1048

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

A Fast-Lock, Jitter Filtering All-Digital DLL Based
Burst-Mode Memory Interface

Masum Hossain, Farrukh Aquil, Pak Shing Chau, Member, IEEE, Brian Tsang, Phuong Le, Jason Wei,
Teva Stone, Barry Daly, Member, IEEE, Chanh Tran, John C. Eble, Member, IEEE, Kurt Knorpp, and
Jared L. Zerbe

Abstract—A 800 Mb/s to 3.2 Gb/s memory interface is designed
that achieves 30% improved energy efficiency by eliminating idle
mode power completely. The link is similar to a standard DDR
architecture with the addition of a fast-lock DLL on the memory
side that wakes up from 0 mW and locks within 3 clock cycles con-
suming 24 mW with residual timing error less than 33 mUI. Fol-
lowing initial lock, the DLL operates in a closed loop to compen-
sate for V,T drift consuming 6 mW @ 1.6 GHz including a replica
buffer. By incorporating an injection locked oscillator inside the
loop, the DLL provides PLL like high frequency input jitter fil-
tering, and corrects £10% DCD without an additional duty cycle
correction loop.

Index Terms—Burst mode, digital DLL, memory, injection
locking, fast locking, TDC.

I. INTRODUCTION

ORTABLE devices with wireless connectivity are today’s

consumer mobile computing platform. Demand for higher
processing power in such a device is mainly driven by mo-
bile apps to support consumer convenience, connectivity such
as social networking, security and productivity. With battery
life already one of the significant challenges in this environ-
ment, power requirements in hand held devices have already
outpaced the improvements in battery technology, increasing
the need for energy efficiency. One major source of inefficiency
in existing DDR architectures is the usage of a DLL in DRAM.
The main purpose of the DRAM DLL is to compensate the
skew introduced by the clock distribution network such that
strobe (DQS) and data (DQ) are aligned to the global clock
(CK) signal at the output pin. On the controller side the strobe
is then shifted by 1/2 unit interval (UI) to sample the received
data signal and is then synchronously moved into the internal
clock domain. Satisfying this timing relationship over process,
supply voltage and temperature variation allows the link to meet

Manuscript received August 21, 2013; revised November 03, 2013; accepted
December 05, 2013. Date of publication February 04, 2014; date of current
version March 24, 2014. This paper was approved by Guest Editor Hideyuki
Kabuo.

M. Hossain is with Rambus Inc., Sunnyvale, CA 94089 USA, and also
with the University of Alberta, Edmonton, Alberta T6G 2R3, Canada (e-mail:
masum(@ualberta.ca).

F. Aquil, P. S. Chau, B. Tsang, P. Le, J. Wei, T. Stone, B. Daly, C. Tran,
J. C. Eble, K. Knorpp, and J. L. Zerbe are with Rambus Inc., Sunnyvale, CA
94089 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2013.2297403

Clock Enable
DRAM —
Operations ACT ‘ RD | ACT
| +—— Conventional
DLL power
DLL Power
Power saving
ID62P fslow) opportunity / Fast lock DLL
\ oY) DLL power
DLL Lock Itime “lsns Time

/\

Idle mode Fast bias! DLL Fast Lock Cont. Tracking

Trigger Signal

Ref. Clk ‘_FU__I_U_l_!__J__I__I_U
SAZAYAV/Z | U5 N I T U Y I O
Dataty (FDDDC

Link Power up m

Fig. 1. CAS/RAS based fast lock DLL operation and power consumption
during different modes of DRAM. Breakdown of DLL on time with wakeup
and lock sequence.

Clkp.

critical I/O timing. Since this timing relationship between DQ,
DQS and CK needs to be satisfied only during read operations,
the DLL can be potentially powered down during other modes
of operations such as pre-charge, active stand by etc. Since a
DRAM spends significant amount of time in these idle interface
modes, keeping the DLL ‘ON’ causes significant power ineffi-
ciency in the system. Mobile centric LPDDR solutions are at-
tempting to improve this situation by completely removing the
DLL from DRAM. However, this also leaves uncompensated
PVT variation on the DRAM side stressing timing margins at
high data rates. As a result LPDDR solutions are falling behind
in maximum achievable bandwidth compared to standard DDR
solutions.

An alternative approach is to keep the DLL ‘ON’ only during
‘read’ and keep it powered down in all other modes (Fig. 1).
An active command (ACT) or a read command (RD) can be
used as a trigger to wake up the DLL. To avoid a performance
penalty, the triggering-read operation should not add any extra
latency. Therefore, the DLL needs to wake up from nearly 0
mW and lock within 10 to 15 ns, preferably with residual error
less than 1/32 UI. Based on the study reported in [1], for 10%

0018-9200 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HOSSAIN et al.: A FAST-LOCK, JITTER FILTERING ALL-DIGITAL DLL BASED BURST-MODE MEMORY INTERFACE

Clk Ref

Digital | MSB’s
Filter
LSB’s

n
4' Replica Clock Buffer '7

DQ Data

Lock time (Ref. Cycle)

1049

1500 mssciNoven]
BJSSC [May’99]
1SSC [May’99] ;
1000 -) J
500 |\ \W&ieN)ssc ran13] ~ESSC bun'12]
(1/2)f~ :
0 i ———
0 0.02 0.04 0.06 0.08

Resolution (Normalized to clock period)

Fig. 2. Digital version of the feedback DLL described in [1]. Lock time vs.resolution tradeoff for different digital clock frequency.

TABLE 1
DIFFERENT DRAM STATES FOR 40% AND 10% CPU UTILIZATION AND
POTENTIAL SAVINGS WITH FAST LocKk DLL

% Time spent for diff. . .
P DR::VI t CPU utilization :avt"l‘gslrltl)'lz_ll‘_
owerstate a0% 10%[1 | Festloc
IDDO,IDD1
(Active power) 0.1 0.7 80 %
IDD2P
(Power down) 41 50.46 80%
IDD2N
(Power down) 20 9.26 80%
IDD3P
(Standby) 2.5 5.28 0%
IDD3N
(Standby) 22 5.56 80%
IDD4R
(Read) 0.6 0.14 0%
IDDAW 10 0.24 0%
(write)
IDD6
(self refresh) 10 27.47 0%

CPU utilization, power down mode (IDDsp) constitutes more
than 50% of its operating time, making the case for fast lock
DLL quite promising. Note that in this case ‘CPU utilization
ratio’ is defined as percentage of time CPU is not idle. Potential
power savings at different modes of DRAM operation are sum-
marized in Table 1. For a 40% CPU utilization case, 30% im-
provement in power efficiency can be achieved by simply elim-
inating ‘power down’ and ‘standby’ mode DLL current. How-
ever, such fast lock and fine resolution DLL specifications are
not achievable from a standard architecture; therefore, signifi-
cant improvement in the DLL is needed. Based on this motiva-
tion the paper is organized in the following way: Section II in-
troduces a hybrid DLL approach based on a brief review of the
prior art, Section III explains different fast lock features of the
DLL, and Section IV provides theoretical analysis with simula-
tion results for different noise transfer functions of the proposed
architecture in continuous mode of operation. Implementation
and measured results are provided in Section V.

