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1 Introduction

Recent empirical studies have documented a number of stock-return anomalies: return spreads between

certain groups of stocks are too high to be justified by standard asset pricing models. Some argue that

these findings are evidence of market irrationality because there is too much money being left on the

table. Others point out that markets are at least minimally rational in the sense that certain market

imperfections prevent agents from exploiting these anomalies (e.g., see Rubinstein (2001)). To explore

this perspective further, we first estimate realistic price-impact functions for each stock. Assuming that

an arbitrageur would set up a long-short hedge fund (or a long-position-only investment like a mutual

fund) to take advantage of an anomaly, we then determine the maximal amount of capital that can

be accommodated without losing money on average. Our goal is to take into account not only explicit

costs such as commissions and bid-ask spread, but also the price-impact costs, short-sale costs (short

rebate rate) and limits on the trade and position in every stock. If the profitable fund sizes are small,

it will mean that anomalies exist not because investors are irrational, but because they are probably

too economically rational.

To make the scope of the paper manageable, we choose to focus on three popular anomalies: size,

book-to-market (B/M), and momentum. The size and B/M anomalies arise because, contrary to the

predictions of more traditional models such as CAPM, both the size and the B/M ratio of stocks are

found to be significant determinants of their future excess return. The size effect was first reported in

Banz (1981) and confirmed in Fama and French (1993) and others for later periods. The B/M or value

effect was first documented in Basu (1983), and more recently in Fama and French (1993), Lakonishok

et al. (1994), La Porta et al. (1997), and others. The momentum anomaly exists because buying past

winners and selling short past losers generates abnormal returns. It was studied in Levy (1967) and

Jegadeesh and Titman (1993, 2001).

To profit from a given anomaly, a direct approach is to implement a long-short arbitrage strategy

as such a strategy allows the arbitrageur to be market-neutral or close to it. As a result, a long-short

strategy reduces the impact of market risk and gives the anomaly effect the “best chance” to perform.

Since size is inversely related to future excess returns, buying a portfolio of small capitalization stocks

and shorting a portfolio of big ones constitutes an arbitrage. In contrast to size, B/M is a positive factor

for future excess returns. A long-short arbitrage based on B/M therefore entails purchasing a portfolio

of high B/M stocks and selling short a portfolio of low B/M ones. To benefit from the momentum

anomaly, we go long past winners and short past losers. The sample period for our study is 1963-2002,

during which portfolio formation (stock selection) takes place at a frequency ranging from monthly to

annually, depending on the strategy. At the time of portfolio formation stocks can be either equally
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or value weighted. Rebalancing (weight adjustment) can occur either monthly to keep up with the

weighting scheme chosen at the portfolio formation, or never during the holding period. The latter

corresponds to a buy-and-hold strategy that aims to reduce turnover and hence price impact. Since

short selling may actually be prohibitively costly for some small stocks, we will additionally consider

strategies that involve only a long position for the most profitable anomalies.

When trading the necessary long and short positions, the arbitrageur will incur price-impact costs

because stock prices are sensitive to the order direction and trade size. Large purchases tend to move

the price up while sales drive it down. A bigger fund size requires larger positions to rebalance and

larger trades to execute, which implies higher price-impact costs and lower returns. Due to this positive

relation between fund size and price-impact costs, there exists a fund size beyond which excess return

over the riskless rate will become negative. We will refer to it as the break-even fund size. This is

a very conservative estimate of profitable fund size since the t-statistic of excess return is zero at the

break-even fund size by construction. For this reason, we will occasionally look also at a maximal fund

size at which the excess return becomes just insignificant.

The notion of price-impact function has been widely used in the microstructure literature since

the work of Kyle (1985). It describes the functional relationship between the relative price change

caused by a trade and the size of that trade. The shape and level of the function is one of the key

differences between our study and the existing anomaly literature. In many existing papers, a constant

proportional transaction cost is assumed. We model the price impact as a nonlinear function of dollar

volume that nests such a linear function. Allowing for nonlinearity is important for two reasons. First,

many empirical studies have found the nonlinearity of price impacts under both parametric and semi-

parametric specifications (Hasbrouck (1991), Hausman et al. (1992), Keim and Madhavan (1996),

Kempf and Korn (1999), and Knez and Ready (1996)). Second, since we will be interested in large

trades, allowing for nonlinearity will produce a conservative estimate of break-even fund size if the price

impact function is concave in absolute dollar volume.

For robustness, using the TAQ dataset, we estimate two types of price impact functions, one based

on tick-by-tick price movement of an individual stock and another based on the daily change in the

value-weighted average price (VWAP), cross-sectionally pooled within size decile. For the tick-by-tick

measure, a nonlinear price-impact function is first estimated for each of 4,897 stocks traded on the

NYSE, AMEX, and NASDAQ in 1993. We use the 1993 data because this is the earliest year the

TAQ data are available, while our return series goes as far back as 1963. The estimated price impact

is aggregated within size decile and then projected out of sample using Amihud’s (2002) illiquidity

ratio. The second measure of price impact is meant to capture the impacts and trades that possibly
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occur over time, such as gradual incorporation of private information, pre-trade information leakage,

and the splitting of a large trade (“working” an order), if not perfectly. The cross-sectional pooling is

possible since we formulate the price impact as a function of signed dollar volume. It also avoids getting

extremely noisy estimates for individual stocks.

When price-impact costs are ignored, all the three anomalies generate average returns significantly

higher than the riskless rate, with most profitable being the B/M and certain momentum strategies.

The equally weighted B/M strategy produces an excess monthly return of 1.13% when rebalanced every

month, and the buy-and-hold 12/3 momentum strategy yields 1.49%. However, this does not translate

into the accommodativeness of capital after cost. When price-impact costs are taken into account,

returns for these strategies decrease rapidly with the arbitrage fund size. The break-even fund sizes for

these strategies are no more than several hundred million dollars.

The most accommodative strategies under costs are slight variations of these strategies, an equally

weighted buy-and-hold B/M and the 6/12 momentum strategies. The break-even fund sizes for these

strategies are several billion dollars. This difference results from reduced turnover due to either going

buy-and-hold or increasing the holding period. Further, the momentum strategy can accommodate

about $20 billion when implemented with the long position only. This number, however, ignores the

implementability of a strategy that involves small size stocks. A realistic assumption would be to

constrain each trade to be no more than 1% of the market capitalization of the stock being traded,

since such a trade is very rare as will be demonstrated. Moreover, a position over 5% of a stock’s

market capitalization requires filings with SEC (Form 13D) and may be prohibitively costly. We find

that, when these 1% trade restriction and 5% position limit are imposed, the break-even fund size of the

winner-only momentum strategy decreases to approximately $10 billion. The fund size that produces a

significantly positive return is at most several hundred million dollars for any of the above strategies.

Increasing the portfolio-formation frequency from annual to semiannual and then to quarterly has

two competing effects. One might benefit from “fine-tuning” to the anomaly, while an obvious drawback

is increased turnover and hence trading costs. We generally find that the latter effect is stronger; the

break-even fund size decreases with portfolio formation frequency.

We compare our estimates to the actual size of all relevant hedge funds and mutual funds, since we

are investigating the rationality of market participants as a whole. The idea here is to simply compare

apples to apples. Each break-even fund size estimated in the previous sections should be interpreted

as an additional fund size attainable to the market. Indeed, we have implicitly studied a monopolistic

arbitrageur who attempts to create a single, largest fund from a set of possible strategies. Thus, our

reference point should be the total anomaly-driven investment that produce price-impact costs, and not
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the size of funds that follow a particular strategy.

Using the TASS and the CRSP mutual fund datasets and other information, we estimate the size

of relevant equity funds to be at least $650 billion as of 2002. We believe that this is a conservative

estimate of money that is subject to price impact, given the size of domestic equity mutual funds

totaling $2.3 trillion (in 2002). The largest of our break-even fund sizes, $10-20 billion, represent no

more than 2-3% of the $650 billion. This is also well within a tolerance of weekly volatility. Moreover,

this investment is not worth pursuing, since one could earn the same return by just investing in a safe

deposit or Treasury securities. If he wishes to secure a significantly positive excess return, he can invest

only several hundred million dollars.

If, as we argue, price-impact cost is so significant, the hedge fund industry must have experienced a

deteriorated performance by now. Indeed, such news is abundant in the current media. Just to mention

one, on July 20, 2004, the Federal Reserve Chairman Alan Greenspan allegedly testified,

“Not surprisingly, the rate of return in [the hedge fund] activity is reportedly declining.

I would not be surprised if, with time, many of the new entries exited, some presumably

following large losses.”1

The most related studies are Korajczyk and Sadka (2004) and Lesmond, Schill and Zhou (2004).

Both of them focus on the post-cost profitability of momentum strategies and reach opposite conclusions.

Korajczyk and Sadka (2004) propose a “liquidity weighted” strategy which maximizes after-cost returns

under some simplifying assumptions. They find that transaction costs, including price-impact costs,

do not fully explain the return continuation of certain winners-only momentum strategies, leading to

a conclusion that “this anomaly remains an important puzzle.” (Korajczyk and Sadka (2004, p.1040))

In contrast, Lesmond, Schill and Zhou (2004) observe that standard momentum strategies call for

frequent trading in high cost securities and therefore that the apparent profit opportunity of these

strategies cannot be exploited. The differences between these two papers and ours will be discussed

in a later section; the bottom line is that while the numerical results are generally consistent, our

interpretation is different. As noted above, we think that it is more appropriate to examine the issue

from the perspective of arbitragers and investors as a whole.

The paper is organized as follows. The next section estimates the price-impact functions. Section

3 studies the profitability of anomaly-driven trading strategies. Section 4 discusses the result and

investigates its robustness. The final section concludes.

1Reuters, as appears at

http://biz.yahoo.com/rf/040720/economy_greenspan_hedgefunds_4.html

A similar quote is also cited in Lahart (2004).
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2 Estimation of Price-Impact Functions

This section describes how we estimate the price-impact functions for both individual stocks and their

portfolios and discusses the results. Using a nonlinear function that nests a linear specification, we find

that estimated price impact functions are concave. It is also demonstrated how concavity is important

in producing conservative estimates of break-even fund size.

2.1 Model Specification

There are various ways to specify a price-impact function. The most common practice is to assume

a linear relation between the (absolute or relative) price change caused by a trade and its volume.

Typically, trade size is the number of shares traded, either in absolute terms or relative to the number

of shares outstanding. Such linear price-impact functions may be motivated by the theory of Kyle

(1985), and empirical applications can be found in Bertsimas and Lo (1998), Breen et al. (2002), and

Madhavan and Dutta (1995). In contrast, we follow Hasbrouck (1991), Hausman et al. (1992), and

Keim and Madhavan (1996) and allow here nonlinear price-impact functions. Knez and Ready (1996)

also emphasize the importance of nonlinearity in the relationship between price improvement and excess

depth.2

For robustness, we model price impact in two ways that differ in time frequencies and cross-sectional

aggregation. The first specification measures the price impact at the tick level for each individual stock.

Specifically, the price impact of a trade is defined as the relative change in the quote midpoint, which

in turn is formulated as a nonlinear function of the dollar volume of that trade,

PIt ,
Qt+1 −Qt

Qt
= a+ b

V λ
t − 1
λ

+ εt, (1)

where Qt is the quote midpoint prevailing at transaction time t, Vt is the dollar volume (price times the

number of shares traded) of the trade, the error term εt is independently and identically distributed with

mean zero and a finite variance, and a, b, and λ are constants to be estimated. To allow for asymmetric

impacts of buys and sells, we estimate the model for purchases and sales separately. We call this the

tick-by-tick price impact. Because of the high frequency nature, this is suitable for estimating price

impact functions for each individual stock. However, since such individual estimates are often noisy,

they will be aggregated at the portfolio level. Cross-sectional aggregation is discussed later.

The right hand side of the above formula is known as the Box-Cox function, where the dollar trade

volume is transformed with a curvature parameter λ. Note that Vt is nonnegative by definition and

2Kempf and Korn (1999) also question the empirical use of a linear price impact.
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that the Box-Cox transformation (V λ
t − 1)/λ converges to lnVt as λ→ 0. For a computational reason,

we restrict that 0 ≤ λ ≤ 1.3 This is also the restriction imposed by Hausman et al. (1992), where

their ordered probit model employs a Box-Cox transformation. This captures concavity between a log

function (when λ = 0) and a linear function (when λ = 1) inclusive. We do not restrict the intercept

or the slope coefficient in this model. The superiority of a Box-Cox function over other nonlinear

specifications will be demonstrated in the next section.

To obtain quote midpoints, we follow Lee and Ready (1991) and match each trade to the bid and

ask quotes that are set at least five seconds prior to the trade.4 This procedure adjusts missequenced

transactions: most trades that precipitate a quote revision are reported with some delay. Ideally, we

would like to assign to each trade the quote prevailing an instant after the trade has occurred.

Using actual transaction prices rather than quote midpoints could bias the price-impact estimation,

because trades do not occur continuously. For instance, consider a situation in which the quote midpoint

increases at time t − 1 due to a positive announcement about the value of the underlying asset, but
no trade takes place in that period. If the price impact were defined in terms of actual transaction

prices, then the price impact of a buy (sell) at time t would be overstated (understated). On the other

hand, use of the quote midpoints matched with trades by the Lee and Ready (1991) algorithm may bias

the estimates since the matching will not be perfect. We think that the bias introduced by employing

actual transaction prices is bigger and hence prefer to work with quote midpoints. Hasbrouck (1991)

uses quote midpoints, too, while Hausman et al. (1992) look at actual transaction prices.

To classify a trade as either a buy or a sell, we apply the method introduced by Blume et al. (1989).

A purchase occurs when the transaction price pt is strictly larger than the midpoint quote Qt at time

t while a sale occurs if pt is strictly smaller than Qt. Hence, trades with transaction prices closer

to the ask price are interpreted as buyer-initiated, while trades with prices closer to the bid price as

seller-initiated. Transactions for which pt = Qt are indeterminate according to this categorization and

discarded from our analysis.

The second measure of price impact addresses the following two points that are hardly captured by

the previous one. First, traders typically “work” a large order, by splitting it into smaller pieces and

execute them over time. Second, the impact of a trade may occur gradually over time. Or because of

information leakage, the relevant price change might occur prior to trade. Third, a quote change may

reflect the effect of several preceding trades. To incorporate these points would entail some averaging

over time. Along these lines, we define our second measure of price impact as the daily change in

3Specifically, the restriction in the nonlinear least squares procedure is 10−6 ≤ λ ≤ 1. When the estimate hits the

lower bound, a log function is re-fitted.
4A trade classification rule based on the quote midpoint appears in Hasbrouck and Ho’s (1987, p.1039) earlier paper.
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value-weighted average price (VWAP) relative to the previous day’s closing quote midpoint Qd−1,

PId ,
VWAPd −Qd−1

Qd−1
= a+ b

V λ
d − 1
λ

+ εd, (2)

where VWAPd is the weighted average of transaction prices on day d with the weights being the dollar

volume of trades and Vd is the net dollar volume on day d. The observations are cross-sectionally

pooled within size decile over each year. Trades and quotes are matched by the Lee and Ready (1991)

algorithm.5 Again, coefficients are estimated on net buy and sell days separately. For computational

reasons, we restrict a = 0. This will be called a VWAP price impact. In principle, this model could

also be estimated for individual stocks. However, we choose to aggregate observations cross-sectionally

because a different method would ensure robustness of our results. It also avoids aggregating possibly

noisy estimates of individual price impacts.

