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Appendix C Technical Appendix

C.1 Proof of Lemma 1

We can express the joint probability of s, f , and k as

h(s, f, k) = h(k)h(s, f |k) =

(
N

k

)
rk(1 − r)N−k

(
k

s

)
θs(1 − θ)k−s

(
N − k

f

)
θf(1 − θ)N−k−f .

Considering the relation

h(k|s, f)

h(k − 1|s, f)
=

h(s, f, k)/h(s, f)

h(s, f, k − 1)/h(s, f)
,

we have

h(k|s, f) ∝
1

(k − s)!(N − k − f)!
rk(1 − r)N−k.

Normalizing, we obtain the desired expression. �

C.2 Proof of Proposition 2

We first derive the necessary moment expressions. Let h(s) =
(
N
s

)
(rθ)s(1 − rθ)N−s be the

unconditional probability of the manager announcing s successes at date 1. Using Equation

i



(A6), the expected first-period return under the sanitization strategy is given by

E[Ra
1(s)] =

N∑

s=0

h(s)Ra
1(s)

=
N∑

s=0

(
N

s

)
(rθ)s(1 − rθ)N−su

s[πu+ (1 − π)d]N−s

[ψu+ (1 − ψ)d]N

=

N∑

s=0

(
N

s

)
(rθu)s[(1 − rθ){πu+ (1 − π)d}]N−s ·

1

[ψu+ (1 − ψ)d]N

=

[
rθ · u+ (1 − rθ){πu+ (1 − π)d}

ψu+ (1 − ψ)d

]N

≡ [rθγ0 + (1 − rθ)γ1]
N , (A37)

where we have defined γ0 ≡ u
ψu+(1−ψ)d

> 1 and γ1 ≡ πu+(1−π)d
ψu+(1−ψ)d

< 1. Similarly, we can

calculate

E(Ra
2(s)|s) =

N∑

k=s

h(k|s)Ra
2(s)

=
N∑

k=s

(
N − s

k − s

)
qk−s(1 − q)N−k ukdN−k

us[πu+ (1 − π)d]N−s

=

N∑

k=s

(
N − s

k − s

)
(qu)k−s[(1 − q)d]N−k ·

1

[πu+ (1 − π)d]N−s

=

(
qu+ (1 − q)d

πu+ (1 − π)d

)N−s

≡ γN−s
2 > 1,
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where we have defined γ2 ≡
qu+(1−q)d
πu+(1−π)d

> 1. Further,

E[E(Ra
2(s)|s)] =

N∑

s=0

h(s)E(Ra
2(s)|s)

=

N∑

s=0

(
N

s

)
(rθ)s(1 − rθ)N−s

(
qu+ (1 − q)d

πu+ (1 − π)d

)N−s

=

[
rθ + (1 − rθ)

(
qu+ (1 − q)d

πu+ (1 − π)d

)]N

≡ [rθ + (1 − rθ)γ2]
N > 1, (A38)

E[Ra
1(s) · E(Ra

2(s)|s)] =

N∑

s=0

h(s) ·Ra
1(s)E(Ra

2(s)|s)

=
N∑

s=0

(
N

s

)
(rθ)s(1 − rθ)N−su

s[πu+ (1 − π)d]N−s

[ψu+ (1 − ψ)d]N

(
qu+ (1 − q)d

πu+ (1 − π)d

)N−s

=

N∑

s=0

(
N

s

)
(rθ)s(1 − rθ)N−su

s[qu+ (1 − q)d]N−s

[ψu+ (1 − ψ)d]N

=

[
rθ · u+ (1 − rθ){qu+ (1 − q)d}

ψu+ (1 − ψ)d

]N

≡ [rθγ0 + (1 − rθ)γ1γ2]
N .

From these moments we can compute the return autocovariance under the sanitization strat-

egy using the Law of Iterated Expectations,

cov(Ra
1(s), R

a
2(s))

= cov(Ra
1(s), E(Ra

2(s)|s))

= E[Ra
1(s) · E(Ra

2(s)|s)] −E[Ra
1(s)] · E[E(Ra

2(s)|s)]

= [rθγ0 + (1 − rθ)γ1γ2]
N − [{rθγ0 + (1 − rθ)γ1}{rθ + (1 − rθ)γ2}]

N .
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Comparing the terms inside the square brackets,

rθγ0 + (1 − rθ)γ1γ2 − {rθγ0 + (1 − rθ)γ1}{rθ + (1 − rθ)γ2}

= −rθ(1 − rθ)(γ2 − 1)(γ0 − γ1) < 0, (A39)

which implies that cov(Ra
1(s), R

a
2(s)) < 0 for all N .

