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The Lightning Network (LN) is a second layer system for solving the scalability problem of Bitcoin trans-

actions. In the current implementation of LN, channel capacity (i.e., the sum of individual balances held in

the channel) is public information, while individual balances are kept secret for privacy concerns. Attackers

may discover a particular balance of a channel by sending multiple fake payments through the channel. Such

an attack, however, can hardly threaten the security of the LN system due to its high cost and noticeable

intrusions. In this work, we present a novel non-intrusive balance tomography attack, which infers channel

balances silently by performing legal transactions between two pre-created LN nodes. To minimize the cost of

the attack, we propose an algorithm to compute the optimal payment amount for each transaction and design

a path construction method using reinforcement learning to explore the most informative path to conduct

the transactions. Finally, we propose two approaches (NIBT-RL and NIBT-RL-β) to accurately and efficiently

infer all individual balances using the results of these transactions. Experiments using simulated account bal-

ances over actual LN topology show that our method can accurately infer 90% ∼ 94% of all balances in LN

with around 12 USD.
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1 INTRODUCTION

As blockchain-based cryptocurrencies, such as Bitcoin [22] and Ethereum [39], have been widely
adopted today, the number of cryptocurrency-based transactions is increasing at a fast pace. Due
to the inherent feature of decentralization, however, blockchain-based cryptocurrencies often rely
on a global algorithm, such as the Proof-of-Work consensus algorithm [13], to confirm each trans-
action. This greatly limits the scalability of blockchain-based cryptocurrencies. For instance, the
transaction rate of Bitcoin blockchain is within tens of transactions per second, whereas other
traditional payment networks such as Visa can support peaks of up to 47,000 transactions per
second [36].

To address the scalability issue of blockchain, extensive work has been done in the past years in
several orthogonal directions [18]. Among them, payment channel network (PCN) [25, 29, 34]
is one of the most promising proposals. Users who would like to make payments over a PCN open
payment channels on PCN and put a certain amount of funds as a deposit secured by a smart
contract. Then payments are made by re-adjusting the fund allocation on the channels. These
transactions are carried out off-chain, and the PCN updates the blockchain only when needed [25].
Currently, among several fully fledged PCN systems [25, 29, 34], the Lightning Network (LN) [25]
is recognized as most prominent in the Bitcoin community.

The framework of the LN system is illustrated in Figure 1. LN users linked by payment channels
form a network in which payments can be routed between any two users. The individual funds
deposited by each user is named user balance, denoted bybi j in Figure 1(a), wherebi j is the balance
of user i and bji is the balance of user j). The sum of the bidirectional balances in each channel
is called channel capacity (denoted by ci j in Figure 1(a)). The vast majority of transactions on LN
can be made off-chain without involving the main blockchain except for some special situations,
e.g., (i) channel establishment, (ii) channel close-out, and (iii) the rare events of non-cooperative
behaviors (e.g., dispute). Thus, the payment overhead on the Bitcoin blockchain can be drastically
reduced. Users can make payments to each other, subject to the sufficient balances on the path (as
shown in Figure 1(b)). To make a tradeoff between the routing efficiency and the user privacy, LN
publishes the channel capacity (i.e., the sum of the bidirectional balances in the channel) together
with the IP address of each LN node but preserves the balance of each node on the channel. It also
applies onion-routing protocol [14] for anonymity. With onion-routing, intermediate users (e.g.,
users U2 and U3 in Figure 1(b)) do not know who pays to whom; they only know from whom the
payment is received (i.e., the immediate upstream neighbor) and to whom the payment should be
forwarded (i.e., the immediate downstream neighbor).

Although the balances of the channels are essential for finding a feasible way for remote pay-
ment [26, 30, 40], current LN implementations still preserve the information for private access
only. The main reasons are as follows: (1) From the view of users, the particular balances in their
accounts are concerned with privacy issues, and most users are not willing to reveal such sensitive
information to the public. (2) From the view of LN operators, publishing the individual balances
may cause security risks, because misbehaving users may use this information to lock down other
users’ balances to obtain a dominant position in LN [24]. Moreover, recent studies show that if the
balance information is disclosed to the public, it would be possible to use the real-time balances to
track payments from a sender to a receiver, thereby compromising anonymity and privacy [16, 35].
Weighing the benefits and the damages, LN hides the balance information as its current standard.

