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Abstract

We study Colonel Blotto games with sequential battles and a majoritarian ob-

jective. For a large class of contest success functions, the equilibrium is unique

and characterized by an even split: Each battle that is reached before one of the

players wins a majority of battles is allocated the same amount of resources from

the player’s overall budget. As a consequence, a player’s chance of winning any

particular battle is independent of the battlefield and of the number of victories and

losses the player has accumulated in prior battles. This result is in stark contrast to

equilibrium behavior in sequential contests that do not involve either fixed budgets

or a majoritarian objective. We also consider the equilibrium choice of an overall

budget. For many contest success functions, if the sequence of battles is long enough

the payoff structure in this extended games resembles an all-pay auction without

noise.
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1 Introduction

We study a game that accounts for many generic features of dynamic conflicts, the

sequential majoritarian Blotto contest. Two players sequentially interact in a series of

battles. Victory in each battle is decided stochastically as a function of the players’

investments of resources in this battle. A majoritarian rule applies: The player who first

wins a given minimum number of battles wins the contest. Furthermore, once the contest

has started, the overall amount of resources that can be used by a player is given and

cannot be augmented or reduced at a later stage, and unused resources have no scrap

value outside the contest.

While static games with given resource budgets have been extensively studied in the

literature on Blotto games,1 dynamic contests with fixed budgets are less well understood

and results are available for specific cases only.2 Our framework, on the other hand, is

very general: The best-of-N contest studied here is of arbitrary odd length, individual

battles are noisy, and no specific parametric contest success function (e.g, the Tullock

function) is assumed—we impose only mild conditions on the relationship between resource

investments and the outcomes of individual battles. Moreover, aggregate resource budgets

might either be given or chosen prior to the first battle.

At any given stage of this game, players must decide how much of their remaining

budgets to invest trying to win the current battle, and how much to save for possible

later battles. The dynamics of this interaction are not obvious. Resources tend to be

more valuable at later stages of the game—in the extreme, the outcome of the final

battle determines who wins the game, and players may want to preserve resources for

such critical contingencies. However, the conflict may end early if one contestant wins a

sufficiently large number of battles, and preserving resources for later battles is wasteful

if the conflict is already decided before these later battles are reached.

1The generic Colonel Blotto game dates back to Borel (1921). Among major recent contributions are
Roberson (2006), Kvasov (2007), Roberson and Kvasov (2012). Kovenock and Roberson (2010) review
this literature and provide a systematic classification of Blotto games.

2An early discussion of sequentiality in Blotto games is in Friedman (1958). More recently, Deck and
Sheremeta (2012) consider a sequence of all-pay auctions with fixed total resources and an asymmetric
objective: One player wins the game if he wins a single auction, while the opponent must win all auctions.
Rinott et al. (2012) develop a model in which two teams must allocate fixed resources to their members,
who face each other in pairwise contests. The winner of the first battle faces the next member of the
opposing team, and so on, until one team has lost all players. Sela and Erez (2013) examine a Blotto
model in which players maximize the number of battle victories, rather than a majoritarian objective,
and each battle is a symmetric Tullock contest. Similar to the equilibrium in flexible budget models,
players invest more in early battles than in later ones. Konrad (2018) studies resource carryovers between
sequential battles, using a symmetric Tullock contest success function and a maximum of three battles.
In a best-of-3 dynamic Blotto game, Anbarcı et al. (2018) show that the weight of battles in the objective
function influences spending decisions. Ryvkin (2011) models “fatigue” as a negative resource carryover:
A high effort investment in a previous battle makes effort less effective in the future battles.
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We find that in every subgame perfect equilibrium, players invest constant amounts of

resources in all battles, except possibly after contingencies that are not on the equilibrium

path. Hence, the intensity of fighting remains the same throughout the contest. This

finding contrasts sharply with results that apply to sequential majoritarian contests in

which the contestants’ budgets can be adjusted prior to each single battle (Klumpp and

Polborn 2006; Konrad and Kovenock 2009). In such games, equilibrium behavior is

history dependent. In particular, a contestant who lost in early rounds may have little

incentive to spend resources to catch up with the opponent: If the contestant were to

catch up successfully, both players would incur substantial fighting costs in the further

course of the game. The anticipation of these costs discourages the player who has fallen

behind from catching up (“discouragement effect”), which increases the chance of victory

for the frontrunner (“momentum effect”). Since both effects make early round victories

especially important, fighting is, on expectation, more intense in early battles than in

late battles (“front-loading effect”). The exception is when the race is still close late

in the contest—in this case, fighting escalates in the final rounds (“escalation effects”

or “showdown effect”).3 None of these behaviors emerges if players dynamically and

time-consistently allocate a fixed resource budget.

The assumption of fixed resource budgets is realistic in many potential applications

described by our framework:

– In military confrontations—especially rapid ones that have the features of a

blitzkrieg—commanders may not have the opportunity to replenish their troops

and equipment after each battle. In these cases, commanders must allocate fixed

military resources to a sequence of confrontations.4

– In sporting contests, players face physical constraints which can turn these games

into multi-battle Blotto contests. This happens when players cannot replenish their

physiological resources between rounds, such as the sets of a tennis match. Such

constraints should be more important if the intervals for physical recovery between

battles are relatively short.5

3Gelder (2014) offers an alternative preference-based explanation for why fighting need not become
less intense in late stages, even if one player has fallen far behind the other. If the player who loses the
contest cares about whether he or she won at least some battles, he may display “last-stand behavior.”

4Konrad (2017) discusses such dynamic conflicts, contrasting Alexander the Great’s military campaign
in Asia, which lasted over than ten years, and Napoleon’s campaign against Russia, which lasted less
than six months.

5Empirical studies of sports contests have produced mixed evidence of momentum effects and front-
loading (Ferrall and Smith 1999; Malueg and Yates 2010; Gauriot and Page 2014). Our results suggest
that one potential factor that affects both is the extent to which athletic resources budgets are fixed
during the competition. The role and empirical significance of physical constraints is further studied in
sports medicine (e.g., Skillington et al. 2017; Gescheit et al. 2017).
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– Presidential primaries in the United States consist of a series of elections in which

candidates compete for delegates at their party’s nominating convention. The

overall amount of resources that candidates can mobilize in such elections is limited

for several reasons. First, the main resource being spent is often the time a politician

allocates to campaigning in particular districts, which by definition is fixed. Second,

moneteray campaign funds are subject to regulations and legal restrictions that can

cause a candidate’s election budget to be fixed.6 Third, a candidate’s resources will

also be fixed if competition takes the form of pledges of political favors to voters,

and the aggregate amount of such favors is exogenously given.7

– Organizations often allocate resources in a lumpy way to their members, who

must decide on the day-to-day spending of these resources. For example, business

firms might endow their marketing departments with annual budgets to run a

series of marketing campaigns, or they may provide research budgets to their R&D

departments which these must allocate to a series of R&D battles with rival firms.

In each of these applications, a set of fixed budgets can explain why the intensity of fighting

does not show the types of history dependence that arise in settings with adjustable

budgets, and instead remains relatively constant throughout the contest.

History independence also characterizes play in certain group contests, even if budgets

are not fixed. Fu et al. (2015) and Häfner (2017) examine dynamic team contests in

which different players fight in different battles on behalf of their teams. As part of a

team, players have a greater incentive to catch up than do individual contestants: If they

succeed in bringing their team “back on par” with the opposing team, a different team

member will bear the cost of fighting in the next battle. In our context, catching up also

has lower future costs for a player, but for a different reason: The player uses resources

that have already been paid for.

After characterizing the equilibrium, we go on to study the role of the length of

dynamic majoritarian Blotto games, given by the number of battles. With a large number

of battles, the relationship between budget differences and probability of final victory

becomes less stochastic if the noise that is present in a single battle “washes out” over a

large number of battles. In this case, a player who has a small single-battle advantage

6Most importantly, funds not spent during an election campaign have few alternative uses for the
candidate, as unused funds must be returned to donors or saved for future election runs by the same
candidate for the same office. Thus, for funds raised prior to the campaign, spending these funds has no
opportunity cost for the candidate (the only decision is on which election to spend them). In addition,
candidates who accept public financing in American elections are limited to the amount received from
the state. By law this payment cannot be adjusted in response to other candidates’ spending decisions
(see Klumpp et al. 2015), resulting in a fixed budget for candidates that accept public funding.

7Taylor (2010) argues that candidates may promise federal procurement dollars in order to secure
political support in individual states. Since the total amount of such “pork” that can be pledged during
a campaign is likely finite, it is best described by a fixed overall budget.