Next, consider full disclosure. Let h(s, f) =
(
N
s

)(
N−s
f

)
(rθ)s[(1− r)θ]f (1− θ)N−s−f be the

unconditional probability of the manager announcing s successes and f failures at date 1.

Using this and Equation (A10), we can similarly calculate

E[Ra
1(s, f)] =

N∑

s=0

N−s∑

f=0

h(s, f) ·Ra
1(s, f)

=
N∑

s=0

N−s∑

f=0

(
N

s

)(
N − s

f

)
(rθ)s[(1 − r)θ]f(1 − θ)N−s−f u

sdf [ψu+ (1 − ψ)d]N−s−f

[ψu+ (1 − ψ)d]N

=

N∑

s=0

(
N

s

)
(rθu)s[(1 − r)θd+ (1 − θ){ψu+ (1 − ψ)d}]N−s ·

1

[ψu+ (1 − ψ)d]N

=

[
rθu+ (1 − r)θd+ (1 − θ){ψu+ (1 − ψ)d}

ψu+ (1 − ψ)d

]N

=

[
θ ·

ru+ (1 − r)d

ψu+ (1 − ψ)d
+ 1 − θ

]N

≡ [θγ3 + 1 − θ]N > 1, (A40)
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where we have defined γ3 ≡
ru+(1−r)d
ψu+(1−ψ)d

> 1. Further using Lemma 1 and Equation (A23),

E(Ra
2(s, f)|s, f) =

N−f∑

k=s

h(k|s, f)Ra
2(s, f)

=

N−f∑

k=s

(
N − f − s

k − s

)
rk−s(1 − r)N−f−k ukdN−k

usdf [ψu+ (1 − ψ)d]N−s−f

=

N−f∑

k=s

(
N − f − s

k − s

)
(ru)k−s[(1 − r)d]N−f−k ·

1

[ψu+ (1 − ψ)d]N−s−f

=

(
ru+ (1 − r)d

ψu+ (1 − ψ)d

)N−s−f

= γN−s−f
3 > 1.

So,

E[E(Ra
2(s, f)|s, f)] =

N∑

s=0

N−s∑

f=0

h(s, f) ·E(Ra
2(s, f)|s, f)

=

N∑

s=0

N−s∑

f=0

(
N

s

)(
N − s

f

)
(rθ)s[(1 − r)θ]f (1 − θ)N−s−f

(
ru+ (1 − r)d

ψu+ (1 − ψ)d

)N−s−f

=
N∑

s=0

(
N

s

)
(rθ)s

[
(1 − r)θ + (1 − θ)

(
ru+ (1 − r)d

ψu+ (1 − ψ)d

)]N−s

=

[
rθ + (1 − r)θ + (1 − θ)

(
ru+ (1 − r)d

ψu+ (1 − ψ)d

)]N

=

[
θ + (1 − θ)

(
ru+ (1 − r)d

ψu+ (1 − ψ)d

)]N

≡ [θ + (1 − θ)γ3]
N > 1, (A41)
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E[Ra
1(s, f) ·E(Ra

2(s, f)|s, f)]

=

N∑

s=0

N−s∑

f=0

h(s, f) · Ra
1(s, f)E(Ra

2(s, f)|s, f)

=
N∑

s=0

N−s∑

f=0

(
N

s

)(
N − s

f

)
(rθ)s[(1 − r)θ]f (1 − θ)N−s−f usdf

[ψu+ (1 − ψ)d]s+f
·

(
ru+ (1 − r)d

ψu+ (1 − ψ)d

)N−s−f

=

N∑

s=0

N−s∑

f=0

(
N

s

)(
N − s

f

)
(rθu)s[(1 − r)θd]f(1 − θ)N−s−f [ru+ (1 − r)d]N−s−f

[ψu+ (1 − ψ)d]N

=
N∑

s=0

(
N

s

)
(rθu)s[(1 − r)θd+ (1 − θ){ru+ (1 − r)d}]N−s ·

1

[ψu+ (1 − ψ)d]N

=

[
rθ · u+ (1 − r)θd+ (1 − θ){ru+ (1 − r)d}

ψu+ (1 − ψ)d

]N

=

[
ru+ (1 − r)d

ψu+ (1 − ψ)d

]N
≡ γN3 > 1.

