
Technical Appendix to “Price Volatility and Investor Behavior

in an Overlapping Generations Model with Information

Asymmetry”

A. Derivation of Moment Expressions in Partial-Information Equilibria

This appendix derives expressions for various moments in a partial-information equilibrium. From

(15), the price-change vector can be decomposed into independent shocks,

∆P̃t ≡ P̃t − P̃t−1

= A1η̃t−1 +
1

r
δ̃t + B2(δ̃t+1 − δ̃t) + A2(η̃t − η̃t−1)

= B2δ̃t+1 + (r−1I − B2)δ̃t + A2η̃t + (A1 − A2)η̃t−1. (A36)

Henceforth, ∆ generally denotes the first difference of a variable. Then, it is straightforward to compute

V ar(∆P̃t) = B2ΣδB
T

2 + (r−1I − B2)Σδ(r
−1I − B2)

T + A2ΣηAT

2

+ (A1 − A2)Ση(A1 − A2)
T. (A37)

From the demand function Xt,i = 1
θi

S−1
i mt,i, the net flow of agent i can be generally decomposed into

independent pieces

∆Π̃t,i ≡ ∆X̃t,i − η̃t,i

= B1,i∆δ̃t+1 + B2,iη̃t + B3,iη̃t−1 + B4,i∆ε̃t,i + B5,iζ̃t,i + B6,iζ̃t−1,i. (A38)

Roughly, of the three trade motives discussed in the main text, the last two terms capture the endowment

effect as they derive from idiosyncratic endowment noises. The fourth term represents the heterogeneous

information noise that is present even if there is no information asymmetry. These three idiosyncratic

components will be gone in aggregating individual demands into group net flows. Information asymmetry

is present in the first three terms whose relevant shocks comprise the changes in price signals, ∆ξ̃t. The

second term also captures the trade motive due to taste (risk aversion) because it accommodates supply

shocks. We will confirm these below.

B1,i is given by the integrand of equation (A16),

B1,i = (θiSi)
−1[(A1A

−1
2 − I)B2 + GΣi(Σ

−1
i − Σ−1

δ ) − rB2]

= (θiSi)
−1[A1F

−1 − RB2 + G − GΣiΣ
−1
δ ] by (A3)

= (θiSi)
−1[

R

r
I − (

R

r
I − GΣΣ−1

δ ) − GΣiΣ
−1
δ ] by (A18), (A19)

≡ B0,i(Σ − Σi)Σ
−1
δ ,

where

B0,i ≡ (θiSi)
−1G.

The term Σ − Σi captures information asymmetry that will be non-zero if agents are asymmetrically

informed.
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Next, we first determine B3,i, which is given by the integrands of (A14) less (A20),

B3,i = (θiSi)
−1[−rA1 − {(A1A

−1
2 − I)B2F + GΣi(F

T)−1Σ−1
η F−1F − rA2}]

= (θiSi)
−1[−rA1 − {A1 − RA2 + GΣi(F

T)−1Σ−1
η }] by (A3)

= (θiSi)
−1[−rA1 + rA1 + G(Σ − Σi)(F

T)−1Σ−1
η ] by (A21)

= B0,i(Σ − Σi)(F
T)−1Σ−1

η .

B2,i is given by the integrand of equation (A20) less the identity matrix, and hence using B3,i and the

integrand of (A14),

B2,i = −B3,i + (θiSi)
−1(−rA1) − I

= −B3,i + (θiSi)
−1(θS − θiSi) by (A15).

( = (θiSi)
−1[θS − θiSi − G(Σ − Σi)(F

T)−1Σ−1
η ])

Note that the term θS−θiSi captures a combination of trade motives due to risk aversion and information

asymmetry; for example, it will be non-zero as long as θi 6= θ even if there is no information asymmetry,

Si = S. It will also be non-zero as long as Si 6= S even if agents are equally risk averse, θi = θ.

