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ABSTRACT
In a payment network, like the Lightning Network, Alice can trans-

fer a payment to Bob by splitting the payment into partial payments

and transferring these partial payments through multiple paths.

The transfer, however, delays if any of the partial payments fails

or delays. To handle this, one can add redundant payment paths.

The challenge in doing so is that Bob may now overdraw funds

from the redundant paths. To address this, Bagaria, Neu, and Tse

introduced Boomerang, a mechanism based on secret sharing and

homomorphic one-way functions, which allows Alice to revert the

transfer if Bob overdraws.

In this work, we introduce Spear, a simple method with lower

latency than Boomerang. In addition, Spear needs significantly less

computation, and half themaximum locktime of Boomerang. Unlike

Boomerang, Spear can be implemented using only a minor change

to the Lightning Network. This minor change enables both Alice

and Bob to have control over the release of partial payments. This

prevents Bob from ever overdrawing. Another interesting feature

of Spear is that it is more robust than Boomerang against malicious

intermediate nodes who do not forward payments in an attempt to

lock up funds. Finally, Spear trivially supports division of a payment

into uneven partial payments. This gives Alice maximum flexibility

in dividing her payment into partial payments.
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1 INTRODUCTION
Permissionless blockchains can provide trust in trustless environ-

ment. As a result, many applications such as financial applications

can rely on a blockchain rather than trusted third parties such as

banks. This shift in paradigm has brought a lot of interest and atten-

tion to blockchain. Blockchain applications such as Bitcoin are not,

however, quite ready for mainstream use because they have scal-

ing issues. Bitcoin, for example, can handle up to ten transactions

per second, and needs, on average, at least ten minutes to add a

transaction. Custodian payment systems such as Visa, on the other
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hand, can handle tens of thousands of transactions per second all

with a short confirmation time.

Blockchain’s moon race for a scalable solution has led to a rich

body of litrature, with solutions and proposals ranging from im-

proving the consensus algorithms, to sharding [11, 13] and side-

chains [2]. Among these solutions, “layer-two protocols” are among

the most promising ones. These protocols allow users to conduct so-

called off-chain transactions among themselves, without requiring

to add these transactions to the blockchain.

There are several off-chain protocols in the literature, including

payments [4, 8, 20, 25], state [16], and commit-chain [10, 24]. In

this work, we focus on payment channel network (PCN) [25], and, in
particular, the Lightning Network [12], which is themost prominent

PCN for Bitcoin. In the LightningNetwork, a user, say Alice, can join

the network by connecting to an existing user, say Carol, through

a so-called payment channel. Alice opens this payment channel by

essentially locking up a fund, which is controlled by both parties.

As soon as the channel is opened between Alice and Carol, the

two parties can transfer funds between themselves by simply re-

adjusting the fund allocation on the channel.

In the Lightning Network, Alice can use her channel with Carol

to make a payment to another party, say Bob, who is already con-

nected to the network. To perform this, Alice first selects a path of

payment channels 𝑃 from herself to Bob, and then transfers the pay-

ment to Bob through 𝑃 . Because of privacy concerns, the balance of

channels in the Lightning Network are considered private informa-

tion. Since Alice is not aware of balances of channels on 𝑃 (except

the first channel on 𝑃 which belongs to her), her payment may fail

because a channel on the path may not have enough balance to

forward the payment. If Alice’s payment fails, she should retry the

transfer by choosing a different path. This adds a non-negligible

delay to the payment process, and increases the payment’s time-to-

complete.

To reduce the chance of payment failure (hence, reducing the

time-to-complete), Alicemay decide to split the payment into partial

payments and transfer these partial payments through multiple

paths. On the one hand, this helps as the smaller a payment, the

more likely it is for the payment to go through. On the other hand,

the whole payment will fail if any of the partial payments fails.

Similar conditions have emerged in other systems. For example,

in storage systems, to improve performance, storage technologies

such as RAID (Redundant Arrays of Independent Disks) use data

striping, where data (e.g., a file) is distributed across several disks.

This is analogous to distributing a payment into several partial

payments. As inmulti-path paymentmethods, where a single partial

payment failure would fail the whole payment, in data storage

systems, a single disk failure would result in data loss. To address

this and improve dependability, RAIDs use redundant disks (as

the name suggests). Interestingly, although RAID was invented to



improve performance, its dependability, which is achieved through

redundancy, is the key reason behind its widespread popularity [22].

Redundancy can bring advantages to multi-path payments, too.

In [3], Bagaria, Neu, and Tse introduced Boomerang, the first multi-

path payment method with redundant payments, and showed that

it can improve throughput and time-to-completion of payments.

The main challenge in supporting redundancy in a multi-path pay-

ment method is to protect Alice from overdrawing. To address this,

Boomerang uses secret sharing to enable Alice to recover the pay-

ment when Bob overdraws. Interestingly, secret sharing is closely

related to Reed-Solomon codes [15], an important group of erasure

codes that enable data recovery in storage systems.