Nevertheless, a recent study tried to disclose the private balance information under the protec-
tion of the onion-routing policy of LN [15]. In this regard, the onion-routing policy of LN is a
double-edged sword. It protects the privacy of the payer and payee but in the meantime provides
attackers with opportunities to threaten the security of the system. As shown in Reference [15],
attackers can directly measure an unknown balance of a payment channel by executing multiple
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Fig. 1. Framework of LN system: The channel capacity ci j is defined as ci j = bi j + bji . ci j is public but the

balance of each user bi j is private. The payerU1 can send payment of amount t to the payeeU4 hop-by-hop

via the path U1 → U2 → U3 → U4 only if b12,b23,b34 are all higher than t .

Fig. 2. Direct measurement attack on channel balances [15]: M tries to disclose the balance of b12 by con-

ducting three f ake payments to normal user U2 through victim user U1.

fake payments. In the example illustrated in Figure 2, assume that the attacker M wants to dis-
cover the balance b12. It first opens a payment channel withU1 and conducts three fake payments
toU2, which carried 0.01, 0.02, 0.03 BTC, respectively. The first two payments arrive atU2, butU2

cannot deposit them due to the incorrect payment hash. Thus, U2 returns an error message to U1,
which then forwards it to M . The third payment cannot go throughU1 becauseU1’s balance, b12, is
insufficient. (i.e., b12 < 0.03 BTC). In this case,U1 returns a message indicating “InsufficientFunds”
to M . In this way, M can determine that the balance b12 is between 0.02 BTC and 0.03 BTC. Such
an attack is quite simple but effective, since it is not easy to trace back to M due to the protection
with onion-routing [15].

Although this direct attack can easily obtain particular balance information in LN, it hardly
causes a severe threat to the security of the LN system. If an attacker conducts such an attack on
multiple LN users, then the attacker may cause tangible disturbances in the network and may be
detected easily. The attacker is subject to the following problems: (1) Dishonest concerns. The
attacker needs to send a large number of fake payments to the normal users who are the next hop
of the victim users (i.e., user U2 in Figure 2). The fake payments, which can never be deposited,
occupy the computational resources as well as the opportunities of the payees for receiving nor-
mal payments. When these disturbances impact a wide range of LN users, the LN operators may
investigate the dishonest users and find out the attacker; (2) Time-consuming. To obtain one bal-
ance of a channel, the attacker needs to perform tens of iterations, on average, consuming nearly
one minute. The attacker would need months to disclose a large number of balances in LN; (3) Ex-

pensive. To measure the balances on multiple nodes, the attacker has to open multiple channels,
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Fig. 3. Infer channel balances with balance tomography: M1 and M2 collaboratively infer the balances of b12,

b23, and b34 by conducting three legal payments from M1 to M2 through victim users U1, U2, U3, and U4.

causing high fees in channel opening for the attacker [5]. In summary, the power of the attacker
is quite limited.

Is it possible to attack a large number (or even the complete set) of the private balance informa-
tion in LN simultaneously in a silent, efficient, and low-cost way? We provide a positive answer in
this article by proposing an indirect way to infer the balance information based on legal payments,
which are routed through the victim channels. More specifically, we use a pair of accounts con-
nected to LN with two payment channels and perform legitimate transactions between our two
accounts to infer balances of all the intermediate channels traversed by the transactions. The two
accounts could be created by the same attacker or by two collusive attackers. Payments are made
from one attack account to the other attack account, just like transferring money back-and-forth
between the same person’s left hand and the right hand. By doing this, all balances information
in LN can be obtained silently—without any abnormal events; efficiently—all balances are inferred
simultaneously; and economically—only need to open two channels. We name this attack balance

tomography, whose framework is shown in Figure 3.
In summary, this article makes the following contributions:

— We pioneer the use of network tomography [38] for inferring all channel balances in LN.
Through conducting legitimate payments between our two accounts, we infer the balances
using the results of these payments. If a payment is successfully fulfilled, then all balances
along the payment path are larger than the payment amount; otherwise, the balance of the
channel that failed the payment is smaller than the payment amount. Thus, balance infer-
ence incurs min-type operations and is more challenging than existing network tomography
research that studied additive metrics, such as delay [20], where the value of a path is the
total value of all the links on the path.

— We propose a path construction method (named RLPath) to explore the most informa-
tive path in LN based on reinforcement learning (RL). We first develop an algorithm
(optPayAmt ) that can efficiently compute the optimal payment amount and the maximum
дain that the payment can obtain on each end-to-end path with logarithmic complexity. We
then formulate the path construction problem for balance tomography as an RL problem and
adopt a model-free on-policy RL scheme: Sarsa (λ) [33], which takes the maximum дains of
paths as the reward function to accumulate the weights of actions in each episode.