II. A HYBRID DLL APPROACH

Most standard DRAMSs use closed loop DLLs. A replica of
the actual buffer is inserted in the feedback path of the DLL.
While locked, the VCDL’s delay (Tvcopr) contribution com-
plements the buffer delay (Tpuste;) to complete a full cycle
(TRrEr); therefore, the timing relationship can be mathemati-
cally described as: Tyyste; + Tvepr = NTrer, where N is an
integer number starting from 1. Early designs used an analog
implementation [2] and subsequently were replaced with dig-
ital versions [3] for better design portability, verification and
smaller foot print. Note that these advantages come at the cost
of additional quantization jitter due to the digital nature of the
phase detector. Assuming the DLL does not lock in a hierar-
chical way [3], the lock time of this loop (T}oq) is mainly de-
termined by phase update rate and phase step size: Tk =
Trer/(faig * AP). Phase update rate is process dependent, usu-
ally set by the maximum frequency (fai,) at which the digital
loop filter can be synthesized meeting the timing requirement
over PVT. On the other hand phase step size (A®P) is set by
the dithering jitter limit of the system. Therefore, the jitter re-
quirement sets the lock time; it usually requires 5004 cycles
to achieve low residual jitter (1/32 Ul or 1/64 Trgr for DDR
link). Although this lock time is sufficient to meet the present
DDR4 specifications [4], it becomes exceedingly difficult to
lock within the CAS/RAS latency even with an aggressive dig-
ital clock rate (Fig. 2).

A synchronous mirror delay (SMD) based approach provides
significantly faster lock time by employing a time to digital con-
verter (TDC). As shown in Fig. 3, the TDC directly measures
the delay of the clock distribution buffer in the form of a code
word ‘D’ by sampling the reference clock with N phases gen-
erated from an NV stage delay line. Ideally, the TDC takes the
buffer delay and one clock cycle to generate the TDC code,
thereby achieving lock within 3 to 5 clock cycles. The gener-
ated TDC code is used to select the nth stage output from N
delay stages such that n(AT) = Trgr — Thuffer- Here, AT is
the resolution of the TDC defined as AT = Tgggr/N. There-
fore, the required resolution is achieved by choosing a propor-
tional number of stages at the cost of higher power consumption.
Compared to regular feedback type DLLs, power consumption
increases in SMDs by more than 10x to achieve a similar res-
olution (Fig. 3). This penalty becomes even higher as the delay
line is used twice to implement the ‘mirror’ effect. Since most

1050

| Logic |—
Ref. Clk 1 1 oo 1
e
Replica Clock vee
distribution

TDC resolution

et
==

Clock distribution

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

Fig. 3. Synchronous mirror delay structure as in [4] with power and resolution tradeoff.

High Res.

Mode Switch

Digital

TDC Filter

Digital To
Phase

Digital Converter

Loop
Filter

Replica Clock
distribution

Fig. 4. A hybrid DLL with conceptual lock time and power consumption.

of these power consuming blocks are directly in the clock path,
the architecture as described in [5] does not allow us to turn
off power consuming devices after initial lock to save power.
SMDs are mostly avoided in standard DDR interfaces despite
their impressive lock time [6] due to prohibitive power con-
sumption and often incorrect locking when the cycle time be-
comes shorter than buffer delay. To summarize, existing closed
loop DLLs suffer from long lock time, and TDC based open
loop solutions can lock fast but consume significantly higher
power, thereby negating any power saving opportunity of the
CAS/RAS triggered architecture.

Based on the above discussion, a rational approach leads to
a hybrid architecture that wakes up in ‘fast lock’ mode, and
once the output phase is locked then the DLL operates in a
lower power ‘continuous tracking’ mode (Fig. 4). Such an ap-
proach has been explored in [7] where a coarse TDC is used
to obtain the coarse delay setting in two clock cycles and then
the analog loop takes another 10 clock cycles to achieve phase
locking. Therefore, the total time needed for the phase locked
clock to appear on the ‘DQS’ pin is 2Tpysrer + 12 Trer. Al-

__ 015 , ; 15x I
- o
£ c ¥
@ 1 c ®
o ‘ s 2
o 01 110x -g
) £ v
? 2o
- : g 8
S ; o
g 0.05 {5x o @
] s
g SE
: : : : ')
0 i i i i i i 5
5 10 15 20 25 30 35
Number of stages, N
Acquiring Lock |, Locked Tracking
S
e
5 Feedback
oo
£
g TDC based
Ll ya\ n A Irer~a) LKA AAALA
N A eV Y R [v
Hybrid approach
- E % []
2 1 r—_ﬁ_r_'_‘ '8
s o
oo i :]
c ?—Mode switch b
el £
= | f\,\v/\ AAAA AlAAA, AAAAAAAAAA
\4
S 4| TDC based
3 Hybrid approach
[«]
a
Feedback Time

though this lock time exceeds the 15 ns target, the lock time is
significantly better than a conventional approach. Based on the
similar hybrid concept, the proposed architecture uses several
techniques to meet the design target [8]. First, a two-step TDC
is used to improve resolution such that the DLL can achieve
locking in 3 reference clock cycles with residual error less than
1/32 UI. Second, to achieve power savings the DLL uses a fast
bias technique [9] to wake up from a 0 mW idle-state (excluding
leakage). In addition, the fast lock and continuous tracking loops
are designed to be isolated and independent such that power
consuming parts can be turned off to bring down the contin-
uous mode power to 6 mW. In fast lock mode when high reso-
lution TDC is employed, the DLL consumes significantly higher
power (~24 mW). However, the DLL operates in this fast lock
mode for only a short period of time (~15 ns), and the remaining
time of the read mode the DLL operates in lower power contin-
uous mode. Therefore, average power remains very close to 6
mW for a practical burst length during read operation. Third, a
fully digital solution allows simpler mode switching—the fast
lock mode generates a 6-bit phase code to deskew the DLL

HOSSAIN et al.: A FAST-LOCK, JITTER FILTERING ALL-DIGITAL DLL BASED BURST-MODE MEMORY INTERFACE

output clock and align it with the reference clock. Then the DLL
is switched over to a continuous tracking mode where the gen-
erated TDC code is used as an initial phase code for the phase
accumulator. The DLL continues to operate tracking V, T varia-
tion by incrementing and decrementing the accumulator output
by one phase step at a time. Unlike the analog voltage controlled
delay unit described in [6], a phase rotating digital to phase con-
verter allows infinite capture range. Compared to an analog or
mixed-signal hybrid solution, the all-digital implementation en-
ables simpler mode switch and reduces design and verification
time. However, all-digital solutions also suffer from additional
jitter sources such as quantization noise and power supply in-
duced jitter (PSIJ). The proposed solution addresses these is-
sues as described in Section I'V. Finally, a duty cycle correction
scheme is also used that is compatible with the 15 ns wakeup
time.

III. HYBRID DLL DESIGN

The main components designed to enable fast lock operation
are the TDC, the code conversion logic and the digital-to-phase
converter. The continuous tracking loop includes a bang-bang
phase detector, digital loop filter and digital-to-phase converter.
Note that the digital-to-phase converter is shared by both modes
to reduce area overhead and achieve a glitch-less mode switch.

A. Two-Step TDC

A straightforward design of a TDC with (1/64)Trgr reso-
lution would require a 32 stage delay line with 9.8 ps delay/
stage and 64 samplers at 3.2 Gb/s data rate. This delay/stage
requirement exceeds the FO4 delay in the desired 40 nm LP
CMOS process and consumes more than 50 mW. To reduce
power consumption, a two-step TDC is used (Fig. 5). First, the
reference clock is passed through a coarse TDC implemented
with an 8 stage differential delay line providing 39 ps reso-
lution. A 16-bit raw output is generated from this TDC and
then converted to a 4-bit binary output used to select two adja-
cent phases that bracket the reference clock. These two phases
are then blended together to generate four phases with 9.8 ps
spacing. The phase blending approach allows us to achieve tar-
geted resolution without over stressing the FO4 delay of the
process. Using these finely spaced phases, the reference clock
is then re-sampled to generate a 4-bit raw output that is eventu-
ally converted to a 2-bit binary output. The 4-bit coarse and 2-bit
fine outputs are combined as MSBs and LSBs to generate a final
6-bit TDC output. The two-step TDC solution requires a total
of 20 samplers, 8 current starved buffers for phase blending,
and the 8 stage delay line (39 ps/stage) for the coarse TDC.
This relaxed delay/stage requirement and simpler implementa-
tion translates to 2.2x improvement in TDC power consump-
tion at the cost of one extra reference cycle in TDC conversion
time. Simulated DNL of the phase blender in less than 0.25 LSB
over different process corners, and including mismatch it is still
better than 0.5 LSB. The delay in the phase blender must be
replicated in the reference path using a dummy version as shown
in the Fig. 5.