The derivation of remaining coefficients is immediate from (A6) and (A8):

B4,i = (θiSi)
−1GΣiΣ

−1
ε,i = B0,iΣiΣ

−1
ε,i ,

B6,i = −(θiSi)
−1GΣi(F

T)−1Σ−1
ζ F−1(−F ) = B0,iΣi(F

T)−1Σ−1
ζ ,

B5,i = −B6,i − I.

In summary,

B0,i ≡ (θiSi)
−1G,

B1,i ≡ B0,i(Σ − Σi)Σ
−1
δ , B2,i ≡ −B3,i + (θiSi)

−1θS − I,

B3,i ≡ B0,i(Σ − Σi)(F
T)−1Σ−1

η , B4,i ≡ B0,iΣiΣ
−1
ε,i ,

B5,i ≡ −B6,i − I, B6,i ≡ B0,iΣi(F
T)−1Σ−1

ζ .

Using these coefficients, the variance of the net flow is computed as

V ar(∆Π̃t,i) = 2B1,iΣδB
T

1,i + B2,iΣηBT

2,i + B3,iΣηBT

3,i

+ 2B4,iΣε,iB
T

4,i + B5,iΣζB
T

5,i + B6,iΣζB
T

6,i.

This expression is used in computing the expected volume V in (26).

By the law of large numbers, only the first three terms in (A38) are relevant in computing group j

net flows in (23),

∆Π̃j
t =

∫

i∈j

∆Π̃t,idi

= Cj
1∆δ̃t+1 + Cj

2 η̃t + Cj
3 η̃t−1, (A39)
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where

Cj
0 ≡ mj(θ

j
S

j
)−1G,

Cj
1 ≡ Cj

0(Σ − Σ
j
)Σ−1

δ , (A40)

Cj
2 ≡ −Cj

3 + mj [(θ
j
S

j
)−1θS − I], (A41)

Cj
3 ≡ Cj

0(Σ − Σ
j
)(F T)−1Σ−1

η . (A42)

Its variance is

V ar(∆Π̃j
t ) = 2Cj

1ΣδC
jT
1 + Cj

2ΣηCjT
2 + Cj

3ΣηCjT
3 .

This is used in computing the expected absolute flows U in (25).

Using (A39) and (A36), our measure of trading behavior in Section II.D is

Cov(∆Π̃j
t , ∆P̃ T

t ) = Cj
1Σδ[B

T

2 − (r−1I − BT

2)] + Cj
2ΣηAT

2 + Cj
3Ση(A1 − A2)

T

= Cj
0(Σ − Σ

j
)(2BT

2 − r−1I) + Cj
3Ση(−A2 + A1 − A2)

T

+ mj [(θ
j
S

j
)−1θS − I]ΣηAT

2 by (A40) and (A41)

= Cj
0(Σ − Σ

j
)[2BT

2 − r−1I + (F T)−1(A1 − 2A2)
T]

+ mj [(θ
j
S

j
)−1θS − I]ΣηAT

2 by (A42).

Here, the first square bracket in the last line is

2BT

2 − r−1I + (F T)−1(A1 − 2A2)
T

= 2BT

2 − r−1I + (F T)−1(A2 −
1

R
GΣ(F T)−1Σ−1

η − 2A2)
T by (A21)

= 2BT

2 − r−1I + BT

2(A
T

2)
−1(−AT

2) −
1

R
[GΣ(F T)−1Σ−1

η F−1]T by (A3)

= BT

2 − r−1I − 1

R
[GΣ(F T)−1Σ−1

η F−1]T

= − 1

R
(GΣΣ−1

δ )T − 1

R
[GΣ(F T)−1Σ−1

η F−1]T by (A19)

= − 1

R
[Σ−1

δ + (F T)−1Σ−1
η F−1](GΣ)T.