The models are estimated by the least squares method. For example, the parameters in (1) are

given by

(ba,bb, bλ) = arg min
(a,b)∈R2,
λ∈[0,1]

NX
t=1

·
PIt − a− b

V λ
t − 1
λ

¸2
, (3)

where N denotes the sample size, and similarly for equation (2).

Huberman and Stanzl (2004) demonstrate that nonlinear price-impact functions can give rise to

quasi-arbitrage, which is the availability of a sequence of trades that generates infinite expected profits

with an infinite Sharpe ratio. Consider, for instance, the price-impact function in (1) with the curvature

parameters for buys and sells, λB < 1 and λS < 1 respectively, and the trading strategy of “buying X

shares in each of the next T consecutive periods and then selling all TX shares in period T + 1.” If

X is small and if the price-impact function has a sufficiently high curvature, such a strategy may be

profitable; in case the price impact of the sale in period T + 1 is small relative to the price impacts of

the T preceding buys, the average selling price might exceed the average purchasing price. Although

the profit resulting from such a manipulation strategy is only in expected terms, its Sharpe ratio can

be attractively high, as Huberman and Stanzl show.

Such price-manipulation schemes are feasible here in principle, but difficult to implement for rea-

sonable parameter values. If 0 ≤ λB, λS ≤ 1 and if the price-impact functions for buys and sells

are approximately symmetric, that is, with aB ≈ −aS , bB ≈ bS , and λB ≈ λS in (1) where the B

and S subscripts represent buys and sells, respectively, then price manipulation strategies that pro-

duce high expected profits and high Sharpe ratios will always require a very large number of trades.

Hence, the gains from price manipulation are either nonexisting or small for realistic numbers of trades.

Fortunately, our estimates turn out to yield almost symmetric price-impact functions.
5The directions of those trades that occur at quote midpoints are determined by the tick test.
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Hasbrouck (1991) and Hausman et al. (1992) allow for the (theoretical) possibility of price manipu-

lation in order to get more accurate price-impact estimates. As in the present study, price manipulation

strategies in Hausman et al. can only be implemented by using unrealistically high numbers of trades.

In Hasbrouck, however, price manipulation may be feasible with a few trades only, unless the support

of the price-impact function is sufficiently restricted.

2.2 Alternative Estimation Methods

Besides the Box-Cox models given in (1) and (2), we have tried three alternative approaches to estimat-

ing the price-impact function: polynomial fitting, piecewise linear fitting, and ordered probit models.

In the following, we discuss these methods. To save space, we focus on the tick-by-tick price impact for

purchases.

A polynomial price impact function can be obtained by fitting

PIt =
mX
j=0

αjV
j
t + εt, (4)

wherem denotes the order of the polynomial. Panels (a) and (b) of Figure 1 depict the estimated price-

impact functions for FHT, when a quadratic, cubic, or fourth-order polynomial is fitted.6 We find that

a polynomial price impact is generally subject to overfitting. In the case of quadratic and fourth-order

polynomials, the fitted curves imply that a large buy trade would produce a negative price impact,

which is difficult to justify. A piecewise linear price impact in Panel (c) exhibits similar shortcomings;

it has a negative slope for large trades.

As a third alternative we consider a version of the ordered probit model described in Hausman

et al. (1992), suitably modified for our analysis (results omitted for brevity); first, rather than the

absolute change in transaction prices, we use the relative quote-midpoint change to measure the price

impact. Second, we estimate the price-impact function separately for purchases and sales. In short,

the problem with this approach is that estimates can only be obtained for large capitalization firms,

for which sufficiently many quote and trade observations are available, an issue that Hausman et al.

already realized. Although the stock FHT is not a random choice, the disadvantages of the alternative

methods illustrated here apply to many other stocks.

Taking all of the above into consideration, we choose to employ the formulations in (1) and (2). By

comparison, Panel (d) of Figure 1 depicts for FHT the estimated Box-Cox function in (1).

6Fingerhats Companies Inc. (FHT) is a NYSE company with an average market capitalization of approximately 988

million dollars during our estimation period, January through June 1993. This number ranks the stock in the third largest

decile of all NYSE stocks.
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2.3 Price Impact for Individual Stocks

The individual tick-by-tick price impact in (1) is estimated for each of 4,897 individual stocks on the

NYSE, AMEX and NASDAQ using a sample period of January through June in 1993. We chose the

earliest year for which the TAQ dataset is available, because our strategies go as far back as 1963. The

six-month time period provides enough observations for most of the stocks. We first identify all the

common stocks using the CRSP monthly file. Next, for each of these stocks, we extract from the TAQ

dataset quotes with positive bid and offer prices and trades with a positive transaction price and a

number of shares traded.7 We only use trades and quotes time stamped between 9:30a.m. and 4:00p.m.

from the same exchange or trading system identified as primary in CRSP. These quotes are matched

by a version of the Lee and Ready (1991) algorithm described earlier. We discard stocks with less than

ten matched quote-trade pairs. This procedure resulted in an initial sample of 5,173 stocks.

To get rid of outlier effects, we jettison transactions with a dollar volume in the largest one percentile

for each stock. Since we measure the price impact by the relative quote midpoint and the trade size

is expressed in dollars, the price jump due to a stock split introduces only a negligible estimation bias.

Firms that experienced stock splits during our sample are therefore not excluded. Those stocks are

thrown out for which the estimation of either the buy or the sell price-impact function did not converge

after 1,000 iterations. This left us with the estimated price impact functions of 4,897 stocks.

Table 1 reports the characteristics of seven representative stocks, and Table 2 shows the estimated

coefficients of their tick-by-tick price-impact functions. Estimates in Panel (a) of Table 2 share the

following qualitative properties: first, small-size stocks have higher price impacts. For example, compare

CSII and S, where CSII belongs to the smallest size quintile of our sample, whereas S to the largest

(both share similar B/M ratios in Table 1). Panel (a) of Figure 2 shows a larger price impact for CSII

than S. Two parameters are relevant in defining price impact for large trades, the slope coefficient b

and the curvature parameter λ in (1). The large slope coefficient of CSII outstrips the large λ (closer

to linearity and therefore less curvature) of S in Table 2.

Panel (b) of Figure 2 reveals however that for a small buy order, the price impact may be negative.

This is because we have not restricted the intercept in (1) to be zero. However, this is innocuous for

our purpose since we are primarily interested in the effect of large trades, and if any, it would produce a

conservative estimate of break-even fund size. The qualitative properties of the estimated price-impact

functions for sales are roughly “symmetric” to buys, as is evident from Panels (c) and (d) of Figure 2.

As mentioned before, purchases and sales must have approximately symmetric price impacts to rule

out price manipulation. Other empirical studies, however, have produced different results that may

7“When-issued” entries are excluded.

9



imply the feasibility of price manipulation. Gemmill (1996) and Holthausen et al. (1987) find that

block purchases have a significantly larger price impact than block sales, and Chan and Lakonishok

(1995) report the same for institutional trades. In contrast to that, Keim and Madhavan (1996) and

Scholes (1972) find markets in which sales exhibit a stronger price impact.

Since a single trade rarely exceeds 1% of the firm’s market capitalization, we draw the estimated

price-impact functions only up to this dollar volume. This is why the price-impact functions for BONT

and CSII are truncated in Panels (a) and (c) of Figure 2. To demonstrate this point, Figure 3 shows

the histogram of signed dollar volume for KO and BONT. Panel (a) shows that there were 9,108 valid

trades in January 1993, ranging from a sell trade of $4.3 million to a buy of $10.2 million (recall that

a positive trade indicates a buy, and a negative trade a sell). Since the size of KO was $54.9 billion

at the end of December 1992 (see Table 1), the largest trade during this one month period was merely

0.0186% of the market capital. The relative trade size, however, tends to be larger for smaller stocks.

In Panel (b), the maximum trade for BONT during the first six months of 1993 was $0.923 million, or

2.56% of the market capital. 260 out of 2,081 trades, or one in eight trades, exceed 1% of the average

market capital during the six month period. However, no single trade was larger than 5% of the market

capital. A buy order of this magnitude would imply that the resulting position requires costly SEC

filings, unless the pre-trade position was short.

2.4 Linear versus Nonlinear Price-Impact Functions

This section examines the difference between a linear and a nonlinear price-impact function. Allowing

for nonlinearity, specifically concavity, is important for our purpose, since it will produce a conservative

estimate of break-even size. In fact, the absolute price impact for the seven representative stocks

were all concave in dollar volume (see Figure 2). This results from the curvature parameters that are

substantially below 1 in Table 2.

The top rows of Table 3 report the estimates for a linear regression model,

PIt = α+ βVt + εt, (5)

applied to the buy orders of the seven representative stocks. The estimated slope coefficients are positive

and statistically significant for the three large capitalization firms on NYSE (GE, KO, S). The bottom

rows of Table 3 then show differences between the linear price impact in (5) and the nonlinear one in (1),

when either $50,000 or $300,000 is purchased. At $300,000, the linear function already gives a larger

price impact for three of the four small firms on NASDAQ (BONT, CSII, MIKE, INGR). Obviously, a

concave price impact function will give a smaller price impact than a linear one for large enough trades.
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This is graphically demonstrated in Figure 4, for purchases of KO and BONT.

2.5 Aggregating Price-Impact Functions

Since the estimated price-impact functions for individual stocks can be quite noisy, it is desirable to

aggregate price impacts to accurately assess the trading costs of our trading strategies. In this section,

we discuss the aggregation methods for the two price-impact measures.

To aggregate the tick-by-tick price-impact function in (1), we sort all the stocks into ten size deciles

S1 (smallest), S2, . . . , S10 (biggest), where the size of a stock is defined as the daily average of the stock’s

market capitalization between January 1993 and June 1993. The estimated price-impact function for

decile j is then given by an analogue of (1),

aj + bj
V λj − 1

λj
, (6)

where aj , bj , and λj are the equally weighted average of the corresponding parameters for individual

stocks. Again, parameters are averaged separately for purchases and sales.

Table 4 presents the estimated portfolio coefficients by size decile. The resulting price-impact func-

tions are drawn in Figure 5. Like the individual one, the absolute price impact is increasing in dollar

trade volume and concave for all deciles. For a given dollar volume the price impact generally decreases

with the capitalization of firms, except for some range of trade size in which the ordering is reversed

among a couple of deciles. The price-impact function for the smallest decile is fairly large relative to

others, which justifies the exclusion of stocks in this decile in our momentum strategies. This is also

implemented by Jegadeesh and Titman (2001).

Note that these estimates would be valid only for trades in the sample period, the first half of

1993. Since our strategies span from 1963 through 2002, we wish to estimate price impacts in each

of these years. One way to do this is to use a measure of (il)liquidity available through the period

and extrapolate our price-impact functions. Candidates for such measures include Amihud’s (2002)

illiquidity ratio and Pastor and Stambaugh’s (2003) return reversal; both of these are constructed from

lower-frequency but longer data, specifically CRSP. Hasbrouck (2003) finds that the correlation between

Amihud’s illiquidity ratio and a TAQ-based measure of price impact is 0.90 for portfolios.8 From this

it seems appropriate to choose Amihud’s illiquidity ratio for our purpose, which is defined as

Iy =
1

Ny

X
d∈y

|rd|
Vd

, (7)

8Note that the correlation for individual stocks is much lower; According to Hasbrouck (2003), it is only 0.47. This

signifies the importance of aggregation.
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where rd and Vd are the return and the volume, respectively, on day d, and Ny is the number of days in

period (say year) y. This is computed for each stock. It is seen from (7) that this measure has a direct

interpretation of a price-impact coefficient. Using Hasbrouck’s (2003) dataset, we compute the portfolio

illiquidity ratio for each size decile every year as the average of the illiquidity ratios of component stocks.9

To exclude extreme values, we discard observations in the top and bottom 10 percentiles within each

decile. Figure 6 shows Amihud’s illiquidity ratio for size deciles 1 and 10 (normalized at 1 in year 1993).

Consistent with the common sense, Panel (a) shows that the liquidity of largest stocks has improved

substantially over years. Surprisingly however, there is no clear trend for the smallest stocks in Panel

(b). Graphs for other deciles fall somewhere between these two and hence are omitted; most deciles are

similar to Panel (a), while decile 2 looks somewhat more like Panel (b). For each decile, the normalized

illiquidity ratio is multiplied to the entire price-impact function in (1) to project it out of sample.

While the above is an intuitive way to aggregate individual impacts, strictly speaking, it is subject

to a technical reservation. That is, a concave function with the average parameter values will not give

the average of the concave functions. This is where we call for the second measure of price impact.

We estimate the VWAP price impact in (2) for each size decile by pooling the daily observations of

component stocks every year, separately for buys and sells. Thus, we estimate 20 price impact functions

for each year from 1993 through 2002. Figure 7 shows the estimated portfolio VWAP price-impact

functions for year 2002 by size decile. Again, the absolute price impact is concave and increasing in trade

volume; for a given trade volume, it is generally decreasing in market capitalization of traded stocks.

Figure 8 in turn shows the time series of the buy price-impact function for the largest decile. Although

there is some fluctuation, the price impact has generally decreased over years, with a substantial drop

in years after the full decimalization of NYSE on January 29, 2001. To estimate out-of-sample price-

impact functions in pre-1993 years, we again multiply the normalized Amihud illiquidity ratio for a size

decile to the entire 1993 VWAP price-impact function for that decile.

Equipped with measures of price impacts, we may now proceed to examine the profitability of

anomaly driven strategies.

3 Profitability of Anomaly-based Strategies

This section studies the profitability of long-short arbitrage strategies and their variants based on the

size-, B/M-, and momentum anomalies. We measure the returns from anomaly-driven strategies as a

function of the fund size, when price-impact costs are taken into account. Obviously, a bigger fund

9Hasbrouck’s dataset ends in 2001 at the time of our analysis. We used the 2001 values for year 2002.
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size requires larger trades, which implies higher price-impact costs and lower returns. The subsequent

analysis will quantify this relationship. Of special interest is the break-even fund size of an arbitrage

strategy: what is the maximal fund size that generates a nonnegative excess return (relative to the

Federal Fund rate)?

To explain the implementation of a long-short arbitrage strategy, it suffices to start with one anomaly,

say, the size anomaly. As mentioned above, the size anomaly arises because the excess return is inversely

related to market capitalization. To profit from this relation, one would want to buy a portfolio of small

stocks and sell short the same amount of large stocks. Unfortunately, a textbook arbitrage is infeasible

in practice, mainly because of three reasons. First, the convergence of the values of the two positions can

never be assured. Second, the proceeds from shorting cannot all be used to finance the long position,

since in practice they have to be deposited on a margin account as collateral. Finally, price-impact and

transaction costs reduce the available funds when the portfolios are rebalanced. Our long-short arbitrage

strategy will take the second and third factors into consideration, while attempting to minimize the

risk of nonconvergence through taking a large number of positions and through either equal-weighting

or value-weighting.

Specifically, suppose we start with an initial fund size π0 and implement a self-financing long-short

arbitrage over the next T months. Denote by Lt and St the long and short portfolios, respectively, in

month t. At the end of month 0, we invest π0 dollars in L1 and sell short the same dollar amount

of S1 before costs. After price-impact costs and transaction fees, we would effectively hold b1 = π0 −
PIL1 − PIS1 − TCL1 − TCS1 − ECL1 − ECS1 dollars of L1, and sell short the same dollars of S1,

where PIL1, TCL1, and ECL1 represent the price-impact costs, the transaction fees, and the effective

spread necessary to create our long position, and PIS1, TCS1, and ECL1 denote the corresponding

costs for installing our short position. To compute PIL1 and PIS1 we first calculate the dollar amount

invested in each stock by equal or value weighting of π0. Price impact for each stock is then computed

by identifying the stock’s size decile and applying either the tick-by-tick or VWAP price impact function

for that decile. In doing this we use the price impact coefficients for the appropriate trade direction

(buy or sell) and for the year that month 0 belongs. Multiplying the invested dollar amount to the price

impact converts it into dollar costs (note that the price-impact functions in Figures 5, 7, and 8 are in

percentage of dollar trade size). Summing up the dollar price impacts for all the stocks in the long and

short positions gives PIL1 and PIS1, respectively.