In this work, we take a simpler approach to add redundancy and

protect Alice against overdrawing. While Boomerang’s approach

resembles coding techniques in data storage systems and commu-

nications, our solution (Spear) resembles ARQ (Automatic Repeat

Request), a method that uses acknowledgements to achieve reliable

data transmission over an unreliable communication channel. In

ARQ, like Spear, the receiver informs the sender of the packets (the

partial payments in the case of Spear) that it has received. Note

that this method needs a duplex channel to allow the receiver to

communicate with the sender. Such duplex channel does not always

exists. For example, a data storage system is a one-way channel

that communicates data from one point in time to another point in

the future. In this case, a reverse channel does not exist, hence ARQ

is not applicable. In payment networks, however, there is often a

(out-of-band) channel between Alice and Bob through which they

can exchange information such as hash values and, in the case of

Boomerang, agree on the number of partial payments. In Spear, we

use this out-of-band channel in a way similar to ARQ to achieve a

higher performance than Boomerang.

Contributions. This paper makes the following contributions:

We evaluate and compare the success probabilities of multi-path

payment with and without redundancy, and demonstrate the su-

periority of the former. We introduce Spear, a simple multi-path

payment method with redundancy. We prove Spear’s various se-

curity guarantees, and explain how to implement Spear. Moreover,

we compare Spear with its counterpart, Boomerang, against several

measures including delay (i.e., time-to-complete), computational

complexity, ease of implementation, maximum required locktime,

resilience against intermediate node’s misbehaviour, and flexibly.

Our comparison results show that Spear improves Boomerang in

all these measures, hence is a better choice in applications where

there is an out-of-band channel between the payer and payee.

2 SYSTEM MODEL
We model the Lighting Network as a graph 𝐺 = (𝑉 , 𝐸), where 𝑉
is the set of nodes and 𝐸 is the set of channels. For any channel

(𝑢, 𝑣) ∈ 𝐸, let 𝑏 (𝑢, 𝑣) denote the balance of node 𝑢, and 𝑓 (𝑢, 𝑣,𝑚)
denote the fee that node 𝑢 charges to forward a payment of amount

𝑚 to 𝑣 on channel (𝑢, 𝑣). For each channel (𝑢, 𝑣) ∈ 𝐸, the channel
capacity is defined as 𝑐 (𝑢, 𝑣) = 𝑏 (𝑢, 𝑣) + 𝑏 (𝑣,𝑢).

Single-path payment. Let P = (𝑣1, 𝑣2, . . . 𝑣𝑙 , 𝑣𝑙+1) be a path

in 𝐺 . A single-path payment of 𝑚 from 𝑣1 to 𝑣𝑙+1 on path P is

called successful if and only if

∀1 ≤ 𝑖 ≤ 𝑙 : 𝑏 (𝑣𝑖 , 𝑣𝑖+1) ≥ 𝑚𝑖 , (1)

where𝑚𝑙 =𝑚, and𝑚𝑖 , 𝑖 < 𝑙 , can be calculated recursively as

∀1 ≤ 𝑖 < 𝑙 : 𝑚𝑖 =𝑚𝑖+1 + 𝑓 (𝑣𝑖 , 𝑣𝑖+1,𝑚𝑖+1) .
A successful transfer of payment 𝑚 over P will result in the

following changes in balances

∀1 ≤ 𝑖 ≤ 𝑙 : 𝑏 (𝑣𝑖 , 𝑣𝑖+1) ←− 𝑏 (𝑣𝑖 , 𝑣𝑖+1) −𝑚𝑖
𝑏 (𝑣𝑖+1, 𝑣𝑖 ) ←− 𝑏 (𝑣𝑖+1, 𝑣𝑖 ) +𝑚𝑖

(2)

Multi-path payment. Another option for 𝑣1 to transfer𝑚 to

𝑣𝑙+1 is to split 𝑚 into partial payments 𝑚1,𝑚2, . . . ,𝑚𝑘 , where∑𝑘
𝑖=1𝑚𝑖 = 𝑚, and transfer 𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , on a path P𝑖 . Such

multi-path payment is called successful if and only if sequentially

transferring of𝑚𝑖 on P𝑖 result in 𝑘 successful transfers according

to (1). Note that channel balances are updated according to (2) after

a successful transfer of a partial payment and prior to the transfer

of the next partial payment.

3 POWER OF REDUNDANCY
In [3], the authors experimentally showed that Boomerang, a multi-

path payment with redundancy, can lead to 40% reduction in la-

tency and 200% increase in throughput. In this section, we look at

redundancy from a slightly different angle, and show its power in

improving the success probability of payments.

We consider three payment options: 1) single-path payment; 2)

multi-path payment without redundancy; 3) multi-path payment

with redundancy. To show the power of redundancy, we compare

the probability of success of these three options using a simple

probabilistic model with the following assumptions:

(1) All channels have the same capacity 𝐶;

(2) There is no service fee;

(3) The balance of a channel is drawn uniformly at random

independent of other channels.

We remark that this model serves to build intuition rather than

to establish any fundamental impossibility results. In this model,

we show that if multi-path payment without redundancy has a

high probability of success so does single-path payment. In other

words, multi-path payment without redundancy (in a high payment

success probability regime) does not have a real advantage over

single-path payment. We then show that if redundant payments

are added, the success probability of multi-path payment can be

significantly higher than that of a single-path payment. In particular,

we show that there are scenarios in which multi-path payment with

redundancy can achieve a high success rate while neither multi-

path payment without redundancy nor single-path payment can.

To get these results, we start with the following proposition.

