On topological filtration for Severi-Brauer varieties II

N. Karpenko

May, 1993

Abstract

The topological filtration on K'_0 of a Severi-Brauer variety is computed if the quotient of its index and exponent is a squarefree number and for each prime p dividing this quotient the p-primary component of the corresponding division algebra is decomposable. This gives in particular a description of Ch² for such varieties.

Let D be a central simple algebra over a field F and X = SB(D) the Severi-Brauer variety of D [1]. In [3] the topological filtration on the Grothendieck group K(X) has been computed provided that ind $D = \exp D$. The topic of this note is the case when the quotient ind $D/\exp D$ is any squarefree number but with one more additional restriction on D: for each prime $p \mid \operatorname{ind} D/\exp D$ the p-primary component of the corresponding division algebra should be decomposable (i.e. isomorphic to a tensor product $D_1 \otimes_F D_2$ with $D_j \neq F$ for both j).

In addition to notations introduced above we fix the following: notations relative to the Grothendieck group as introduced in [3], in particular $G^iK(X)$ is the factorgroup of the topological filtration of codimension i; $\overline{G^iK}(X)$ is the image of the homomorphism $G^iK(X) \to G^iK(\overline{X}) = \mathbb{Z}$ where \overline{X} is the variety X over the algebraic closure of F.

For a prime p, v_p is the *p*-adic valuation on **Q**; C_n^k is the binomial coefficient; (,) is the greatest common divisor.

I owe to A.S. Merkurjev the idea that the cycle $SB(D_1) \times SB(D_2)$ on the variety $SB(D_1 \otimes D_2)$ might be an interesting one.

Theorem 1 Let D be a central simple algebra with $\operatorname{ind} D = r$, $\exp D = e$ and let X = SB(D).

If r/e is a squarefree number and for each prime $p \mid r/e$ the p-primary component of the similar to D division algebra is decomposable then the map $G^iK(X) \rightarrow G^iK(\bar{X})$ $(0 \le i \le \dim X)$

1. is injective;

2. has the image $\frac{r}{(i,r)\prod p} \cdot \mathbf{Z}$ where the product $\prod p$ is taken over all prime $p \mid r/e$ such that $0 < v_p(i+p-1) < v_p(r)$.

Example. Let D be a division algebra of index p^2 and exponent p, X = SB(D). If D is decomposable then for all $1 \le i \le p^2 - 1$

$$G^{i}K(X) = \begin{cases} p\mathbf{Z}, & \text{if } i \stackrel{!}{:} p \text{ or } i-1 \stackrel{!}{:} p \text{ without } i=p^{2}-p+1; \\ p^{2}\mathbf{Z} \text{ otherwise.} \end{cases}$$

Proof of Theorem. It suffices to consider only the case when $r = p^n$ for a prime p. Then e equals to p^n or p^{n-1} . The first case was done in [3]. We suppose that $e = p^{n-1}$ below.

The proof consists of several lemmas.

Consider at first the case when D is a division algebra.

Lemma 2 If $D = D_1 \otimes_F D_2$ is a nontrivial decomposition of a division algebra Dwith ind $D = p^n$ and $\exp D = p^{n-1}$ then the index and exponent of one of the factors equal p while the index and exponent of the other one equal p^{n-1} .

Proof. Put ind $D_j = p^{k_j}$, exp $D_j = p^{l_j}$. Then $k_1 + k_2 = n$ and $n-1 \ge \max\{k_1, k_2\} \ge \max\{l_1, l_2\} \ge n-1$. So, all inequalities are in fact equalities which implies the statement.

We fix a decomposition $D = D_1 \otimes_F D_2$ with $\operatorname{ind} D_1 = \exp D_1 = p$ and $\operatorname{ind} D_2 = \exp D_2 = p^{n-1}$ for below.

Lemma 3 For X = SB(D) where $D = D_1 \otimes_F D_2$ is a division algebra with ind $D_1 = \exp D_1 = p$ and ind $D_2 = \exp D_2 = p^{n-1}$, it holds

$$\log_p |K(\bar{X})/K(X)| = n \cdot p^n - \alpha$$

where $\alpha = v_p(p^n!) + p^{n-1} - 1.$

Proof. It is known from [5] that

$$|K(\bar{X})/K(X)| = \prod_{i=1}^{p^n} \operatorname{ind} D^{\otimes i}$$
.