1051

B. Direct Complementary Code Mapping

The code generated from the TDC represents the buffer delay
by indicating the nth phase code out of N phase codes per clock
cycle and then multiplying by AT; i.e., Thusrer = n(AT). Here,
AT is the resolution of the TDC defined as AT = Tgrgr/N.
This code needs to be converted to its complementary form such
that the converted code represents the delay (N — n)AT. Com-
plementary code conversion can be implemented by subtracting
6 bit TDC code from the phase code corresponding to complete
cycle, Trer = 26 _ 1 = 63. As a result, the delay from CK to
DQS can be written as

(N — n)AT + Thufter = N(AT) = Trer N

Therefore the clock at DQS is phase locked with the reference
at CK. One possible implementation of this concept is shown in
Fig. 6(a). It is useful to identify the three components of lock
time. First, the time required for the TDC to generate a valid
code is Thutter + 3TrEF, Where Thufre, 1S the delay time for
the Ist edge to appear at the output of the replica buffer and
then the coarse and fine TDC each take one cycle to generate
the TDC code with the code being held in the following cycle.
Second, the coarse and fine codes are combined and then con-
verted to a complementary form—this conversion takes 2 to
3 clock cycles. Finally, the locked edge appears at the output
after Tyumer propagation delay. Adding all these components,
the total time required for a valid clock edge to appear at DQS
is 2Tpufrer + 6TREF.

Clock distribution delay T',uter depends on many parameters
that cannot be affected by the DLL design, including physical
length of the interface. However, the remaining part of the delay,
especially code conversion latency, can be eliminated by modi-
fying the phase interpolation architecture as shown in Fig. 6(b).
In the conventional approach, the input to the DLL remains
fixed, whereas the output is selected from the available phases
at the delay line output. In the proposed approach, the output is
fixed at the end of the delay line whereas the input point is vari-
able. The delay through a conventional phase interpolator can be
expressed as: a7, + 87,41, where o and 3 are the weighting
factors of n-th and (n + 1)th stage’s output respectively. When
the same code is applied to the modified structure as shown in
Fig. 6(b) the total delay through the phase interpolator and clock
distribution buffer can be written as:

Togs = aTp_1 + BTp + Thutter)
Note that in this case selecting the (n + 1)th stage translates

to a different delay: Tp = Trgr — Ty41. Therefore, mapping
the delay in terms of T, yields

Tpgs = a(Trer — Tw) + B(Trer — Tut1) + Toutter (3)
Since @ + 3 = 1, and « and /3 are the TDC codes that repre-

sent buffer delay, Ty 4+ STx1 = Thutter- This relationship
simplifies the delay expression given in (3):

Togs = Trer — (¢Tn + Tn+1) + Touster = Trer (4)

1052 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

Replicated in matched dela
Logic P y)
Ref. CIK| peplica Clock oo :’/ ™
distribution ! q &b, i
oo ; ® |
! Px i
0 i j ¢1 E
- .
- 5 / b,
xl l L Matched
I Phase Blender | Delay
¢0 0?03 ¢3
by L
] | eee ! Coarse code
i . ¢
Logic Fine code 4

(a) (b)

TDeIay
0.3 T W
Ref. / If i
4 0.2 -ss
e | =
0.1
Coarse ¢ / ! / g
by by z 0
o
Mux output / / &, b P
¢ blender output / 0.2 : s S &
Fine phase step
(c) (d)
Fig. 5. (a) Two step TDC; (b) phase blender; (c) functionality elaborated in timing diagram; (d) DNL.
Trer = 63 (Phase code) G S ES £ T A SEESEE SR SR S ~

Fine |4 bit Therm.
TDC To binary

Coarse | 16 bit | Therm.

I 1
I |
Binary " 1 / 1
To Therm. Fine : 7 7 _— .
< i Trer = Touffer TDC 1 / !

TDC To binary 1 \ \ J 1
- Coarse |- Therm. .

TDC To 2 hot !

\\ Du o /I

Ref. Clk b

Delaylinei/Y }7--- Y V\
Jitter frequency i\ H>l|>m~ /

Ref. Clk

MsB e

LSB
Data

Jitter Transfer

Fig. 6. Improvement on lock time and digital to phase converter: (a) conventional implementation; (b) direct complementary mapping; (c) converting the delay
line to ILO.

This simply indicates that CK and DQS signals are phase C. ILO Based Digital to Phase Converter

locked. Since the structure itself provides complementary map- As explained in the previous section, the modified architec-
ping of the code, code conversion logic is not needed and saves ture already provides significant improvement in lock time. This
3Tgrer from the lock time. advantage can be further extended by feeding back the output

HOSSAIN et al.: A FAST-LOCK, JITTER FILTERING ALL-DIGITAL DLL BASED BURST-MODE MEMORY INTERFACE

1053

N\,
\
5\ \

Ref. Clk ;]_
Polarity <0:7 ! _”j enb
Weight £0:21> epe r‘llﬁ L
enable <0:7> J J Pl
=== 4 # i
Holp s 7
olari
select _I |/
\ \ = /weighted Driver ,,’
(a)
o 1.2 ! !
S A Simulated
lari E 0.8l — Ideal 360°crossing |
Polarity N £
(o] e
polaity <1:0> N 04 180°crossing
©
coarse code<7> g 0.2}
NN o
»E'_ 0 10 20 3 [4 5 eo| [0 80
’-DO— J polarity <7> Y Phase code
coarse code<1> PoIarity<0>
Y 1]
ook E Ipolarity<6:2> Polarity<7>
(b)

Fig. 7. (a) Glitch-less infinite phase rotation scheme. (b) Polarity switching timing.

of the delay line to the input in the form of an injection-locked
oscillator (ILO) (Fig. 6(c)). Since an ILO has the property of
low pass jitter transfer, this rather simple modification is effec-
tive in filtering high frequency input noise without adding any
extra power or complexity. The ILO based phase interpolator
has been well explored by [10], [11]. The working principle is
simple—the injection point in the ILO keeps shifting while the
output node remains fixed. This achieves different amounts of
phase shift with relatively coarse resolution, 180°/N, set by the
number of stages in the ILO, N. Therefore, increasing number
of stages in the ILO improves the phase resolution at the cost
of increased power consumption. In this design, an 8 stage ring
oscillator was found to be a reasonable compromise between
power consumption and coarse resolution of 22.5°. The 8 stage
ring VCO also has a wide tuning range from 400 MHz to 1.6
GHz. To achieve finer resolution, two adjacent stages are in-
jected at the same time with variable strength. This technique
improves the resolution by 4x. Although the delay line only
covers up to 180°, it has been shown that with input or output
polarity selection it is possible to cover infinite range like a
regular phase mixer [10]. However, a momentary glitch may
occur while crossing the 180° boundary by polarity inversion.
Note that this glitch is less of a concern for calibration based
deskew scheme where the phase is ‘frozen’ after the calibra-
tion and during the functional mode. However, in DLL appli-
cations continuous tracking is required during functional mode,
therefore such a glitch is not acceptable. A simple solution is to
avoid the glitch issue by moving the polarity selection to each

individual injection stages (Fig. 7). Rather than using a single
polarity signal each injection point has its independent polarity
selection. In the proposed method the digital loop filter’s output
phase code is observed, and based on the phase code the state
machine predictively updates the polarity of the following injec-
tion stages. Let’s consider 180° boundary crossing, this requires
updating the polarity of Oth and 7th stage depending clock wise
or anti clock wise rotation. Coarse code (7) ‘high’ indicates that
injector 6th and 7th are enabled, and if the phase rotation con-
tinues injector {(0) can be enabled next. Note that only two in-
jectors are ‘active’ at any given time (in this case 6th and 7th),
and the remaining 6 injectors are disabled thus the DLL output
is insensitive to their injection signals. Therefore, polarity {0}
is flipped based on coarse code (7) before injector (0) is en-
abled, and allows glitch-less boundary crossing. Similarly, po-
larity {7} is updated based on coarse code (1) before injector
(7) is enabled.