Proposition 3.1. Let P1,P2, . . . ,P𝑘 be 𝑘 paths from node 𝐴 to
node 𝐵. Let 𝑙𝑖 denote the length of path P𝑖 (i.e., 𝑙𝑖 is the number
of channels on P𝑖). Let 𝑃𝑘 denote the probability that a payment
of𝑚 =

∑𝑘
𝑖=1𝑚𝑖 can be transferred from 𝐴 to 𝐵 by simultaneously

transferring partial payments of𝑚𝑖 on path P𝑖 .
Then, we have

𝑃𝑘 = Π𝑘𝑖=1

(
1 − 𝑚𝑖

𝐶

)𝑙𝑖
,

if paths P𝑖 are disjoint, and

𝑃𝑘 < Π𝑘𝑖=1

(
1 − 𝑚𝑖

𝐶

)𝑙𝑖
,

2



otherwise.

Proof. Suppose paths P𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , are disjoint. Let E𝑖 be the
event that the transfer of partial payment𝑚𝑖 on P𝑖 is successful.
We have

𝑃𝑟 (E𝑖 ) =
(
1 − 𝑚𝑖

𝐶

)𝑙𝑖
,

where

(
1 − 𝑚𝑖

𝐶

)
is the probability that a channel has enough balance

to forward𝑚𝑖 . The events E𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , are independent, because

paths P𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , are disjoint. Therefore, we get

𝑃𝐾 = Π𝑘𝑖=1𝑃𝑟 (E𝑖 ) = Π𝑘𝑖=1

(
1 − 𝑚𝑖

𝐶

)𝑙𝑖
.

Now, let us consider the case where paths P𝑖 are not disjoint. Con-
sider any channel. The probability that this channel can transfer

two partial payments𝑚𝑖 and𝑚 𝑗 is(
1 −

𝑚𝑖 +𝑚 𝑗

𝐶

)
which is less than (

1 − 𝑚𝑖

𝐶

)
·
(
1 −

𝑚 𝑗

𝐶

)
.

This implies that transferring𝑚𝑖 and𝑚 𝑗 on two different channels

is more likely to succeed than transferring them on a single channel.

Consequently, the success probability of transfer of payments is

maximized when paths P𝑖 are disjoint. □

Corollary 3.1.1. Let 𝑙 denote the length of the shortest path
between𝐴 and 𝐵. Then, the probability that a payment𝑚 goes through
a shortest path is

𝑃
𝑠𝑖𝑛𝑔𝑙𝑒
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =

(
1 − 𝑚

𝐶

)𝑙
.

Lemma 3.2. Let 𝑙 denote the length of the shortest path between 𝐴
and 𝐵. Then we have

𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 < 𝑒−
𝑚𝑙
𝐶 ,

where 𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 denotes the success probability of multi-path payment.

Proof. For any real number 0 < 𝛼 < 1, and any integer 𝑛 ≥ 1,

we have

(1 − 𝛼)𝑛 < 𝑒−𝛼𝑛 .

Therefore, by Proposition 3.1, we get

𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = max

𝑘,𝑚𝑖 ,𝑙𝑖

{
Π𝑘𝑖=1

(
1 − 𝑚𝑖

𝐶

)𝑙𝑖 }
< max

𝑘,𝑚𝑖 ,𝑙𝑖

{
Π𝑘𝑖=1𝑒

−𝑚𝑖𝑙𝑖
𝐶

}
≤ max

𝑘,𝑚𝑖

{
Π𝑘𝑖=1𝑒

−𝑚𝑖𝑙

𝐶

}
= max

𝑘,𝑚𝑖

{
𝑒−
(∑𝑘

𝑖=1
𝑚𝑖 )𝑙

𝐶

}
= 𝑒−

𝑚𝑙
𝐶

□

Proposition 3.3. We have

𝑃
𝑠𝑖𝑛𝑔𝑙𝑒
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > 1 + ln

(
𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠

)

Proof. By Corollary 3.1.1, the success probability of single-path

payment is

(
1 − 𝑚

𝐶

)𝑙
. Therefore

𝑃
𝑠𝑖𝑛𝑔𝑙𝑒
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =

(
1 − 𝑚

𝐶

)𝑙
≥ 1 − 𝑚𝑙

𝐶

> 1 + ln
(
𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠

)
,

where the second inequality is by Lemma 3.2, and the first inequality

is by the fact that (1−𝛼)𝑛 ≥ 1−𝛼𝑛 for any real number 0 < 𝛼 < 1,

and any integer 𝑛 ≥ 1. □

Example 1. An important consequence of Proposition 3.3 is that

if multi-path payment has a high probability of success so does

single-path payment. For example, if 𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 99%, then by

Proposition 3.3, we get that 𝑃
𝑠𝑖𝑛𝑔𝑙𝑒
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > 98.99%. As another ex-

ample, if 𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 90%, then by Proposition 3.3, we get that

𝑃
𝑠𝑖𝑛𝑔𝑙𝑒
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > 89.46%. Note that this result holds for any values of

𝑚, 𝑙 , and 𝐶 .

Proposition 3.3 essentially shows that if single-path payment

has low probability of success, we cannot expect multi-path pay-

ment to achieve a high probability of success. By adding redundant

payments to our multi-path payment, however, we can achieve

a high probability of success even when the success probability

of single-path payment is low. Let us clarify this in the following

example.

