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Abstract

The topological filtration on K ′
0 of a Severi-Brauer variety is computed if

the quotient of its index and exponent is a squarefree number and for each
prime p dividing this quotient the p -primary component of the corresponding
division algebra is decomposable. This gives in particular a description of Ch2

for such varieties.

Let D be a central simple algebra over a field F and X = SB(D) the Severi-
Brauer variety of D [1]. In [3] the topological filtration on the Grothendieck group
K(X) has been computed provided that indD = expD. The topic of this note is the
case when the quotient indD/ expD is any squarefree number but with one more
additional restriction on D: for each prime p | indD/ expD the p -primary compo-
nent of the corresponding division algebra should be decomposable (i.e. isomorphic
to a tensor product D1 ⊗F D2 with Dj ̸= F for both j).

In addition to notations introduced above we fix the following: notations rela-
tive to the Grothendieck group as introduced in [3], in particular GiK(X) is the
factorgroup of the topological filtration of codimension i; GiK(X) is the image of
the homomorphism GiK(X) → GiK(X̄) = Z where X̄ is the variety X over the
algebraic closure of F .

For a prime p, vp is the p -adic valuation on Q; Ck
n is the binomial coefficient;

( , ) is the greatest common divisor.
I owe to A.S. Merkurjev the idea that the cycle SB(D1)×SB(D2) on the variety

SB(D1 ⊗D2) might be an interesting one.

Theorem 1 Let D be a central simple algebra with indD = r, expD = e and let
X = SB(D).

If r/e is a squarefree number and for each prime p | r/e the p -primary compo-
nent of the similar to D division algebra is decomposable then the map GiK(X) →
GiK(X̄) (0 ≤ i ≤ dimX)

1. is injective;
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2. has the image r
(i,r)

∏
p
·Z where the product

∏
p is taken over all prime p | r/e

such that 0 < vp(i+ p− 1) < vp(r).

Example. Let D be a division algebra of index p2 and exponent p, X = SB(D).
If D is decomposable then for all 1 ≤ i ≤ p2 − 1

GiK(X) =

 pZ, if i
... p or i− 1

... p without i = p2 − p+ 1;
p2Z otherwise.

Proof of Theorem. It suffices to consider only the case when r = pn for a prime
p. Then e equals to pn or pn−1. The first case was done in [3]. We suppose that
e = pn−1 below.

The proof consists of several lemmas.
Consider at first the case when D is a division algebra.

Lemma 2 If D = D1 ⊗F D2 is a nontrivial decomposition of a division algebra D
with indD = pn and expD = pn−1 then the index and exponent of one of the factors
equal p while the index and exponent of the other one equal pn−1.

Proof. Put indDj = pkj , expDj = plj . Then k1+k2 = n and n−1 ≥ max{k1, k2} ≥
max{l1, l2} ≥ n − 1. So, all inequalities are in fact equalities which implies the
statement. 2

We fix a decomposition D = D1 ⊗F D2 with indD1 = expD1 = p and indD2 =
expD2 = pn−1 for below.

Lemma 3 For X = SB(D) where D = D1⊗FD2 is a division algebra with indD1 =
expD1 = p and indD2 = expD2 = pn−1, it holds

logp |K(X̄)/K(X)| = n · pn − α

where α = vp(p
n!) + pn−1 − 1.

Proof. It is known from [5] that

|K(X̄)/K(X)| =
pn∏
i=1

indD⊗i .

Put logp indD
⊗i = n− αi. If vp(i) = 0 then αi = 0.

If vp(i) > 0 then indD⊗i = indD⊗i
2 = indD2/(i, indD2) (see [3] for the last

equality), so αi = min{vp(i) + 1, n}. Consequently

α =
pn∑
i=1

αi = vp(p
n!) + pn−1 − 1.

2

Before to deal with Lemma 5 let’s formulate a fact from [4] which will be needed
below.
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Proposition 4 ([4]) For N ≥ 1 denote by XN the variety SB(MN(D)) where
MN(D) is the F -algebra of N ×N-matrices over an arbitrary central simple algebra
D of degree d. Then

Ch∗(X
N) = Ch∗(X)⊕ Ch∗−d(X)⊕ . . .⊕ Ch∗−(N−1)d(X)

where Ch∗ denotes the Chow group graded by dimensions of cycles (so to say,
Ch(XN) = (Ch(X))N) . 2

Now the main spot in proving of Theorem is coming.