In a conventional approach, resolution of the TDC is en-
sured by locking N stage delay line to Trgr. This can either
be a continuously running DLL or a periodic delay calibration
loop. Similar approach is also needed for conventional Digital
to phase conversion. In this implementation 8 identical stages
are used for both TDC delay line and ILO. In the ILO 8th stage
output is connected back to the 1st stage input whereas in the
TDC 8th stage output is terminated with dummy load. There-
fore, by calibrating the ILO frequency to be same as input fre-
quency, we can ensure the resolution of the digital to phase con-
verter as well as the TDC. ILO ‘free running’ frequency is cali-

1054

brated using a digital counter same as [9]. ILO lock range is suf-
ficiently wide, therefore small frequency offset is usually toler-
able without significance performance impact. Note that if the
data rate is changed, ILO free running frequency needs to be
re-calibrated to match the new data rate similar. Rate change
protocol in a DRAM interface usually allows sufficient time for
such calibration.

D. Duty Cycle Correction

There are two primary sources of duty cycle error present in
the DLL, input duty cycle error and duty cycle distortion added
by the clock distribution buffer due to mismatch. One simple
duty cycle correction method is to observe the duty cycle error at
the output of the clock distribution network and accordingly cor-
rect the duty cycle at the input by adding DC offset. However,
such loops take a long time (on the order of micro seconds) to
converge making them less suitable for burst mode applications.

Mismatch profiles (both device and parasitics) are to the 1st
order voltage and temperature independent. Since the clock dis-
tribution network remains unchanged, a simple one time calibra-
tion code is sufficient to correct the duty cycle distortion from
the clock distribution buffer. However, input duty cycle error
is unknown and unpredictable. Therefore, it can’t be corrected
through one time calibration. Rather than using a closed loop
correction which takes longer to lock, the jitter filtering prop-
erty of ILO to correct input DCD is used. Since the ILO has
a low pass jitter transfer function and DCD is essentially very
high frequency jitter, most of the DCD will be filtered out. If
the input duty cycle error is within £10%, the ILO’s jitter fil-
tering is sufficient to provide nearly 50% duty cycle clock at the
output.

However, it is also possible to completely remove duty cycle
error using pulse injection. In this injection scheme a narrow
pulse is generated from the reference clock (ref(t)) by first
delaying it (ref(t — AT)) and then passing through a NAND
gate as shown in Fig. 8. Since the pulse is generated from only
‘rising” or ‘falling’ edges, it is periodic to the reference cycle
but now completely independent of the duty cycle. For example,
even if the input duty cycle is 60/40, if the injection pulses are
generated from only rising or falling edges these pulse will be
separated by reference period as shown in the figure. The VCO
itself provides 50% duty cycle clock, and these periodic refer-
ence pulses are then used to lock the phase by correcting the
‘zero crossing’ in each cycle of the VCO. Therefore, this scheme
can provide a phase locked clock with nearly 50% duty cycle re-
gardless of any reasonable input DCD (Fig. 9). To accommodate
this duty cycle correction technique, a pulse generator and ILO
need to be added following the DLL increasing overall power
consumption. Since memory interfaces have well defined DCD
specification, the pulse injector and additional ILO for DCD cor-
rection is avoided in this implementation.

IV. DLL JITTER ANALYSIS

Compared to a conventional DLL architecture usinga VCDL,
the proposed DLL utilizes an ILO (Fig. 10). This significantly
changes the jitter transfer properties of the DLL. To evaluate
these changes analytically, phase domain equivalent models
with dominant noise sources are shown in Fig. 10. For sim-

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

Ref{(t) ; ;
X’ 0.6/f e Xo.4/fREF)

Ref{(t) i

— Ref(t-AT) = i
Z?k Ref(t-AT) _,__X X X

Pulse Injection

NRZ Injection

——

s anf |
Ref(t)Ref(t-AT)] 4

VOSC+)
w XX

osc-

Fig. 8. Circuit schematics to implement NRZ and pulse injection methods.
Duty cycle correction using pulse injection method.

buffer DCD

80 Input DCD
correction

correction

‘ =@=DCD Correction with Pulse injection

\ f—}%
== DCD Correction with NRZ injection al
DLL Clk Buffer
60 i 9 DCD Calibration
X (implemented in this work)

—

Input DCD correction buffer DCD correction
40 \J* s A A
r N i
v DLL PG + Clk Buffer
ILo DCD Calibration

20+

Output DCD (%)

20 40 60 80
Input DCD (%)

Fig. 9. Duty cycle distortion correction range with two injection methods.

plicity, the open loop (i.e., TDC) part is omitted in this model.
Major sources of noise in DLLs are high frequency input jitter,
quantization noise due to digital loop, and supply induced jitter
in the DLL and clock distribution buffers. Bang-bang phase
detectors are inherently non-linear and their gain depends on
input jitter amplitude. Assuming Gaussian input jitter, the phase
detector gain can be linearized as Kgg = 1/0 m, where ¢ is
the standard deviation of the input jitter distribution [12]. The
digital loop filter is simply modeled as decimation factor Kp
and an equivalent continuous time equivalent L(s) of discrete
time digital to phase converter L(z 1) = KpKppc/(1—z1).
Here, Kp = 1/2% and Kppc is programmable from 1/2% to
1/2% to reduce dithering jitter at the cost of DLL bandwidth.

Different noise transfer functions are derived in Appendix I.
Based on the phase domain model of the proposed DLL, a sum-
mary and comparison with standard DLL is provided in Table II.
In a conventional DLL input jitter transfer is all pass with neg-
ligible peaking (less than 1 dB) caused by the signal latency
added by the delay line:

. 1 —ATs
(bout 1 + 8 (WDLL) €
o)

(1+)

For digital implementation, wprr., the pole in the DLL, can be
approximated as wpr1, &% KppKpKppc. For the given loop
filter parameters and a 1.6 GHz reference clock frequency, the
pole is around 4 MHz. Replacing this delay line with an ILO
adds an additional pole to this transfer function:

1+5(1 + 1)

(I)out
(I)in

&WDLL “ILO

T o) (1) ©

HOSSAIN et al.: A FAST-LOCK, JITTER FILTERING ALL-DIGITAL DLL BASED BURST-MODE MEMORY INTERFACE

o oo oy

Ref. Clk

'PD

{o

KDPC

Replica Buffer

Clock distribution

LSB's @

Ref. Clk

Ref. Clk

Digital To Phase
Converter

Replica Buffer

Clock distribution

(b)

1055

(DOlT

Fig. 10. DLL and its equivalent linearized phase model with noise sources: (a) conventional DLL; (b) proposed DLL.