Example 2. Suppose 𝑙 = 4,
𝑚
𝐶

= 1

3
, and there are 𝑘 = 10 disjoint

paths. Then, by Proposition 3.1, we get

𝑃
𝑠𝑖𝑛𝑔𝑙𝑒
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =

(
1 − 𝑚

𝐶

)𝑙
=

(
1 − 1

3

)
4

≈ 20%

and

𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =

(
1 − 𝑚

𝑘𝐶

)𝑘𝑙
=

(
1 − 1

10 × 3

)
10×4
≈ 26%

Now, if we use a multi-path payment method with redundant pay-

ments by transferring
𝑚
5
on every path, then the probability that at

least five of these partial payments are successfully received can be

shown to be at least 98%. This means that the probability of success

of multi-path payment with redundancy can be higher than 98%,

that is

𝑃𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > 98%,

where 𝑃𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 denotes the success probability of multi-payment

with redundancy. Note that by Lemma 3.2, the probability of success

of multi-path payment (without redundancy) for this example is at

most

𝑃𝑚𝑢𝑙𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 < 𝑒−
𝑚𝑙
𝐶 = 𝑒−

4

3 ≈ 26.36%,

even when there are infinitely many disjoint paths.

4 SPEAR
An overview. Suppose Alice wishes to send a payment to Bob

over a single path. To do so, Alice first acquires a hash digest from

Bob. Then, she selects a single path to Bob, and sends the payment

(conditioned on Bob disclosing the preimage) through the selected

path. Finally, Bob accepts the payment by releasing his preimage. In

3



this single-payment scheme, Bob’s hash digest can be used as part

of an invoice, and its preimage can be treated as a receipt/proof of

payment.

Spear can be viewed as an extension of the above single-payment

scheme. It allows Alice to select multiple paths, including some

redundant ones, to send partial payments to Bob. Spear follows

the same procedure as the single-payment scheme, except it uses

a slightly modified version of Hashed Timelock Contract (HTLC),

which is the contract that conditions the release of payment on the

disclosure of Bob’s preimage. As will be explained later, the main

purpose of using the newHTLC is to prevent Bob from overdrawing.

We refer to this new HTLC as H
2
TLC.

Figure 1 compares HTLC and H
2
TLC. As reflected in the figure,

the only difference between HTLC and H
2
TLC is that H

2
TLC uses

two hash digests instead of one. In other words, the transfer of

money in H
2
TLC is conditioned on releasing two preimages instead

of one. In Spear, one hash digest is set by Bob, while the second

one is set by Alice. This simple addition gives both parties control

over the release of the payment in the H
2
TLC contract.

As in the single-payment scheme, in Spear Alice first acquires

a hash digest from Bob. She then uses this hash digest in setting

up H
2
TLC in every selected path. The second hash digest in a

H
2
TLC is, however, set by Alice alone. Unlike Bob’s hash digest

which is the same on every path, Alice’s hash digest varies from

one path to another. When Bob receives multiple partial payments

whose sum is equal to the whole payment, he would contact Alice

over an out-of-band channel and ask her to provide him with the

corresponding preimages. Alice will check whether the sum of the

partial payments is indeed equal to the original payment, and if

so she sends the requested preimages to Bob. At this stage, Bob

can accept all the partial payments by releasing his own preimage

together with Alice’s preimages. As in the case of single-payment

scheme, Bob’s preimage can be treated as a proof of payment.

4.1 Procedure
Spear makes a payment in four steps:

• Step 1:Alice receives an invoice from Bob through an out-of-

band channel. The invoice includes the amount 𝐹 that Alice

has to pay and a hash digest ℎ𝑏
1
. We remark that, unlike

Boomerang, Alice and Bob are not required to agree on how

𝐹 will be divided into partial payments; Spear allows Alice to

divide 𝐹 to any number of partial payments. Moreover, Spear

allows Alice to set uneven partial payments, as explained in

the next step.

• Step 2: Alice selects 𝑘 payment paths to Bob. For each path,

she sets an amount of partial payment, and a unique hash

digest by applying a cryptographic hash function to a secret

unique to the path. She then initiates the transfer of the

partial payments all together. Note that, in Spear, Alice can

choose any number of paths, and any amount for the partial

payments. For example, suppose 𝐹 = $8. Alice can set 𝑘 to

12 and send $1 on each of these 12 paths. Or, she may select

seven paths (i.e. 𝑘 = 7), send $4 on the first path and $2 on

each of the remaining six paths.

1
Bob generates ℎ𝑏 by first drawing a secret (preimage), and then applying a crypto-

graphic hash function to it.

HTLC : {

Vout : [ {

v a l u e : <payment >

s c r i p tPubKey :

I F

HASH160 <Hash_Bob>

EQUALVERIFY <PK1>

ELSE

<de lay > CSV DROP <PK2>

ENDIF

CHECKSIG

} ]

}

(a) HTLC

H2TLC : {

Vout : [ {

v a l u e : <payment >

s c r i p tPubKey :

I F

HASH160 <Hash_Al ice >

EQUALVERIFY

HASH160 <Hash_Bob>

EQUALVERIFY <PK1>

ELSE

<de lay > CSV DROP <PK2>

ENDIF

CHECKSIG

} ]

}

(b) H2TLC

Figure 1: HTLC and H2TLC in Bitcoin Script Pseudocode.
PK1 and PK2 are Bob’s and Alice’s public keys, respectively.