4



(e.g., because of a slightly larger initial budget) may win a long majoritarian Blotto game

with probability close to one. We call this phenomenon the amplification effect that results

from an increase in the number of battles in a dynamic Blotto contest. We show that

this amplification effect arises for certain contest success functions, including the Tullock

function, but not for others. When it does, the players’ probability of winning a large

N -battle Blotto game, as a function of their initial budgets, resembles the probability of

winning in the all-pay auction (see Hillman and Riley 1989; Baye et al. 1993.) As this

holds even if each of the individual battles is governed by a contest success function with

considerable noise, the result provides a microeconomic underpinning for the use of the

all-pay auction success function in certain applications.8

Finally, we examine the players’ incentives to invest in their overall budgets in a

resource build-up stage that precedes the Blotto game. At that stage, both players

simultaneously choose the resources with which they want to compete in the N -battle

contest, and each pays a constant marginal cost per unit of resources. We show that

the equilibrium budget choice depends on the length of the contest as well as on the

players’ costs. If the contest is sufficiently long, equilibrium involves randomization over

resource budgets. The profile according to which players randomize their budgets as

if they were competing in an all-pay auction without noise is an ε-equilibrium of the

N -battle Blotto game, with lower ε for larger N . On the other hand, if the number of

battles is not too large, pure strategy equilibria exist. In these equilibria, an increase in

the number of battles will increase the players’ budgets if the players have symmetric

resource costs. If players have asymmetric costs, an increase in the number of battles

may decrease equilibrium budgets.

We proceed as follows. In Section 2 we develop our sequential majoritarian Blotto

framework and state our main equilibrium characterization result, which is proven in

Section 3. Section 4 examines the comparative statics of the outcome of the Blotto game,

and its asymptotic properties, as the number of battlefields changes. Section 5 uses

these results to examine an enhanced game in which each player’s budget is endogenous.

Section 6 concludes.

8Similar noise-filter processes have been observed in elimination tournaments (see Rosen 1986).
Harbaugh and Klumpp (2005) compare a two-stage, four-player Tullock elimination tournament with fixed
resource budgets to one in which players have separate budgets in each round. Gradstein and Konrad
(1999) and Fu and Lu (2012) study elimination contests in which a large set of players is partitioned into
subgroups. The subgroups compete internally, and their winners become the participants in the next
contest stage. In these models, an increase in the number of elimination rounds effectively removes the
noise that is present in each battle, thereby raising the marginal benefit of effort.
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2 Sequential Majoritarian Blotto Games

2.1 The contest

We consider a Blotto tournament with players A and B and an odd number N of

battlefields, fought in sequence. Battle N is fought first, battle N − 1 is fought second,

and so on, with the final battle being battle 1. The player who first wins n = (N + 1)/2

battles wins the tournament. At this point, the game ends and no further battles are

fought.

Players are endowed with initial resources ā and b̄ which they can invest in the battles

to influence their chance of success in each battle. A player cannot spend more than

his initial resources in total, and in each battle he cannot use more than the difference

between his initial resources and the resources already spent. Each player’s objective

is to allocate his resources to battles in a consecutive way that maximizes his chance

of winning a majority of battles. Players observe the outcome of each battle and the

opponent’s remaining resources before making simultaneous investment decisions for the

next battle. (Note that observing the opponent’s remaining resources before each battle

is equivalent to observing the opponent’s investment made into the previous battle.)

Unused resources at the end of the game have no value.

The outcome of each battle is governed by a contest success function (CSF)

p : [0,∞)2 → [0, 1],

where p(x, y) is the probability that A wins the battle if A spends resources x, and

B spends resources y, on the given battle. The probability that B wins the battle is

1− p(x, y). We maintain the following assumptions on the contest success function. p is

continuous everywhere except possibly at (0, 0). p is twice differentiable on R2\(0, 0) with

px ≥ 0, pxx ≤ 0, py ≤ 0, pyy ≥ 0, and these inequalities are strict at all (x, y) � (0, 0).

We do not require p to be symmetric, i.e., we do not assume that 1− p(x, y) = p(y, x).

In addition to the above assumptions, we impose the following condition:

−pxx(x, y)

px(x, y)
>

px(x, y)

1− p(x, y)
and − pyy(x, y)

py(x, y)
> −py(x, y)

p(x, y)
for all (x, y)� (0, 0). (1)

Condition (1) requires the probability of success to be sufficiently concave in a player’s

own effort. The left-hand side of each inequality in (1) is a curvature measure akin

to the Arrow-Pratt measure of risk aversion. The right-hand side is a hazard rate.

Loosely speaking, it represents the chance that a marginal unit of effort results in victory

conditional on not having won the battle with the effort already invested.
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Many commonly used CSFs satisfy our assumptions, including all functions of the

form

p(x, y) =
f(x)

f(x) + g(y)
, (2)

where f, g ≥ 0 are twice differentiable, strictly increasing, and weakly concave functions.

In particular, the popular Tullock (1980) lottery function

pTullock(x, y) =

{
x/(x+ y) if x+ y > 0,

1/2 if x+ y = 0
(3)

fits in our model, as do most of the variants of the Tullock function that have been

explored in the literature.

2.2 Strategies and solution concept

In principle, a strategy for a player prescribes, for every battle and every history of

spending decisions and outcomes in previous battles, an investment into the current

battle. We restrict our attention to Markovian strategies, which depend on the game’s

history only through the total number of victories that A and B have accumulated and

the resources the players have remaining in any battle.9

To formalize such strategies, we define a state of the tournament to be a pair (i, j)

such that i, j ≥ 0 and 1 ≤ i+ j ≤ 2n. This indicates that A needs to win i battles to win

the tournament, and B needs to win j battles to win the tournament. If player A wins a

battle, i is reduced by one, and if B wins a battle, j is reduced by one. The initial state

is (n, n). States (i, j) with i = 0 or j = 0 are terminal states. At these states, one player

has won the tournament and no further decisions are made.

States with i, j ≥ 1 are non-terminal states, at which players must decide how much

to invest in the current battle. An investment function for player A at non-terminal state

(i, j) is a function

αi,j : [0, ā]× [0, b̄]→ [0, ā] s.t. αi,j(a, b) ≤ a.

This means that αi,j(a, b) is the investment A makes into the battle at state (i, j) if A’s

remaining resources are a and B’s remaining resources are b. An investment function for

player B at (i, j) is similarly defined as

βi,j : [0, ā]× [0, b̄]→ [0, b̄] s.t. βi,j(a, b) ≤ b.

9These are the relevant information sets, as the game is of complete information and players maximize
the probability of winning a majority of battles given fixed resources. Payoffs do not directly depend on
which specific battles a player wins, or on how the player’s resources were allocated to specific battles.
At the expense of additional notation, one can extend our analysis to non-Markovian strategies (which
condition on full histories) and obtain the same results.
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A (pure) continuation strategy at state (i, j) is then a collection of investment functions

at (i, j) and every possible non-terminal state that can be reached from state (i, j):

σAi,j =
{
αi′,j′(·) : (1, 1) ≤ (i′, j′) ≤ (i, j)

}
,

σBi,j =
{
βi′,j′(·) : (1, 1) ≤ (i′, j′) ≤ (i, j)

}
.

A (pure) strategy is a continuation strategy at the initial state (n, n), that is, a collection

of investment functions for every state of the game.10

Each relevant subgame of the tournament originates at an information set (i, j; a, b),

consisting of a state (i, j) and a pair of remaining budgets (a, b). Given (i, j; a, b) and

pair of continuation strategies (σAi,j , σ
B
i,j), one can compute the probability with which

each player wins the tournament, starting at (i, j; a, b). Continuation strategy σAi,j is a

best response to σBi,j at state (i, j) if, for all a ∈ [0, ā] and b ∈ [0, b̄], player A’s probability

of winning in subgame (i, j; a, b) is maximized if he uses strategy σAi,j , conditional on B

using σBi,j . Player B’s best responses are defined similarly.

A pair (σAi,j , σ
B
i,j) of mutual best responses is a (pure strategy) continuation Nash

equilibrium at (i, j). A (pure strategy) subgame perfect equilibrium is a profile of strategies

(σA, σB) such, for each non-terminal state (i, j) the associated profile of continuation

strategies (σAi,j , σ
B
i,j) is a continuation Nash equilibrium at (i, j).

2.3 Equilibrium characterization

We now present our main equilibrium characterization result. The following definition

will be central:

Definition 1. For player A, continuation strategy σAi,j at state (i, j) is an even-split

continuation strategy if

b > 0 ⇒ αi′,j′(a, b) =
a

i′ + j′ − 1
for all (i′, j′) s.t. (1, 1) ≤ (i′, j′) ≤ (i, j).