TABLE II
COMPARISON OF DIFFERENT NOISE TRANSFER FUNCTIONS
conventional Proposed
DLL DLL
Random Noise S/wDLL s/wDLL S/(J)[La
% 1+S/(A)DLL 1+S/(1)DLL 1+S/wlLO
n
supply Noise s/wpLL Ky s/wpLL 1
Tout v 1+S/0)DLL K/A 1+S/(J)DLL 1+S/wlL0
v'l
Quantization Noise (1) —ATs (1 1)
+s{—)e 1+s|—+—
Doue WpLL WpLL ~ WiLo
b (vom) | (+a)(+an)
1+— 1+—){1+—
WpLL WpLL @DjLo
Buffer Noise S/(.()DLL S/wDLL
M 1+S/(1)DLL 1+S/(DDLL
(l)Buffer

Here, wiro is the pole of the ILO and is defined as the ratio
between injection strength K, and VCO’s injection sensitivity
A. For this particular implementation injection strength is set
by the ratio between the strength of injection and oscillation
buffer, K = Wo./Wip;. Injection sensitivity for a n-stage ring
oscillator is defined as A = n/(2wg) sin(27/n). Note that the
zero is now a function of both wpyr, and wro. Therefore to
avoid peaking, the two poles should be separated as far as pos-
sible, wir,o > wprL. Fortunately, ILOs are known to have high
tracking bandwidth, making the transfer function behave like
1st order low pass filter with dominant pole at wir,o.

Random noise is less of a concern in conventional DLLs
since there is no jitter accumulation in a delay line. Compared
to that, feedback loops using voltage controlled oscillators (for
example, PLLs) have poorer random jitter performance due to
jitter accumulation in the oscillator. Therefore, RJ performance

is evaluated by predicting and measuring phase noise perfor-
mance. As derived in Appendix I, random jitter is high pass fil-
tered by both injection locked loop and delay locked loop:

Dout _ (s/wDLL) (s/wILo)
D, 1 —l—s/wDLL 1+ S/wlLo

At low frequencies, w < wppr random noise is high pass fil-
tered by both DLL and ILO. At mid frequencies, wprp, < w <
wiLo random noise is only filtered by the ILO, and only at very
high frequencies w > wipo does the VCO’s phase noise ap-
pear at the output. Similar to [8], DLL phase noise can be ex-
pressed by shaping VCO phase noise (Syco) and input phase
noise (Sgrgr) profiles with above transfer functions:

)

2 2
(I)out

Sout = ‘

in

(I)out

(DTL

®

Svco

SrREF +

1056

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

1.2

100 ' —a— 400 MHz VCO AW @ Transientsimulation . A
- I —B 1.6 GHzVCO | - Th : Poor i
_— —A— 400 MHz output > 10 E eo“: """ A Conventional DLL
:E —— 1.6 GHzoutput E ; i
> -110+ —@— 400 MHz output {theory) & 0.8 |
[~ @ 1.6 GHzoutput (theory) :
z —— Reference g 06 -
_2 120+ 1 g & RPN
[=] c :
E _1 30 = ‘% 0.4 """
(7] > H
© o
-& g. 0.2} ...
-140 | @ A v ; a
= L " L S 0 = R - I , | : z
10 10 10 10 10 10 10
Frequency (Hz) Frequency (MHz)
(a) (b)

Fig. 11. DLL noise performance. (a) Measured and predicted phase noise from the expression given in (8). (b) Simulated and predicted supply sensitivity from

(9), (10), and (11).

Since ILO tracking bandwidth exceeds 80 MHz, the VCO adds
very little phase noise to the reference signal (Fig. 11). Measured
results also demonstrate good agreement between measured and
predicted phase noise from DLL phase noise expression.

Supply noise induced jitter is a major source of timing noise
in high speed interfaces. Similar to random noise, supply noise
also does not accumulate in a DLL. Therefore, it is high pass
filtered without peaking:

(&) - K, (—S/“’DLL) ©)
Un DLL 1+ S/WDLL

Where K, is the raw sensitivity of the delay line; for this de-
sign, it is 1.1 ps/mV. However, within the DLL bandwidth,
the loop compensates supply induced jitter by adjusting VCDL
delay; therefore, the sensitivity is better within the DLL loop

bandwidth. On the other hand a standalone ILO demonstrates
low-pass supply noise transfer:
((I)out) K € 1

Un, 1ILO K/A 1+ S/WILO
In an ILO supply noise pulls the VCO similar to the injection
pulling mechanism. However, the reference injection path is sig-
nificantly stronger and opposes the supply pulling, thus reducing
its effect by the ratio K, /(K/A) resulting in a lower supply
sensitivity of 0.55 ps/mV. At higher frequencies, w > wiro,
the ILO is less sensitive to both reference injection and supply
pulling. When compared to a conventional DLL’s supply sensi-
tivity, the ILO’s low frequency sensitivity is poor. However, at
mid and high frequencies ILOs achieve better supply sensitivity
compared to a DLL. Fortunately, in the proposed DLL we see
the benefit of both solutions. Supply sensitivity of the proposed
DLL can be written as:

(10)

(I)out _ K.L (S/WDLL) (1 >
Un, - K/A 1—|—s/wDLL 1-|—8/w1Lo

The above expressions are in good agreement with the tran-
sient simulation results shown in Fig. 11. At low frequencies,
the feedback loop corrects the supply induced jitter whereas at
higher frequencies outside the ILO’s tracking bandwidth it is

(an

insensitive to supply pulling. In the mid frequency range, the
ILO improves the DLL’s sensitivity by a factor of 2x. Com-
pared to other VCO based closed loop solutions such as PLLs,
the proposed solution provides significantly better supply rejec-
tion. This is mainly because noise accumulation is limited to
one cycle only since there is a correction pulse injected at every
cycle.

Similarly quantization noise transfer function can be approx-
imated as:

(I)out —~ 1
oy
@ (1 + WILO

This provides st order filtering of the quantization noise.
During steady state the digital loop filter output dithers be-
tween 2 to 3 phase codes causing the recovered clock to suffer
additional ‘bang-bang’ jitter. Typically, bang-bang jitter takes
a significant part of the timing budget, and its main compo-
nents are phase step size, DNL and loop latency. Note that
‘bang-bang’ jitter is periodic and its frequency is the same as,
or a sub-harmonic of], the digital loop filter’s clock frequency. A
conventional DLL with all-pass jitter transfer does not reduce
this noise. But in the proposed DLL it is possible to filter out
part of the periodic noise by appropriately selecting wir,¢y. The
digital loop filter’s clock frequency scales with technology,
therefore, shifting the periodic jitter to higher frequencies and
making the ILO’s quantization noise filtering more effective.
The clock buffer jitter for both conventional and proposed
solutions remain the same; in both cases they are shaped with
Ist order high pass filter with cutoff frequency set by the DLL

bandwidth:
Pout — 'w‘rfm,
(I)I')uffer 1+ ’-«JDSLL

V. IMPLEMENTATION AND MEASURED RESULTS

(12)
)

(13)

The complete DLL implementation is shown in Fig. 12. The
fully digital implementation results in a compact implementa-
tion and also enables physical design flexibility. Switching from

HOSSAIN et al.: A FAST-LOCK, JITTER FILTERING ALL-DIGITAL DLL BASED BURST-MODE MEMORY INTERFACE

Ref. Clk| Coarse Fine N
TDC TDC 6 bit Synth. Digita
T T [/
4 bit 2bit ||
6 bit Ref. Clk
— Counter
Mode Select
Mode Select

1057

145 um

4-.

Replica Buffer

Clock distribution

(a)

(b)

Fig. 12. DLL implementation. (a) Top level block diagram. (b) Layout in 40 nm CMOS.