• Step 3: Using the out of band channel, Bob informs Alice of

the partial payments he has received and request preimages

to claim the payment. In response, Alice will reveal a subset

of her preimages to Bob. To prevent Bob from overdraw-

ing, Alice makes sure that the sum of the partial payments

corresponding to the released preimages is equal to 𝐹 .

• Step 4: LetP be the set of partial payments whose preimages

have been released by Alice in Step 3. In Step 4, Bob claims

all the partial payments in P if

(1) The sum of payments in P is at least 𝐹 , and

(2) Bob has enough time to claim all the payments in P.
While claiming the partial payments, Bob cancels any re-

ceived redundant payment.

Figure 2 illustrates Steps 2 and 4 of the above procedure. Note that

these steps are basically equivalent to applying the conventional

single-payment schememultiple times, with the only exception that

each partial payment uses H
2
TLC instead of HTLC. In particular,

4



(k-1) paths

H
2

T
L

C
(h

b ,h
a

1 ,T
0 +3Δ

T
)

H2TLC(hb,ha1
,T0+2ΔT)

H
2 T

L
C

(h
b
,h

a 1
,T

0
+Δ

T
)

(Rb,Ra1
)

(R
b ,R

a
1 ) (R

b
,R

a 1
)

Out of band channel

{Ra1, Raj, Ral}

{Ra1, Raj, Ran, Ram, Ral}

Payment network

Figure 2: Making a payment in Spear.

notice that the timeouts on each path follows those of the single-

payment scheme. Also, notice that Steps 1 and 3 each require only

a single round of communication over an out-of-band channel.

4.2 Security Guarantees
As mentioned earlier, Spear prevents Bob from ever overdrawing.

The following proposition captures this essential property of Spear.

Proposition 4.1. Bob cannot overdraw if Alice follows the proto-
col.

Proof. To claim a partial payment, Bob has to release two preim-

ages. Since one of the two preimages is only known by Alice and is

unique per partial payment, the only way Bob can claim a partial

payment is to knowAlice’s preimage for the partial payment. There-

fore, the maximum amount Bob can ever claim is limited to the

sum of the partial payments whose preimages have been released

by Alice in Step 3. This sum is equal to 𝐹 according to Step 3 of the

protocol. □

As mentioned earlier, Bob’s secret preimage acts as a proof of

payment, hence must remain secret until Bob receives the full

payment. Spear guarantees this as stated in the next proposition.

Proposition 4.2. If Bob follows the protocol, then Alice will know
Bob’s secret preimage only if Bob receives the full payment.

Proof. According to Step 4 of the Spear procedure, Bob does

not claim any partial payments if he is not guaranteed to receive

at least an amount of 𝐹 . In other words, Bob will release his secret

preimage only if he is guaranteed a total payment of at least 𝐹 . □

The following corollary is a direct consequence of Propositions 4.1

and 4.2.

Corollary 4.3. Alice can use Bob’s secret preimage as a proof that

she has paid Bob.

4.3 Implementation
Implementing Spear is relatively simple. In Spear, each partial pay-

ment is handled similar to the conventional single-payment scheme

with only one exception: the transfer of payment on channels must

be conditioned on the release of two preimages instead of one. We

emphasize that, in Spear, all other parameters such as timeouts

remain the same as the conventional single-payment scheme.

Consider any channel on a partial payment path. Suppose this

channel is between nodes𝐶 and 𝐷 . According to BOLT
2
[1], node𝐶

must send an update-add-htlcmessage to node 𝐷 in order to cre-

ate an HTLC. In Spear, however, node 𝐶 needs to create an H
2
TLC

instead of an HTLC. For this, 𝐶 must send an update-add-H2TLC
message to node 𝐷 . As shown in Figure 3, update-add-H2TLC is

basically an update-add-htlc message with an additional field,

which carries Alice’s hash digest. The size of an update-add-htlc
message is 1450 Bytes. Since update-add-H2TLC carries an extra

element (i.e., a hash digest of size 32 bytes) its size is 1482 bytes,

which is about 2% larger than the size of an update-add-htlc
message.

1 . type : 128 ( update_add_h
2
tlc )

2 . d a t a :

◦ [ channe l _ i d : c h anne l _ i d ]

◦ [ u64 : i d ]

◦ [ u64 : amount_msat ]

◦ [ sha256 : payment_hash ]

•[ sha256 : sender_payment_hash ]
◦ [ u32 : c l t v _ e x p i r y ]

◦ [ 1 3 6 6 ∗ by te : on i on_ rou t i ng_pa ck e t ]

Figure 3: Update-add-h2tlc message. Note that this is the
same as the update-add-htlc message except the additional
bolded line.

5 SPEAR VERSUS BOOMERANG
In [3], the authors devise Boomerang, and show that the latency of

transfers reduces and the throughput increases when redundant

payment paths are added. Our work is motivated by this positive

result and aims to improve it through the design of Spear. To eval-

uate the improvement, in the following, we compare Spear and

Boomerang against several factors, including payment latency, im-

plementation complexity, computational overhead, and required

liquidity and timeouts.

5.1 Latency
The main objective of both Spear and Boomerang is to reduce the

payment latency, that is the time needed to complete the payment

process. Therefore, it is interesting to first see how these two meth-

ods compare to each other in terms of latency.