Therefore,

Cov(∆Π̃j
t , ∆P̃ T

t ) = − 1

R
Cj

0(Σ − Σ
j
)[Σ−1

δ + (F T)−1Σ−1
η F−1](GΣ)T

+ mj(θ
j
S

j
)−1(θS − θ

j
S

j
)ΣηAT

2. (A43)

Roughly, the first term captures the trade motive due to information asymmetry, and the second term

additionally agents’ risk aversion; notice that the second term is generally non-zero even if agents are

symmetrically informed. From this, we see that groups with different risk aversion can act as trend-

followers and contrarians even if there is no information asymmetry among them.46

46If we focus on equilibria in which all matrices have the same eigenvectors, we can show that A2 is negative definite

(see the proof of Proposition 4). Therefore even if agents are symmetrically informed (S
j

= S ∀j), groups that are more

risk-averse than the market average (θ
j

> θ) will behave like trend-followers while the less risk-averse groups will act as

contrarians.
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Before introducing additional assumptions, we note that the following results always hold: Premulti-

ply (θiSi)
−1 to both sides of equation (A7), integrate over all i and i ∈ j, respectively, use the definition

of average matrices, and rearrange to get

S = A2ΣηAT

2 + GΣGT + B2ΣδB
T

2,

S
j

= A2ΣηAT

2 + GΣ
j
GT + B2ΣδB

T

2.

So,

S − S
j

= G(Σ − Σ
j
)GT, (A44)

S − Si = G(Σ − Σi)G
T.

From this, we can sign the covariance in (A43) under some conditions including common risk aversion,

which ensures that the group net flows will be driven purely by information asymmetry. The precise

statement is given in the following proposition:

PROPOSITION 4 When groups are equally risk averse (θ
j

= θ∀j) and all matrices share the common

eigenvectors, group j agents act as trend-followers (contrarians) for all securities if and only if Σ
j

ε −Σε

is positive (negative) definite.

Proof. When θ
j

= θ, we can write the second term in (A43) using (A44),

mj(θ
j
S

j
)−1(S − S

j
)θΣηAT

2 = mj(θ
j
S

j
)−1G(Σ − Σ

j
)GTθΣηAT

2.

So we can factor out the term Σ
j − Σ representing information asymmetry in (A43) as follows:

Cov(∆Π̃j
t , ∆P̃ T

t ) = Cj
0(Σ

j − Σ)[
1

R
{Σ−1

δ + (F T)−1Σ−1
η F−1}(GΣ)T − θGTΣηAT

2]. (A45)

We first show that both Cj
0 and the matrices inside the square bracket are positive definite. Start with

writing B2 by F using (A3),

B2 = A2F
−1 (A46)

= A1F
−1 +

1

R
GΣ(F T)−1Σ−1

η F−1 by (A21) (A47)

=
R

r
I − G +

1

R
GΣ(F T)−1Σ−1

η F−1 by (A18).

Equate this to the right-hand side of (A19) and solve for G:

G = [I − 1

R
Σ{Σ−1

δ + (F T)−1Σ−1
η F−1}]−1 (A48)

= [Σ
−1 − 1

R
{Σ−1

δ + (F T)−1Σ−1
η F−1}]−1Σ

−1

= [Σ
−1

ε + (F T)−1Σ−1
ζ F−1 +

r

R
{Σ−1

δ + (F T)−1Σ−1
η F−1}]−1Σ

−1
by (A12).

Note that Si, Σ−1
i , and S

−1
in (A10) are always positive definite. Under the assumption of common

eigenvectors, we can factor out the eigenvector matrix in a way similar to equation (A28). Then it is

easy to see that Σ defined in (A11) is positive definite without the knowledge of the positive/negative

definiteness of G. This implies that Σ
−1

ε is also positive definite, and so is G in the above equation.
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Finally, we show that A2 is negative definite. By (A18),

A1F
−1 =

R

r
I − G

= G[
R

r
G−1 − I]

= G[
R

r
I − 1

r
Σ{Σ−1

δ + (F T)−1Σ−1
η F−1} − I] by (A48)

= r−1G[I − Σ{Σ−1
δ + (F T)−1Σ−1

η F−1}]
= r−1GΣ[Σ

−1 − {Σ−1
δ + (F T)−1Σ−1

η F−1}]
= r−1GΣ[Σ

−1

ε + (F T)−1Σ−1
ζ F−1].