For B, the definition is analogous. An even-split strategy is an even-split continuation

strategy at the initial state (n, n).

A player who uses an even-split strategy allocates his budget evenly and uncondition-

ally across battles, as long as his opponent has positive resources remaining. For example,

at the first battle A invests ā/N and saves the remainder ā− ā/N for the next round. At

the second battle he spends (ā− ā/N)/(N − 1) = ā/N and saves the remainder ā− 2ā/N

10As is common in extensive form games, to facilitate backward induction a player’s strategy prescribes
actions even for information sets that are not reached under this strategy. For example, if a player
exhausts his entire budget in one battle he cannot invest a positive amount in the next. A strategy must
still specify how much the player would invest in that battle for any amount of remaining resources.
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for the third round, where he invests (ā− 2ā/N)/(N − 2) = ā/N , and so on. The player

does not make this investment dependent on how many battles each player has already

won, or on the amount the opponent spends in each battle.

If both players use even-split strategies, player A wins each individual battle with prob-

ability p(ā/N, b̄/N), and B wins each individual battle with probability 1− p(ā/N, b̄/N).

Our main result is that this is the unique outcome of the sequential majoritarian Blotto

game.

Proposition 1. A pure strategy subgame perfect equilibrium exists in which both players

use even-split strategies. Furthermore, in every subgame perfect equilibrium, both players

use only even-split strategies.

To understand the second part of the result, note that an even-split strategy, as

defined above, does not restrict a player’s spending pattern once an opponent has run

out of resources. This event will not occur in any equilibrium of our model; however,

if (out of equilibrium) a subgame were reached in which one player has zero resources

remaining, the other player could have multiple best responses. For example, consider the

Tullock function in (3), and imagine that player B has zero resources remaining at some

state (i, j), while A has positive resources remaining. A can win the tournament with

probability one by allocating a positive amount of resources to any i of the remaining

i+ j − 1 battles. In particular, A does not have to allocate his resources evenly across all

remaining battles (although this would also guarantee victory). Thus, for some CSFs the

game can have multiple equilibria. However, in all of these equilibria, observed spending

along the equilibrium path is the same—namely, players divide their resources evenly

across battles.

2.4 Discussion

Proposition 1 implies that equilibrium behavior in sequential majoritarian Blotto games

is markedly different from that in sequential majoritarian non-Blotto contests (Klumpp

and Polborn 2006; Konrad and Kovenock 2009). When the players reach state (i, j) they

plan for the longest possible path to final victory or defeat, which consists of i+ j − 1

battles, and allocate equal shares of their remaining budgets to each of these battles.

Thus, in equilibrium, player A invests ā/N in every battle and B invests b̄/N in every

battle, independent of which battle it is. Players will not revise their plans in response

to winning or losing any particular battle, which means that winning or losing a battle

does not create momentum. While the player who loses the first battle will now win the

tournament with a smaller probability, he wins the next battle with exactly the same

probability as before. Moreover, no disproportionate share of resources is concentrated

on early battles, nor does effort escalate as battles become more decisive.
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These equilibrium dynamics of the sequential majoritarian Blotto game are surprising.

Notice that each player faces two conflicting incentives when deciding on how to allocates

his resources across battles: On the one hand, because the game is unlikely to last the

entire length of N battles, resources saved for the later part of the tournament are wasted

with a positive probability. On the other hand, because later battles are more decisive

if they take place, players may want to hold resources in reserve for these contingencies.

What Proposition 1 means, then, is that these two forces cancel each other exactly in

equilibrium. This is true for all contest success functions that satisfy our assumptions,

and is not a knife-edge result driven by any particular functional form of p.

It is worth noting that this striking result is highly robust to changes in the underlying

parameters in several dimensions, yet extremely sensitive to changes in other dimensions.

Broadly, Proposition 1 remains true regardless of almost any difference between the

players. More precisely, the result holds if any of the following are true.

– The players start with arbitrarily different budgets.

– The players start with arbitrarily different head-starts, in terms of battles already

won. (This follows from the sequential rationality embodied in subgame perfect

equilibrium.)

– The players have arbitrarily different “battle efficiencies.” To see what this means,

suppose the CSF takes the form p(x, y) = f(x)/(f(x) + g(y)). Given budget

allocation choices x and y, the functions f and g capture how efficiently a given

amount of resource is translated into an effective fighting strength. Our result is

robust to arbitrary differences in these functions between players, as long as f and

g are strictly increasing and weakly concave.

On the other hand, what our result is not robust to is changes to the game such

that the battles are no longer structurally identical, or changes that make some paths

to victory or loss preferable to a player, relative to other paths. To be specific, one can

show that the following changes to the structure of the game would invalidate our main

result.11

– The CSFs are dependent on the battle, instead of each battle being decided by the

same function p.

– The battles are worth different amounts of points, and the winner of the overall

game is the player who accumulates the majority of points, instead of each battle

having same point value.

11See Solomon (2018) for a detailed demonstration that each change would invalidate the even-split
nature of the equilibrium.
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– A prize is awarded to the winner of each individual battle, in addition to the overall

prize for winning the majority of battles.

Thus, we are able to clarify the question of exactly how much symmetry is required to

drive this result. The answer is: The players can be arbitrarily different, but the battles,

and paths to victory, must be symmetric.

3 Proof of the Main Result

In this section we prove Proposition 1. We first establish existence of an even-split

equilibrium, and then show that every equilibrium must be in even-split strategies.

3.1 Existence

For r ∈ {1, . . . , N}, let the set of possible states when there are exactly r battles remaining

be denoted by

T (r) =
{

(i, j) ≥ (1, 1) : i+ j − 1 = r
}
.

The proof is by induction on the number of battles remaining. Take 2 ≤ r ≤ N . Suppose

that at all (i, j) ∈ T (r − 1), it is a continuation Nash equilibrium for both players to

use even-split continuation strategies. We will show that a pair of even-split strategies

is a continuation Nash equilibrium at all (i, j) ∈ T (r). Because T (1) = {(1, 1)}, and

continuation strategies at state (1, 1) are even-split (there is exactly one battle remaining

and it is clearly optimal to invest any remaining resources in this battle), the result

follows.

Fix 2 ≤ r ≤ N . Suppose that at all (i, j) ∈ T (r − 1), an even-split continuation

equilibrium exists and is played if (i, j) is reached. Now fix a state (i0, j0) ∈ T (r) for battle

r. Suppose that B plays an even-split continuation strategy also at (i0, j0). (The argument

is the same when the roles of the players reversed, and omitted.) Let (a0, b0) � (0, 0)

denote the players’ remaining budgets at (i0, j0). Since B plays an even-split continuation

strategy, B spends γ = b0/r in all battles r, r−1, r−2, . . ., regardless of the states of these

battles and regardless of A’s spending in these battles.12 Since γ > 0, A’s probability of

winning the tournament is continuous in the resources that A allocates to each battle,

and since the set of all such allocations is compact, A will have a best response at (i0, j0).

Furthermore, if A allocates x0 ∈ [0, a0] to battle r at state (i0, j0), he will have resources

a0− x0 remaining when he reaches battle r− 1. By the induction hypothesis, A will then

allocate (a0 − x0)/(r − 1) to battles r − 1, r − 2, . . .. We will show that x0 = a0/r is A’s

optimal investment at state (i0, j0).

12Note that battles r − 1, r − 2, . . . may not take place. In general, when we say “spend in battle X”
we mean “plan to spend in battle X, if battle X takes place.”
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Our approach is the following: If x0 6= a0/r, player A invests different amounts in

battles r and r − 1. We will show that A can then improve his chance of winning by

equalizing spending in battles r and r−1, while still allocating (a0−x0)/(r−1) to battles

r − 2, r − 3, . . .. Since this reallocation is possible whenever x0 6= a0/r, we conclude that

A’s best response at (i0, j0) is to use the even-split continuation strategy.13 To establish

the profitability of this deviation, we proceed in three steps. In Step 1, we establish that

the reallocation strictly increases A’s chance of winning both battle r and r − 1, and

strictly decreases A’s chance of losing both battles. In Step 2, we show that this must

increase A’s overall chance of winning the tournament at state (i0, j0), provided that A

did not spend his entire budget a0 at state (i0, j0); that is, we assume that x0 < a0. In

Step 3, finally, we show that x0 = a0 cannot be a best response to B’s even-split strategy.

Throughout, we assume that i0 > 1 and j0 > 1. The cases where i0 = 1 or j0 = 1 are

similar and in the Appendix.