Both Spear and Boomerang use two types of exchanges: 1) ex-

changes over the Lightning Network, and 2) exchanges over an

2
BOLT (Basis of Lightning Technology) is the standardized technical specification for

the implementation of the Lightning Network.
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out-of-band channel. The main advantage of Spear over Boomerang

with regards to latency is that it needs two exchanges of the former

type while Boomerang requires three: both Spear and Boomerang

use the first exchange to forward Alice’s partial payments to Bob,

and the second exchange for Bob to release his secret preimage. At

the end of the second exchange, the transfer of payment is com-

plete in Spear, while Boomerang requires an additional exchange so

Alice can free up liquidity. As will be explained, exchanges over the

Lightning Network are considerably slower than exchanges over

an out-of-band channel. Therefore, one can expect Boomerang to

be about 50% slower than Spear (as it requires three exchanges over

the Lightning Network as opposed to two). In the following, we

analyze this claim.

For a fair comparison, let us assume that both Spear and Boomerang

use the same set of paths and the same amount of partial payments

on these paths.

Proposition 5.1. Let 𝛿 denote the average round-trip time be-
tween two nodes that are connected with a channel, 𝛾 denote he aver-
age round-trip time between Alice and Bob, and 𝑙 denote the length
of the longest path over which a partial payment is transferred from
Alice to Bob.
Then, the average payment latency of Boomerang and Spear can be
estimated as 6𝑙 · 𝛿 + 𝛾 and 4𝑙 · 𝛿 + 2𝛾 , respectively.

Proof. To estimate the latency of the two payment protocols,

we break their process into sequential steps, and then estimate the

time they need for each step. In the first step, both processes require

a single round of communication between Alice and Bob over an

out-of-band channel. Spear requires this step so Alice can obtain

the hash digest from Bob, while Boomerang requires this step so

1) Alice can obtain the polynomial coefficients from Bob, and 2)

Alice and Bob can agree on the number of partial payments. By

definition of 𝛾 , this step requires 𝛾 seconds.

In the second step, both protocols transfer partial payments from

Alice to Bob. All these transfers occur in parallel, hence the time

needed for this step can be estimated by the time needed for the

partial payment to go through the longest path. Let 𝑙 be the length

of the longest path whose partial payment is accepted by Bob. The

partial payment on this path goes through 𝑙 channels, sequentially.

At each channel, the two “channel holders” must create new com-

mitment transactions [25]. To perform this, as illustrated in Figure 4,

first the two users agree to make a new commitment. Then each

user generates a new commitment transaction (CT). Since the com-

mitment transaction is revocable, users must sign and exchange

Revocable Delivery Transaction (RDTX). In addition, they must

cancel the previous commitment transaction by signing a Breach

Remedy Transactions (BRTX), and exchanging these transactions.

This process, as shown in Figure 5, requires two rounds of commu-

nications between the two channel holders, hence requires about 2𝛿

seconds. Since this process is repeated sequentially over 𝑙 channels,

the second step in both Spear and Boomerang require about 2𝛿 · 𝑙
seconds

3
.

3
In this step, Bob cancels the redundant partial payments at the same time that he

accepts the other partial payments. The time needed to finish this step is, therefore,

more accurately captured as 2𝛿 · max(𝑙, 𝑙 ′) , where 𝑙 ′ is the length of the longest

redundant path.

In the next step, Spear requires a single round of communication

between Alice and Bob over the out-of-band channel. In this step,

Bob informs Alice about the set of receive partial payment. In

response, Alice sends Bob the corresponding preimages. This step

therefore needs 𝛾 seconds. Note that Boomerang does not require

this step. In the next step, both Spear and Boomerang require Bob

to release his secret and claim the partial payments. Similar to

the second step, this step requires about 2𝛿 · 𝑙 seconds in both

protocols. In the final step, which is only required by Boomerang,

Alice renounces the option to react and frees up the liquidity. Similar

to the previous step, this step requires 2𝛿 · 𝑙 seconds.
Adding delays of all steps for the two protocols, we get that

Spear requires about 4𝑙 · 𝛿 + 2𝛾 seconds, and Boomerang needs

about 6𝑙 · 𝛿 + 𝛾 seconds.

□

Corollary 5.2. The payment latency of Boomerang is up to 50%

higher than that of Spear.

Proof. By Proposition 5.1, the ratio of the payment latency of

Boomerang over the payment latency of Spear can be approximated

as

6𝑙 · 𝛿 + 𝛾
4𝑙 · 𝛿 + 2𝛾 ,

which is at most equal to 1.5. □

Example 3. Suppose Alice is paying Bob for a cup of coffee she is

purchasing at Bob’s coffee shop. Assuming that 𝛾 is much smaller

than 𝛿 (e.g., Alice and Bob are connected to the same network), we

get

6𝑙 · 𝛿 + 𝛾
4𝑙 · 𝛿 + 2𝛾 ≈

6𝑙 · 𝛿
4𝑙 · 𝛿 = 1.5.

On the other hand, if the connection between Alice and Bob has a

round-trip time of 𝛿 , then, assuming 𝑙 = 4, we get

6𝑙 · 𝛿 + 𝛾
4𝑙 · 𝛿 + 2𝛾 =

6𝑙 · 𝛿 + 𝛿
4𝑙 · 𝛿 + 2𝛿 =

25𝛿

18𝛿
≈ 1.39.