We also take into account the time variation of transactions fees. Jones (2002) shows one-way

average commissions for round-lot transactions in NYSE stocks from 1928. Since it is not easy to

obtain a time series of commission schedule for a cross section of stocks, we apply a schedule similar to
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his to all stocks for relevant years. Our one-way commissions are shown in Figure 9.10 While this is

probably an underestimate of commissions for middle to small size stocks, it will produce a conservative

estimate of the break-even fund size. In computing TCLt and TCSt, we use this as the commissions for

a purchase and a regular sale. The commissions for a short sale are calculated, somewhat arbitrarily,

to be 5/3 times those of the regular sale.11 For large fund sizes, the commissions are small relative to

the price-impact costs.

The effective spread is also an important component of trading costs. Hasbrouck (2003) proposes

a Gibbs sampling estimate of effective spread. While this can constitute a significant portion of total

costs, for conservativeness we set this to be zero for most of our analysis. When the estimated break-

even fund size is very large, we use for ECLt and ECSt the values implied by (the time series of)

Hasbrouck’s (2003) estimates to further investigate the profitability of our strategy.12

The b1 dollars received from shorting LSD1 are then assumed to be deposited in a collateral account

paying 80% of the Federal Fund (FF) rate. (The short selling fee is 20% of the FF rate.) Hence, at the

end of month 1, the value of our total portfolio is π1 = (1 + rl1 − rs1 + 0.8r1)b1, where rl1 is the rate

of return on L1, rs1 the return on S1, and r1 the FF rate.

At the end of each month, the portfolios are reformed (stocks are reselected) if the strategy’s holding

period has elapsed since the previous portfolio formation (e.g., for the momentum J/K strategies, this

occurs every month if K = 1, and only annually if K = 12, for a given monthly cohort). Otherwise,

stock selection is unchanged. In this case, there are two important considerations in devising trading

strategies: the weighting scheme and the rebalancing frequency. Since these affect the trading costs

substantially, unlike most existing studies, we pay a particular attention to their treatment. We allow

portfolio weights to be rebalanced either every month or never till the next portfolio formation. The

latter case corresponds to a buy-and-hold strategy, which will reduce price-impact costs and transactions

fees by omitting small rebalancing trades. Alternatively, we could rebalance every x > 1 months, but

we focus on these two extreme cases since results for other rebalancing frequencies are expected to fall

somewhere in-between.

Regarding the weighting scheme, we follow the custom in the asset pricing literature and employ

either equal or value weighting. Note that a value weighted portfolio in a buy-and-hold strategy remains

value weighted in the absence of trading costs.13 In other words, it yields the same return as the value

weighted strategy rebalanced every month, since there is effectively no rebalancing. Our accounting

10This figure is read from Jones (2002, Figure 3). Since his chart ends in 2000, we use the year 2000 figure for years

2001 and 2002.
11 It is noted that there are no regular sales at the time of portfolio installation.
12We thank Joel Hasbrouck for making his data available on his website.
13A buy-and-hold strategy initiated with equally weighted portfolios will stay neither equally nor value weighted.
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scheme above also implies this. For this reason, we consider another value weighting scheme. When we

say a strategy is rebalanced every month with value weighting, the stocks keep value weighted according

to the market capitalization at the time of previous portfolio formation.14 Thus, this results in four

exclusive strategies, ceteris paribus, as a Cartesian product of the two weighting schemes and the two

rebalancing frequencies.

This way, at the end of month 1, our portfolios are either reformed, rebalanced, or held as the strategy

prescribes. This is done in a self-financing manner such that π1 dollars are invested in L2 and the same

amount is sold short in S2. The value of each position is b2 = π1−PIL2−PIS2−TCL2−TCS2, after
price-impact costs and transactions fees. We compute PIL2 and PIS2 based only on the rebalancing

amount, if any, for each stock and not on the entire π1. At the end of month 2, the value of our total

portfolio changes to π2 = (1+rl2−rs2+0.8r2)b2. The amount π2 will be the initial pre-cost investment
for month 3, and so on. Thus, the portfolio dynamics are governed by

bt = πt−1 − PILt − PISt − TCLt − TCSt −ECLt −ECSt (8)

πt = (1 + rlt − rst + 0.8rt)bt (9)

for t ∈ {1, 2, . . . , T}. The excess returns are calculated for each period by

Rt = πt/πt−1 − 1− rt. (10)

Now, the break-even fund size of an arbitrage strategy can be formally defined as the maximum fund

size that makes the mean excess return nonnegative, i.e.,

sup{π0 ≥ 0 |
TX
t=1

Rt(π0) ≥ 0}. (11)

Throughout the analysis, the break-even fund size is reported in year 2002 dollars using the inflation

rate calculated from the Consumer Price Index.15

Strictly speaking, after subtracting the price-impact costs and transaction fees, the long position

would be worth πt−1 − PILt − TCLt dollars, while the short position πt−1 − PISt − TCSt. In order

14Of course the weights should add up to 1. If a stock drops from a portfolio due to delisting or some other reason,

weights are adjusted so that remaining stocks are value weighted according to the market capitalization at the previous

portfolio formation without that dropping stock.
15 Specifically, if a strategy starts in June 1963 with initial capital π0, then we will report π0 times the consumer price

index (CPI) at December 2002 divided by its June 1963 value. The CPI is obtained from the St. Louis FRB website,

http://research.stlouisfed.org/fred2/data/CPIAUCNS.txt . Since it is recorded at the beginning of each month, a lead is

taken before usage. The conversion rate was 5.92 for the size and the B/M strategies (starting in June 1963), and 5.82

for the momentum strategies (starting in December 1964).
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to match the value of the two positions, we can think of our accounting practice as setting aside an

amount of PILt + PISt + TCLt + TCSt dollars in riskless bonds to pay the costs. This strategy aims

at reducing the total risk by equalizing the values of the long and short positions.

Having established the portfolio accounting policy, we may now examine the profitability of anomaly

based strategies in the presence of trading costs, especially price-impact costs. For brevity, we will

mainly present results with the VWAP price impact. The results with the tick-by-tick price impact

are similar, and therefore will be shown only when a large break-even fund size calls for thorough

investigation.

3.1 Size Arbitrage Strategies

The size strategy buys the largest capitalization decile and sells short the smallest one. Following Fama

and French (1993), we use the NYSE breakpoints to classify the NYSE, AMEX, and NASDAQ stocks

into size deciles.16 Only common stocks traded on these three exchanges or trading system are used

(CRSP share code 10 or 11). Starting from 1963, the portfolios are formed at the end of each June

and held for a year. Returns are measured monthly from July 1993 through December 2002. We also

examined the period in Fama and French (1993), namely from July 1963 to December 1991, but the

results are not materially different and hence omitted.

Table 5 reports the results for the size arbitrage strategy rebalanced every month, either equal

weighting (Panels (a) and (b)) or value weighting (Panels (c) and (d)) is used at portfolio formation,

when the VWAP price impact is used. Panel (a) shows that our size strategy renders a significantly

positive monthly excess return of 0.505% before cost. The benchmark CRSP equally weighted (EW)

portfolio yielded a slightly higher excess return, while we should be careful in comparing these two

numbers because our strategy is a long-short arbitrage strategy (see the expression for the end-of-period

portfolio value in (9)).

The first two columns in Panel (b) of Table 5 show how the mean excess return decreases with

fund size, when price-impact and transaction costs are taken into account. The mean excess return is

the average of excess returns in (10) over the strategy years. Unlike the maximum excess return, the

minimum excess return dramatically decreases with the fund size because of the increasing price impact

costs. The increase in standard deviation is primarily due to this downside risk. Obviously, the Sharp

ratio worsens with fund size in the presence of trading costs. The maximal fund size that generates

a nonnegative mean excess return is $139 million. Note however that the mean return is insignificant

16Size is defined as the price times the number of shares outstanding in the CRSP dataset. It is confirmed that our

NYSE size (and B/M) breakpoints are fairly close to those available on Ken French’s web site.
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even at the fund size of $1 million.

The panel also shows three important measures of tradability, the mean price impact, the mean

turnover, and the average number of stocks. Using the previous notation, the mean price impact is

defined as the average of PILt/πt−1 and PISt/πt−1 for the long and short positions, respectively. The

mean turnover is the average of the dollar amount invested or rebalanced in month t divided by πt−1.

For a small fund size, the mean price impact is substantially higher for the long position than for the

short position because of the higher turnover and the dominance of the small-stock price impact over

other deciles (see Figure 7). The higher turnover results from the fact that small firms tend to grow

faster, or on the contrary, disappear. For a large fund size, say $5 billion and over, the short position also

has a non-negligible price impact because at this point the capital allocated to each stock is substantial.

Note that there are only 150 stocks in the short position, compared to 2,276 in the long position. This

imbalance in the number of stocks results from the use of the NYSE breakpoints, which assigns many

NASDAQ stocks to the smallest decile. The long position has probably too many stocks to manage

practically. If we limited it in some way, the break-even fund size would be smaller.

Panel (c) shows the results when stocks are value weighted. The excess return is positive but

insignificant even if no costs are incurred. This is primarily due to the relatively good performance of

blue chip firms in late 1990s. The resulting break-even fund size is below $1 million as shown in Panel

(d).

We can expect that a buy-and-hold strategy will incur lower trading costs. This is demonstrated in

Table 6. In stocks are equally weighted at portfolio formation, the turnover is only 6.6% and 3.3% for

the long and the short positions, respectively (Panel (b)). These figures are less than half those of the

monthly rebalancing strategy in Table 5. As a result, both positions have lower price impacts. This

makes up for the lower pre-cost excess return of 0.323% (Panel (a)) and still leads to a larger break-even

fund size of $417 million. When stocks are value weighted, the strategy can accommodate $197 million

before the excess return vanishes. Note however that the excess return is insignificant at any fund size

regardless of the weighting scheme.

Overall, the size arbitrage strategy is not reliably profitable in the presence of trading costs. If any,

it can accommodate only several hundred million dollars at most.

3.2 Book-to-Market Arbitrage Strategies

A book-to-market (B/M) arbitrage strategy buys high B/M stocks and sells short low B/M stocks. We

form our portfolios in each June from 1963 through 2002 and hold them for a year. Again following

Fama and French (1993), B/M is calculated as the book value divided by the market capitalization at
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the end of the previous year.17 NYSE breakpoints are used to classify all the stocks on NYSE, AMEX,

and NASDAQ into deciles. Our strategy then buys the highest B/M decile and sells short the lowest

B/M decile. Returns are measured monthly from July 1963 through December 2002.18

Table 7 summarizes the results for the B/M arbitrage strategy rebalanced monthly with the VWAP

price impact. When equally weighted, the strategy produces a very strong excess return of 1.133%,

which is almost twice that of the benchmark CRSP index (Panel (a)). In addition, the strategy return

is much less volatile than the benchmark index and the size strategy; as a result, it yields a Sharpe

ratio of 0.262, over twice as large as 0.108 for the CRSP index and 0.0916 for the size strategy. Panel

(b) demonstrates an important difference in tradability from the size strategy; the mean turnover, the

average number of stocks, and the mean price impact are all comparable between the long and the short

positions. In particular, the mean turnover of the short position is much higher than that of the size

strategy. Thus, its composition seems to be changing as actively as the long position. The high price

impact of the short position suggests that it now contains small stocks.19 The break-even fund size is

$315 million. The value weighted strategy is again less profitable and accommodates only $37 million

(Panel (d)).

Does a buy-and-hold strategy work? Table 8 says the answer is positive but with a caveat. Unlike the

size strategy, the B/M strategy preserves its fundamental strength without frequent weight adjustment;

the buy-and-hold strategy renders a pre-cost excess return of 1.04% and a Sharpe ratio of 0.252. Coupled

with a lower turnover below 10% for both positions, it yields the break-even fund size of $4.60 billion

(Panel (b)). However, interpretation of this seemingly large number requires care, since the mean excess

return is insignificantly different from zero if as little as $500 million is invested. The value weighted

strategy in Panel (d) can hold only $73 million.

Because of the relative profitability of the B/M strategy, we investigate the issue further using the

tick-by-tick price impact. Tables 9 and 10 present the results for the monthly rebalancing and the buy-

and-hold strategies, respectively. In short, the results are very similar with this alternative measure of

price impact. If equally weighted, the break-even fund size is $545 million when rebalanced monthly,

17We calculate the book value of a firm as the Compustat balance-sheet stockholders’ equity plus deferred taxes and

investment tax credit less preferred stock. For preferred stock, we use the first available of the redeemable, liquidating,

or carrying value. Negative-book-value firms are excluded from the analysis.
18Davis, Fama, and French (2000) augments the construction of B/M by Moody’s data in conjunction with Compustat.

The benefit of the Moody’s dataset is primarily in early years when Compustat entries are not available. We also tried

this method and confirmed that the results are similar to what follows. We thank Ken French for making the Moody’s

data available.
19 Indeed, it is likely that both the long and short positions contain small stocks. It is known in the literature that a

part of the B/M effect is in fact a small-firm effect: high B/M small stocks and low B/M small stocks exhibit the widest

spread among all possible high and low B/M groups (e.g., Loughran and Ritter (2000)).
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and $4.64 billion when bought-and-held. The mean price impact is surprisingly close to the VWAP

price impact regardless of the weighting scheme and the rebalancing frequency.

3.3 Size-B/M Combined Arbitrage Strategies

It is widely accepted that size and B/M span the cross section of stock returns (Fama and French

(1993)). Our next task is to examine the validity of this proposition under the additional assumption

of trading costs. We sort all the stocks by size and B/M independently into five-by-five cross sections.

Our arbitrage strategy then buys the smallest, highest B/M group and sells short the biggest, lowest

B/M group annually in each June. Other features of the strategy are unchanged from the previous

section.

Panels (a) and (b) of Tables 11 and 12 present the results for the monthly rebalancing and the

buy-and-hold strategies, respectively, when returns are equally weighted and costs are assessed by the

VWAP price impact. Regardless of the rebalancing frequencies, the risk-return and cost profile of the

equally weighted size-B/M strategy falls somewhere between the two independent strategies; the mean

and the standard deviation of the pre-cost excess return, the Sharpe ratio, the mean price impact, and

the mean turnover all fall between the corresponding numbers for the size (Tables 5 and 6) and the

B/M (Tables 7 and 8) strategies. The break-even fund sizes are $489 million when rebalanced monthly

and $955.3 million when bought-and-held.

When value weighted, the combined strategy works better than the size and the B/M strategy

(Panels (c) and (d) of Tables 11 and 12). The mean pre-cost excess return is 0.624% and 0.563% for the

monthly rebalancing and the buy-and-hold strategies, respectively, leading to break-even fund sizes of

$89 million and $795 million. Recall why the value weighted B/M arbitrage strategy did not work—the

reason is that the highest B/M decile contains small firms that tend to render superior returns. The

combined strategy seems to alleviate this problem by separating the size and the B/M effects.