Controller

Memory

EQ

| S |

Data y

—{m>— a0

Distribution

Transmitter
Receiver

DLL

DCD

s

Trigger

—Dre—

Power Manager
& CA decoder

Fig. 13. Complete link implementation using the DLL in 40 nm CMOS.

fast lock to continuous tracking is pre-programmed by a counter
preset to specify the number of reference cycles the DLL will
spend in fast lock mode before switching. Since the TDC takes
only 2 clock cycles to generate the code and 1 clock cycle to
hold it, the default counter setting is 3 cycles. DLL bandwidth
and averaging are controlled by gain factor ‘Kppc’, which is
set by adjusting the accumulator size. Jitter filtering bandwidth
is set by programming injection strength. This allows the DLL to
optimize link performance for different input jitter. To evaluate
the system level performance, a complete link using this DLL
is built in 40 nm CMOS (Fig. 13). Although a typical memory
interface width is 8x or 16 x, for simplicity this prototype im-
plements only two lanes. However, a 1 mm long clock distri-
bution network is implemented to represent a typical DRAM
clock distribution load. The fast locking transient is shown in
Fig. 14. Reference clock and DLL output clocks are initially
180° out of phase. Once the DLL is activated with the falling
edge trigger it takes 12.58 ns for the output clock to lock to
the input reference. The experiment is repeated for different

initial phase error and in all cases phase error reduces to 1/64
clock cycle within 13 ns (Fig. 14(b)). The link wakeup transient
is shown in Fig. 15. In addition to phase lock time, fast bias
turn-on takes an additional 2 ns for bias voltages to settle before
link operation is initiated. The link readiness after fast locking
is evaluated by transmitting and recovering a 128 bit pattern
with sufficient timing margin (Fig. 15(b)). Continuous tracking
mode DLL output clock (DQS) and data (DQ) are shown in
Fig. 16. Jitter performance of the ADDLL (31 ps @ 3.2 Gb/s) is
comparable to analog implementations. Low-pass jitter transfer
characteristics are demonstrated in Fig. 17, with specific jitter
transfer for modulation frequency of 400 MHz shown in Fig. 17.
Duty cycle improvement is demonstrated in Fig. 18 where the
ILO was able to correct £10% duty cycle error. To evaluate the
benefit of active tracking, we evaluated timing margin for three
cases: First, the DLL was turned ‘ON’ to find the correct skew
setting and then the DLL phase code is ‘frozen’ at that value.
No supply noise is added and in addition most of the unused
circuits are disabled to minimize supply noise. Although this is

1058

Replica delay
ILO freq. lock

Coarse & fine
|TDC code gen | To Phase | Dist. |

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

Digital Clock

l

TBuffer

2T ger l !

TREF TBuffer

. I 1
T.rlgger 1 ! |2
(falling edge 12.58:ns !
AN AN T armrt SN A AN A=A MNW* s
NN i
Reference ! H A i ||[| / ') .
Clock U \ L [
LJ?’:' L ERVRIEY RISV
Output G s
clock ' AR VALY 7
o) —~
£738 04 Initial Error
? 5 —-0.12U1
e2 02 —-0.21UI
oS I II —-0.37UI
36_3 0 131 8 ‘-===I== =i--= §8888 —-0.52U1
N2 I —-0.65UI
@ + -0.2 g Residual timing
- Error &= 1/60 Ul
=N .04 i
0 ©
2E 06
.E 2 1 1 1
== -2 0 2 4 6 8 10
1 Time (ns)
- ‘_ Y
Initial offset\ | «gN* Lock acquisition DLL Locked
Fig. 14. DLL locking transient with initial error. Timing error vs.time for different initial error.
TABLE 1II
COMPARISON OF DIFFERENT FAST LOCK TECHNIQUES
Reference J. Kim Dehng Liang O’Mahony M. Kim This Work
JSSC’00 | JSSC’01 | TCAS’08 JSSC’10 cicc’10
Architecture TDC + SAR Binary Tracking Two step Two step
Feedback search ADC + SMD TDC
(Analog) Feedback
Lock time 12 cycle 14 cycle | 16 cycle | >16 Cycle 3to10 3 cycle
Cycle

rather unrealistic case, it allows us to quantify the effect of the
supply noise or DLL self-generated noise. In the second case
+10% triangular supply noise was applied without enabling the
DLL. This shifts the eye causing the timing margin to degrade
as shown in Fig. 19. In the third case, when the DLL is enabled,
the shift in the data eye is corrected as the DLL cancels out
skew caused by supply noise. Although the unfiltered part of
the PSIJ and self-generated noise of the DLL reduces timing
margin compared to the noiseless case, there is significant im-
provement over an open loop solution.

Previous fast-lock solutions include different digital algo-
rithms such as successive approximation and binary search.
Although these solutions can significantly improve lock time,

they still take up to 10 reference cycles (Table III). Since these
designs were not targeting DRAM clock skew compensation,
clock buffer delay is not included in the reported lock time.
Therefore, in a direct comparison ignoring clock buffer latency,
the proposed two-step TDC based proposed solution guarantees
locking within 3 reference clock cycles while consuming low
power and area. The proposed DLL solution is also compared
with other existing DLLs in Table IV. Existing DLL solutions
are feedback (both analog and digital) based to achieve good
resolution consuming low power. However, such loops take
a very long time (5004 cycles) to lock requiring the DLL
to remain ‘ON’ all the time (including during idle modes).
TDC based solutions can improve lock time significantly, but

HOSSAIN et al.: A FAST-LOCK, JITTER FILTERING ALL-DIGITAL DLL BASED BURST-MODE MEMORY INTERFACE

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT DLL

v

i

>

[H]| 5.00 05/ j_] Al 43.0030 ns

Scales |

440 my

KIGE

L et ol Markers ||

X Y n
A—(2) = 14,90873 ns Off screen
B---(2) = 1,02094042 ps Off screen
A= 1,00603169 s -----eeme-een-
1/8X = 994,004500 kHz
10°
m %
Ll 2
@ 10 2
§) 0.6 Ul f
= 10"
= !
2
a 10°
4
30 40 50 60 70 80 90 100

Rx Phase Code

Fig. 15. Link wakeup transient with link burst mode BER on a 128 bit pattern.

their power consumption is prohibitive. This proposed hybrid
solution combines the benefits of both feedback and TDC
approaches achieving small area, low power, fast-lock and
excellent jitter performance in a single design.

VI. CONCLUSION

Several power saving benefits of LPDDR mode can be
achieved in regular DDR by simply changing the regular DLL

K. Lee et al M. Kim H. Lee et al | This Work
JSSC’07 cicc’10 JSSC’12
DLL Feedback SMD Feedback Hybrid
Architecture (Analog) (digital) (digital) (digital)
Data /Clock Rate 3.2Gb/s | 100 MHz to 1 GHz 800Mb/s
1 GHz To 3.2Gb/s
Lock time (Cycle) 1500 3 512 3
Link Wakeup time 12 ns
Idle Power | = ==---- 0 6.1 pJ/Hz 0
Active Power 80 pJ/Hz 64 pJ/Hz | 6.1 pJ/Hz 3.75 pJ/Hz
(DL+Dist.) | (DLL Only) | (DLL only) | (DLL only)
Area 0.3 mm? 0.21 mm? 0.10 mm? 0.05 mm?
Clock Jitter 31 ps 14 ps (w/o 75 ps 31.6 ps
Tx Data Jitter buffer) 44.4 ps
TDC Resolution 12 ps 4.88 ps
Technology 90 nm 0.18 um 4x CMOS 40 nm
(DRAM) (SOC) (DRAM) (SOC)
burst length 900 Mb/s

woxmn wa| | i pe Cowol Sep Mesre Cabeae (Nites bep

oo wn| |

3.2 Gb/s

i fle ool Setp Measre Calbrate Ltiltes Hebp sown 218 | %P Coool Sep Messre Calbeate Uies e

2
Sy, e,
g 3
LX)

. e
]

a5t
diier BE B

o | Gromes | Q389°% | UG SR | ST | (TR s | e | D35 | U | BB TS | ST

Fig. 16. Continuous mode performance. DQS (left side) and DQ (right side) at
900 Mb/s and 3.2 Gb/s.

to fast lock DLL. But improving lock time without significant
power penalty requires a hybird approach where the DLL
wakes up in fast lock mode and once the lock is achieved, the
DLL switches over to lower power mode. Although the fast
lock mode consumes more power, it is only ‘ON’ for a very
short duration. Therefore, this architecture can achieve both fast
locking and continuous tracking consuming low power. Two
step TDC can achieve both fast lock and good resolution within
affordable power budget. Furthermore, it is useful to be able
filter out high frequency reference clock jitter including DCD.
This jitter filtering can be easily added to the conventional DLL
by simply using ILO as phase shifter. Such techniques can
enable high-bandwidth DDR solutions to achieve LPDDR like
power savings.