Since A1 is negative definite and the right-hand side is positive definite, we conclude that F−1 is negative

definite. Then the right hand side of (A47) is positive definite and so is B2. Then (A46) says A2 is

negative definite. So the square bracket in the right-hand side of (A45) is positive definite. Obviously Cj
0

is positive definite. Therefore, Cov(∆Π̃j
t , ∆P̃ T

t ) is positive (negative) definite if and only if Σ
j − Σ and

equivalently Σ
j

ε − Σε is positive (negative) definite (see the definitions of Σ
−1

ε and (Σ
j

ε)
−1 in (A12) and

(A25)). Because a positive (negative) definite matrix has all its diagonal elements positive (negative),

this implies that group j that is less (better) informed than the market average (Σ
j

ε − Σε is positive

(negative) definite) tends to increase (decrease) its holding of a security when its price has appreciated,

and vice versa.

B. Multisecurity Examples

This appendix provides graphs for partial-information equilibria of a two-security model. Each graph

is explained in its caption.
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Figure 10: Correlation between the net flow of group-1 agents, ∆Π̃1
t (n), and the price change, ∆P̃t(l),

in partial-information equilibria of a two symmetric-security model with two groups, where n, l = 1, 2

denote securities. Group-1 agents are on average better informed about the first security, and less

informed about the second security, than group-2 agents in that Σ
1

ε = σ2
ε

(
1/2 0

0 2

)
. The markers

represent the following equilibria: stars: low volatility, low correlation. Squares: high volatility, high

correlation. Circles: high volatility, low correlation. Crosses: high volatility, negative correlation. Point

A gives Shiller’s (1981b) aggregate volatility estimate, 69.4, at σε = σε0 ≡ 62.2. Parameter values:

Σδ = 16.52I, Ση = .005872I, Σε = σ2
εI, Σ

1/2
ζ = 4ση, r = 5% per annum or 1.0510 − 1.
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Figure 11: Trading-volume measures in partial-information equilibria of a two symmetric-security model

with two groups. Panel (a): the expected absolute flow, U , and Panel (b): expected volume, V , of the

first security. Group-1 agents are on average better informed about the first security, and less informed

about the second security, than group-2 agents in that Σ
1

ε = σ2
ε

(
1/2 0

0 2

)
. The markers represent

the following equilibria: stars: low volatility, low correlation. Squares: high volatility, high correlation.

Circles: high volatility, low correlation. Crosses: high volatility, negative correlation. Point A gives

Shiller’s (1981b) aggregate volatility estimate, 69.4, at σε = σε0 ≡ 62.2. Parameter values: Σδ = 16.52I,

Ση = .005872I, Σε = σ2
εI, Σ

1/2
ζ = 4ση, r = 5% per annum or 1.0510 − 1.
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Figure 12: Correlation between the absolute flow of group-1 agents, Ũt(n) = |Π̃1
t (n)|, and the absolute

price change, |∆P̃t(l)|, in partial-information equilibria of a two symmetric-security model with two

groups, where n, l = 1, 2 denote securities. Group-1 agents are on average better informed about the first

security, and less informed about the second security, than group-2 agents in that Σ
1

ε = σ2
ε

(
1/2 0

0 2

)
.

The markers represent the following equilibria: stars: low volatility, low correlation. Squares: high

volatility, high correlation. Circles: high volatility, low correlation. Crosses: high volatility, negative

correlation. Point A gives Shiller’s (1981b) aggregate volatility estimate, 69.4, at σε = σε0 ≡ 62.2.

Parameter values: Σδ = 16.52I, Ση = .005872I, Σε = σ2
εI, Σ

1/2
ζ = 4ση, r = 5% per annum or 1.0510− 1.
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