3.4 Momentum Strategies

Momentum strategies are known as one of the most profitable trading strategies (Jegadeesh and Titman,

(1993, 2001)). We implement the standard momentum J/K strategies where J and K denote the

ranking and the holding periods, respectively. Specifically, every month t from December 1964 through

November 2002, stocks are sorted into deciles by the past J month returns (month t − (J − 1) to
t). Following Jegadeesh and Titman (2001), we use stocks on the NYSE, AMEX, and NASDAQ,

excluding those with a price less than $5 and those that belong to the bottom size decile using the

NYSE breakpoint. The strategy buys the decile with the highest past returns (winners) and sells short
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the decile with the lowest ones (losers) and holds them for the next K months (month t+ 1 to t+K).

Thus, there are K overlapping monthly cohorts in each of the long and the short positions. The size

and the $5 price screens are meant to mitigate microstructure concerns. For this reason, we do not skip

a month between the ranking and the holding periods.20 Also, this screening will exclude stocks that

are hard to short. D’Avolio (2002) finds that one third of the stocks in the bottom size decile and one

third of stocks priced under $5 appear unshortable.

Again, we consider two rebalancing frequencies, monthly rebalancing and buy-and-hold. When

rebalanced monthly, the K cohorts will always be equally weighted, while the component stocks in each

cohort can be equally or value weighted. In a buy-and-hold strategy, the cohorts are equally weighted

only at the inception of the strategy. The component stocks in a cohort, however, can be equally or value

weighted at cohort formation (every K months). Thus, under either rebalancing frequency, only 1/K of

all the stocks are unwound in a given month to form a new cohort (stock selection). In a buy-and-hold

strategy, only these stocks are subject to trading, while in a monthly rebalancing strategy all stocks are

rebalanced (weight adjustment). Returns are measured from January 1965 through December 2002.

Following Jegadeesh and Titman (2001), we first examine the momentum 6/6 strategy thoroughly.

Table 13 shows the results with monthly rebalancing and the VWAP price impact. While the equally

weighted strategy offers the highest return ever (1.197% before cost, Panel (a)), the break-even fund size

is only $53 million (Panel (b)). The reason is the high turnover reaching upper 30%’s monthly, which

is more than twice the turnovers of other strategies we have examined. The value weighted strategy

produces a slightly lower return before cost but a larger break-even fund size of $90 million because of

decreased price impact. The equally weighted buy-and-hold strategy produces a monthly excess return

of 1.306% before cost, but the maximal fund size is still $271 million (Table 14, Panels (a) and (b)).

The results are similar if the tick-by-tick price impact is used in Tables 15 and 16.

Table 17 tabulates the statistics for various equally-weighted buy-and-hold momentum J/K strate-

gies, where J ∈ {3, 6, 9, 12} and K ∈ {1, 3, 6, 9, 12}. Panel (b) confirms the findings of the existing
literature that the 12/3, 12/1, and 6/6 strategies produce highest pre-cost returns. This, however, does

not translate to a large break-even fund size in Panel (a); these strategies admit no more than several

hundred million dollars, because of the high monthly turnovers shown in Panel (d) and hence high

price-impact costs.21 In contrast, the most accommodative strategies are the 6/9 and 6/12 strategies,

20Nevertheless, we performed a spot check by skipping a month between the ranking and the holding periods. The

results were not materially different.
21Moskowitz and Granblatt (1999, p.1274) observe that the high turnover ratio of their 1/1 industry momentum strategy

would appear to preclude profits after costs, despite its high return. They note that the profitability of the 6/6 industry

momentum strategy will be a subject of future research (p.1272).
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which can trade as much as $1.73 billion and $1.69 billion before the excess return vanishes. However,

the fund sizes that produce a significantly positive excess return are only several hundred million dol-

lars (not shown). In addition, Panel (c) indicates that these strategies employ an unrealistically large

number of stocks, more than 3,000 in the two positions combined.22

Table 18 indicates that the value weighted strategy produces lower excess returns and hence smaller

break-even fund sizes. Results with the tick-by-tick price impact in Tables 19 and 20 are similar in

nature. To summarize, we could confirm the high pre-cost excess returns of momentum strategies, but

it seems rather difficult to exploit them practically under trading costs.

4 Discussions

The experiments in the previous sections question the profitability of anomaly-based strategies when

trading costs are incurred. In this section, we investigate the robustness of our results by incorporating

more realistic assumptions and extending the search over wider strategy spaces. We then interpret our

results and compare them to related papers.

4.1 Trade Restriction and Position Limit

So far, we have implicitly assumed that any trade can be executed in one shot. In reality, however,

traders often “work” an order; a large trade is divided up into smaller pieces and executed over time.

As seen in Figure 3, actual trades are rarely larger than 1% of the market capitalization. In addition,

holding more than 5% of it requires costly filings with the SEC (Form 13D). For this reason, we

additionally impose two restrictions on our strategies. The 1% trade restriction requires any single

trade to be no larger than 1% of the market capitalization. For example, if we trade $2.5 million of a

$100 million firm, we place two $1 million orders and a $0.5 million order, and compute price impact

accordingly. The 5% position limit admits no position in a single stock larger than 5% of the market

capitalization. If a stock’s position exceeds this limit, the excessive funds are allocated to a largest stock

in the same portfolio (or cohort in momentum strategies). If the largest stock cannot accommodate

the excessive fund, the rest goes to the second largest, and so on. If the position limit is reached for

all stocks, it is noted and funds are value weighted. Note that for a value weighted portfolio, the 5%

position limit will be binding for all stocks if and only if it is binding for one stock.

Figure 10 shows the effect of these two restrictions on the size-B/M combined strategy with the

22A caveat is that overlapping is likely; one stock may be contained in multiple cohorts at a given time. The actual

number of different stocks are probably less than those shown in the table.
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VWAP price impact. We focus here on the more profitable equally weighted strategy. The circles

depict the relation between the arbitrage fund size and the mean excess return (the first two columns

in Table 12). As already discussed, the break-even fund size of the “plain vanilla” strategy was $955

million.23 When the 1% trade restriction is imposed, the break-even fund size dramatically decreases to

approximately $110 million. This is due to the concavity of price impact functions. It should be noted

that such a trading strategy may not be optimal in that it does not optimize the sequence of trades.

Huberman and Stanzl (2003) study the problem of optimally executing a given portfolio when trades

incur price impact.

When the 5% position limit alone is imposed, the break-even fund size is about $350 million. In

general, the effect of the 5% position limit is ambiguous. Allocating more funds to larger stocks will

result in lower price-impact costs, but it could also reduce returns. It appears that the latter dominates

the former for the current strategy. When both the trade restriction and the position limit are imposed,

the break-even fund size is about $170 million.

4.2 Changing Trade Frequencies

Can we improve if we form our portfolios (reselect stocks) more frequently? Our hope is that we may

be able to “fine-tune” our strategies to anomalies. An obvious drawback is the increased turnover and

price impact. We have already done this analysis for momentum strategies. Frequent rebalancing means

a low value of K (holding period) in Tables 17-20. The message there was that the increased trading

costs exceeded the benefit.

We now examine this point for the size and B/M strategies. To save space, we again focus on the

equally weighted combined strategy. In addition to annual frequency, we form portfolios semiannually

and quarterly.24 Figure 11 shows the results. As the rebalancing frequency doubles from annual to

semiannual and to quarterly, the break-even fund size falls from $955 million to about $380 million and

to a mere $50 million. Clearly, the cost associated with frequent rebalancing ruins the possible benefit

of return increase.

4.3 Short-sale Constraint and Long—position-only Strategies

One advantage of a long-short arbitrage strategy over a strategy involving only a long position is that it

allows one to be near market neutral. While this typically helps reduce return variability and improve

23The figure apparently shows a little smaller break-even fund size of approximately $900 million. This results from

the difference in interpolation. The numbers mentioned in the text are computed by a linear interpolation between two

fund sizes. The graphical representation here employs a cubic Hermite interpolation.
24 In line with the annual strategy, B/M is calculated by the book and the market values six months ago.
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the Sharpe ratio, an obvious drawback is that it may be difficult to create the short position because

of illiquidity or market frictions. Therefore, it is of interest to examine whether strategies involving

only a long position work. Here, we focus again on one of the most accommodative strategies, the

6/12 buy-and-hold equally-weighted momentum strategy, with the VWAP price impact used for cost

calculation. A further discussion of short sale constraints is provided in the Conclusion.

Table 21 summarizes the break-even fund size of the winner-only strategy. The monthly excess

return is 1.013% before cost, which is slightly lower than 1.028% for the long-short arbitrage strategy

in Panel (b) of Table 17. This is because the loser portfolio offers a return that is approximately 10bp

lower than that of the Federal Fund on average over our sample period. The standard deviation of

excess return is 7.58%, which is considerably lower than 4.43% for the arbitrage strategies (not shown).

The absence of the short position and the associated price impact allows the winner-only strategy

to accommodate much more capital; the break-even fund size is $21.5 billion. The mean turnover is

approximately halved. Although not shown, the break-even fund size reduces to $14.6 billion with both

the 1% trade restriction and the 5% position limit. When Hasbrouck’s (2003) Gibbs sampling estimates

of effective costs are additionally included (ECLt and ECSt in equation (8)), this further decreases to

$10.6 billion.

While these numbers may seem fairly large, their interpretation again needs care. The fund size

that offers a statistically significant excess return is much smaller than them. The t-statistic of 1.24 for

$1 billion indicates that only several hundred million dollars may be invested to produce a significant

positive return at any reasonable confidence level.

4.4 Comparison with Actual Hedge Fund Size

In this section, we compare our estimates to the actual size of all relevant hedge funds and mutual

funds, since we are investigating the rationality of market participants as a whole. The idea here is to

simply compare apples to apples. Each break-even fund size estimated in the previous sections should

be interpreted as an additional fund size attainable to the market. Indeed, we have implicitly studied a

monopolistic arbitrageur who attempts to create a single, largest fund from a set of possible strategies.

Thus, our reference point should be the total anomaly-driven investment that produce price-impact and

other costs, and not the size of funds that follow a particular strategy.

Table 22 presents the summary statistics of the size of equity hedge funds by investment approach as

defined in the TASS dataset. The data come from TASS Management Limited and covers 1,501 hedge

funds as of June 2002. As the table shows, the total size of equity hedge funds in the TASS dataset

is $241 billion, whereof $86 billion is invested in arbitrage strategies. Because of the private nature of

23



hedge funds, it is likely that the actual hedge fund industry is much larger than this.

According to Hennessee Group’s (2003) comments submitted to an SEC hedge fund roundtable,

5,700 funds manage $592 billion as of January 2003. Of this, 62% is invested in long-short equity

strategies, which amounts to roughly $350 billion or more. Added to this should be mutual funds.

Table 23 shows the size of small-cap and value equity funds in the CRSP mutual fund dataset at the

end of 2002.25 From this we roughly estimate the size of relevant mutual funds to be at least $300

billion. Thus, an identified $650 billion is already deployed in the market, seeking the potential profit

opportunities based on the three popular anomalies. We believe that this is a conservative estimate

of money that is subject to price impact, given the size of domestic equity mutual funds totaling $2.3

trillion (in 2002). The largest of our break-even fund sizes, $10-20 billion, represent no more than 2-3%

of the $650 billion. This is also well within a tolerance of weekly volatility. In addition, this investment is

not worth pursuing, since one could earn the same return by just investing in a safe deposit or Treasury

securities. If he wishes to secure a significantly positive excess return, he can invest only several hundred

million dollars. Moreover, some of these most accommodative strategies, such as momentum strategies

with a holding period of 12 months, hold too many stocks to manage practically. Even mammoth

mutual funds with tens of billions of dollars in asset, such as Vanguard 500 Index, American Funds

Investment Company of America, and Fidelity Magellan, invest in no more than several hundred stocks.

It should be noted that the hedge fund industry has grown considerably since the end of our sample

period, December 2002. According to Hennessee Group, there are currently 7,000 hedge funds with an

$845 billion asset under management as of mid 2004 (Davis (2004)). This is a huge gain from the $400

billion asset administered by 4,800 funds at the end of 2000, and 1,640 funds a decade ago. According to

Davis (2004), about three quarters of annual revenue is currently generated by equity trading, with the

rest coming from bonds, commodities, currencies, and options. If revenue is proportional to the assets

under management, a reasonable estimate of the current size of equity hedge funds would be $600-$700

billion. We think that this growth is too rapid to be explained by the existence of possible arbitrage

opportunities. Other factors include the recovery of the stock market as a whole26 and the increased

recognition of hedge funds as alternative investments. The market may have grown, or reach soon, to

the point where the apparent profit opportunities are not really exploitable in a systematic manner.

Indeed, as of July 2004, new hedge funds are still being created in the order of a few billion dollars

despite the fact that returns are pressed (Sender (2004)). In the same month, the Federal Reserve

Chairman Alan Greenspan also gave the testimony that already appeared in the Introduction of the

25See the table caption for definition.
26According to the CRSP dataset, the total market value has increased to $13.9 trillion at the end of 2003 from $11.6

trillion in 2002.
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current paper.

Our results address an important question of investor rationality. The existence of market anomaly

does not necessarily imply that there is too much money left on the table. Rather, investors have been

continuously trying to exploit profit opportunities, as represented by the huge size of relevant hedge

funds and mutual funds. Still, various market frictions, such as trading costs and short sale constraint,

prevent traders from fully exploiting anomalies. Our results indicate that price impact alone may be

enough to deter arbitrage.

4.5 Relation to Other Studies

The two most related papers are Korajczyk and Sadka (KS)(2004) and Lesmond, Schill and Zhou

(2004). Both of them focus on the post-cost profitability of momentum strategies and reach opposite

conclusions. In this section, we discuss the difference between these two papers and our results on

momentum.

KS propose a “liquidity weighted” strategy which maximizes after-cost returns under some sim-

plifying assumptions. They find that certain winner-only momentum strategies can accommodate as

much as $5 billion before the profit opportunities disappear. From this they conclude that transaction

costs, including price-impact costs, do not fully explain the return continuation, and that “this anom-

aly remains an important puzzle.” (KS (2004, p.1040)) The break-even fund sizes from our winner-only

strategies are larger than theirs, while our fund sizes that produce a significantly positive return are

smaller. Main differences include the followings:

1. Stock weighting. In addition to the traditional equal and value weighting, KS minimize price

impact costs by explicitly solving an optimization problem. Their optimization is a static single-

period problem, which by construction excludes a buy-and-hold strategy. However, we find that

equally weighted buy-and-hold strategies are the most accommodative strategies in the class of

strategies we consider.

2. Conversion ratio. KS use the total market capitalization to convert 1997 dollars to 1999. The

ratio is 29.7. We use the Consumer Price Index, and the conversion ratio for our momentum

strategies is 5.82.

3. Price impact functions. We model returns as a concave function of dollar volume, while KS

formulate either returns as a linear function of percentage turnover (Breen, Hodrick, Korajczyk

(2002)), or price changes as a linear function of the number of shares traded and the trade direction
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(Glosten and Harris (1988)). Ceteris paribus, use of a concave function will produce a lower price

impact for a large enough fund size.

4. Portfolio formation. We exclude stocks in the smallest size decile as well as those with a price less

than $5. This tends to reduce price impact. Because of these screening, we do not skip a month

between the ranking and the holding periods. KS skip a month.

5. Sample period. KS use a 1967-1999 period. We measure returns from 1965 to 2002. Given the

market performance between 1999 and 2002, our momentum returns are likely to be weaker.

6. Risk adjustment. KS adjust their returns for the Fama-French three risk factors and use the

regression alpha. We choose to make our profit measure model-free and simply use excess return.

The regression alpha would have a lower standard error than the excess return itself.

Points 1 and 2 tend to understate our break-even fund sizes relative to KS, while Points 3, 4, and 5

would overstate them.

