math.uni-muenster.de

