PHYS 124, LEC 01 : Particles and Waves
Instructor : Marc de Montigny
Formula Sheet : Mid-Term Examination, October 24, 2007

Name :

Student ID:

\qquad
You can add your own formulas on this side only. You will lose 5 marks (out of 20) if:

1. full solutions are included;
2. this sheet is not returned with your exam, or
3. you have written formulas on both sides. Use this side only.

$$
\begin{aligned}
& \cos \theta=\frac{x}{h} \quad \sin \theta=\frac{y}{h} \quad \tan \theta=\frac{y}{x} \quad h^{2}=x^{2}+y^{2} \\
& a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \vec{v}_{13}=\vec{v}_{12}+\vec{v}_{23} \\
& \Delta x=x_{\mathrm{f}}-x_{\mathrm{i}} \quad v_{\mathrm{av}}=\frac{\Delta x}{\Delta t} \quad v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \quad a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t} \\
& v_{x}=v_{0 x}+a_{x} t \quad v_{y}=v_{0 y}+a_{y} t \\
& x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \quad y=y_{0}+v_{0 y} t+\frac{1}{2} a_{y} t^{2} \\
& x=x_{0}+\frac{1}{2}\left(v_{0 x}+v_{x}\right) t \quad y=y_{0}+\frac{1}{2}\left(v_{0 y}+v_{y}\right) t \\
& v_{x}{ }^{2}=v_{0 x}{ }^{2}+2 a_{x}\left(x-x_{0}\right) \quad v_{y}{ }^{2}=v_{0 y}{ }^{2}+2 a_{y}\left(y-y_{0}\right) \\
& \sum \vec{F}=m \vec{a} \quad \sum F_{x}=m a_{x} \quad \sum F_{y}=m a_{y} \quad \vec{F}_{A B}=-\vec{F}_{B A} \\
& \vec{W}=m \vec{g} \quad \vec{a}_{\text {grav }}=\left(a_{x}, a_{y}\right)=(0,-g) \quad g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& F_{x}=-k x \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} N \quad f_{\mathrm{s}} \leq f_{\mathrm{s}, \max }=\mu_{\mathrm{s}} N \quad a_{\mathrm{cp}}=\frac{v^{2}}{r} \quad v=\frac{2 \pi r}{T} \\
& W=F d \cos \theta \quad K=\frac{1}{2} m v^{2} \quad W_{\text {total }}=\Delta K=K_{\mathrm{f}}-K_{\mathrm{i}} \quad P=\frac{W}{t}=F v \\
& \begin{array}{ll}
\Delta U=U_{\mathrm{f}}-U_{\mathrm{i}} \equiv-W_{\mathrm{c}} \quad U=m g y \quad U=\frac{1}{2} k x^{2} \\
E=K+U \quad E_{\mathrm{f}}=E_{\mathrm{i}}+W_{\mathrm{nc}} \quad \Delta K+\Delta U=W_{\mathrm{nc}}
\end{array}
\end{aligned}
$$