Step 1. Consider the two consecutive battles r and r − 1. Define

x̄ ≡ x0 + (a0 − x0)/(r − 1)

2

to be the the average amount spent by A in battles r and r − 1, and set h ≡ |x̄ − x0|.
Note that 0 ≤ h ≤ x̄, and h = 0 iff x̄ = x0, or equivalently, x0 = a0/r = (a0− x0)/(r− 1).

The probability that A wins both battles is

P (h) = p(x̄+ h, γ)p(x̄− h, γ).

P is continuous and differentiable at all h ∈ [0, x̄], with

P ′(h) = px(x̄+ h, γ)p(x̄− h, γ)− p(x̄+ h, γ)px(x̄− h, γ).

This term is negative if and only if

px(x̄+ h, γ)

p(x̄+ h, γ)
<

px(x̄− h, γ)

p(x̄− h, γ)
. (4)

Because px > 0 and pxx < 0 on R2
++, inequality (4) holds and P ′(h) < 0 for all h ∈ [0, x̄].

Similarly, the probability that A loses both battles is

Q(h) =
[
1− p(x̄+ h, γ)

][
1− p(x̄− h, γ)

]
.

13Note that, following the reallocation, A no longer plays an even-split continuation strategy when
he reaches battle r − 1. (He now spends a different amount in battle r − 1 and r − 2.) This is not a
contradiction to our induction hypothesis, as we do not claim that the new continuation strategy is
optimal. The resource shift only establishes that the previous strategy (which was to spend one amount
in battle r and a different amount in battles r − 1, r − 2, . . .) was not optimal.
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Q is continuous and differentiable at all h ∈ [0, x̄], with

Q′(h) = −px(x̄+ h, γ)
[
1− p(x̄− h, γ)

]
+ px(x̄− h, γ)

[
1− p(x̄+ h, γ)

]
.

This term is positive if and only if

px(x̄+ h, γ)

1− p(x̄+ h, γ)
<

px(x̄− h, γ)

1− p(x̄− h, γ)
(5)

Using (1), condition (5) can be shown to hold14 so that Q′(h) > 0 for all h ∈ [0, x̄].

Step 2. Next, consider what happens after battle r and battle r − 1 are over. The

tournament will be in one of the following three states: If A won both battles, then

(i0− 2, j0); if A won one battle and lost the other, then (i0− 1, j0− 1); and if A lost both

battles, then (i0, j0 − 2). Let

Z =
{

(i0 − 2, j0), (i0 − 1, j0 − 1), (i0, j0 − 2)
}

denote the set of these states.

Let vi,j denote the probability that A wins the tournament, conditional on reaching

state (i, j) ∈ Z. If (i, j) is a terminal state, then vi,j = 1 if i = 0 and vi,j = 0 if j = 0. If

(i, j) ∈ Z is not a terminal state, then (i, j) ∈ T (r − 2), and A wins the tournament if

he wins i of the remaining r − 2 battles before B wins j battles. Since player A invests

(a0 − x0)/(r − 1), and B invests γ, into each of these remaining battles, A wins each

battle with probability

ρ = p
(
(a0 − x0)/(r − 1), γ

)
.

Because γ > 0, our assumptions in p imply that ρ < 1. Assume now that x0 < a0; this

implies that (a0−x0)/(r− 1) > 0 and hence ρ > 0. Therefore, the probability with which

A wins the tournament, conditional on reaching a non-terminal state (i, j) ∈ Z, can be

written as follows:15

vi,j =

j−1∑
k=0

(
i− 1 + k

k

)
ρi(1− ρ)k ∈ (0, 1). (6)

Moreover, vi,j > vi+1,j−1 for all (i, j) with (i, j) ≥ (0, 1).16

14Observe that
∂

∂x

px
1− p =

pxx[1− p] + (px)2

[1− p]2 < 0 ⇔ −pxx
px

>
px

1− p ⇔ (1).

15To understand (6), note that when A wins the tournament, the number of remaining battles B will
have won is some integer 0 ≤ k ≤ j − 1. Each term in the sum in (6) is the probability of a sequence of i
wins and k losses for player A, for given k.

16This is intuitive, as winning a battle should always be preferred to losing a battle. Nevertheless, a
formal proof of the inequality is in the Appendix.
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The states in the set Z can hence be ordered according to A’s probability of winning

the tournament as follows:

1 ≥ vi0−2,j0 > vi0−1,j0−1 > vi0,j0−2 ≥ 0. (7)

Now go back to state (i0, j0). The probability with which A wins the tournament, if

he spends x̄+ h and x̄− h in battles r and r − 1, is

z(h) = P (h)vi0−2,j0 +
[
1−P (h)−Q(h)

]
vi0−1,j0−1 + Q(h)vi0,j0−2. (8)

Differentiating (8) with respect to h

z′(h) = P ′(h)
[
vi0−2,j0 − vi0−1,j0−1

]
+ Q′(h)

[
vi0,j0−2 − vi0−1,j0−1

]
.

Because P ′(h) < 0 and Q′(h) > 0 for h ∈ [0, x̄], and using (7), we have z′(h) < 0 for all

h ∈ [0, x̄]. It follows that A can increase his chance of winning at (i0, j0) by reducing

h—that is, by reallocating some resources across the two consecutive battles r and r − 1,

from the battle in which he spends more to the one in which he spends less.

Step 3. It remains to be shown that x0 < a0. Suppose x0 = a0. Then after battle r is

over, player A spends zero on every remaining battle. In particular, he spends zero on

battles r − 2, r − 3, . . ., and wins each of these battles with probability ρ = p(0, γ) < 1.

If p(0, γ) > 0 or if i0 = 2, Step 2 can be applied without modification to show that A

should shift some resources from battle r to battle r − 1 to improve his overall chance of

winning the tournament at state (i0, j0). However, if p(0, γ) = 0 and i0 > 2, then vi,j = 0

∀(i, j) ∈ Z and hence z(h) = z′(h) = 0 ∀h. That is, player A wins the tournament with

probability zero, and shifting resources from battle r to r − 1 does not improve this

probability. However, consider an alternative reallocation, by which player A spends

any positive share of a0 on every remaining battle. Our assumptions on p imply that A

must win each remaining battle with a strictly positive probability, resulting in a strictly

positive probability that A wins the tournament. It follows that x0 = a0 is not a best

response to B’s even-split strategy at (i0, j0).

3.2 Uniqueness

While multiple subgame perfect equilibria may exist, all subgame perfect equilibria are in

even-split strategies. To establish this result, we make use of the fact that Blotto games

are constant-sum games and, therefore, have the following property:17

17Lemma 2 is a well-known property of constant-sum games. However, to our knowledge all published
proofs establish the property for finite constant-sum games only. For completeness, a proof of the result
for games with arbitrary strategy spaces (along the same lines as the standard proof) is in the Appendix.
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Lemma 2. Consider a two-player extensive form game with mixed strategy sets S and T .

Suppose player A’s expected payoff in strategy profile (s, t) ∈ S × T is π(s, t) and player

B’s expected payoff is c− π(s, t), for some c. If the strategy profiles (s1, t1) and (s2, t2)

are Nash equilibria of the game, so are (s1, t2) and (s2, t1).

Since subgame perfect equilibria are strategy profiles that induce Nash equilibria in

every subgame of an extensive form game, Lemma 2 immediately extends to subgame

perfect equilibria.

Let (σAeven, σ
B
even) be a pair of even-split subgame perfect equilibrium strategies of

the sequential majoritarian Blotto game (which exists, as shown above). Suppose that

(σA, σB) is another pure strategy subgame perfect equilibrium. By Lemma 2, the profile

(σA, σBeven) is then also a subgame perfect equilibrium. Recall that in Step 2 in Section

3.1 we showed that z′(h) is strictly negative. This implies that, if player B plays an

even-split strategy, then every subgame-perfect best reply by player A is an even-split

strategy.18 Hence, σA must be an even-split strategy, and by reversing the roles of the

players one can similarly show that σB must be an even-split strategy.

Next, suppose there exists a subgame perfect equilibrium in mixed strategies, i.e., at

least one player randomizes over at least two pure strategies. Suppose this is player A,

and call his mixed strategy ξA. By Lemma 2, the profile (ξA, σBeven) is also a subgame

perfect equilibrium, which implies that every pure strategy in the support of ξA is a

subgame perfect best reply to σBeven. Again using Step 2 in Section 3.1, this means that

every pure strategy in the support of ξA must be an even-split strategy. Therefore, any

randomization in equilibrium must involve only even-split strategies.

4 Contest Length and the Probability of Victory

This section examines how the outcome of the sequential majoritarian Blotto game

depends on the the number of battlefields.