Again,

cov(Ra
1(s, f), Ra

2(s, f)) = cov(Ra
1(s, f), E(Ra

2(s, f)|s, f))

= E[Ra
1(s, f) · E(Ra

2(s, f)|s, f)]− E[Ra
1(s, f)]E[E(Ra

2(s, f)|s, f)]

= γN3 − [{θγ3 + 1 − θ}{θ + (1 − θ)γ3}]
N .

Comparing the terms in the last line ignoring the exponent,

γ3 − {θγ3 + 1 − θ}{θ + (1 − θ)γ3} = −θ(1 − θ)(γ3 − 1)2 < 0, (A42)

which implies that cov(Ra
1(s, f), Ra

2(s, f)) < 0 for all N .

Finally, we prove that cov(Ra
1(s), R

a
2(s)) < cov(Ra

1(s, f), Ra
2(s, f)). First, using the Law
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of Iterated Expectations, observe that

E[Ra
1(s, f) · E(Ra

2(s, f)|s, f)]

= E

[
V a

1 (s, f)

V a
0

· E

(
V a

2

V a
1 (s, f)

|s, f

)]
=
E[V a

2 ]

V a
0

= E

[
V a

1 (s)

V a
0

· E

(
V a

2

V a
1 (s)

|s

)]
= E[Ra

1(s) · E(Ra
2(s)|s)], (A43)

or equivalently,

rθγ0 + (1 − rθ)γ1γ2 = γ3,

which can also be shown by a direct substitution for γ0, γ1, γ2, and γ3. Thus,

cov(Ra
1(s), R

a
2(s)) − cov(Ra

1(s, f), Ra
2(s, f))

= −E[Ra
1(s)] · E[E(Ra

2(s)|s)] + E[Ra
1(s, f)] ·E[E(Ra

2(s, f)|s, f)].

Inspecting Equations (A37), (A38), (A40), and (A41), we see that this expression is negative

for all N if it is so for N = 1. While we could substitute those equations, we proceed with

Equations (A39) and (A42) to calculate

cov(Ra
1(s), R

a
2(s)) − cov(Ra

1(s, f), Ra
2(s, f)) with N = 1

= θ(1 − θ)(γ3 − 1)2 − rθ(1 − rθ)(γ2 − 1)(γ0 − γ1)

=
θ(u− d)2

ψu+ (1 − π)d

[
(1 − θ)(r − ψ)2

ψu+ (1 − ψ)d
−
r(1 − rθ)(q − π)(1 − π)

πu+ (1 − π)d

]
,

where we have substituted the expressions for γ0, γ1, γ2, and γ3. Further substituting for

the definitions of π, ψ, and q, the square bracket in the last line can be rewritten as

(1 − θ)r2(1 − r)2(d−α − u−α)×
[

d−α − u−α

[ψu+ (1 − ψ)d][ru−α + (1 − r)d−α]2
−

d−α

[πu+ (1 − π)d][(1 − θ)ru−α + (1 − r)d−α]2

]
< 0,

after tedious but straightforward algebra. The inequality holds for α > 0 because 0 <

d−α−u−α < d−α, ψu+(1−ψ)d > πu+(1−π)d, and ru−α+(1−r)d−α > (1−θ)ru−α+(1−r)d−α.