Lemma 5 As agreed before Proposition, D is a decomposed division algebra of index

pn and exponent pn−1, X = SB(D). If i−1
... p where 0 ≤ i ≤ pn−1 and i ̸= pn−p+1

then GiK(X) ∋ pn−1.

Proof. Replace the factorgroups of topological filtration by the Chow groups which
we’ll numerate by dimension. What we need to show is that Chi(X) ∋ pn−1 where
Chi(X) = Im (Chi(X) → Chi(X̄) = Z) if i = kp− 2 and 2 ≤ k ≤ pn−1.

Fix a large number N (it’s enough to take any N ≥ p) and consider a closed
embedding X1 × XN

2 ↪→ XN where Xj = SB(Dj) induced by tensor product of
ideals [1]. According to Proposition it would suffice to show that pn−1 ∈ Chi(X

N)
if i = kp− 2 (and 2 ≤ k ≤ pn−1 as above).

Consider a commutative diagram:

Chp−1(X̄1)⊗ Ch(k−1)p−1(X̄
N
2 ) → Chi(X̄1 × X̄N

2 ) → Chi(X̄
N)

↑ ↑ ↑
Chp−1(X1)⊗ Ch(k−1)p−1(X

N
2 ) → Chi(X1 ×XN

2 ) → Chi(X
N).

The morphism X̄1 × X̄N
2 ↪→ X̄N is a Segre embedding [1]. In the light of this we

need now a couple of standard statements on the Segre embeddings.

Sublemma 6 ([2]) The image of the Segre embedding Pa1 × Pa2 ↪→ Pa where
a = a1a2 + a1 + a2 has degree Ca1

a1+a2. If Pbj ⊂ Paj (j = 1, 2) are linear subvarieties
then the image of Pb1×Pb2 is contained in some linear Pb ⊂ Pa with b = b1b2+b1+b2
and the induced morphism Pb1 ×Pb2 ↪→ Pb is a Segre embedding as well. 2

As a corollary we see looking at the diagram that image of 1 from the upper left
corner in the upper right corner equals Cp−1

i .
Further, Chp−1(X1) ∋ 1 in a trivial way and Ch(k−1)p−1(X

N
2 ) ∋ pn−m−2 with

m = vp(k−1) according to [3] since XN
2 = SB(MN(D2)) and ind (MN(D2)) = pn−1.

Thus, Chi(X
N) ∋ Cp−1

i · pn−m−2 and the last observation we need is vp(C
p−1
i ) =

m+ 1 . 2

End of Theorem’s proof. Put logp |G∗K(X̄)/G∗K(X)| = n·pn−β. We would
like to show that β ≥ α for α from Lemma 2 (compare with [3]).
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Put for each i (0 ≤ i ≤ pn − 1)

βi =



n, if i = 0;

vp(i), if i
... p and i ̸= 0;

1, if i− 1
... p and i ̸= pn − p+ 1;

0 otherwise.

Then logp |GiK(X̄)/GiK(X)| ≤ n − βi. Really, pn

(i,pn)
∈ GiK(X) for each i [3] and

pn−1 ∈ GiK(X) if i−1
... p and i ̸= pn−p+1 by Lemma 5 what implies the inequality

required.
Adding all the inequalities together we obtain that β ≥ ∑pn−1

i=0 βi. It is easy to see
that the last sum equals α. Consequently, by [3, proposition], G∗K(X) → G∗K(X̄)
is an injection and pn−βi generates GiK(X) for each i.

To finish the proof we should consider the case when D is arbitrary, not necessary
with division. Write D ≃ Ms(D

′) with a skewfield D′ and put X ′ = SB(D′). Then

|G∗K(X̄ ′)/G∗K(X ′)| = |K(X̄ ′)/K(X ′)|

as shown above. Since |G∗K(X̄)/G∗K(X)| = s|G∗K(X̄ ′)/G∗K(X ′)| by Proposition
and |K(X̄)/K(X)| = s|K(X̄ ′)/K(X ′)| [5] the same equality holds for X. It implies
injectivity of G∗K(X) → G∗K(X̄) and the second assertion of Theorem in the same
way as above. 2

Corollary 7 If X is a Severi-Brauer variety satisfying conditions of Theorem then
Ch2(X) = r

(2,r)
· Z. 2
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