4.1 Individual-battle advantage

Suppose we take a sequential N -battle game and increase N . If we do not change the

initial resource budgets, the players will be forced to spread their fixed resources over an

increasingly large number of battlefields. Proposition 1 establishes that players react to

this change by scaling back their investments proportionally in all battles. We will show

that this scaling-back typically helps the player who is more likely to win an individual

battle of the contest. We call this player the “advantaged player.” In some important

cases the advantaged player is the player with the larger resources, but this does not

always have to be so.

18A subgame-perfect best reply is a strategy that is a best reply at all subgames.
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Note that in every equilibrium of the N -battle Blotto game, player A wins each

individual battle with probability p(ā/N, b̄/N), and B wins each battle with probability

1− p(ā/N, b̄/N). To help motivate our notion of single-battle advantage, consider the

following contest success function:

p(x, y) =


x+ c

x+ c+ y + d
if x+ c+ y + d > 0,

1/2 if x+ c+ y + d = 0

(c, d ≥ 0). (9)

If c = d = 0, the function in (9) boils down to the Tullock lottery function (3). Note that

the Tullock function is homogeneous of degree zero, so that each player’s probability of

winning a single battle depends on the players relative (instead of absolute) efforts in

that battle. In this case, the length of the tournament has no effect on the distribution of

outcomes in any individual battle—in equilibrium of the N -battle tournament, player A

wins each battle with probability p(ā/N, b̄/N) = p(ā, b̄). Thus, player A has an advantage

if p(ā, b̄) > 1/2, and player B has an advantage if p(ā, b̄) < 1/2. The identity of the

advantaged player depends on the players’ resource budgets but not on the length of the

contest. Moreover, if p is symmetric (i.e., p(x, y) = 1− p(y, x)), the advantaged player is

the player who has the larger initial resource budget.

On the other hand, if c > 0 or d > 0 or both, p(ā/N, b̄/N) depends on N and

converges to c/(c+ d) as N increases. As long as N is sufficiently large, player A has an

advantage if c > d, while B has an advantage if c < d. In this case, the identity of the

advantaged player does not depend on ā or b̄. Moreover, if p is symmetric (i.e., c = d),

neither player has an advantage in the limit, regardless of the relative size of their initial

resource budgets.

4.2 An amplification result

Recall that player A wins the N -battle game if and only if A wins n = (N + 1)/2 battles

before player B wins n battles. Thus, player A’s win probability can be expressed in the

same way as (6), replacing i and j with n and replacing ρ with p(ā/N, b̄/N):

πN (ā, b̄) ≡
n−1∑
k=0

(
n+ k − 1

k

)
p(ā/N, b̄/N)n(1− p(ā/N, b̄/N))k. (10)

Player B’s probability of winning is then 1− πN (ā, b̄).

The following result provides conditions under which a large number of battlefields

amplifies a player’s existing individual-battle advantage.
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Proposition 3. Consider a sequential majoritarian Blotto game with N battlefields and

initial resource endowments ā > 0 and b̄ > 0. Define p = limN→∞ p(ā/N, b̄/N).

(a) If p > 1/2 (p < 1/2), player A (B) has a per-battle advantage for sufficiently large

N . As N →∞, the probability that player A (B) wins the tournament converges

to 1.

If p is homogeneous of degree zero and symmetric, statement (a) can be strengthened to

the following:

(b) If ā > b̄ (ā < b̄), player A (B) has a per-battle advantage for all N . The probability

that player A (B) wins the tournament is strictly increasing in N , and converges

to 1 as N →∞.

(c) If ā = b̄, then neither player has an advantage, and both players win the tournament

with probability 1/2, for all N .

Proposition 3 implies that splitting a shorter tournament into a larger number of

battles tends to increases the win probability of the advantaged player and tends to

decrease the win probability of the disadvantaged player. This, in turn, implies that the

advantaged player prefers to lengthen the contest, and the disadvantaged player prefers

to shorten it.

To gain an intuition for this result, it will be helpful to transform a player’s win

probability into the following form (which is also used in the proof of Proposition 3 in

the Appendix):

Lemma 4. The expression in (10) is equivalent to

πN (ā, b̄) =

N∑
k=n

(
N

k

)
p(ā/N, b̄/N)k(1− p(ā/N, b̄/N))N−k. (11)

Note that (11) is simply the probability that A wins more than half out of a total

N independent battles, assuming that all N battles are fought out (instead of ending

the game once the first player has won a majority of battles). The same logic as in the

Condorcet Jury Theorem now applies: If winning the contest depends only on winning a

majority of battles, and the outcomes of the battles are independent, then even a slightly

higher probability of victory in every individual battle compounds over the course of a

long tournament. In the limit, a long enough contest selects the advantaged player with

certainty.

However, Proposition 3 is more than just an application of the Condorcet Jury

Theorem, as the win probabilities in the individual battles are not exogenous in our

context. Instead they are chosen by the players to maximize their chances of winning
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the N -battle tournament. Thus, Proposition 3 relies on the even-split nature of the

equilibrium in the N -battle tournament, which we established in Propositions 1.

4.3 Further examples

We conclude the section with a several examples that illustrate further aspects of the

dependence of players’ win probabilities on the length of the contest, in cases that are

not covered by Proposition 3.

Example 1. Consider the contest success function in (9), with c = d = 1: p(x, y) =

(x + 1)/(x + y + 2). Suppose ā = 3 and b̄ = 1.19 In the even-split equilibrium of

the N -battle tournament, player A wins each battle with probability p(ā/N, b̄/N) =

(3/N + 1)
/[

4/N + 2
]
> 1/2, which means player A has an individual-battle advantage

for all N . Note, however, that p(ā/N, b̄/N) is decreasing in N and converges to 1/2. An

increase in the number of battles is now accompanied by a decrease in the advantaged

player’s probability of winning each battle. The left panel in Figure 1 shows that the

second effect dominates the first: As N →∞, player A’s probability of winning the entire

tournament decreases and converges to 1/2.

Example 1

1 5 9 99 199 299

0

.5

1

N

Dampening

Example 2

1 5 9 13 17 21

0

.5

1

N

.8670

Example 3

1 5 9 99 199 299

0

.5

1

N

.6318

πN (ā, b̄) (= probability that A wins the N -battle contest)

p(ā/N, b̄/N) (= probability that A wins an individual battle of the N -battle contest)

Figure 1: Win probability as a function of contest length.

Example 2. Consider the same contest success function as in Example 1, but suppose

that ā = 20 and b̄ = 5. In contrast to the previous example, an increase in the number of

battles first amplifies A’s per-battle advantage. The center panel in Figure 1 shows that

πN (ā/N, b̄/N) reaches a maximum of 0.8670 at N = 11 and begins to decrease thereafter.

19The contest success function is not covered by Proposition 3 (a) because p = 1/2, and it is not
covered by Proposition 3 (b)–(c) because p is not homogeneous of degree 0.
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Example 3. Consider the contest success function

p(x, y) =
1

2

[
1 +

(x− y)(x2 + y2)1/4

x+ y

]

and suppose that ā = 0.25 and b̄ = 0.05. Since p is symmetric but ā > b̄, player A wins

each battle with probability p(ā/N, b̄/N) > 1/2, so player A has an individual-battle

advantage for all N .20 As was the case in Example 1, p(ā/N, b̄/N) is decreasing in N

and converges to 1/2 as N →∞. The right panel in Figure 1 shows that, unlike in the

previous example, player A’s probability of winning the tournament converges to 0.6318.

5 Endogenous Budget Choice

We now study an extended model in which players simultaneously choose the size of their

budgets at an initial fundraising stage, observe these choices, and then play the N -battle

Blotto game. We call such games sequential Blotto game with endogenous budgets. The

budget choice adds an additional layer of competition to our model. While the second

stage—the sequential Blotto tournament—is still a constant-sum game, the overall model

is now variable-sum.

We assume that both players attach value 1 to a tournament win and 0 to a loss.

The cost function of choosing budgets ā and b̄ is linear and given by CA(ā) = cAā and

CB(b̄) = cB b̄, respectively, with cA, cB > 0. We focus on the case where p is symmetric

and homogeneous of degree zero. Note that this structure is equivalent to one in which

players have the symmetric linear cost functions but asymmetric valuations of winning.

After the initial fundraising stage is completed, our main result implies that both

players will split their budgets evenly across the N stages of the Blotto contest. The

probability that player A wins the contest is then given by (10). At the fundraising stage,

therefore, player A maximizes the following payoff function with respect to ā:

uAN (ā, b̄) = πN (ā, b̄)− CA(ā) =
N∑
k=n

(
N

k

)
p(ā, b̄)k

(
1− p(ā, b̄)

)N−k − cAā. (12)

(We used the fact that p is homogeneous of degree zero, i.e., p(ā/N, b̄/N) = p(ā, b̄).)