5.2 Implementation
Boomerang’s implementation requires a new opcode or use of

adaptor signatures [3]. Implementing Spear, on the other hand, is

straightforward; we mainly need to replace HTLC with H
2
TLC,

which is identical to HTLC, except it conditions the payment on

release of two preimages instead of one.

An advantage of Boomerang over Spear is that it does not need

a duplex channel. This is because Bob can set the number of partial

payments on his own, and include this information in the invoice.

If Alice and Bob need to agree on the number of partial payments,

however, a duplex channel is needed.

5.3 Locktime
As shown in Figure 6, for a payment path of length 𝑙 (i.e., a path

with 𝑙 channels), Spear requires a maximum locktime of 𝑙 ·Δ, where
Δ is the time set so that a node can forcefully redeem a fund on

chain
4
. This is identical to the maximum locktime set in the con-

ventional single-path payment scheme. Boomerang, on the other

hands, requires the maximum locktime of 2 · 𝑙 · Δ [3], which is

4
Values of Δ are typically either 40 blocks or 144 blocks [17].
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Figure 4: The process for creating new commitment transac-
tions
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Figure 5: The process of creating an HTLC.
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Figure 6: Transfer of a partial payment from S to P. The
red dashed lines, and solid blue lines show locktime in
Boomerang and Spear, respectively.

twice what is needed in Spear. Therefore, in the worst case (e.g., as

a result of a griefing attack) funds can be locked for a longer period

of time in Boomerang than in Spear.

5.4 Computational overhead
The computation that Spear imposes on Bob is limited to computing

a hash function per partial payment. In Boomerang, on the other

hand, Bob has to compute a finite field exponentiation per partial

payment, with each exponential requiring at least 𝑞 field multipli-

cations, where 𝑞 is the order of the finite field in bits. Assuming

that a field multiplication is of the same order of computation as a

single hash computation, the computational overhead imposed by

Boomerang is at least a factor of 𝑓 of that of Spear
5
. For example,

assuming that Boomerang uses a finite field of order 256 bits, we

get that the computational overhead that Boomerang imposes on

Bob is at least two orders of magnitude higher than what Spear

imposes.

As for Alice, Boomerang requires at least 𝑣2 field multiplications

per partial payment, where 𝑣 is the maximum number of partial

payments that Bob can accept (Proposition 5.3). Spear, however,

requires a single hash computation per partial payment. Therefore,

Boomerang imposes more computational overhead on Alice than

Spear does. In particular, note that Boomerang’s required computa-

tion per partial payment grows quadratically with the number of

partial payments, while in Spear, the amount of computation per

partial payment is constant.

Proposition 5.3. In Boomerang, Alice requires to compute at least
𝑣2 field multiplications per partial payment.

Proof. In Boomerang, Alice has to compute

∀𝑖 ∈ {1, 2, . . . , 𝑣, . . . ,𝑤} 𝐻 (𝑃𝑖 ) = Π𝑣𝑗=0𝐻 (𝛼 𝑗 ) (
𝑖 𝑗 ) , (3)

where𝑤 is the total number of partial payments, 𝑣 is the maxi-

mum number of partial payments that Bob can accept, and 𝐻 (𝛼 𝑗 )
are digests that Bob provides Alice. By (3), Alice needs to compute

𝑤 · 𝑣 exponentiations. Note that the largest exponent in (3) is𝑤𝑣 .

Therefore, by Yao’s result [31], Alice needs to perform at least

(𝑤 · 𝑣 + 𝑜 (1)) log(𝑤𝑣)/log log(𝑤𝑣) ∼ 𝑤 · 𝑣2

field multiplications. Therefore, the minimum number of field op-

erations needed by Alice is (𝑤 · 𝑣2)/𝑤 = 𝑣2. □

5.5 Flexibility
In Boomerang, Alice and Bob must agree (out-of-band) to partition

the payment into 𝑣 partial payments. In addition, Boomerang inher-

ently requires all the partial payments to be of the same value. In

Spear, on the other hand, Alice can decide on her own how to divide

the payment into partial payments. Moreover, Spear allows Alice

to divide the payment into unequal partial payments. This provides

high flexibility to Alice to handle the payment. For instance, if Alice

has a prior knowledge that a certain path (e.g. a direct channel

to Bob) can carry a large portion of the total payment, then she

can use this path to transfer a large partial payment to Bob in a

single partial payment. Or, Alice may try to transfer larger partial

payments on shorter paths than on larger paths, since a partial

payment is more likely to go through a shorter path than a larger

one (e.g., see Corollary 3.1.1).

5
This factor can be made smaller (in the best case to

𝑓

log 𝑓
) at the expense of more

storage.
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Table 1: Comparison of AMP, Boomerang, and Spear.

Multi-path payment model AMP Boomerang Spear

Supports redundant payments? No Yes Yes

proof of payment in invoice? No Yes Yes

Requires a duplex channel? No No
6

Yes

Allows heterogeneous partial payments? Yes No Yes

Latency 4𝑙 · 𝛿 + 𝛾 6𝑙 · 𝛿 + 𝛾 4𝑙 · 𝛿 + 2𝛾

Implementation Available in LND [12] Requires a new opcode or Replace HTLC with H
2
TLC

use of adaptor signatures

Maximum Locktime 𝑙 · Δ 2𝑙 · Δ 𝑙 · Δ

Computation hash function field exponentiation hash function

5.6 Intermediate node’s misbehaviour
In the Lightning Network, an intermediate node can stall a payment

for hours by accepting an incoming payment and not forwarding

the payment to the next node. In the single-path payment scheme,

Alice has to wait for a long period of time (until this payment is

canceled) before she can make a second attempt to pay Bob. HTLC-

based multi-path payment methods are also vulnerable; if a single

partial payment is stalled by a misbehaving node, Alice has to

wait until this partial payment is canceled before she can make a

second attempt. This may not be desired, as Alice may prefer to

pay Bob as soon as possible, even if one or more partial payments

are stalled/locked for a period of time.