In contrast to KS, LSZ find that stocks that generate large returns in standard momentum strategies

are precisely those stocks with high trading costs. They conclude that the apparent large returns

associated with momentum strategies create “an illusion of profit opportunity when, in fact, none

exists.” (LSZ (2004, p.349)) The biggest difference from our study is that their “trading cost measures

do not explicitly include price impact costs.” (LSZ (2004, p.370)) They compare the returns and costs

in percentage and therefore do not report break-even fund sizes.

Unlike these two papers that focus on the profitability of a particular strategy, specifically momen-

tum, we discuss the rationality of the aggregate market in which all popular anomaly-based strategies

are practiced.

5 Conclusion

This paper examines whether one can take advantage of the size, B/M, or momentum anomaly when

price-impact costs are taken into consideration. We construct long-short arbitrage strategies based on

these anomalies and compute maximum fund sizes that render nonnegative excess returns after cost. We

find that most profitable arbitrage strategies are equally weighted, buy-and-hold B/M and momentum

strategies, which accommodate up to several billion dollars. When short sale constraint is imposed,

the winners-only momentum strategies can hold approximately $20 billion before the excess return

vanishes. However, the fund sizes that secure statistically significant excess returns are at most several

million dollars for all anomalies. Imposing trading frictions, such as the 1% trade restriction and the
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5% position limit, can only decrease the break-even fund size in favor of our results. These support the

idea that markets are minimally rational in the sense of Rubinstein (2001).

While this paper attempts to incorporate important aspects of trading practice and constraints in

the real market, there are still some points left for future research. First, our search for profitability is

confined only to a subset of the whole strategy space, from both the cost and the benefit perspective.

For example, trading costs will be less relevant in a long term contrarian strategy. Also, dynamic as

well as cross-sectional optimization of costs and returns might also prove rewarding.

Second, our strategy, like any monthly or lower frequency strategy, does not fully recognize the

“working” of a trade. This an example of dynamic minimization of trading costs. While our VWAP

price impact was meant to address this at least partially, explicitly splitting a large trade into smaller

pieces and executing them over time might prove effective in a higher-frequency strategy.

Finally, we have kept the modeling of short-sale constraints minimal. While the results of D’Avolio

(2002), Geczy, Musto, and Reed (2002), and Jones and Lamont (2002) indicate that short selling

restrictions alone do not appear to explain the three anomalies that we study, the effect of the restrictions

in most of our sample period is generally unknown; these three studies collectively cover only four years

(1998-2001) of our sample period, and Jones and Lamont note that the relation between shorting costs

and portfolio characteristics is time varying. For example, using a 1926-1933 dataset, they show that

stocks with high shorting costs tend to have a higher past return, which contradicts D’Avolio’s finding

from 2000-2001 that momentum losers are likely to be high cost stocks.
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Characteristics of Selected Stocks

Ticker Company Name Exchange Price #Shares ME BE B/M Volume
GE General Electric Co. NYSE 85.500 854,039 73,020 27,999 0.383 21,487
KO Coca Cola Co. NYSE 41.875 1,309,905 54,852 3,970 0.072 32,316
BONT Bon Ton Stores Inc. NASDAQ 7.250 4,980 36 90 2.505 814

CSII Communications System Inc. NASDAQ 15.375 4,427 68 35 0.511 160
S Sears Roebuck Co. NYSE 45.500 345,290 15,711 9,212 0.586 17,546

INGR Intergraph Corp. NASDAQ 13.250 47,558 630 749 1.189 4,703
MIKE Michaels Stores Inc. NASDAQ 34.000 16,355 556 155 0.279 4,582

Table 1

This table shows the characteristics of selected stocks. All raw data are from CRSP and Compustat. Price is the closing price as of the end
of December 1992. #Shares is the number of shares outstanding in thousands as of the end of December 1992. ME is the market value of
equity in millions of dollars and equals Price times Number of Shares Outstanding. BE is the book value of equity in millions of dollars as of
the end of the fiscal year 1992, and is given by Compustat book value of shareholders' equity plus deferred taxes less the book value of
preferred stock. B/M is the book-to-market ratio and equals BE divided by ME. Volume is the sum of the number of shares traded on all
trading days in December 1992 in thousands. 



Table 2
Estimated Parameter Values of The Box-Cox Model

GE KO BONT CSII S INGR MIKE
(a) Buys
Nobs 23,265       23,157     518          1,212       10,826      2,329       4,704       
a B  (×10-3) -0.020 -0.060 -5.28 -3.89 -0.13 -0.49 -0.78

(-1.34) (-3.71) (-2.75) (-5.11) (-3.07) (-1.99) (-6.69)
b B  (×10-4) 0.00308 0.0109 6.53 4.91 0.0379 0.770 0.940

(2.27) (3.20) (3.04) (5.69) (2.27) (2.77) (7.91)
λ B 0.468 0.410 0.000 0.000 0.302 0.000 0.000

(12.51) (15.05) (--) (--) (7.97) (--) (--)
(b) Sells
Nobs 25,543       25,029     523          692          16,368      1,710       4,362       
a S  (×103) -0.018 0.020 1.370 2.830 0.030 0.870 0.300

(-2.49) (1.50) (0.70) (2.47) (1.65) (3.05) (2.36)
b S  (×104) -0.000774 -0.004061 -2.740000 -3.720000 -0.003922 -1.200000 -0.470000

(-1.95) (-3.13) (-1.30) (-3.01) (-2.38) (-3.83) (-3.68)
λ S 0.575 0.499 0.000 0.000 0.502 0.000 0.000

(13.17) (18.11) (--) (--) (13.79) (--) (--)

This table shows the estimated parameter values of the Box-Cox model. The estimated model is     PI = a B  + b B (x λ -1)/λ B  + ε     
for buys and     PI = a S  - b S (x λ -1)/λ S  + ε         for sells with the restriction 0 ≤ λ B , λ S  ≤ 1, where  PI t  (PI τ )  is the price impact 
of a trade measured as the relative quote midpoint change and V t  (V τ ) is the dollar volume. The estimation is by nonlinear least 
squares. t-stats are shown in parentheses. When λ B  or λ S  hits the lower bound, a log function is re-fitted. For such cases, t-
stats are not reported. 
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Table 3
Estimated Parameter Values of The Linear Model

GE KO BONT CSII S INGR MIKE
Nobs 23,265       23,157     518          1,212        10,826     2,329       4,704       
αB  (×10-4) 0.614 0.822 3.464 1.288 1.394 1.467 1.200

(24.22) (21.81) (1.11) (1.16) (23.12) (3.57) (6.83)
βB  (×10-8) 0.0455 0.0829 1.075 2.657 0.0631 0.2690 0.0403

(37.04) (42.43) (0.90) (4.02) (27.56) (1.77) (1.64)

    Linear 0.84 1.24 8.84 14.57 1.71 2.81 1.40
    Box-Cox 0.83 1.62 17.85 14.23 1.87 3.43 2.37
    Difference 0.01 -0.38 -9.01 0.35 -0.16 -0.62 -0.97

    Linear 1.98 3.31 35.72 80.99 3.29 9.54 2.41
    Box-Cox 2.20 4.05 29.55 23.02 4.24 4.81 4.05
    Difference -0.22 -0.74 6.17 57.97 -0.96 4.73 -1.65

(a) Price impact from $50,000 trade (bp)

(b) Price impact from $300,000 trade (bp)

Ticker Symbol

This table shows the estimated parameter values of the linear model and the comparison of the linear and the Box-Cox fits for buy orders.
The estimated linear model is PI t = α B + β B V t + ε t , where PI t is the price impact of a trade measured as the relative quote midpoint
change and V t is the dollar volume. The estimation is by ordinary least squares. t-stats are shown in parentheses. The price impacts for
the Box-Cox model is calculated by using the estimated parameter values given in Table 2.



Table 4
Estimated Parameter Values for Portfolio Price Impact Functions

Size a B (x10-3) b B (x10-4) λ B a S (x10-3) b S (x10-4) λ S

Small -1.98 4.56 0.245 0.16 -2.41 0.285
2 -1.95 3.15 0.198 1.16 -2.29 0.206
3 -1.69 2.48 0.155 1.13 -2.03 0.160
4 -1.65 2.53 0.121 1.13 -2.03 0.157
5 -1.53 2.44 0.113 1.10 -2.00 0.148
6 -1.59 2.33 0.108 1.41 -2.26 0.108
7 -1.52 2.10 0.108 1.24 -1.89 0.137
8 -1.22 1.49 0.133 1.19 -1.61 0.119
9 -1.00 1.11 0.168 0.99 -1.21 0.162

Big -0.19 0.22 0.268 0.25 -0.35 0.239

The estimated parameter values for the portfolio price-impact functions by size decile. First, we
estimate the individual price-impact functions as described in the note to Table 2. The
parameter value of a portfolio price-impact function for a given decile is computed as the
equally weighted average of the individual parameter values for the stocks in the decile.



Table 5
Size Arbitrage Strategy with VWAP Price Impact

Rebalanced Monthly

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.505% (1.99) 5.51% 26.00% -14.95% 0.0916
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.217% (0.86) 5.50% 25.5% -15.4% 0.0395 0.161% 15.5% 0.009% 7.5%
10M 0.129% (0.51) 5.51% 25.3% -15.5% 0.0234 0.231% 15.5% 0.027% 7.5%
50M 0.052% (0.20) 5.52% 25.2% -15.7% 0.0094 0.278% 15.5% 0.056% 7.5%
100M 0.011% (0.04) 5.54% 25.2% -15.7% 0.0021 0.298% 15.5% 0.076% 7.5%
500M -0.107% (-0.41) 5.61% 25.1% -21.2% -0.0190 0.341% 15.5% 0.150% 7.5%

1B -0.170% (-0.65) 5.67% 25.1% -26.7% -0.0300 0.357% 15.5% 0.198% 7.5%
5B -0.347% (-1.25) 6.02% 25.0% -47.9% -0.0575 0.386% 15.5% 0.344% 7.5%
10B -0.421% (-1.45) 6.33% 25.0% -63.0% -0.0665 0.393% 15.5% 0.411% 7.5%

Break-even Fund Size: 138.6M Average # Stocks Long: 2,276.7    Short: 150.0      

This table shows excess monthly returns from the size arbitrage strategy using price impact functions estimated from value-
weighted average price (VWAP). The strategy buys the smallest size decile and sells short the biggest decile at the end of June
from 1963 through 2002, with weights rebalanced every month to stay equally or value weighted. Calculation of size and timing of
portfolio formation follow Fama and French (1993). Returns are measured from July 1963 through December 2002 and shown in
excess of the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80%
of the FF rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP
benchmark. Panel (b) accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted
strategy are shown in Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size.
Mean Excess Return is the time-series average of the excess monthly returns over the sample period. Mean Price Impact and
Mean Turnover are defined as the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced,
respectively, to the dollar amount invested before trading in the long (or short) position.



Table 5, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.250% (1.05) 5.20% 23.63% -14.66% 0.0480
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M -0.027% (-0.11) 5.21% 23.3% -14.8% -0.0052 0.155% 16.4% 0.007% 6.6%
10M -0.113% (-0.47) 5.22% 23.2% -14.9% -0.0217 0.227% 16.4% 0.021% 6.6%
50M -0.186% (-0.77) 5.25% 23.1% -14.9% -0.0354 0.277% 16.4% 0.043% 6.6%
100M -0.223% (-0.92) 5.27% 23.1% -17.8% -0.0422 0.298% 16.4% 0.058% 6.6%
500M -0.327% (-1.32) 5.39% 23.0% -30.2% -0.0606 0.343% 16.4% 0.117% 6.6%

1B -0.382% (-1.51) 5.51% 23.0% -38.8% -0.0693 0.361% 16.4% 0.154% 6.6%
5B -0.514% (-1.80) 6.20% 23.0% -73.0% -0.0828 0.385% 16.4% 0.262% 6.6%
10B -0.459% (-1.46) 6.86% 23.0% -97.2% -0.0670 0.341% 16.4% 0.252% 6.6%

Break-even Fund Size: <1M Average # Stocks Long: 2,276.7    Short: 150.0      



Table 6
Size Arbitrage Strategy with VWAP Price Impact

Buy-and-Hold

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.323% (1.30) 5.43% 33.99% -18.41% 0.0595
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.183% (0.73) 5.45% 34.0% -18.4% 0.0335 0.081% 6.6% 0.007% 3.3%
10M 0.137% (0.55) 5.47% 34.0% -18.4% 0.0251 0.112% 6.6% 0.020% 3.3%
50M 0.092% (0.36) 5.49% 34.0% -18.4% 0.0167 0.135% 6.6% 0.043% 3.3%
100M 0.066% (0.26) 5.51% 34.0% -18.4% 0.0120 0.144% 6.6% 0.059% 3.3%
500M -0.017% (-0.07) 5.61% 33.9% -21.2% -0.0031 0.165% 6.6% 0.121% 3.3%

1B -0.067% (-0.25) 5.68% 33.9% -26.7% -0.0117 0.174% 6.6% 0.162% 3.3%
5B -0.213% (-0.76) 6.08% 33.9% -47.9% -0.0351 0.190% 6.6% 0.291% 3.3%
10B -0.280% (-0.95) 6.40% 33.9% -63.0% -0.0437 0.194% 6.6% 0.354% 3.3%

Break-even Fund Size: 416.8M Average # Stocks Long: 2,276.7    Short: 150.0      

This table shows excess monthly returns from the size arbitrage strategy using price impact functions estimated from value-
weighted average price (VWAP). The strategy buys the smallest size decile and sells short the biggest decile at the end of June
from 1963 through 2002, with no rebalancing through the holding period. Calculation of size and timing of portfolio formation follow
Fama and French (1993). Returns are measured from July 1963 through December 2002 and shown in excess of the Federal
Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of the FF rate. Panel
(a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark. Panel (b)
accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted strategy are shown in
Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess Return is
the time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover are defined
as the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the dollar
amount invested before trading in the long (or short) position.



Table 6, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.218% (0.91) 5.20% 32.05% -20.84% 0.0420
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.103% (0.43) 5.22% 32.0% -20.8% 0.0198 0.073% 6.1% 0.004% 1.4%
10M 0.066% (0.28) 5.24% 32.0% -20.8% 0.0127 0.102% 6.1% 0.011% 1.4%
50M 0.032% (0.13) 5.26% 32.0% -20.9% 0.0061 0.124% 6.1% 0.024% 1.4%
100M 0.014% (0.06) 5.29% 32.0% -20.9% 0.0026 0.133% 6.1% 0.032% 1.4%
500M -0.043% (-0.17) 5.42% 32.0% -30.2% -0.0080 0.155% 6.1% 0.067% 1.4%

1B -0.076% (-0.30) 5.54% 32.0% -38.8% -0.0138 0.165% 6.1% 0.091% 1.4%
5B -0.174% (-0.61) 6.23% 32.0% -73.0% -0.0279 0.179% 6.1% 0.175% 1.4%
10B -0.181% (-0.57) 6.88% 32.0% -97.2% -0.0263 0.156% 6.1% 0.205% 1.4%

Break-even Fund Size: 197.1M Average # Stocks Long: 2,276.7    Short: 150.0      



Table 7
Book-to-market Arbitrage Strategy with VWAP Price Impact

Rebalanced Monthly

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.133% (5.71) 4.32% 19.80% -15.92% 0.2623
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.474% (2.38) 4.34% 19.1% -16.5% 0.1092 0.254% 17.7% 0.206% 18.9%
10M 0.307% (1.52) 4.40% 18.9% -16.6% 0.0697 0.335% 17.7% 0.289% 18.9%
50M 0.166% (0.81) 4.48% 18.8% -18.3% 0.0370 0.397% 17.7% 0.364% 18.9%
100M 0.097% (0.47) 4.54% 18.8% -19.5% 0.0215 0.426% 17.7% 0.403% 18.9%
500M -0.084% (-0.38) 4.74% 18.7% -23.1% -0.0177 0.498% 17.7% 0.508% 18.9%

1B -0.171% (-0.76) 4.87% 18.6% -28.0% -0.0351 0.531% 17.7% 0.561% 18.9%
5B -0.388% (-1.57) 5.38% 18.5% -46.3% -0.0721 0.611% 17.7% 0.694% 18.9%
10B -0.476% (-1.82) 5.71% 18.5% -58.6% -0.0834 0.643% 17.7% 0.749% 18.9%

Break-even Fund Size: 315.1M Average # Stocks Long: 462.6       Short: 616.6      

This table shows excess monthly returns from the book-to-market (B/M) arbitrage strategy using price impact functions estimated
from value-weighted average price (VWAP). The strategy buys the highest B/M decile and sells short the lowest decile at the end
of June from 1963 through 2002, with weights rebalanced every month to stay equally or value weighted. Calculation of B/M and
timing of portfolio formation follow Fama and French (1993). Returns are measured from July 1963 through December 2002 and
shown in excess of the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate
at 80% of the FF rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP
benchmark. Panel (b) accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted
strategy are shown in Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean
Excess Return is the time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean
Turnover are defined as the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced,
respectively, to the dollar amount invested before trading in the long (or short) position.