Put $\log_p \operatorname{ind} D^{\otimes i} = n - \alpha_i$. If $v_p(i) = 0$ then $\alpha_i = 0$.

If $v_p(i) > 0$ then $\operatorname{ind} D^{\otimes i} = \operatorname{ind} D_2^{\otimes i} = \operatorname{ind} D_2/(i, \operatorname{ind} D_2)$ (see [3] for the last equality), so $\alpha_i = \min\{v_p(i) + 1, n\}$. Consequently

$$\alpha = \sum_{i=1}^{p^n} \alpha_i = v_p(p^n!) + p^{n-1} - 1.$$

Before to deal with Lemma 5 let's formulate a fact from [4] which will be needed below.

Proposition 4 ([4]) For $N \ge 1$ denote by X^N the variety $SB(M_N(D))$ where $M_N(D)$ is the F-algebra of $N \times N$ -matrices over an arbitrary central simple algebra D of degree d. Then

$$\operatorname{Ch}_*(X^N) = \operatorname{Ch}_*(X) \oplus \operatorname{Ch}_{*-d}(X) \oplus \ldots \oplus \operatorname{Ch}_{*-(N-1)d}(X)$$

where Ch_* denotes the Chow group graded by dimensions of cycles (so to say, $\operatorname{Ch}(X^N) = (\operatorname{Ch}(X))^N$).

Now the main spot in proving of Theorem is coming.

Lemma 5 As agreed before Proposition, D is a decomposed division algebra of index p^n and exponent p^{n-1} , X = SB(D). If $i-1 \\\vdots p$ where $0 \le i \le p^n - 1$ and $i \ne p^n - p + 1$ then $\overline{G^iK}(X) \ni p^{n-1}$.

Proof. Replace the factor roups of topological filtration by the Chow groups which we'll numerate by dimension. What we need to show is that $\overline{\mathrm{Ch}}_i(X) \ni p^{n-1}$ where $\overline{\mathrm{Ch}}_i(X) = \mathrm{Im} (\mathrm{Ch}_i(X) \to \mathrm{Ch}_i(\bar{X}) = \mathbf{Z})$ if i = kp - 2 and $2 \le k \le p^{n-1}$.

Fix a large number N (it's enough to take any $N \ge p$) and consider a closed embedding $X_1 \times X_2^N \hookrightarrow X^N$ where $X_j = SB(D_j)$ induced by tensor product of ideals [1]. According to Proposition it would suffice to show that $p^{n-1} \in \overline{Ch}_i(X^N)$ if i = kp - 2 (and $2 \le k \le p^{n-1}$ as above).

Consider a commutative diagram:

$$\begin{array}{cccc} \operatorname{Ch}_{p-1}(\bar{X}_1) \otimes \operatorname{Ch}_{(k-1)p-1}(\bar{X}_2^N) & \to & \operatorname{Ch}_i(\bar{X}_1 \times \bar{X}_2^N) & \to & \operatorname{Ch}_i(\bar{X}^N) \\ & \uparrow & & \uparrow & & \uparrow \\ \operatorname{Ch}_{p-1}(X_1) \otimes \operatorname{Ch}_{(k-1)p-1}(X_2^N) & \to & \operatorname{Ch}_i(X_1 \times X_2^N) & \to & \operatorname{Ch}_i(X^N). \end{array}$$

The morphism $\bar{X}_1 \times \bar{X}_2^N \hookrightarrow \bar{X}^N$ is a Segre embedding [1]. In the light of this we need now a couple of standard statements on the Segre embeddings.

Sublemma 6 ([2]) The image of the Segre embedding $\mathbf{P}^{a_1} \times \mathbf{P}^{a_2} \hookrightarrow \mathbf{P}^a$ where $a = a_1a_2 + a_1 + a_2$ has degree $C^{a_1}_{a_1+a_2}$. If $\mathbf{P}^{b_j} \subset \mathbf{P}^{a_j}$ (j = 1, 2) are linear subvarieties then the image of $\mathbf{P}^{b_1} \times \mathbf{P}^{b_2}$ is contained in some linear $\mathbf{P}^b \subset \mathbf{P}^a$ with $b = b_1b_2+b_1+b_2$ and the induced morphism $\mathbf{P}^{b_1} \times \mathbf{P}^{b_2} \hookrightarrow \mathbf{P}^b$ is a Segre embedding as well. \Box

As a corollary we see looking at the diagram that image of 1 from the upper left corner in the upper right corner equals C_i^{p-1} .