Multi-path paymentmethodswith redundant paths such as Spear

and Boomerang naturally mitigate this issue. It is because these

methods, by definition, support redundant paths, and as long as

Bob receives enough number of partial payments, the payment

can go through. However, there is a difference between Spear and

Boomerang when it comes to freeing up liquidity.

In Boomerang, if a misbehaving node stalls a single partial pay-

ment on path 𝑃 then Alice may not free up the liquidity on other

paths until the partial payment on 𝑃 is canceled. It is because, Al-

ice cannot distinguish between the following two scenarios: 1) an

intermediate node on path 𝑃 is stalling the partial payment; 2)

Bob is holding on to the partial payment on 𝑃 so he can claim it

later. Therefore, Alice may not renounce the reverse components of

Boomerang contracts to free up their liquidity, as there is a chance

that Bob overdraws later, at which point Alice can revert the partial

payments. In Spear, on the other hand, Bob can immediately free

up the liquidity on all the paths except 𝑃 by accepting the partial

payments, and cancelling the redundant ones. Therefore, in Spear,

the misbehaving node on path 𝑃 can only delay the process of

freeing up the liquidity of path 𝑃 but not other paths.

5.7 Fees
In both Boomerang and Spear, the sum of partial payments Bob

receives can be higher than the full payment. In this case, assuming

Bob is honest, he will only claim a subset of the received partial

payments whose sum is equal to the full payment. In Spear, Bob

can go a bit further and help Alice to reduce her fees by reporting

all the partial payments he receives. This allows Alice to choose

the subset of partial payments whose sum of fees is minimum. In

Boomerang, on the other hand, Bob does not know which subset

of partial payments to accept in order to reduce Alice’s fees. It is

because, Bob is unaware of the fees Alice is paying on each partial

payment path (unless Alice communicates this information to Bob).

6 RELATEDWORK
There are threemain classes of payment routingmethods [7]: single-

path payment [25], multi-path payment [14, 19, 27], and packet-

switch routing [23, 28, 29]. In the single-path routing, Alice sends

the whole payment through a single path. In multi-path payment,

Alice can split her payment into partial payments and transfer

them through different paths. Lastly, in the packet-switch routing,

Alice splits the payment into unit of payments and sends them

individually.

The multi-Path Payment (MPP) method [19] is the simplest type

of multi-path payment proposed for the Lightning Network. In

MPP, Alice splits the payment into partial payments and sends them

through different paths. All these partial payments are conditioned

on the disclosure of a single preimage known by Bob. When Bob

receives all the partial payments, he can accept/settle all these

payments by disclosing his preimage.

Another existing multi-path payment method for the Lightning

Network is Atomic Multi-Path Payment (AMP) proposed in [21].

In AMP, Alice uses a “base preimage” for the payment, from which

she derives payment preimages of partial payments. As in MPP,

Alice splits the payment into partial payments, and transfers these

payments through different paths. However, in AMP, Bob needs to

receive all the partial payments in order to construct the preimages

and claim the partial payments. Therefore, unlike MPP, in AMP

Bob cannot claim any partial payment before he receives all the

partial payments.

6
Boomerang needs a duplex channel if Alice and Bob should agree on the number of

partial payments.
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In both MPP and AMP, the whole payment fails/delays if any of

the partial payments fails/delays. Packet-switch routing methods

[6, 9, 18, 26, 27, 30] can alleviate this to some extent. For example,

in Ethna [5], and Interdimensional Speedy Murmurs [6] protocol

and its extension [27], in addition to Alice, intermediate nodes

are able to split a payment. Furthermore, these protocols allow

intermediate users to select the next user on the path. However,

as in MPP and AMP, the whole payment fails/delays if any single

partial payment fails/delays. In addition, packet-switch routing

methods may require a high number HTLCs. This can put pressure

on the network as each channel can support only a limited number

of (unsettled) HTLCs.

One can consider a fourth class of payment methods: multi-path

paymentswith redundancy. As far as the authors know, Boomerang [3]

is the only existing method that falls within this class. In this work,

we propose Spear, the second method within this class. As shown

in [3] and this work, these methods have a great potential in im-

proving the performance of multi-path payment.

7 CONCLUSION
In this work, we showed that a payee can significantly improve the

success probability of payments by sending redundant partial pay-

ments. We proposed Spear, a simple multi-path payment method

with redundancy, and showed how it can be implemented in the

LightningNetwork.Moreover, we compared Spearwith Boomerang,

the only existing multi-path payment with redundancy in the liter-

ature. Our comparison results show that Spear has several advan-

tages over Boomerang, including lower delay, ease of implementa-

tion, and lower computational requirement. The approach used in

Spear can be used in other payment methods, such as packet-switch

routing methods, for further performance improvement.
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