�
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C.3 A Multi-period Extension

This subsection extends the two-period model in the main text to an overlapping-generations

(OLG) economy. Within each generation t there are three dates, τ = 0, 1, and 2, denoted

by (t, τ). These three dates correspond to those in the two-period model. At date (t, 0),

generation t of investors and a firm manager are born. The investors are endowed with a

certain amount of the consumption good. The firm is a going concern and has undertaken

Nt−1 projects by the end of generation t− 1, of which kt−1 are successes. In each generation

t, a fixed number N of new projects are introduced, so that Nt−1 is deterministic and equals

N(t− 1) up to some constant. Upon birth, the generation t investors trade the firm’s stock

with generation t − 1. At date (t, 1), the firm’s manager makes a disclosure, (st, ft), where

st and ft represent the number of disclosed successes and failures, respectively, out of the N

newly introduced projects. At date (t, 2), which is equivalent with date (t+ 1, 0), the stock

pays a random dividend

Dt+1 = uktdNt−kt

when ∆kt = kt − kt−1 out of the N projects succeed. After receiving the dividend, the

generation t investors sell their security holdings to generation t+ 1, consume, and die. The

economy is now operated by generation t+ 1, and this cycle repeats indefinitely. The gross

interest rate per period is R > 1. Other assumptions are kept unchanged from the two-period

model.

Following the standard solution technique, we look only for a price function that is

stationary and linear in the dividend. Conjecture a price function at date (t, 0) of the form

P a
t,0 = gDt, (A44)

where g is a constant. It is straightforward to confirm that a slightly more general conjecture,

P a
t,0 = gDt+e, changes nothing in the analysis to follow because the constant e must be zero

for the conjecture to be sustainable. The primary difference from the two-period model is

that investors’ future wealth now contains the selling price of the stock,

Wt,2 = Dt+1 + P a
t+1,0 = (g + 1)u∆ktdN−∆ktDt. (A45)
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The assumption of a complete market again implies the existence of state prices,

ϕt,0(∆kt) =
h(∆kt|Ft,0)U

′(Wt,2)

R2
∑N

∆kt=0 h(∆kt|Ft,0)U ′(Wt,2)

=
h(∆kt|Ft,0)U

′(u∆ktdN−∆kt)

R2
∑N

∆kt=0 h(∆kt|Ft,0)U ′(u∆ktdN−∆kt)
, (A46)

where h(∆kt|Ft,0) denotes the probability of ∆kt successes out of the N newly-introduced

projects conditional on the information set Ft,0 = {kt−1} at date (t, 0). Notice that the term

(g+1)Dt in the future wealth (A45) is constant up to Ft,0 and cancels out in the numerator

and the denominator of Equation (A46). Since the state prices are similar to those in the

two-period model (see Equation (2)), so is the pricing. The only difference is to take care

of the discounting factor 1/R2 appearing in Equation (A46), which has resulted from the

interest-rate condition
∑N

∆kt=0 ϕt,0(∆kt) = 1/R2. Apply the state prices to the future wealth

(A45) to obtain the stock price

P a
t,0 = Et,0[ϕt,0(∆kt) · (g + 1)u∆ktdN−∆ktDt] = (g + 1)

[ψu+ (1 − ψ)d]N

R2
Dt.

Compare with the original price conjecture to determine the coefficient, g = [ψu+(1−ψ)d]N

R2−[ψu+(1−ψ)d]N
.

To ensure a positive stock price, we additionally assume that

R2 > [ψu+ (1 − ψ)d]N . (A47)

Once the price coefficient is determined, the problem at date (t, 1) can be solved similarly

to the date 1 problem in the two-period model except again that the final wealth (A45)

for generation t contains the proceeds from selling the stock to the new generation. The

following theorem summarizes the result, with a complete mathematical proof available in

Section C.3.2:

Theorem 2. (Firm value in an OLG model) (i) The firm value at date (t, 0) is given by

V a
t,0 =

ukt−1dNt−1−kt−1

R2 − [ψu+ (1 − ψ)d]N
[ψu+ (1 − ψ)d]N .

(ii) (Sanitization strategy) The firm value at date (t, 1) when the manager reports st
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successes and zero failures is given by

V a
t,1(st) =

ukt−1dNt−1−kt−1

R2 − [ψu+ (1 − ψ)d]N
Rust [πu+ (1 − π)d]N−st.

(iii) (Full disclosure) The firm value at date (t, 1) when the manager discloses both the

observed number of successes, st, and failures, ft, is given by

V a
t,1(st, ft) =

ukt−1dNt−1−kt−1

R2 − [ψu+ (1 − ψ)d]N
Rustdft[ψu+ (1 − ψ)d]N−st−ft .