Table 7, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.432% (2.02) 4.65% 23.11% -15.14% 0.0930
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.208% (0.98) 4.64% 22.8% -15.2% 0.0449 0.078% 14.5% 0.022% 10.1%
10M 0.093% (0.43) 4.69% 22.6% -15.4% 0.0198 0.161% 14.5% 0.053% 10.1%
50M -0.045% (-0.20) 4.85% 22.5% -26.5% -0.0094 0.257% 14.5% 0.093% 10.1%
100M -0.120% (-0.52) 5.02% 22.5% -36.1% -0.0240 0.307% 14.5% 0.116% 10.1%
500M -0.270% (-0.98) 5.98% 22.4% -77.9% -0.0452 0.404% 14.5% 0.168% 10.1%

Break-even Fund Size: 36.9M Average # Stocks Long: 462.6       Short: 616.6      



Table 8
Book-to-market Arbitrage Strategy with VWAP Price Impact

Buy-and-Hold

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.040% (5.48) 4.13% 17.11% -14.37% 0.2517
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.667% (3.45) 4.21% 17.0% -14.4% 0.1586 0.156% 9.4% 0.111% 9.0%
10M 0.558% (2.82) 4.31% 17.0% -16.1% 0.1295 0.209% 9.4% 0.165% 9.0%
50M 0.455% (2.23) 4.45% 17.0% -18.7% 0.1023 0.254% 9.4% 0.220% 9.0%
100M 0.401% (1.93) 4.53% 17.0% -20.2% 0.0885 0.276% 9.4% 0.250% 9.0%
500M 0.251% (1.13) 4.85% 17.0% -24.6% 0.0517 0.335% 9.4% 0.338% 9.0%

1B 0.175% (0.75) 5.05% 17.0% -28.0% 0.0346 0.363% 9.4% 0.384% 9.0%
5B -0.020% (-0.07) 5.73% 17.0% -46.3% -0.0034 0.433% 9.4% 0.504% 9.0%
10B -0.101% (-0.36) 6.12% 17.0% -58.6% -0.0165 0.463% 9.4% 0.554% 9.0%

Break-even Fund Size: 4.60B Average # Stocks Long: 462.6       Short: 616.6      

This table shows excess monthly returns from the book-to-market (B/M) arbitrage strategy using price impact functions estimated
from value-weighted average price (VWAP). The strategy buys the highest B/M decile and sells short the lowest decile at the end
of June from 1963 through 2002, with no rebalancing through the holding period. Calculation of B/M and timing of portfolio
formation follow Fama and French (1993). Returns are measured from July 1963 through December 2002 and shown in excess of
the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of the FF
rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark. Panel
(b) accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted strategy are shown in
Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess Return is the
time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover are defined as
the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the dollar amount
invested before trading in the long (or short) position.



Table 8, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.368% (1.75) 4.59% 20.33% -15.51% 0.0802
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.236% (1.12) 4.58% 20.3% -15.5% 0.0515 0.056% 8.5% 0.013% 4.1%
10M 0.146% (0.69) 4.64% 20.3% -15.5% 0.0316 0.123% 8.5% 0.034% 4.1%
50M 0.030% (0.14) 4.81% 20.3% -26.5% 0.0063 0.208% 8.5% 0.063% 4.1%
100M -0.036% (-0.16) 4.99% 20.3% -36.1% -0.0071 0.255% 8.5% 0.081% 4.1%
500M -0.177% (-0.64) 5.98% 20.3% -77.9% -0.0296 0.349% 8.5% 0.127% 4.1%

Break-even Fund Size: 73.0M Average # Stocks Long: 462.6       Short: 616.6      



Table 9
Book-to-market Arbitrage Strategy with Tick-by-tick Price Impact

Rebalanced Monthly

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.133% (5.71) 4.32% 19.80% -15.92% 0.2623
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.708% (3.56) 4.33% 19.4% -16.3% 0.1637 0.119% 17.7% 0.112% 18.9%
10M 0.494% (2.44) 4.40% 19.2% -16.4% 0.1123 0.212% 17.7% 0.228% 18.9%
50M 0.312% (1.51) 4.50% 19.1% -18.7% 0.0692 0.292% 17.7% 0.327% 18.9%
100M 0.225% (1.07) 4.57% 19.0% -20.0% 0.0493 0.330% 17.7% 0.374% 18.9%
500M 0.009% (0.04) 4.78% 18.8% -24.7% 0.0019 0.425% 17.7% 0.491% 18.9%

1B -0.090% (-0.40) 4.90% 18.7% -28.5% -0.0184 0.468% 17.7% 0.546% 18.9%
5B -0.329% (-1.36) 5.27% 18.6% -39.5% -0.0624 0.571% 17.7% 0.677% 18.9%
10B -0.433% (-1.72) 5.47% 18.5% -45.5% -0.0791 0.615% 17.7% 0.735% 18.9%

Break-even Fund Size: 545.2M Average # Stocks Long: 462.6       Short: 616.6      

This table shows excess monthly returns from the book-to-market (B/M) arbitrage strategy using price impact functions estimated
from quote midpoint changes. The strategy buys the highest B/M decile and sells short the lowest decile at the end of June from
1963 through 2002, with weights rebalanced every month to stay equally or value weighted. Calculation of B/M and timing of
portfolio formation follow Fama and French (1993). Returns are measured from July 1963 through December 2002 and shown in
excess of the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of
the FF rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark.
Panel (b) accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted strategy are
shown in Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess
Return is the time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover
are defined as the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the
dollar amount invested before trading in the long (or short) position.



Table 9, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.432% (2.02) 4.65% 23.11% -15.14% 0.0930
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.158% (0.73) 4.69% 22.9% -15.2% 0.0337 0.110% 14.5% 0.039% 10.1%
10M -0.021% (-0.09) 4.85% 22.6% -25.6% -0.0043 0.222% 14.5% 0.103% 10.1%
50M -0.172% (-0.73) 5.10% 22.4% -37.8% -0.0337 0.313% 14.5% 0.161% 10.1%
100M -0.242% (-1.00) 5.27% 22.3% -44.6% -0.0460 0.354% 14.5% 0.189% 10.1%
500M -0.405% (-1.51) 5.82% 22.2% -65.4% -0.0696 0.447% 14.5% 0.257% 10.1%

1B -0.461% (-1.63) 6.15% 22.1% -77.1% -0.0750 0.477% 14.5% 0.282% 10.1%

Break-even Fund Size: 8.9M Average # Stocks Long: 462.6       Short: 616.6      



Table 10
Book-to-market Arbitrage Strategy with Tick-by-tick Price Impact

Buy-and-Hold

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.040% (5.48) 4.13% 17.11% -14.37% 0.2517
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.772% (4.04) 4.16% 17.1% -14.4% 0.1854 0.087% 9.4% 0.078% 9.0%
10M 0.623% (3.16) 4.29% 17.1% -16.7% 0.1453 0.157% 9.4% 0.153% 9.0%
50M 0.490% (2.39) 4.47% 17.0% -20.0% 0.1097 0.220% 9.4% 0.220% 9.0%
100M 0.425% (2.02) 4.58% 17.0% -21.6% 0.0929 0.251% 9.4% 0.253% 9.0%
500M 0.257% (1.14) 4.92% 17.0% -25.9% 0.0522 0.331% 9.4% 0.337% 9.0%

1B 0.177% (0.76) 5.11% 17.0% -28.5% 0.0347 0.368% 9.4% 0.378% 9.0%
5B -0.018% (-0.07) 5.67% 17.0% -39.5% -0.0031 0.459% 9.4% 0.477% 9.0%
10B -0.104% (-0.38) 5.95% 17.0% -45.5% -0.0175 0.499% 9.4% 0.522% 9.0%

Break-even Fund Size: 4.64B Average # Stocks Long: 462.6       Short: 616.6      

This table shows excess monthly returns from the book-to-market (B/M) arbitrage strategy using price impact functions estimated
from quote midpoint changes. The strategy buys the highest B/M decile and sells short the lowest decile at the end of June from
1963 through 2002, with no rebalancing through the holding period. Calculation of B/M and timing of portfolio formation follow
Fama and French (1993). Returns are measured from July 1963 through December 2002 and shown in excess of the Federal
Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of the FF rate. Panel (a)
shows the statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark. Panel (b) accounts for
both the price impact and transactions costs. Corresponding numbers for the value-weighted strategy are shown in Panels (c) and
(d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess Return is the time-series
average of the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover are defined as the time-
series average of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the dollar amount invested
before trading in the long (or short) position.



Table 10, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.368% (1.75) 4.59% 20.33% -15.51% 0.0802
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.178% (0.84) 4.63% 20.3% -15.5% 0.0384 0.095% 8.5% 0.032% 4.1%
10M 0.053% (0.24) 4.80% 20.3% -25.6% 0.0110 0.178% 8.5% 0.070% 4.1%
50M -0.057% (-0.25) 5.08% 20.3% -37.8% -0.0113 0.249% 8.5% 0.107% 4.1%
100M -0.110% (-0.46) 5.26% 20.3% -44.6% -0.0210 0.283% 8.5% 0.125% 4.1%
500M -0.238% (-0.89) 5.85% 20.3% -65.4% -0.0407 0.361% 8.5% 0.173% 4.1%

1B -0.286% (-1.00) 6.19% 20.3% -77.1% -0.0461 0.387% 8.5% 0.193% 4.1%

Break-even Fund Size: 29.2M Average # Stocks Long: 462.6       Short: 616.6      



Table 11
Size-B/M Arbitrage Strategy with VWAP Price Impact

Rebalanced Monthly

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.902% (3.74) 5.25% 26.56% -17.18% 0.1719
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.479% (1.98) 5.26% 25.9% -17.6% 0.0911 0.250% 17.1% 0.025% 10.8%
10M 0.356% (1.47) 5.29% 25.7% -17.8% 0.0673 0.328% 17.1% 0.069% 10.8%
50M 0.237% (0.97) 5.34% 25.6% -18.0% 0.0444 0.380% 17.1% 0.133% 10.8%
100M 0.174% (0.70) 5.39% 25.5% -18.1% 0.0323 0.401% 17.1% 0.174% 10.8%
500M -0.005% (-0.02) 5.59% 25.5% -26.8% -0.0009 0.444% 17.1% 0.307% 10.8%

1B -0.094% (-0.36) 5.75% 25.4% -33.7% -0.0164 0.460% 17.1% 0.380% 10.8%
5B -0.305% (-1.04) 6.39% 25.4% -60.0% -0.0478 0.485% 17.1% 0.564% 10.8%
10B -0.357% (-1.14) 6.81% 25.4% -78.3% -0.0524 0.488% 17.1% 0.613% 10.8%

Break-even Fund Size: 489.4M Average # Stocks Long: 646.0       Short: 105.7      

This table shows excess monthly returns from the size book-to-market (B/M) combined arbitrage strategy using price impact
functions estimated from value-weighted average price (VWAP). First, stocks are sorted independently by size and B/M into 5 by 5
cross sections. Then the strategy buys the smallest size, highest B/M portfolio and sells short the biggest size, lowest B/M portfolio
at the end of June from 1963 through 2002, with weights rebalanced every month to stay equally or value weighted. Calculation of
size and timing of portfolio formation follow Fama and French (1993). Returns are measured from July 1963 through December
2002 and shown in excess of the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a
margin rate at 80% of the FF rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the
corresponding CRSP benchmark. Panel (b) accounts for both the price impact and transactions costs. Corresponding numbers for
the value-weighted strategy are shown in Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as
Arbitrage Fund Size. Mean Excess Return is the time-series average of the excess monthly returns over the sample period. Mean
Price Impact and Mean Turnover are defined as the time-series average of the ratios, the dollar price impact and the dollar amount
rebalanced, respectively, to the dollar amount invested before trading in the long (or short) position.



Table 11, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.624% (2.72) 4.99% 25.21% -13.20% 0.1250
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.267% (1.16) 5.02% 24.7% -13.6% 0.0532 0.210% 16.7% 0.017% 8.5%
10M 0.154% (0.66) 5.06% 24.5% -13.8% 0.0304 0.292% 16.7% 0.047% 8.5%
50M 0.045% (0.19) 5.13% 24.4% -18.8% 0.0087 0.353% 16.7% 0.094% 8.5%
100M -0.013% (-0.06) 5.19% 24.3% -23.2% -0.0025 0.379% 16.7% 0.124% 8.5%
500M -0.175% (-0.70) 5.47% 24.2% -40.2% -0.0319 0.436% 16.7% 0.228% 8.5%

Break-even Fund Size: 88.6M Average # Stocks Long: 646.0       Short: 105.7      



Table 12
Size-B/M Arbitrage Strategy with VWAP Price Impact

Buy-and-Hold

(a) Without Costs, Equally Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.677% (2.91) 5.07% 23.48% -17.65% 0.1336
CRSP EW 0.630% (2.36) 5.81% 29.33% -27.84% 0.1084

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.436% (1.86) 5.11% 23.4% -17.7% 0.0853 0.142% 8.8% 0.019% 5.7%
10M 0.356% (1.50) 5.15% 23.4% -17.7% 0.0691 0.186% 8.8% 0.054% 5.7%
50M 0.270% (1.12) 5.23% 23.4% -17.7% 0.0516 0.217% 8.8% 0.108% 5.7%
100M 0.220% (0.91) 5.28% 23.4% -17.7% 0.0417 0.230% 8.8% 0.143% 5.7%
500M 0.072% (0.28) 5.53% 23.4% -26.8% 0.0129 0.259% 8.8% 0.261% 5.7%

1B -0.007% (-0.03) 5.71% 23.4% -33.7% -0.0012 0.269% 8.8% 0.328% 5.7%
5B -0.199% (-0.68) 6.42% 23.4% -60.0% -0.0311 0.287% 8.8% 0.501% 5.7%
10B -0.250% (-0.79) 6.84% 23.4% -78.3% -0.0365 0.289% 8.8% 0.548% 5.7%

Break-even Fund Size: 955.3M Average # Stocks Long: 646.0       Short: 105.7      

This table shows excess monthly returns from the size book-to-market (B/M) combined arbitrage strategy using price impact
functions estimated from value-weighted average price (VWAP). First, stocks are sorted independently by size and B/M into 5 by 5
cross sections. Then the strategy buys the smallest size, highest B/M portfolio and sells short the biggest size, lowest B/M portfolio
at the end of June from 1963 through 2002, with no rebalancing through the holding period. Calculation of size and timing of
portfolio formation follow Fama and French (1993). Returns are measured from July 1963 through December 2002 and shown in
excess of the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of
the FF rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark.
Panel (b) accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted strategy are
shown in Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess
Return is the time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover
are defined as the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the
dollar amount invested before trading in the long (or short) position.