— We design two adaptive balance tomography approaches to infer all balances accurately
and efficiently. Based on RLPath, we develop a non-intrusive balance tomography approach
(named NIBT-RL) that shrinks the possible ranges of all balances to their minimum by
conducting the optimal payments on the constructed paths. To avoid the heavy invoking
of RLPath and accelerate the running speed of NIBT-RL, we also propose a fast framework
named NIBT-RL-β that allows RLPath to output a batch of paths instead of a single optimal
path at a time and shrinks the possible ranges of all balances on the paths simultaneously
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in each updating round. In addition, both approaches can be further accelerated by the
parallel mode.

— We evaluate NIBT-RL and NIBT-RL-β with simulation over real LN topology.1 Experimental
results show that NIBT-RL-β only degrades 2% ∼ 3% of the accuracy of NIBT-RL but saves
the computing time by two orders of magnitude. Comparing our attacking method with
the existing direct attacking method in a network with 55,428 balances, our attack can
accurately infer more than 90% of all balances with the cost of about 12.26 USD in total
without generating any abnormal event, while the direct attack would cost 5,709.96 USD
and would generate nearly 780,000 fake payments.

2 CHALLENGES AND RELATED WORK

2.1 Challenges in Inferring Balances

At first glance, probing balances of a channel may seem like bandwidth inference in traditional
computer networks. The balance inference problem in LN is, however, more challenging than the
bandwidth inference problem, as explained below.

2.1.1 Cost. In the balance inference problem, one needs to open at least one payment channel
in LN, deposit enough funds in the channel, and make multiple payments. These operations impose
three kinds of cost [17]: (1) the transaction fee of opening and closing channels, (2) the routing fee
collected by intermediate LN nodes once the payments have been fulfilled, and (3) the potential

loss for locking funds in the channel. An efficient balance inference method should minimize the
overall cost. Among the above three, the first cost (about 1.53 USD2 per channel) dominates the
second cost (about 1.09×10−6 USD per-hop per-USD transfer). The third cost is difficult to evaluate,
because it totally depends on how you invest the locked funds in other places. Hence, we only
consider the first two costs in the article.

2.1.2 Constraint on the Maximum Payment. LN limits the maximum amount one can transfer
in a single payment to about 0.043 BTC and the maximum amount one can put in a channel to
about 0.167 BTC [25]. These constraints make it difficult to infer the exact balances of a channel
with large capacity.

2.1.3 Balance Dynamics. Once a payment is successfully delivered, all the balances of the chan-
nels on the payment path will decrease accordingly by the payment amount. Therefore, unre-
stricted probing payments may lead to extensive skewed channels, which may block the normal
transactions as well as the subsequent probings. In addition, the inferred results may become mean-
ingless if the inference process alters the values of balances.

2.1.4 Dishonesty Concerns. To reduce the risk of being perceived, the attacks should not cause
too much interruptions to the general functions of the LN system. Otherwise, it may cause dishon-
esty concerns from both the users and the LN operators.

2.2 Related Work

In recent years, a large number of deanonymization attacks on Bitcoin’s peer-to-peer network
have been proposed [1]. Most of them use graph analysis [12] or transaction clustering [4] to link

1Note that we did not perform any attack in the real LN network to avoid any damage to the LN community.
2In LN, the cost is calculated in the unit of Satoshis. In the article, we use the market price as of May 25, 2020, for cost

estimation, which is 1 Satoshi = 8.8982 × 10−5 USD. The first cost is estimated according to the average transaction fee

from February 25, 2020, to May 25, 2020 [5].
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users’ IP addresses with their pseudonyms in the Bitcoin network. However, there are only a few
works proposed to pry into the private balances of the users.

Herrera-Joancomartí et al. [15] first proposed to infer the balances of users by repeatedly probing
the LN channel with multiple fake payments. As the attack in Reference [15] cannot be used to infer
the channels whose capacities exceed the maximum payment constrained by LN, Dam et al. [37]
improved the attack by using an additional channel to conduct a two-way probing for the large-
capacity channels. Tikhomirov et al. [35] proposed a probing approach that sequentially probes
each channel in the target list by binary search. Rahimpour et al. [28] utilized multi-path payments
to speed up the balance discovery for single balance. Biryukov et al. [3] proposed a parallel channel
probing method that can discover the balances in multi-hop channels. As the probing results of
above approaches heavily depend on the error messages returned from the victim nodes, Kappos
et al. [16] proposed to use two malicious accounts A and D to form a routing path A → B →
C → D. Then, balance B → C can be probed by conducting fake payments through the path. This
probing method is more generic, since the probing results can be directly determined by account
D. Specifically, if the payment hash can arrive D, then we can conclude that the balance from B to
C has sufficient funds; otherwise, the balance is insufficient to route the payment.