C.3.1 News covariance and return reversal in the OLG model. From the result

in the preceding section, we can calculate the first- and second-period returns under the

sanitization strategy as

Ra
t,1(st) =

V a
t,1(st)

V a
t,0

= R · Ra
1(st), (A48)

Ra
t,2(st) =

V a
t+1,0

V a
t,1(st)

=
[ψu+ (1 − ψ)d]N

R
Ra

2(st), (A49)

respectively, where Ra
1(st) and Ra

2(st) denote the returns (A6) and (A18) from the two-

period model with s and k replaced by st and ∆kt, respectively. Similarly, the first- and

second-period returns under full disclosure are

Ra
t,1(st, ft) =

V a
t,1(st, ft)

V a
t,0

= R · Ra
1(st, ft), (A50)

Ra
t,2(st, ft) =

V a
t+1,0

V a
t,1(st, ft)

=
[ψu+ (1 − ψ)d]N

R
Ra

2(st, ft), (A51)

respectively, where Ra
1(st, ft) and Ra

2(st, ft) denote the returns (A10) and (A23) from the

two-period model with s, f , and k replaced by st, ft, and ∆kt, respectively. These expres-

sions say that returns are proportional to their two-period counterpart with a fixed positive

proportionality constant. Therefore, the two propositions continue to hold in the corre-

sponding period within a generation. It remains to examine the moments at the turn of the

generation. The above expressions imply that the only news in the second period is the news

about realized successes, ∆kt, which is cash-flow news according to a definition similar to the
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first period, Ncf ≡ lnR2 − E0 [lnR2]. Thus, the expected-return news in the second-period

is constant up to the information set at date (t, 1) and therefore the news covariance is zero

under both disclosure policies. Furthermore, two successive returns over two generations are

uncorrelated because project outcomes and hence disclosures are independent. We remark

these results in the following two propositions, with complete mathematical proofs available

in Section C.3.2.

Proposition 3. (News covariance in the OLG model) Cash-flow news and expected-return

news at any date (t, τ) are (i) non-positively correlated under the sanitization strategy:

Cov(Ncf , Ner) ≤ 0; and (ii) non-negatively correlated under full disclosure: Cov(Ncf , Ner) ≥

0.

Proposition 4. (Return reversal in the OLG model) The stock return exhibits a non-

positive autocovariance. Moreover, the autocovariance under the sanitization strategy is

smaller than or equal to the autocovariance under full disclosure: cov(Ra
t,τ (st), R

a
t,τ+1(st)) ≤

cov(Ra
t,τ (st, ft), R

a
t,τ+1(st, ft)) ≤ 0 for τ = 0, 1, where Ra

t,0(·) is equivalent with Ra
t−1,2(·).

C.3.2 Proofs

Proof of Theorem 2. (i) The firm value at date (t, 0) in the OLG model is obtained

immediately by substituting

g =
[ψu+ (1 − ψ)d]N

R2 − [ψu+ (1 − ψ)d]N
(A52)

back into Equation (A44) and noting that there is one share outstanding by assumption,

which implies that V a
t,0 = P a

t,0.

(ii) Sanitization strategy. Substitute Equation (A52) into Equation (A45) to get

Wt,2 =
R2

R2 − [ψu+ (1 − ψ)d]N
u∆ktdN−∆ktDt.

State prices under the sanitization strategy are given by Equation (A46) with the condition-

ing information set Ft,0 = {kt−1} replaced by Ft,1 = {kt−1, st} and the discounting reduced
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to 1
R
. Suppressing the common element in the information sets kt−1,

ϕt,1(∆kt|st) =
h(∆kt|st)U

′(u∆ktdN−∆kt)

R
∑N

∆kt=st
h(∆kt|st)U ′(u∆ktdN−∆kt)

,

h(∆kt|st) ≡

(
N − st

∆kt − st

)
q∆kt−st(1 − q)N−∆kt,

which is similar to Shin’s (2003) Lemma 1. Therefore, the first-period price under the

sanitization strategy is

P a
t,1(st) =

R2

R2 − [ψu+ (1 − ψ)d]N
Et,1[ϕt,1(∆kt|st)u

∆ktdN−∆kt|st]Dt

=
Rust[πu+ (1 − π)d]N−st

R2 − [ψu+ (1 − ψ)d]N
Dt = V a

t,1(st).