Table 12, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.563% (2.53) 4.85% 23.26% -14.06% 0.1160
CRSP VW 0.344% (1.65) 4.53% 15.72% -23.14% 0.0759

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.366% (1.63) 4.90% 23.2% -14.1% 0.0747 0.123% 8.4% 0.012% 3.5%
10M 0.292% (1.28) 4.95% 23.2% -14.1% 0.0590 0.174% 8.4% 0.034% 3.5%
50M 0.214% (0.92) 5.04% 23.2% -18.8% 0.0424 0.215% 8.4% 0.070% 3.5%
100M 0.170% (0.72) 5.10% 23.2% -23.2% 0.0333 0.235% 8.4% 0.094% 3.5%
500M 0.039% (0.16) 5.41% 23.2% -40.2% 0.0072 0.278% 8.4% 0.180% 3.5%

1B -0.027% (-0.10) 5.67% 23.2% -52.0% -0.0048 0.295% 8.4% 0.230% 3.5%

Break-even Fund Size: 794.8M Average # Stocks Long: 646.0       Short: 105.7      



Table 13
Momentum 6/6 Arbitrage Strategy with VWAP Price Impact

Rebalanced Monthly

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.197% (4.40) 5.81% 34.41% -44.71% 0.2059
CRSP EW 0.625% (2.26) 5.91% 29.33% -27.84% 0.1057

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.439% (1.61) 5.84% 34.1% -45.0% 0.0752 0.167% 38.1% 0.186% 37.4%
10M 0.211% (0.77) 5.87% 33.9% -45.1% 0.0360 0.277% 38.1% 0.300% 37.4%
50M 0.005% (0.02) 5.91% 33.8% -45.1% 0.0008 0.379% 38.1% 0.403% 37.4%
100M -0.096% (-0.35) 5.94% 33.8% -45.1% -0.0162 0.428% 38.1% 0.453% 37.4%
500M -0.356% (-1.26) 6.02% 33.7% -45.2% -0.0592 0.556% 38.1% 0.582% 37.4%

1B -0.478% (-1.68) 6.07% 33.7% -45.2% -0.0788 0.616% 38.1% 0.642% 37.4%
5B -0.774% (-2.65) 6.24% 33.6% -45.2% -0.1241 0.762% 38.1% 0.788% 37.4%
10B -0.904% (-3.04) 6.36% 33.6% -45.2% -0.1422 0.827% 38.1% 0.851% 37.4%

Break-even Fund Size: 52.5M Average # Stocks Long: 1,175.7    Short: 1,219.0   

This table shows excess monthly returns from the 6/6 momentum arbitrage strategy using price impact functions estimated from
value-weighted average price (VWAP). The strategy buys the decile with the highest past six-month return and sells short the
lowest return decile every month from December 1964 through November 2002. Each monthly cohort is held for six months, with
weights rebalanced every month to stay equally or value weighted. Monthly cohorts are equally weighted. Portfolio formation follow
Jegadeesh and Titman (2001). Returns are measured from January 1965 through December 2002 and shown in excess of the
Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of the FF rate.
Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark. Panel (b)
accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted strategy are shown in
Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess Return is the
time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover are defined as
the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the dollar amount
invested before trading in the long (or short) position.



Table 13, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.986% (3.46) 6.09% 40.19% -32.72% 0.1619
CRSP VW 0.317% (1.47) 4.60% 15.72% -23.14% 0.0688

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.473% (1.66) 6.09% 40.0% -32.8% 0.0776 0.072% 32.7% 0.085% 32.5%
10M 0.287% (1.00) 6.11% 39.9% -32.9% 0.0470 0.155% 32.7% 0.185% 32.5%
50M 0.084% (0.29) 6.14% 39.9% -32.9% 0.0137 0.245% 32.7% 0.296% 32.5%
100M -0.021% (-0.07) 6.17% 39.9% -32.9% -0.0034 0.290% 32.7% 0.355% 32.5%
500M -0.295% (-1.00) 6.30% 39.9% -32.9% -0.0468 0.406% 32.7% 0.509% 32.5%

Break-even Fund Size: 90.1M Average # Stocks Long: 1,175.7    Short: 1,219.0   



Table 14
Momentum 6/6 Arbitrage Strategy with VWAP Price Impact

Buy-and-Hold

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.306% (4.97) 5.62% 37.34% -35.38% 0.2326
CRSP EW 0.625% (2.26) 5.91% 29.33% -27.84% 0.1057

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.639% (2.42) 5.64% 37.1% -35.6% 0.1132 0.157% 30.4% 0.174% 30.5%
10M 0.418% (1.57) 5.67% 36.9% -35.6% 0.0737 0.263% 30.4% 0.286% 30.5%
50M 0.213% (0.80) 5.71% 36.8% -35.7% 0.0373 0.362% 30.4% 0.389% 30.5%
100M 0.112% (0.42) 5.74% 36.8% -35.7% 0.0196 0.411% 30.4% 0.439% 30.5%
500M -0.149% (-0.55) 5.82% 36.7% -35.7% -0.0256 0.537% 30.4% 0.571% 30.5%

1B -0.271% (-0.99) 5.87% 36.7% -35.8% -0.0463 0.596% 30.4% 0.632% 30.5%
5B -0.570% (-2.01) 6.04% 36.6% -35.8% -0.0943 0.740% 30.4% 0.782% 30.5%
10B -0.701% (-2.43) 6.16% 36.6% -35.8% -0.1137 0.803% 30.4% 0.847% 30.5%

Break-even Fund Size: 271.7M Average # Stocks Long: 1,176.1    Short: 1,219.3   

This table shows excess monthly returns from the 6/6 momentum arbitrage strategy using price impact functions estimated from
value-weighted average price (VWAP). The strategy buys the decile with the highest past six-month return and sells short the
lowest return decile every month from December 1964 through November 2002. Each monthly cohort is held for six months, with
no rebalancing through the holding period. At the cohort formation, component stocks are either equally or value weighted.
Portfolio formation follows Jegadeesh and Titman (2001). Returns are measured from January 1965 through December 2002 and
shown in excess of the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate
at 80% of the FF rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP
benchmark. Panel (b) accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted
strategy are shown in Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean
Excess Return is the time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean
Turnover are defined as the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced,
respectively, to the dollar amount invested before trading in the long (or short) position.



Table 14, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.962% (3.37) 6.09% 40.85% -33.03% 0.1579
CRSP VW 0.317% (1.47) 4.60% 15.72% -23.14% 0.0688

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.465% (1.63) 6.10% 40.7% -33.1% 0.0762 0.073% 30.7% 0.086% 31.0%
10M 0.278% (0.97) 6.11% 40.6% -33.1% 0.0455 0.157% 30.7% 0.186% 31.0%
50M 0.075% (0.26) 6.14% 40.5% -33.2% 0.0121 0.247% 30.7% 0.297% 31.0%
100M -0.031% (-0.11) 6.17% 40.5% -33.2% -0.0050 0.292% 30.7% 0.356% 31.0%
500M -0.306% (-1.04) 6.30% 40.5% -33.2% -0.0485 0.409% 30.7% 0.511% 31.0%

Break-even Fund Size: 85.4M Average # Stocks Long: 1,176.1    Short: 1,219.3   



Table 15
Momentum 6/6 Arbitrage Strategy with Tick-by-tick Price Impact

Rebalanced Monthly

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.197% (4.40) 5.81% 34.41% -44.71% 0.2059
CRSP EW 0.625% (2.26) 5.91% 29.33% -27.84% 0.1057

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.597% (2.19) 5.83% 34.1% -44.9% 0.1024 0.098% 38.1% 0.099% 37.4%
10M 0.265% (0.96) 5.89% 34.0% -44.9% 0.0449 0.262% 38.1% 0.263% 37.4%
50M 0.012% (0.04) 5.96% 34.0% -44.9% 0.0020 0.387% 38.1% 0.388% 37.4%
100M -0.102% (-0.36) 6.00% 34.0% -44.9% -0.0169 0.443% 38.1% 0.444% 37.4%
500M -0.374% (-1.31) 6.11% 34.0% -45.0% -0.0613 0.577% 38.1% 0.579% 37.4%

1B -0.495% (-1.71) 6.17% 34.0% -45.0% -0.0803 0.636% 38.1% 0.639% 37.4%
5B -0.782% (-2.64) 6.33% 33.9% -45.0% -0.1234 0.776% 38.1% 0.783% 37.4%
10B -0.907% (-3.02) 6.42% 33.9% -45.0% -0.1413 0.836% 38.1% 0.846% 37.4%

Break-even Fund Size: 55.2M Average # Stocks Long: 1,175.7    Short: 1,219.0   

This table shows excess monthly returns from the 6/6 momentum arbitrage strategy using price impact functions estimated from
quote midpoint changes. The strategy buys the decile with the highest past six-month return and sells short the lowest return decile
every month from December 1964 through November 2002. Each monthly cohort is held for six months, with weights rebalanced
every month to stay equally or value weighted. Monthly cohorts are equally weighted. Portfolio formation follow Jegadeesh and
Titman (2001). Returns are measured from January 1965 through December 2002 and shown in excess of the Federal Fund (FF)
rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of the FF rate. Panel (a) shows the
statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark. Panel (b) accounts for both the
price impact and transactions costs. Corresponding numbers for the value-weighted strategy are shown in Panels (c) and (d). The
initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess Return is the time-series average of
the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover are defined as the time-series average
of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the dollar amount invested before trading in
the long (or short) position.



Table 15, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.986% (3.46) 6.09% 40.19% -32.72% 0.1619
CRSP VW 0.317% (1.47) 4.60% 15.72% -23.14% 0.0688

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.371% (1.30) 6.11% 40.0% -32.8% 0.0607 0.116% 32.7% 0.142% 32.5%
10M 0.032% (0.11) 6.17% 40.0% -32.8% 0.0052 0.273% 32.7% 0.320% 32.5%
50M -0.228% (-0.78) 6.27% 40.0% -32.8% -0.0364 0.392% 32.7% 0.458% 32.5%
100M -0.345% (-1.17) 6.33% 40.0% -32.8% -0.0546 0.445% 32.7% 0.520% 32.5%
500M -0.624% (-2.04) 6.52% 40.0% -32.8% -0.0956 0.569% 32.7% 0.671% 32.5%

1B -0.745% (-2.39) 6.64% 40.0% -37.6% -0.1121 0.623% 32.7% 0.736% 32.5%

Break-even Fund Size: 14.9M Average # Stocks Long: 1,175.7    Short: 1,219.0   



Table 16
Momentum 6/6 Arbitrage Strategy with Tick-by-tick Price Impact

Buy-and-Hold

(a) Without Costs, Equally Weighted
Mean 

Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.306% (4.97) 5.62% 37.34% -35.38% 0.2326
CRSP EW 0.625% (2.26) 5.91% 29.33% -27.84% 0.1057

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.728% (2.76) 5.64% 37.1% -35.5% 0.1291 0.119% 30.4% 0.124% 30.5%
10M 0.416% (1.56) 5.70% 37.1% -35.5% 0.0730 0.271% 30.4% 0.279% 30.5%
50M 0.176% (0.65) 5.77% 37.0% -35.5% 0.0306 0.388% 30.4% 0.399% 30.5%
100M 0.068% (0.25) 5.81% 37.0% -35.5% 0.0117 0.441% 30.4% 0.454% 30.5%
500M -0.195% (-0.70) 5.91% 37.0% -35.5% -0.0329 0.568% 30.4% 0.585% 30.5%

1B -0.311% (-1.11) 5.97% 37.0% -35.6% -0.0522 0.624% 30.4% 0.644% 30.5%
5B -0.590% (-2.06) 6.13% 37.0% -35.6% -0.0963 0.758% 30.4% 0.786% 30.5%
10B -0.713% (-2.45) 6.22% 37.0% -35.6% -0.1147 0.816% 30.4% 0.848% 30.5%

Break-even Fund Size: 203.3M Average # Stocks Long: 1,176.1    Short: 1,219.3   

This table shows excess monthly returns from the 6/6 momentum arbitrage strategy using price impact functions estimated from
quote midpoint changes. The strategy buys the decile with the highest past six-month return and sells short the lowest return decile
every month from December 1964 through November 2002. Each monthly cohort is held for six months, with no rebalancing
through the holding period. At the cohort formation, component stocks are either equally or value weighted. Portfolio formation
follows Jegadeesh and Titman (2001). Returns are measured from January 1965 through December 2002 and shown in excess of
the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a margin rate at 80% of the FF
rate. Panel (a) shows the statistics for the equally weighted strategy without cost and the corresponding CRSP benchmark. Panel
(b) accounts for both the price impact and transactions costs. Corresponding numbers for the value-weighted strategy are shown in
Panels (c) and (d). The initial fund size is converted to 2002 dollars and shown as Arbitrage Fund Size. Mean Excess Return is the
time-series average of the excess monthly returns over the sample period. Mean Price Impact and Mean Turnover are defined as
the time-series average of the ratios, the dollar price impact and the dollar amount rebalanced, respectively, to the dollar amount
invested before trading in the long (or short) position.



Table 16, continued

(c) Without Costs, Value Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 0.962% (3.37) 6.09% 40.85% -33.03% 0.1579
CRSP VW 0.317% (1.47) 4.60% 15.72% -23.14% 0.0688

(d) With Costs, Value Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
1M 0.350% (1.22) 6.11% 40.7% -33.1% 0.0573 0.123% 30.7% 0.149% 31.0%
10M 0.015% (0.05) 6.18% 40.7% -33.1% 0.0024 0.279% 30.7% 0.324% 31.0%
50M -0.243% (-0.83) 6.27% 40.7% -33.1% -0.0388 0.397% 30.7% 0.461% 31.0%
100M -0.359% (-1.21) 6.33% 40.7% -33.1% -0.0568 0.449% 30.7% 0.523% 31.0%
500M -0.636% (-2.08) 6.52% 40.6% -33.1% -0.0975 0.573% 30.7% 0.673% 31.0%

1B -0.757% (-2.43) 6.64% 40.6% -37.2% -0.1139 0.626% 30.7% 0.739% 31.0%

Break-even Fund Size: 12.3M Average # Stocks Long: 1,176.1    Short: 1,219.3   



Table 17
Break-even Fund Size for Various Momentum Strategies

Buy-and-hold, Equally Weighted, VWAP Price Impact

(a) Break-even fund size (in millions)
J\K 1 3 6 9 12

3 <1 <1 17.2         306.1       593.9      
6 <1 8.4           271.7       1,733.2    1,693.8   
9 <1 79.0         718.9       926.8       753.7      

12 <1 99.3         458.0       418.0       225.0      

(b) Monthly excess return before cost
J\K 1 3 6 9 12

3 0.090% 0.691% 0.851% 0.937% 0.859%
6 0.707% 1.200% 1.306% 1.295% 1.028%
9 1.127% 1.484% 1.454% 1.217% 0.913%

12 1.384% 1.486% 1.263% 0.971% 0.697%

(c) Average number of stocks (sum of the long and short positions)
J\K 1 3 6 9 12

3 416          1,236       2,440       3,618       4,770      
6 408          1,213       2,395       3,552       4,684      
9 402          1,194       2,360       3,501       4,619      

12 395          1,176       2,326       3,452       4,555      

(d) Average monthly turnover (sum of the long and short positions)
J\K 1 3 6 9 12

3 228.3% 119.7% 60.9% 41.6% 31.8%
6 172.1% 91.8% 60.8% 41.2% 31.9%
9 146.1% 78.2% 52.5% 41.2% 31.7%

12 130.0% 70.2% 47.5% 37.7% 31.8%

This table shows break-even fund size and other characteristics of buy-and-hold momentum arbitrage
strategies using price impact functions estimated from value-weighted average price (VWAP). The
strategy buys the decile with the highest past J-month return and sells short the lowest decile every
month from December 1964 through November 2002. Each monthly cohort is held for K months, with
no rebalancing through the holding period. At the cohort formation, component stocks are equally
weighted. Portfolio formation follows Jegadeesh and Titman (2001). Returns are measured from
January 1965 through December 2002 and shown in excess of the Federal Fund (FF) rate. The short
position is assumed to be financed by a cash position with a margin rate at 80% of the FF rate. (b)
Mean Excess Return is the time-series average of the excess monthly returns over the sample period.
(c) Average monthly turnover is defined as the time-series average of the sum of the number of stocks
in the long and the short positions. (d) Average monthly turnover is defined as the time-series average
of the ratio, the dollar amount rebalanced in the two positions to the dollar amount invested before
trading.