Although the above work made various attempts to address part of the challenges, they suffer
from two pitfalls. First, all of these attacks fail to make full use of each payment. As each payment
is designed to attack a single channel, the number of required payments surges as the number of
target channels increases. Meanwhile, an extensive number of attackers’ accounts is required to
cover all the target channels, incurring expensive attacking cost. Second, all of these approaches
utilize fake payments. As LN system limits the maximum number of payments that a channel
can simultaneously hold (483 by default), the extensive number of fake payments may affect the
normal transactions that should have had the opportunity to be served by LN. Hence, the general
functions of LN would be harmed by the large number of fake payments for various reasons. For
example, the payer of a transaction may fail to send the payment to the payee because one of
the intermediate channels holds too many fake payments. Also, the intermediate nodes that have
participated in forwarding the payments may fail to collect the routing fees, as the payee cannot
redeem the fake payments. Hence, although the present LN specification does not specify any
punishment for making such fake payments, there is no reason to believe that the LN community
is not concerned when facing spikes of fake payments, especially when these payments hinder the
general functions of the system.

In this article, we aim to tackle all the challenges mentioned above by designing an efficient
balance inference approach, which has low cost, can make full use of each payment, can infer
large balances, does not change current balances and, above all, generates no fake payments (i.e.,
non-intrusive).

Remark 1. In our preliminary work [27], the proposed method NIBT can infer the balances

of channels covered by a given path set. The experiments in Reference [27] used six path sets
(generated by naïve methods) to evaluate the performance of NIBT, where these path sets can
only cover 0.6% ∼ 1.7% of all balances in the LN system. The results indicated that the accuracy
of NIBT is sensitive to the given path sets: different path sets lead to diverse accuracies of NIBT,
ranging from 50% to 93%. In this extended article, we develop a path construction method using
reinforcement learning that not only can provide high quality for balance inference but also can
cover all balances in the network. Using the new path construction method, we propose two novel
balance tomography approaches (named NIBT-RL and NIBT-RL-β , respectively) to accurately infer
all balances covered by the constructed paths. Experimental results in this article demonstrate that
the new approaches can steadily provide high accuracy (ranging from 90% to 94%) for inferring
all balances of channels in the LN system.
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3 NON-INTRUSIVE BALANCE TOMOGRAPHY USING REINFORCEMENT LEARNING

3.1 Overview

In this section, we design a novel balance inference approach, where we first open two LN accounts
(e.g.,M1 andM2, as shown in Figure 3) and infer all balances in the topology by conducting multiple
payments between the two nodes.

This is the first time that the concept of network tomography [38] is introduced to this area. In
the context of network tomography, the performance of internal links (or nodes) can be inferred by
conducting multiple packet-level probes on end-to-end paths. As the probes may cause additional
load to the network, it is necessary to optimize the scheduling of the probes to minimize the
measurement cost. Therefore, there are two key problems for network tomography: (1) How to
construct the optimal paths to send the probes? (2) How to make the inference based on the probing
results? The balance tomography in LN also faces the same two problems. In addition, to optimize
the measurement cost in LN, it needs to determine the optimal amount of payment that should
be transferred on each selected path. Therefore, for balance tomography in LN, there are three
critical problems that should be addressed: (1) How to construct the optimal paths to conduct the
payments? (2) How to determine the optimal payment amount on each path? (3) How to infer all
of the balances based on the payment results?

In the following sections, we will propose our three methodologies to solve the above problems:
(1) We first propose an optimal payment amount algorithm (denoted byoptPayAmt ) to compute the
optimal payment amount on each path. (2) We then propose a path construction method based on
reinforcement learning (denoted by RLPath) to construct the optimal paths. (3) Finally, we propose
our two balance tomography approaches (denoted by NIBT-RL and NIBT-RL-β) to infer all balances
by conducting optimal payments on the constructed paths. Both of the two approaches can be ac-
celerated with the parallel mode. Particularly, our balance tomography approaches disclose the
balances with the following steps: First, we connect our two accounts to the LN network and con-
duct RLPath algorithm to construct an optimal routing path between the two accounts. Then, we
compute the optimal payment amount byoptPayAmt algorithm and make the payment on the path.
Finally, we observe the payment result and shrink the value ranges of the balances on the path. The
above steps are repeated until all ranges of balances in LN have been reduced to their minimum.