Further, $\overline{\operatorname{Ch}}_{p-1}^{1}(X_{1}) \ni 1$ in a trivial way and $\overline{\operatorname{Ch}}_{(k-1)p-1}(X_{2}^{N}) \ni p^{n-m-2}$ with $m = v_{p}(k-1)$ according to [3] since $X_{2}^{N} = SB(M_{N}(D_{2}))$ and $\operatorname{ind}(M_{N}(D_{2})) = p^{n-1}$. Thus, $\overline{\operatorname{Ch}}_{i}(X^{N}) \ni C_{i}^{p-1} \cdot p^{n-m-2}$ and the last observation we need is $v_{p}(C_{i}^{p-1}) = m+1$.

End of Theorem's proof. Put $\log_p |G^*K(\bar{X})/\overline{G^*K}(X)| = n \cdot p^n - \beta$. We would like to show that $\beta \ge \alpha$ for α from Lemma 2 (compare with [3]).

Put for each $i \ (0 \le i \le p^n - 1)$

$$\beta_i = \begin{cases} n, & \text{if } i = 0; \\ v_p(i), & \text{if } i \vdots p \text{ and } i \neq 0; \\ 1, & \text{if } i - 1 \vdots p \text{ and } i \neq p^n - p + 1; \\ 0 & \text{otherwise.} \end{cases}$$

Then $\log_p |G^i K(\bar{X})/\overline{G^i K}(X)| \leq n - \beta_i$. Really, $\frac{p^n}{(i,p^n)} \in \overline{G^i K}(X)$ for each i [3] and $p^{n-1} \in \overline{G^i K}(X)$ if $i-1 \stackrel{:}{:} p$ and $i \neq p^n - p + 1$ by Lemma 5 what implies the inequality required.

Adding all the inequalities together we obtain that $\beta \geq \sum_{i=0}^{p^n-1} \beta_i$. It is easy to see that the last sum equals α . Consequently, by [3, proposition], $G^*K(X) \to G^*K(\bar{X})$ is an injection and $p^{n-\beta_i}$ generates $\overline{G^iK}(X)$ for each i.

To finish the proof we should consider the case when D is arbitrary, not necessary with division. Write $D \simeq M_s(D')$ with a skewfield D' and put X' = SB(D'). Then

$$|G^*K(\bar{X}')/\overline{G^*K}(X')| = |K(\bar{X}')/K(X')|$$

as shown above. Since $|G^*K(\bar{X})/\overline{G^*K}(X)| = s|G^*K(\bar{X}')/\overline{G^*K}(X')|$ by Proposition and $|K(\bar{X})/K(X)| = s|K(\bar{X}')/K(X')|$ [5] the same equality holds for X. It implies injectivity of $G^*K(X) \to G^*K(\bar{X})$ and the second assertion of Theorem in the same way as above.

Corollary 7 If X is a Severi-Brauer variety satisfying conditions of Theorem then $\operatorname{Ch}^2(X) = \frac{r}{(2,r)} \cdot \mathbf{Z}.$

References

- [1] Artin, M. Brauer-Severi varieties. Lect. Notes Math., 1982, 917, 194–210.
- [2] Hartshorne, R. Algebraic geometry. Springer-Verlag, 1977.
- [3] Karpenko, N. On topological filtration for Severi-Brauer varieties. Preprint, 1993. To appear in Proc. Symp. Pure Math: Proceedings of 1992 summer research institute on quadratic forms and division algebras: connections with algebraic K-theory and algebraic geometry.
- [4] Merkurjev, A. Certain K-cohomology groups of Severi-Brauer varieties. Preprint, 1993.
- [5] Quillen, D. Higher algebraic K-theory I. Lect. Notes Math., 1973, 341, 85–147.

Mathematisches Institut Westfälische Wilhelms-Universität Einsteinstr. 62 W-4400 Münster Germany

karpenk@math.uni-muenster.de