1060

1
0 \h [|
) \
- -1
QO
g3 EaNY
=8,
-
S 4l
o -
= 5
6 i i
0 100 200 300 400 500 600
Jitter Frequency (MHz)
i File Control Setp Measwe Calbrate Utities Help 28Dec 2012 0105 ;]

_Bﬂﬂmtm.
7|3

Output clock J
DLL + Buffer #
g

p)
;.X.

P

\ / A\75 ps (p
= o B \x AT .. \f‘
I \ I \20 Ps (p-p)

=
30.8 mV/dv 705mV/dv | Tme2000ps/dv § Trg: Patem | [atem
Yrotpresnt | Ynotpresent | § 5550y !nawmv oaaydoione | Sbto || i[5

Reference
Input clock

Fig. 17. DLL jitter transfer with DLL input and output clock phase modulated
at 400 MHz.

APPENDIX [

1. Input Jitter Transfer

ILO’s output phase can be written as:
K K
b, =b,— = (D, — b,)—
Y As () As

Here, the injection strength K is defined as:

Iinj WOSC
K = =
Inse Wiy

and vco injection sensitivity A is defined as:

Substituting these variables, ILO’s jitter transfer is derived as a
first order low-pass filter:
D, K/As 1

b, 14+ K/As 14 s/wio

(14)

Output phase is essentially the ILO’s output with added phase
shift resulted from the phase error shaped by the DLL loop gain
KppL(s), where L(s) is the continuous time equivalent of the
discrete time digital loop filter L(z~1).

(Eout = (I)errKBBL(S) —+ (I)LL
Doue(1 + KppL(s)) = ®iuKppL(s) + @,

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

For intuitive understanding, it is useful to rewrite this expression
in terms of DLL pole wpr1,. For digital implementation the pole
can be approximated as wprr, & KppKpKppc.

WDLL
8

KBBL(S) =

Using this notation, we can re-write the output phase as a func-
tion of ILO and DLL poles.

(I)out = < wDLL/S + ! > (I)iu
1+wprr/s (1 +wprn/s)(1 4+ s/wo)
1 1 1

Dot L+s (UJDLL + wILo)

(I)in B

(1+22) (14 2%5)

1I. Random Noise Transfer

Random noise of the VCO appears at the output after being
shaped by the ILO’s inherent feedback structure:
o, =&,

K K
(I)rr = _(D’IJ (Dn
As + ¢, ; +

As

After re-arranging, random noise transfer turns out to be high
pass filtered up to ILO’s tracking bandwidth:
8/ WILO

b, 1
D;, 1+ K/AS 1+ S/wILQ (15)

Similar to the previous case, output phase can be expressed as
combination of ILO’s output phase with DLL’s additional phase
adjustment
Coue = —PouKppL(s) + 0,
(pout _ 1 _ S/WDLL
®, l+wprr/s 1+s/wprL

(16)

From (15) and (16), random noise transfer function can be
written as:

Pout _ ($/wpLL) (s /WiLo)
b, 1+ .S/UJDLL 1+ s/wILQ

III. Supply Noise Transfer

Similar to PLL, ILO frequency is also pulled by the supply
noise by the factor K, Hz/V. Therefore, the resultant phase shift
K, /s is shaped by the loop.

K K, K K,
(I).’l‘ = (I)v —_— n — = _(I)LE _ n —_
' Y As v s As Tt s

Rearranging this expression, we find ILO’s supply noise transfer
function

b, K./s K, 1 (17
v, 1+KJ/As K/A1+s/wio
Output phase is then written as
(I)out — *cboutKBBL(S) + CI)I
Doy 1 sfw
v _ _8/wpLL (18)
D, 1+wDLL/s 1+3/UJDLL

HOSSAIN et al.: A FAST-LOCK, JITTER FILTERING ALL-DIGITAL DLL BASED BURST-MODE MEMORY INTERFACE

Input duty cycle = 37%

1061

Input duty cycle = 60%

5 Fle Control Setp Measwre Calbrate Uliities Help 11Dec 2012 2334 = 5 fle Control Setp Measure Calbrale Utiities Hep 110ec 2012 2336 =
~ Osciloscope Mode
FRl 2 =\
2l — / on / ¢
y,
Output / =
CIock i
Reference \ / /
CIock
— v
wo (| [osrcroy B W9, B gum mm |ty exrecy B3 %‘ Er ;b !H'f B‘H'm,)
2 of 2)
4 ttprosent I!M\Pmmt !?‘;?ﬁ",,‘f(,"" !g“m’(,"’ E""”“g}gs%’g Dt ;WI Ytiotpresent | 2) mmw]!?."’nmlé“' !?i.‘m" D_aa“’”"?f&%'m%":'&" |2[‘3&'°'“|

Fig. 18. Input and output duty cycle of the proposed DLL.

10° | Link BER
10” : ‘
: Timing
E Margin
@ : /0 DLL J
o H With Noise,
Receiver : With DLL
Sampling : With Noise
10-6 Phase —. W/0 DLL e
No Noise
-0.4 -0.2 0 0.2 0.4
Time (Ul)

Fig. 19. Link timing margin in the presence of supply noise with and without
DLL.

Combining (17) and (18) supply noise transfer function can be
written as:

(I)out

Up

S/WDLL

- If/TA (1 + s/wnm) <1 + Sjwuo) '

REFERENCES

[1] R. Can et al., “Save Power and Improve Efficiency in Virtualized En-
vironment of Data Center by Right Choice of Memory,” White paper,
Samsung Semiconductor & Microsoft, May 2011.

[2] K. Donnelly et al., “A 660 MB/s interface megacell portable circuit in
0.3 m—0.7 m CMOS ASIC,” IEEE J. Solid-State Circuits, vol. 31, no.
12, pp. 1995-2003, Dec. 1996.

[3] B. Garlepp et al., “A portable digital DLL for high-speed CMOS inter-
face circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 632—644,
May 1999.

[4] K. Sohn ef al., “A 1.2 V 30 nm 3.2 Gb/s/pin 4 Gb DDR4 SDRAM
with dual-error detection and PVT-tolerant data-fetch scheme,” IEEE
J. Solid-State Circuits, vol. 48, no. 1, pp. 168-177, Jan. 2013.

[5] T. Saeki et al., “A 2.5 ns clock access, 250 MHz 256-Mb SDRAM
with synchronous mirror delay,” IEEE J. Solid-State Circuits, vol. 31,
no. 11, pp. 1656-1668, Nov. 1996.

[6] M. Kim and L. Kim, “A 100 MHz-to-1 GHz open-loop ADDLL with
fast lock-time for mobile applications,” in Proc. IEEE Custom Inte-
grated Circuits Conf., CICC 2010, San Jose, CA, USA, Sep. 2010, pp.
1-4.

[7] J. Kim et al., “A low-jitter mixed-mode DLL for high-speed DRAM
applications,” [EEE J. Solid-State Circuits, vol. 35, no. 10, pp.
14301436, Oct. 2000.

[8] M. Hossain et al., “A 400 MHz-1.6 GHz fast lock, jitter filtering
ADDLL based burst mode memory interface,” in Symp. VLSI Circuits
Dig., Kyoto, Japan, Jun. 2013.

[9] J. Zerbe et al., “A 5.6 Gb/s 2.4 mW/Gb/s bidirectional link with 8 ns
power-on,” in Symp. VLSI Circuits Dig., Kyoto, Japan, Jun. 2011, pp.
82-83.