Similarly, player B maximizes

uBN (ā, b̄) =
(
1−πN (ā, b̄)

)
−CB(b̄) =

[
1−

N∑
k=n

(
N

k

)
p(ā, b̄)k

(
1−p(ā, b̄)

)N−k]− cB b̄. (13)

20One can verify that this CSF satisfies our assumptions on p, including the concavity condition (1),
in the relevant ranges x ∈ [0, 0.25] and y ∈ [0, 0.05]. Thus, an even-split equilibrium exists.
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Thus, the sequential Blotto game with endogenous budgets can be interpreted as a

one-shot, variable-sum contest with linear costs and contest success function πN ( · ). A

Nash equilibrium of this one-shot game describes the initial budget choices in subgame

perfect equilibrium of our extended Blotto game.

5.1 Pure strategy equilibrium

Let us first consider the possibility of a pure strategy equilibrium. Note that player

i ∈ {A,B} will never choose a budget greater than 1/ci, as the value of competing in

the second stage is at most 1. If player B chooses budget b̄ ∈ (0, 1/cB], player A’s payoff

function uA is continuous in ā, and a value ā ∈ [0, 1/cA] exists that maximizes (12). This

value satisfies the first-order condition

∂uAN
∂ā

= 0 ⇐⇒ px(ā, b̄)

[
n

(
2n− 1

n

)
p(ā, b̄)n−1(1− p(ā, b̄))n−1

]
= cA. (14)

Similarly, given ā ∈ [0, 1/cA], player B’s optimal budget satisfies the first-order condition

∂uBN
∂b̄

= 0 ⇐⇒ −py(ā, b̄)
[
n

(
2n− 1

n

)
p(ā, b̄)n−1(1− p(ā, b̄))n−1

]
= cB. (15)

Dividing (14) by (15) yields the following necessary condition for an interior equilibrium

in pure strategies:
−px(ā, b̄)

py(ā, b̄)
=
cA
cB
. (16)

Since p is homogeneous of degree zero, by Euler’s Theorem we further have

āpx(ā, b̄) + b̄py(ā, b̄) = 0, (17)

and combining (16) and (17) shows that, in any interior pure strategy equilibrium, the

players’ relative budgets satisfy
ā

b̄
=
cB
cA
. (18)

To say more about the absolute levels of ā and b̄, we use (18) to write

p(ā, b̄) = p

(
ā, ā

cA
cB

)
= p(cB, cA) ≡ p̄. (19)

Substituting (19) into (14), we get

px

(
ā, ā

cB
cA

)
= cA

[
n

(
2n− 1

n

)
p̄n−1(1− p̄)n−1

]−1
. (20)

20



If n increases to n+1, the term n
(
2n−1
n

)
in (20) changes by a factor 2(2n+1)/n = 4+2/n,

which is strictly greater than 4 for all n, and converges to 4 as n → ∞. The term

p̄n−1(1− p̄)n−1 changes by a factor p̄(1− p̄) ∈ (0, 1/4]. Consider the following two cases:

– If cA = cB then p̄ = 1/2 and p̄(1 − p̄) = 1/4. In this case, the term in square

brackets increases in n, which implies that the right-hand side of (20) decreases.

– If cA 6= cB then p̄ 6= 1/2 and p̄(1 − p̄) < 1/4. In this case, the term in square

brackets in (20) decreases in n if n is sufficiently large, which implies that the

right-hand side of (20) increases.

As for the left-hand side, since p is homogeneous of degree zero, px is homogeneous

of degree −1. It follows that the value of ā that solves (20) must be increasing in n

(and hence N) if cA = cB, but will be asymptotically deceasing if cA 6= cB. Since b̄ is

proportional to ā by (18), the same property applies to player B’s budget choice. This

leads to the following result:

Proposition 5. Fix cA, cB, and p symmetric and homogeneous of degree 0. Consider two

sequential Blotto games with endogenous budgets, involving N and N ′ battles, respectively,

with N ′ > N . If interior pure strategy equilibria exist for both games, the following is

true:

1. If players are equally cost effective (i.e., cA = cB), the equilibrium budgets ā and b̄

are larger in the N ′-battle contest than in the N -battle contest.

2. If players are not equally cost effective (i.e., cA 6= cB), and N is sufficiently large,

the equilibrium budgets ā and b̄ are larger in the N -battle contest than in the N ′-battle

contest.

This result highlights the important role of cost asymmetries in our extended model.

Even a slight cost asymmetry could lead to the opposite comparative statics of the pure

strategy equilibrium with respect to N , compared to the case of symmetric costs.

5.2 Mixed strategy equilibrium

Pure strategy equilibria will not exist once N is sufficiently large. To see this, note that

(for homogeneous and symmetric p) Proposition 3 implies that player A’s probability of

winning the tournament converges pointwise to

lim
N→∞

πN (ā, b̄) = pall-pay(ā, b̄) =


1 if ā > b̄,

1/2 if ā = b̄,

0 if ā < b̄.

(21)

This is the contest success function of a one-shot, all-pay auction without noise.
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Baye et al. (1996; Theorem 1, p. 293) show that the one-shot contest with success

function pall-pay, symmetric prizes V = 1, and constant marginal costs cA and cB, has

a unique Nash equilibrium. In this equilibrium, the “strong” player (player A, say,

with cA < cB) randomizes ā uniformly over the interval [0, 1/cB]. The “weak” player

(player B with cB < cA) sets b̄ = 0 with probability 1− cA/cB, and with the remaining

probability cA/cB randomizes b̄ uniformly over [0, 1/cB]. If the players are symmetric

(i.e., cA = cB = c), this profile reduces to both players drawing their budgets uniformly

from [0, 1/c].

In the all-pay auction, a player wins with certainty if he spends an infinitesimal

amount more than his opponent. As an approximation of a N -battle Blotto game with

endogenous budgets and large N , this implies that any player whose budget is slightly

larger than that of the opponent wins with probability almost one. It is easy to see that

this implies that at least one player would like to deviate from any pure strategy profile

(ā, b̄). Instead, any subgame perfect equilibrium of the large-N Blotto game must involve

randomization at the fundraising stage.

The question is whether the uniform equilibrium that arises in the all-pay auction

limit game approximates the first-stage equilibrium behavior in our extended Blotto

game, if N is large but finite. There are, to our knowledge, no results that imply that this

is the case, and we will not pursue this issue here.21 We can, however, show that uniform

randomization is an ε-equilibrium of large N -battle games. (ε-equilibria are strategy

profiles in which no player can improve his payoff by more than ε when switching to

another strategy.)

Proposition 6. Let p be a symmetric and h.o.d. 0 contest success function. Without

loss of generality, assume that cA ≤ cB. For every ε > 0, there exists N∗ such that the

following is true for all N > N∗: In the N -battle Blotto game with endogenous budgets,

an ε-equilibrium exists in which player A randomizes his budget using to cumulative

distribution function GA(ā) = cB ā, and player B randomizes his budget using to the

cumulative distribution function GB(b̄) = 1− cA/cB + cAb̄.

Proposition 6 shows that the all-pay auction without noise can be regarded as a

suitable approximation of majoritarian Blotto games with endogenous budgets, provided

the contest success function that governs each individual battle of the Blotto game is

symmetric and homogeneous of degree 0.

21The question whether equilibria of discontinuous games are similar to equilibria of close-by continuous
games has long been of interest to game theorists. Dasgupta and Maskin (1986, p. 38) make a statement
which suggests that, for the type of discontinuity present in the all-pay auction, this is the case; however,
a formal result is not proven. Börgers (1991) examines the approximation of a continuous game by
a sequence of discontinuous games (whereas we have a sequence of continuous games converging to a
discontinuous game). Bagh (2010) studies the approximation of a discontinuous game by a sequence of
continuous games, but to verify his conditions one needs to know the equilibria of the continuous games
(whereas we know the equilibrium of the discontinuous game).
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Lastly, what happens if p is not homogeneous of degree zero? Play in the Blotto

game with endogenous budgets can be very different from that described in Proposition

6. To illustrate this, consider the CSF p(x, y) = (x+ 1)/(x+ y + 2). One can show that

the probability that player A wins in equilibrium of an N -battle Blotto game converges

to limN→∞ πN (ā, b̄) = 1/2. Thus, in the limit a player’s budget has no influence on his

probability of winning. Moreover, convergence of πN (·) is uniform, which implies that a

pair of zero budgets is an ε-equilibrium of every sufficiently long Blotto game.