(iii) Full disclosure. Similarly, replacing the conditioning information set Ft,0 = {kt−1}

in Equation (A46) with Ft,1 = {kt−1, st, ft} and reducing the discounting by one period,

state prices under full disclosure are

ϕt,1(∆kt|st, ft) =
h(∆kt|st, ft)U

′(u∆ktdN−∆kt)

R
∑Nt−ft

∆kt=st
h(∆kt|st, ft)U ′(u∆ktdN−∆kt)

,

h(∆kt|st, ft) ≡

(
N − ft − st
∆kt − st

)
r∆kt−st(1 − r)N−ft−∆kt,

which is similar to Lemma 1. Therefore the first-period price under full disclosure is

P a
t,1(st, ft) =

R2

R2 − [ψu+ (1 − ψ)d]N
Et,1[ϕt,1(∆kt|st, ft)u

∆ktdN−∆kt|st, ft]Dt

=
Rustdft[ψu+ (1 − ψ)d]N−st−ft

R2 − [ψu+ (1 − ψ)d]N
Dt = V a

t,1(st, ft). �

Proof of Proposition 3. From Equations (A48) and (A50), the first-period cash-flow

news and expected-return news in the OLG model are clearly identical to those in the two-

period model up to a constant. So, the proposition about the news covariance holds for the

first period.

For the second period, first consider the decomposition under the sanitization strategy.
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Substituting Ra
2(s) in Equation (A18) into Equation (A49) and taking logarithm, we have

lnRa
t,2(st) = ∆kt ln

u

d
− st ln

u

πu+ (1 − π)d
+ const.,

ln R̃a
t,2 ≡ lnRa

t,2(st) − Et,1[lnR
a
t,2(st)|st]

= ∆kt ln
u

d
+ const.,

Ncf = ln R̃a
t,2|π→q = ∆kt ln

u

d
+ const.,

Ner = Ncf − ln R̃a
t,2 = const.,

where const. denotes a constant up to the information set at date (t, 1), which can include

st. Because Ner is constant up to that information set, clearly,

Cov(Ncf , Ner) = Cov(E[Ncf |st], const.) = 0.

Similarly, substituting Ra
2(s, f) in Equation (A23) into Equation (A51), the decomposi-

tion under full disclosure is

lnRa
t,2(st, ft) = ∆kt ln

u

d
+ st ln

ψu+ (1 − ψ)d

u
+ ft ln

ψu+ (1 − ψ)d

d
+ const.,

ln R̃a
t,2 ≡ lnRa

t,2(st, ft) −Et,1[lnR
a
t,2(st, ft)|st, ft]

= ∆kt ln
u

d
+ const.,

Ncf = ln R̃a
t,2|ψ→r = ∆kt ln

u

d
+ const.,

Ner = Ncf − ln R̃a
t,2 = const.,

where, again, const. denotes a constant up to the information set at date (t, 1), which can

include st and ft. Then,

Cov(Ncf , Ner) = Cov(E[Ncf |st, ft], const.) = 0. �

Proof of Proposition 4. From Equations (A48)-(A51), the returns in the OLG model are

proportional to their two-period counterpart with fixed positive proportionality constants.

So, the proposition about return reversal holds for two successive returns within a generation.

xiii



Return autocovariance between two successive returns over two generations is zero under

both disclosure policies because project outcomes and hence disclosures are independent.

Formally, compute

Cov(Ra
t,2(st), Et+1,0[R

a
t+1,1(st+1)]) = 0,

Cov(Ra
t,2(st, ft), Et+1,0[R

a
t+1,1(st+1, ft+1)]) = 0.

This is so because both Et+1,0[R
a
t+1,1(st+1)] and Et+1,0[R

a
t+1,1(st+1, ft+1)] are clearly deter-

ministic numbers [substitute Equations (A6) and (A10) into Equations (A48) and (A50) at

time t+ 1, and consider their expected values on date (t+ 1, 0)]. �
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