[10] M. Hossain and A. Chan Carusone, “CMOS oscillators for clock dis-
tribution and injection-locked deskew,” IEEE J. Solid-State Circuits,
vol. 44, no. 8, pp. 2138-2153, Aug. 2009.

[11] F. O’Mahony, B. Casper, M. Mansuri, and M. Hossain, “A pro-
grammable phase rotator based on time-modulated injection-locking,”
in Symp. VLSI Circuits Dig., Honolulu, HI, USA, Jun. 2010.

[12] J. Sonntag and J. Stonick, “A digital clock and data recovery archi-
tecture for multi-gigabit/s binary links,” in Proc. IEEE Custom Inte-
grated Circuits Conf., CICC 2005, San Jose, CA, USA, Sep. 2005, pp.
532-539.

Masum Hossain received the Ph.D. degree at the
University of Toronto, Toronto, ON, Canada, in
2010. Prior to that, he received the B.Sc. degree
from the Bangladesh University of Engineering
and Technology, India, and the M.Sc. degree from
Queen’s University, Kingston, ON, Canada, in 2002
and 2005, respectively.

He joined the faculty of the University of Alberta
Department of Electrical and Computer Engineering
in winter 2013. Before returning to academia, he has
spent several years in industrial research. From 2008
to 2010, he was with Gennum Corp. in the Analog and Mixed Signal division
where he focused on the development of world’s highest capacity and most
power-efficient cross point router solution. Following that, he joined Rambus
Lab as a senior member of technical stuff, and focused on advanced equaliza-
tion and clock recovery techniques for high-speed interfaces.

Dr. Hossain won the best student paper award at the 2008 IEEE Custom Inte-
grated Circuits (CICC) Conference. He also won Analog Device’s outstanding
student designer award in 2010.

Farrukh Aquil received the B.S.E.E. degree from
Mehran University of Engineering and Technology,
Jamshoro, Pakistan, in 1992 and the M.S.E.E. degree
from Concordia University, Montreal, Canada, in
2001.

From 2001 to 2008, he was with Infineon Tech-
nologies/Qimonda, where he worked on high-speed
DRAM development. Between 2009 and 2010, he
was with IBM, where he was involved in non-volatile
memory research and development. From 2010 to
2012, he was with Rambus, Inc., Sunnyvale, CA,
USA, as a Principal Design Engineer, where he was involved in low power
mobile DRAM design and worked on high-speed CMOS 1/O and DLL circuits.

1062

Since September 2012, he has been with Qualcomm, San Diego, CA, USA, as
a designer and architect of high-speed DDR PHY design.

Pak Shing Chau (S’89-M’91) was born in Hong
Kong in 1966. He received the B.S. degree in
computer system engineering from the University
of Massachusetts, Amherst, MA, USA, in 1989, and
the M.S. degree in electrical engineering from the
University of California, Davis, CA, USA, in 1991.
From 1991 to 1994, he was at National Semi-
conductor and Chrontel Inc., where he worked on
analog circuit designs. In 1994, he joined Rambus
Inc., Mountain View, CA, USA, where he designed
high-speed clock recovery and I/O circuits for
synchronous chip-to-chip communication technologies, such as RDRAM and
QRSL. In 2001, he joined Aeluros Inc., Mountain View, CA, USA, where he
worked on the design of first generation 10 Gbps CMOS multi-protocol trans-
ceiver products and provided field support of the devices. In 2006, he returned
to Rambus Inc., Los Altos, CA, USA, where he worked on the XDR DRAM
interface design and is engaged in high-speed/low-power circuit design.

Brian Tsang was a principal engineer in the Systems
Engineering Group at Rambus, where he divided
his time between developing infrastructure and
researching next-generation system architecture. He
has ten years of experience in board design, package
design, and software development, and is currently
working at SiTime bringing MEMs oscillators to the
market.

Phuong Le, photograph and biography not available at time of publication.

Jason Wei received the B.S. degree in electrical
engineering from National Cheng Kung University,
Taiwan, and the M.S. degree in electrical engineering
from San Jose State University, San Jose, CA, USA.

He is currently a Senior Principal Engineer at
Rambus Inc. developing technology for high-speed
and low-power memory interface. Since joining
Rambus in 1994, he has worked on high speed /O,
CDR, PLL and equalization circuits for a backplane
SerDes, PCIE and chip-to-chip memory interface
bus.

Teva Stone received the M.S. and B.S. in electrical
engineering from North Carolina State University,
Raleigh, NC, USA, in 1992 and 1990, respectively.

She was a design engineer at Rambus Inc, Chapel
Hill, NC, USA, from 2003 to 2012 and has 20 years’
experience which includes design of high-speed se-
rial interface clocking for companies such as Velio
Communications and National Semiconductor. She
now works as an independent contractor.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

Barry Daly (M’98) received the B.Eng. degree in
electronic engineering from the Cork Institute of
Technology, Cork, Ireland, in 1996.

He is a senior design engineer with Rambus Inc.,
Chapel Hill, NC, USA, working on high speed serial
link and memory bus design. Since joining Rambus
in 2002, he has worked on mixed-signal circuit de-
sign for high speed chip-to-chip communications and
related clocking circuits.

Chanh Tran received the B.S.E.E. degree from Uni-
versity of California, Berkeley, CA, USA, in 1989.
He is currently a Senior Engineering Manager at
Rambus Inc. His group is responsible for high speed
memory interface and high speed serial/parallel
link development and production. Prior to Rambus,
he worked at National Semiconductor as a design
engineer in Data Acquisition System group.

John C. Eble (S°93-M’99) was born in Metairie,
LA, USA, in 1971. He received the B.Cmp.E.,
M.S.E.E, and Ph.D. degrees in electrical engineering
from Georgia Institute of Technology, Atlanta, GA,
USA, in 1993, 1994, and 1998, respectively.

From 1998 to 2001, he worked on the EV7 high-
speed /O circuits in the Alpha Microprocessor De-
velopment Group, Compaq Computer Corporation,
Shrewsbury, MA, USA. From 2001 to 2003, he was
with Velio Communications as a circuit designer. In
2003 he joined Rambus Inc. where he has since spe-
cialized in the design of high-speed SERDES cells and next-generation memory
signaling and clocking architectures. He has authored or co-authored over 30
technical publications and more than five patents and has contributed a book
chapter on Off-chip Signaling. At Georgia Tech, he developed the original ver-
sion of the Generic System Simulator (GENESYS) and received the Best Paper
Award at the 1997 International ASIC Conference. He is currently the Director
of US Design where his teams are focused on advanced development of high-
performance and low-power memory and serial link interface technologies.

Kurt Knorpp, photograph and biography not available at time of publication.

Jared L. Zerbe was born in New York, NY, USA,
in 1965. He received the B.S. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, in 1987.

In 1987 he joined VLSI Technology, Inc. where
he worked on custom and semi-custom ASICs and
in 1989, he joined MIPS Computer Systems, where
he designed high-performance CPU floating-point
blocks. In 1992, he joined Rambus, Inc., Sunnyvale,
CA, USA, where over 20 years he specialized in the
design of high-speed I/0, PLL/DLL, clock-recovery,
equalization and data-synchronization circuits, recently focusing on high-per-
formance SerDes and fast power-on burst-mode low-power interfaces. He has
taught courses at Berkeley and Stanford in high-speed 1/0 design and authored
or co-authored over 40 IEEE conference and journal papers including forums
and tutorials at ISSCC and VLSI Circuit Symposium. He has over 100 issued
US patents and served on the program committee for DesignCon and VLSI
Circuits Symposium from 2010-2013. In 2013 he joined Apple Inc.

Since 2011 Dr. Zerbe has been an associate editor for the IEEE JOURNAL OF
SOLID-STATE CIRCUITS.