Table 18
Break-even Fund Size for Various Momentum Strategies

Buy-and-hold, Value Weighted, VWAP Price Impact

(a) Break-even fund size (in millions)
J\K 1 3 6 9 12

3 <1 <1 5.1           106.0       406.2      
6 <1 1.1           85.4         707.1       705.8      
9 <1 37.9         442.0       647.7       502.4      

12 <1 53.5         283.4       354.5       249.6      

(b) Monthly excess return before cost
J\K 1 3 6 9 12

3 0.072% 0.475% 0.555% 0.694% 0.706%
6 0.489% 0.781% 0.962% 1.055% 0.839%
9 0.747% 1.142% 1.223% 1.045% 0.789%

12 1.111% 1.201% 1.044% 0.859% 0.629%

(c) Average number of stocks (sum of the long and short positions)
J\K 1 3 6 9 12

3 416          1,236       2,440       3,618       4,770      
6 408          1,213       2,395       3,552       4,684      
9 402          1,194       2,360       3,501       4,619      

12 395          1,176       2,326       3,452       4,555      

(d) Average monthly turnover (sum of the long and short positions)
J\K 1 3 6 9 12

3 254.7% 122.9% 62.4% 42.1% 31.9%
6 192.3% 98.6% 61.7% 41.5% 31.8%
9 161.8% 84.5% 54.4% 41.2% 31.5%

12 143.6% 75.5% 49.3% 38.0% 31.4%

This table shows break-even fund size and other characteristics of buy-and-hold momentum arbitrage
strategies using price impact functions estimated from value-weighted average price (VWAP). The
strategy buys the decile with the highest past J-month return and sells short the lowest decile every
month from December 1964 through November 2002. Each monthly cohort is held for K months, with
no rebalancing through the holding period. At the cohort formation, component stocks are value
weighted. Portfolio formation follows Jegadeesh and Titman (2001). Returns are measured from
January 1965 through December 2002 and shown in excess of the Federal Fund (FF) rate. The short
position is assumed to be financed by a cash position with a margin rate at 80% of the FF rate. (b)
Mean Excess Return is the time-series average of the excess monthly returns over the sample period.
(c) Average monthly turnover is defined as the time-series average of the sum of the number of stocks
in the long and the short positions. (d) Average monthly turnover is defined as the time-series average
of the ratio, the dollar amount rebalanced in the two positions to the dollar amount invested before
trading.



Table 19
Break-even Fund Size for Various Momentum Strategies

Buy-and-hold, Equally Weighted, Tick-by-tick Price Impact

(a) Break-even fund size (in millions)
J\K 1 3 6 9 12

3 <1 <1 16.0         213.4       440.9      
6 <1 9.4           203.3       1,510.0    1,335.0   
9 <1 67.5         605.1       784.1       531.9      

12 3.5           84.8         396.7       330.1       111.2      

(b) Monthly excess return before cost
J\K 1 3 6 9 12

3 0.090% 0.691% 0.851% 0.937% 0.859%
6 0.707% 1.200% 1.306% 1.295% 1.028%
9 1.127% 1.484% 1.454% 1.217% 0.913%

12 1.384% 1.486% 1.263% 0.971% 0.697%

(c) Average number of stocks (sum of the long and short positions)
J\K 1 3 6 9 12

3 416          1,236       2,440       3,618       4,770      
6 408          1,213       2,395       3,552       4,684      
9 402          1,194       2,360       3,501       4,619      

12 395          1,176       2,326       3,452       4,555      

(d) Average monthly turnover (sum of the long and short positions)
J\K 1 3 6 9 12

3 228.3% 119.7% 60.9% 41.6% 31.8%
6 172.1% 91.8% 60.8% 41.2% 31.9%
9 146.1% 78.2% 52.5% 41.2% 31.7%

12 130.0% 70.2% 47.5% 37.7% 31.8%

This table shows break-even fund size and other characteristics of buy-and-hold momentum arbitrage
strategies using price impact functions estimated from quote-midpoint changes. The strategy buys the
decile with the highest past J-month return and sells short the lowest decile every month from
December 1964 through November 2002. Each monthly cohort is held for K months, with no
rebalancing through the holding period. At the cohort formation, component stocks are equally
weighted. Portfolio formation follows Jegadeesh and Titman (2001). Returns are measured from
January 1965 through December 2002 and shown in excess of the Federal Fund (FF) rate. The short
position is assumed to be financed by a cash position with a margin rate at 80% of the FF rate. (b)
Mean Excess Return is the time-series average of the excess monthly returns over the sample period.
(c) Average monthly turnover is defined as the time-series average of the sum of the number of stocks
in the long and the short positions. (d) Average monthly turnover is defined as the time-series average
of the ratio, the dollar amount rebalanced in the two positions to the dollar amount invested before
trading.



Table 20
Break-even Fund Size for Various Momentum Strategies

Buy-and-hold, Value Weighted, Tick-by-tick Price Impact

(a) Break-even fund size (in millions)
J\K 1 3 6 9 12

3 <1 <1 <1 16.9         55.0        
6 <1 <1 12.3         145.8       150.6      
9 <1 7.0           68.4         124.8       89.4        

12 <1 8.8           39.0         47.3         33.5        

(b) Monthly excess return before cost
J\K 1 3 6 9 12

3 0.072% 0.475% 0.555% 0.694% 0.706%
6 0.489% 0.781% 0.962% 1.055% 0.839%
9 0.747% 1.142% 1.223% 1.045% 0.789%

12 1.111% 1.201% 1.044% 0.859% 0.629%

(c) Average number of stocks (sum of the long and short positions)
J\K 1 3 6 9 12

3 416          1,236       2,440       3,618       4,770      
6 408          1,213       2,395       3,552       4,684      
9 402          1,194       2,360       3,501       4,619      

12 395          1,176       2,326       3,452       4,555      

(d) Average monthly turnover (sum of the long and short positions)
J\K 1 3 6 9 12

3 254.7% 122.9% 62.4% 42.1% 31.9%
6 192.3% 98.6% 61.7% 41.5% 31.8%
9 161.8% 84.5% 54.4% 41.2% 31.5%

12 143.6% 75.5% 49.3% 38.0% 31.4%

This table shows break-even fund size and other characteristics of buy-and-hold momentum arbitrage
strategies using price impact functions estimated from quote-midpoint changes. The strategy buys the
decile with the highest past J-month return and sells short the lowest decile every month from
December 1964 through November 2002. Each monthly cohort is held for K months, with no
rebalancing through the holding period. At the cohort formation, component stocks are value weighted.
Portfolio formation follows Jegadeesh and Titman (2001). Returns are measured from January 1965
through December 2002 and shown in excess of the Federal Fund (FF) rate. The short position is
assumed to be financed by a cash position with a margin rate at 80% of the FF rate. (b) Mean Excess
Return is the time-series average of the excess monthly returns over the sample period. (c) Average
monthly turnover is defined as the time-series average of the sum of the number of stocks in the long
and the short positions. (d) Average monthly turnover is defined as the time-series average of the ratio,
the dollar amount rebalanced in the two positions to the dollar amount invested before trading.



Table 21
Break-even Fund Size for Winners-Only 6/12 Momentum Strategy

Buy-and-hold, Equally Weighted, VWAP Price Impact

(a) Without Costs, Equally Weighted

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Strategy 1.013% (2.85) 7.58% 37.85% -32.65% 0.1336
CRSP EW 0.625% (2.26) 5.91% 29.33% -27.84% 0.1057

(b) With Costs, Equally Weighted
Long Position Short Position

Arbitrage Fund 
Size

Mean 
Excess 
Return (t-stat)

Standard 
Deviation

Max 
Excess 
Return

Min 
Excess 
Return

Sharpe 
Ratio

Mean 
Price 

Impact
Mean 

Turnover

Mean 
Price 

Impact
Mean 

Turnover
100M 0.657% (1.85) 7.59% 37.6% -32.8% 0.0866 0.279% 16.0% -- --

1B 0.442% (1.24) 7.60% 37.5% -32.8% 0.0581 0.492% 16.0% -- --
5B 0.230% (0.64) 7.63% 37.3% -32.8% 0.0302 0.702% 16.0% -- --
10B 0.124% (0.35) 7.65% 37.3% -32.9% 0.0162 0.807% 16.0% -- --
30B 0.010% (0.03) 7.68% 37.2% -32.9% 0.0013 0.920% 16.0% -- --
50B -0.059% (-0.16) 7.70% 37.2% -32.9% -0.0077 0.989% 16.0% -- --
70B -0.149% (-0.41) 7.74% 37.2% -32.9% -0.0193 1.077% 16.0% -- --
100B -0.209% (-0.57) 7.78% 37.1% -32.9% -0.0269 1.136% 16.0% -- --

Break-even Fund Size: 21.45B # Stocks Long: 2,287.6    Short: --

This table shows break-even fund size and other characteristics of buy-and-hold winners-only momentum arbitrage strategies
using price impact functions estimated from value-weighted average price (VWAP). The strategy buys the decile with the highest
past 6 month return every month from December 1964 through November 2002. There is no short position. Each monthly cohort
is held for 12 months, with positions fixed through the holding period. At the cohort formation, component stocks are equally
weighted. Portfolio formation follows Jegadeesh and Titman (2001). Returns are measured from January 1965 through December
2002 and shown in excess of the Federal Fund (FF) rate. The short position is assumed to be financed by a cash position with a
margin rate at 80% of the FF rate. (b) Mean Excess Return is the time-series average of the excess monthly returns over the
sample period. (c) Average monthly turnover is defined as the time-series average of the sum of the number of stocks in the long
and the short positions. (d) Average monthly turnover is defined as the time-series average of the ratio, the dollar amount
rebalanced in the two positions to the dollar amount invested before trading.



Table 22
Size of Equity Hedge Funds by Investment Approach

Size ($ million)
Investment Approach #funds Mean Median Minimum Maximum Sum %total
Arbitrage 445          194.4       55.0         0.206 10,968 86,491 35.9%
Bottom Up 878          183.3       36.1         0.206 27,800 160,963 66.8%
Contrarian 109          117.4       23.9         0.206 3,500 12,793 5.3%
Directional 131          115.4       22.1         0.144 4,906 15,113 6.3%
Discretionary 253          255.2       34.6         0.059 27,800 64,569 26.8%
Diversified 198          163.2       48.6         0.029 2,400 32,321 13.4%
Fundamental 808          140.5       31.5         0.029 13,276 113,532 47.1%
Long Bias 497          140.6       31.6         0.029 5,169 69,874 29.0%
Market Neutral 404          187.4       47.2         0.320 10,968 75,720 31.4%
Non Directional 204          208.9       40.1         0.829 10,968 42,607 17.7%
Opportunistic 522          206.8       35.3         0.206 27,800 107,928 44.8%
Relative Value 397          163.3       35.4         0.059 10,968 64,812 26.9%
Short Bias 561          205.2       30.9         0.150 27,800 115,137 47.8%
Systematic Quant 364          123.4       22.0         0.029 5,437 44,934 18.6%
Technical 368          158.7       22.0         0.029 27,800 58,416 24.2%
Top Down Macro 378          162.3       26.8         0.059 13,276 61,357 25.5%
Trend Follower 190          101.0       23.2         0.144 2,400 19,196 8.0%
Other 95            179.5       34.5         0.520 4,906 17,054 7.1%
Total 1,501       160.6       33.5         0.029 27,800 241,021 100.0%

Size of equity hedge funds by investment approach in the TASS dataset as of June 2002. The investment approach is not exclusive.



Table 23
Size of Small-cap and Value Equity Mutual Funds

Size ($ million)
Investment 
Approach #funds Mean Median Minimum Maximum Sum %total
Small-cap 1,072         172.2         35.2           0.000074   15,104.2    184,567     7.98%
Value 1,004         162.2         32.7           0.001000   7,250.1      162,824     7.04%
Small-cap or value 1,792         173.6         32.9           0.000074   15,104.2    311,162     13.45%
Total 7,286         317.5         31.0           0.000074   56,750.8    2,313,377  100.00%

Size of small-cap and value equity mutual funds in the CRSP Mutual Fund dataset at the end of 2002. The investment approach is 
neither exclusive nor exhaustive. We define equity mutual funds as those funds having an ICDI objective of either AG, BL, GI, IN, LG, 
SF, TR, or UT. Of these, small-cap funds are further defined as those with an SI objective of "SCG," or the word "small" or "micro" in 
their name. Value funds are those with "value" in their name.
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Figure 1: Comparison of the polynomial, piecewise linear, and Box-Cox fits. Dots represent actual
trades. All graphs share the same observations, buys of FHT. Panels a) and b) show the quadratic fit
and the cubic and fourth-order fits, respectively. Panel c) depicts the piecewise linear fit with a break
point at the 90th percentile. Panel d) shows the fitted Box-Cox function as defined in Section 2.1.
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Figure 2: Estimated price-impact functions for the seven representative stocks. The estimated model
is described in Section 2.1. Panel a) shows the shapes of the estimated price-impact functions for buy
orders. In Panel b), the roots of each curve are shown. Panels c) and d) present the price-impact
functions for sell orders.
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Figure 4: Comparison between the Box-Cox and the linear models. The Box-Cox model is described in
Section 2.1 and the linear model in Section 2.4. Panels a) and b) show the estimates for the buy orders
of KO and BONT, respectively.
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Figure 5: Estimated portfolio price-impact functions by size decile. First, price-impact functions for
individual stocks are estimated by the Box-Cox model as described in Section 2.1. The parameter values
of a portfolio price-impact function is then computed as the equally weighted average of the parameter
values of the individual price-impact functions over stocks in the corresponding size decile. Panels a)
and b) show the price-impact functions for buy and sell orders, respectively.
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Figure 6: Amihud illiquidity ratio for size deciles. The ratio is normalized so that it is 1 in year 1993.
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Figure 7: Portfolio VWAP price-impact functions by size decile.
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Figure 8: Pooled VWAP price-impact functions by year, largest decile, buys.
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Figure 9: One-way commissions by year.
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Figure 10: Excess returns of the size-B/M combined arbitrage strategy are plotted against arbitrage
fund size with or without the 1% trade restriction and the 5% position limit.
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Figure 11: Excess returns of the size-B/M combined arbitrage strategy for various rebalancing frequen-
cies, plotted against fund size. Excess returns are after both price-impact and transactions costs. The
1% market cap trade restriction and the 5% market cap position limit are not imposed.
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