6 Conclusion

We examined a two-player, multi-battle competition characterized by three main features:

The battles are fought sequentially; the player who first wins a majority of battles wins

the contest; and both players are endowed with fixed budgets that must be allocated

across the battles. We called such games sequential majoritarian Blotto games. The

tradeoffs the players face when deciding how much of their resources to invest in each

battle are not trivial. Yet, we showed that a very simple strategy—namely, to allocate the

same proportion of one’s initial resources to every battle—uniquely describes equilibrium

behavior in this game. Therefore, the intensity of fighting as well as the probability with

which a given player wins each individual battle remains constant from the beginning to

the end of the game. These dynamics contrast sharply with those arising in equilibrium

of sequential majoritarian non-Blotto games. Our findings are robust to the introduction

of differences across players, but sensitive to the introduction of differences across battles.

We also derived sufficient conditions under which a Condorcet Jury Theorem-type

“amplification effect” emerges in games with a large number of battles, i.e., the player

who is more likely to win any individual battle wins the N -battle game with probability

almost one if N is large. For homogeneous and symmetric contest success functions, this

is the player with the larger initial resource budget. In an extended model in which

players invest in their resource budgets prior to the Blotto contest, the amplification

effect implies that the games’ payoff functions approach those of the all-pay auction

without noise, as N becomes large. The mixed strategy equilibrium of the all-pay auction

then approximates (in the sense of ε-approximation) the players’ budget choice in this

extended game. For contests of shorter length, pure strategy equilibria may exist. When

they do, budgets may respond differently to an increase in the contest length, depending

on whether the players’ costs are symmetric or not.

Overall, the dynamics of effort allocation in sequential majoritarian Blotto contests

contrast sharply with those arising in equilibrium of sequential majoritarian non-Blotto

games. The question of whether the resources that a player can mobilize can be chosen

and augmented during the contest, or whether players have a fixed budget from which
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they must draw resources over time, is essential. This distinction can explain why the

intensity of fighting is strongly path dependent in some conflicts but not in others.

Appendix

Remaining steps in the proof of Proposition 1

Here we complete the proof of the existence of an even-split equilibrium in the sequential

majoritarian Blotto game. For the most part, the argument was developed in Section 3.1.

What remains to be done is the following:

A. Show that vi,j > vi+1,j−1 for all (i, j) ≥ (0, 1), where vi,j is defined in (6).

B. Repeat the same steps as in the text for the following cases: (i) i0 = 1 and j0 > 1;

(ii) i0 > 1 and j0 = 1.

Part A. Since ρ ∈ (0, 1), (6) implies that

vi,j ∈ (0, 1) ∀(i, j) ≥ (1, 1), v0,j = 1 ∀j ≥ 1, vi,0 = 0 ∀i ≥ 1. (22)

The proof is by induction. Fix d ≥ 1 and suppose that

vi,j > vi+1,j−1 ∀(i, j) ≥ (0, 1) s.t. i+ j = d. (23)

Take (i, j) ≥ (0, 1) with i+ j = d+ 1. If i ≥ 1 and j ≥ 2, write

vi,j = ρvi−1,j + (1− ρ)vi,j−1 and vi+1,j−1 = ρvi,j−1 + (1− ρ)vi+1,j−2.

By (23) we have

vi,j − vi+1,j−1 = ρ(vi−1,j − vi,j−1) + (1− ρ)(vi,j−1 − vi+1,j−2) > 0.

If i = 0 then j ≥ 2 and (22) implies

v0,j = 1, v1,j−1 ∈ (0, 1) ⇒ v0,j − v1,j−1 > 0.

Similarly, if j = 1 then i ≥ 1 (22) implies

vi,1 ∈ (0, 1), vi+1,0 = 0 ⇒ vi,1 − vi+1,0 > 0.

Thus, for all (i, j) ≥ (0, 1) with i+ j = d+ 1, we have vi,j > vi+1,j−1. Now note that (23)

is clearly true for d = 1 (v0,1 = 1 > 0 = v1,0), and the result follows.
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Part B. First consider case (i). Since i0 = 1, once player A wins battle r he has won

the tournament. Therefore, the term P (h) (i.e., the probability that A wins battle r and

battle r − 1) is not defined. The term Q(h) (i.e., the probability that A loses battle r

and battle r − 1) is defined as before and strictly increasing in h. After battle r and (if

necessary) battle r − 1 are over, the tournament will be in some state

(i, j) ∈ Z =
{

(0, j0), (0, j0 − 1), (1, j0 − 2)
}
.

For γ > 0 and x0 ∈ [0, a0], the probabilities vi,j that player A wins the tournament at

(i, j) ∈ Z can therefore be ranked as follows:

1 = v0,j0 = v0,j0−1 > v1,j0−2 ≥ 0.

Going back to state (i0, j0), player A wins the tournament with probability

z(h) = 1−Q(h) +Q(h)v1,j0−2.

Note that z′(h) = Q′(h)[v1,j0−2 − 1] < 0, and it follows that A can increase his chance of

winning the tournament by reducing h.

Next, consider case (ii). Since j0 = 1, once player A loses battle r he has lost the

tournament. Therefore, the term Q(h) is not defined; the term P (h) is defined as before

and strictly decreasing in h. After battle r and (if necessary) battle r − 1 are over, the

tournament will be in some state

(i, j) ∈ Z =
{

(i0 − 2, 1), (i0 − 1, 0), (i0, 0)
}
.

For γ > 0 and x0 ∈ [0, a0], the probabilities vi,j that player A wins the tournament at

(i, j) ∈ Z can therefore be ranked as follows:

1 ≥ vi0−2,1 > vi0−1,0 = vi0,0 = 0.

Going back to state (i0, j0), player A wins the tournament with probability

z(h) = P (h)vi0−2,1.

Note that z′(h) = P ′(h)vi0−2,1 < 0, and it follows that A can increase his chance of

winning the tournament by reducing h.

Proof of Lemma 2

In Nash equilibrium of a constant-sum game, player A maximizes π by choice of s ∈ S,

and player B minimizes π by choice of t ∈ T . Let (s1, t1) and (s2, t2) be two Nash
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equilibria. Because (s1, t1) is an equilibrium,

π(s1, t1) ≥ π(s2, t1) and π(s1, t1) ≤ π(s1, t2) (24)

(otherwise player A would deviate from s1 to s2, or player B would deviate from t1 to

t2). Similarly, because (s2, t2) is an equilibrium,

π(s2, t2) ≥ π(s1, t2) and π(s2, t2) ≤ π(s2, t1). (25)

Combining the four weak inequalities in (24)–(25), we get π(s1, t1) ≥ π(s2, t1) ≥
π(s2, t2) ≥ π(s1, t2) ≥ π(s1, t1), and it follows that

π(s1, t1) = π(s2, t1) = π(s2, t2) = π(s1, t2) = π(s1, t1). (26)

By definition, π(s1, t1) is the maximum payoff A can obtain if B uses strategy t1. By the

first equality in (26), if A uses strategy s2 against t1 he obtains exactly this maximum

payoff; hence s2 is a best reply to t1. Similarly, π(s2, t2) is the minimum payoff that

A can obtain if he uses strategy s2. By the second equality in (26), if B uses strategy

t1 against s2 then A obtains exactly this minimum payoff; hence t1 is a best reply to

s2. It follows that the profile (s2, t1) must also be a Nash equilibrium. An analogous

argument, using the third and fourth equality in (26), establishes that (s1, t2) is a Nash

equilibrium.

Proof of Lemma 4

Consider a vector ν = (ν1, ν2, . . . , νN ) of i.i.d. draws νi ∈ {0, 1}, where Pr[νi = 1] = ρ.

Given ν ∈ {0, 1}N , define

Wi(ν) =
i∑

i′=1

νi′ , m(ν) =

{
min

{
i : Wi = n

}
if WN ≥ n,

−1 otherwise.

Observe that WN (ν) ≥ n if and only if m(ν) ≥ n. Thus,

Pr
[
WN (ν) ≥ n

]
=

N∑
WN=n

(
N

WN

)
ρWN (1− ρ)N−WN

=
N∑

m=n

(
m− 1

m− n

)
ρn(1− ρ)m−n = Pr

[
m(ν) ≥ n

]
. (27)

To understand the second sum in (27), take m ≥ n. By definition of m(ν), ρ(ν) = m

if and only if
∣∣{i ≤ m : νi = 1}

∣∣ = n,
∣∣{i ≤ m : νi = 0}

∣∣ = m − n, and νm = 1. Each

term in the sum is the probability that ν has these properties for given m, and we iterate
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over m ∈ {n, . . . , N}. Now substitute k for WN in the first sum in (27), substitute k for

m− n in the second sum, and substitute p(ā/N, b̄/N) for ρ in both sums, to get

N∑
k=n

(
N

k

)
p(ā/N, b̄/N)k(1− p(ā/N, b̄/N))N−k

=
n−1∑
k=0

(
n+ k − 1

k

)
p(ā/N, b̄/N)n(1− p(ā/N, b̄/N))k.

These are the expressions in (11) and (10), respectively.

Proof of Proposition 3

In Proposition 1 we have shown that, in every subgame perfect equilibrium of the

sequential best-of-N Blotto game, along the equilibrium path players A and B invest

ā/N > 0 and b̄/N > 0 into each battle, respectively. Thus, player A wins each individual

battle with probability ρN = p(ā/N, b̄/N). Using Lemma 4, player A’s probability of

winning the tournament can be written as

πN (ā, b̄) =

N∑
k=n

(
N

k

)
(ρN )k(1− ρN )N−k. (28)

To show part (a) of the result, suppose p > 1/2 (if p < 1/2 the argument is analogous).

There exists δ > 0 and N∗ such that ρN > 1/2 + δ for all N > N∗. Since, for given

N , (28) increases in ρN , a lower bound for π(ā, b̄, N) can be obtained by substituting

ρN = 1/2 + δ into (28):

π =
N∑
k=n

(
N

k

)
(1/2 + δ)k(1/2− δ)N−k,

so that π(ā, b̄, N) ≥ π for all N > N∗. Since δ > 0, the Condorcet Jury Theorem (see,

e.g., Boland 1998) now implies that π → 1, and therefore π(ā, b̄, N)→ 1, as N →∞.

To show parts (b) and (c) of the result, suppose p is homogeneous of degree zero and

symmetric. Then

ρN = p(ā/N, b̄/N) = p(ā, b̄) T 1/2 iff ā T b̄

for all N . Thus, the Condorcet Jury Theorem can be applied directly to show that ā > b̄

implies π(ā, b̄, N) is strictly increasing in N , and π(ā, b̄, N)→ 1 as N →∞. (The results

for ā < b̄ and ā = b̄ are analogous.)
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Proof of Proposition 6

As we explained in the text, in anticipation of the even-split equilibrium in the Blotto

subgame, we can view the budget choice stage as a one-shot contest in which A and B

invest efforts x and y,22 pay linear costs CA(x) = cAx and CB(y) = cBy, and A wins

with probability

πN (x, y) ≡
N∑
k=n

(
N

k

)
p(x, y)k

(
1− p(x, y)

)N−k
,

where p is symmetric, homogeneous of degree 0, increasing in x and decreasing in y. Note

that these properties of p transfer to πN . Efforts larger than 1/ci are not individually

rational; hence the strategy space can be restricted to [0, 1/cA]× [0, 1/cB].

Consider the all-pay auction game with constant marginal effort costs cA and cB and

contest success function

pall-pay(x, y) =


1 if x > y,

1/2 if x = y,

0 if x < y

Note that
∣∣πN (x, y) − pall-pay(x, y)

∣∣ ≤ 1/2 for all x, y. Let GA(x) = cBx and GB(y) =

1 − cA/cB + cAy be the effort distributions in the Nash equilibrium of this all-pay

auction. We will show that for every ε > 0 there exists N(ε) such that N > N(ε)

implies the following: For every x ∈ [0, 1/cA], E
[
πN (x, y)

∣∣x, y ∼ GB
]

is within ε of

E
[
pall-pay(x, y)

∣∣x, y ∼ GB
]
; and for every y ∈ [0, 1/cB], E

[
1 − πN (x, y)

∣∣y, x ∼ GA
]

is

within ε of E
[
1− pall-pay(x, y)

∣∣y, x ∼ GA]. The result is then immediate.

Fix λ ∈ (0,∞) and denote by

qN (λ) ≡ πN (x, λx) = πN (1, λ)

player A’s success probability in the N -battle contest if B spends λ times the amount A

spends (assuming A spends a positive amount). Monotonicity of p implies that qN (λ)

decreases strictly in λ; and symmetry implies qN (λ) = 1− qN (1/λ) and qN (1) = 1/2.

For ε ∈ (0, 1), let λN (ε) > 1 be the unique λ that solves

qN (λ) =
ε

2
.

This means: In order to hold A to a success probability of ε/2, player B must spend

λN (ε) times the amount A spends. Equivalently, by the symmetry and homogeneity

properties of πN , player A wins with probability 1− ε/2 if B spends 1/λN (ε) times the

22Throughout the proof we replace ā with x and b̄ with y for better readability.
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amount A spends. λN (ε) is well defined for sufficiently large N . Moreover, as N →∞
Proposition 3 implies that πN (x, y)→ pall-pay(x, y) pointwise. For given ε, this implies

that λN (ε)→ 1 as N →∞.

Since we restrict attention to (x, y) ∈ [0, 1/cA] × [0, 1/cB], as long as (x, y) 6= (0, 0)

we have ∣∣∣πN (x, y)− pall-pay(x, y)
∣∣∣ ≥ ε

2
iff y ∈

[
1

λN (ε)
x, min

{
1

cB
, λN (ε)x

}]
. (29)

The length of the interval
[
x/λ(ε), min

{
1/cB, λ(ε)x

}]
is at most [1− 1/λN (ε)2]/cB; see

Figure 2.

x

y

1
cA

1
cB

1
cB

45◦

x =
λN

(ε)
y

y
=
λN

(ε
)x

πN (x, y) ≥ 1− ε/2

pall-pay(x, y) = 1

πN (x, y) ≤ ε/2

pall-pay(x, y) = 0

1
λN (ε)cB

1
λN (ε)cB

(
1− 1/λN (ε)2

)/
cB

Figure 2: Partitioning of the strategy space.

If player B randomizes effort y according to the cumulative distribution function

GB(y) = 1− cA/cB + cAy, player A’s expected probability of winning the N -battle Blotto

game with effort x ∈ [0, 1/cA] can be written as

E
[
πN (x, y)

∣∣x, y ∼ GB] = E
[
pall-pay(x, y)

∣∣x, y ∼ GB]±DA
N (ε),
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where DA
N (ε) is a function satisfying

0 < DA
N (ε) ≤

(
1− cA

cB

)
ε

2
+
cA
cB

((
1− 1

λN (ε)2

)
1

2
+

1

λN (ε)2
ε

2

)

=
ε

2
+
cA
cB

(
1− 1

λN (ε)2

)(
1

2
− ε

2

)
.

A sufficient condition for DA
N (ε) ≤ ε is

λN (ε) ≤
(

1− ε

1− ε
cB
cA

)−1/2
≡ λA(ε).

Note that λ
A

(ε) > 1 for all 0 < ε < 2cA/[cA + cB], and λN (ε)→ 1 as N →∞. It follows

that for every ε > 0 there exists N
A

(ε) such that, for N > N
A

(ε), E
[
πN (x, y)

∣∣x, y ∼ GB]
differs from E

[
pall-pay(x, y)

∣∣x, y ∼ GB] by no more than ε.

Next, repeat the exercise for player B, who wins with probability 1−πN in the Blotto

game and with probability 1− pall-pay in the all-pay auction, respectively. Assume that

player A randomizes x uniformly on [0, 1/cB] ⊆ [0, 1/cA]. Given x ∈ [0, 1/cB] we have∣∣∣(1−πN (x, y)
)
−
(
1−pall-pay(x, y)

)∣∣∣ ≥ ε

2
iff x ∈

[
1

λN (ε)
y, min

{
1

cB
, λN (ε)y

}]
. (30)

The length of the interval on the right side of (30) is at most [1−1/λN (ε)2]/cB, and player

B’s expected probability of winning the N -battle Blotto game with effort y ∈ [0, 1/cB]

can be written as

E
[
1− πN (x, y)

∣∣y, x ∼ GA] = E
[
1− pall-pay(x, y)

∣∣y, x ∼ GA]±DB
N (ε),

where DB
N is a function satisfying

0 < DB
N (ε) ≤

(
1− 1

λN (ε)2

)
1

2
+

1

λN (ε)2
ε

2
.

A sufficient condition for DB
N (ε) ≤ ε is

λN (ε) ≤
(

1− ε
1− 2ε

)1/2

≡ λB(ε).

Note that λ
B

(ε) > 1 for all 0 < ε < 1, and λN (ε) → 1 as N → ∞. It follows that for

every ε > 0 there exists N
B

(ε) such that, for N > N
B

(ε), E
[
1 − πN (x, y)

∣∣y, x ∼ GA
]

differs from E
[
1− pall-pay(x, y)

∣∣y, x ∼ GA] by no more than ε.

Now set N(ε) ≡ max
{
N
A

(ε), N
B

(ε)
}

and the result follows.
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