Before introducing the methods in detail, we first explain why our methods can tackle the chal-
lenges mentioned in Section 2.1.

— Low cost: As mentioned earlier, among the three kinds of cost for performing balance infer-
ence, the fees for opening and closing channels dominate the others. Compared to the direct
probing method (shown in Figure 2) that attacks one node with one channel [15], we just
need to open two channels in total to infer all balances. Besides, the routing fees can also be
minimized by our path construction method.

— Non-interference in current balances: A successful payment changes the balances of the
channels on the payment path. To restore the balances, we require the recipient to quickly
refund the sender using the reverse path.

— Non-intrusive for other LN nodes: All payments that we use for balance inference are
legal payments without any misbehavior, and the intermediate nodes can obtain an incentive
(i.e., the transaction fees) once the payments are fulfilled. In addition, since our method does
not interfere with the current balances, it causes no disturbance on LN users’ transactions.

— Applicable for large channels: All existing approaches for balance disclosure conduct
fake payments to probe the channels[15, 21, 35]. It is impossible for these methods to probe
the channels whose balances exceed the maximum amount allowed in one payment (0.043
BTC). This is because they do not create any successful payment and thus cannot accumulate

ACM Trans. Priv. Sec., Vol. 27, No. 1, Article 12. Publication date: February 2024.
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multiple payment amounts to probe a large balance. With our approach, we can let the
recipient node hold multiple payments simultaneously and then pay back the payments to
the sender node after the information of the large balance has been probed.

3.2 Analysis and Problem Formulation

In this section, the balance tomography problem is mathematically formulated. The main related
symbols in this article are listed in Table 1.

We model LN with a directed graph G(N,E), where N is the set of LN users and E is the set of
channels between the users. For a channel eab ∈ E between user a and user b, bab represents the
balance from the user a to user b. cab = bab + bba represents the capacity of the channel. lab and
uab denote the lower and upper bounds of balance bab , respectively. We use B to denote the set of
all balances, C to denote the set of all capacities, and L and U denote the sets of lower and upper
bounds, respectively.

As shown in Figure 3, M1 and M2 are our two monitoring nodes, which connect to LN and
make payments to each other to discover channel balances. We define a path pi = {b

i
1, . . . ,b

i
ni
}

as a group of balances along the path direction from one of our accounts to the other, where bi
k

is

the kth balance on path pi . The lower bound and the upper bound of bi
k

is represented by l i
k

and

ui
k

, respectively.

Remark 2. The two nodes that our monitoring nodes connect to may not deposit any funds in the
channels. For example, in Figure 3, the balance from U1 to M1 and the balance from U4 to M2 may
both be zero in the beginning. In this case, a payment from M1 to M2 would not be possible. This is
the so-called inbound capacity problem [19], which may occur for any newly opened channel. The
problem can be easily solved with various methods. For example, our two accounts can increase
their inbound capacity by spending in LN [19]. Note that we do not need to infer the balances on
the two channels directly connected to the two monitors, e.g., the balance from M1 to nodeU1 and
the balance fromU4 to M2, as these balances are known to the monitors. Hence, pi = {e

i
1, . . . , e

i
ni
}

does not include the first and the last channels.

We use an indicative variable pi (m) to denote the result of a payment on pi with an amount m,
where pi (m) = 0 means the payment has been successfully fulfilled, and pi (m) = k (0 < k ≤ ni )

means the payment failed at the kth channel. Note that LN offers the above information to the
sender (i.e., a payment is either successful or failed at an intermediate channel).

Clearly, there is a correlation between the possible ranges of balances on the path and the pay-
ment result pi (m):

(1) pi (m) = 0 if and only if all balances on the path are no smaller than m;
(2) pi (m) = k (0 < k ≤ ni ) if and only if all balances before the kth channel are no smaller than

m and the balance of the kth channel is smaller thanm.

Therefore, we can deduce the upper bounds and lower bounds of balances on pi based
on the payment results on the path. Given a series of payment results Pi (m

i
1, . . . ,m

i
ti
) =

{pi (m
i
1),pi (m

i
2), . . . ,pi (m

i
ti
)}, the ranges [l i

k
,ui

k
] of bi

k
(1 ≤ k ≤ ni ) can be evaluated as

l ik = max
pi (m

i
j )=0 | |pi (m

i
j )>k,1≤j≤ti

mi
j (1)

ui
k = min

pi (m
i
j )=k,1≤j≤ti

mi
j . (2)

For the path set P = {p1,p2, . . . ,pn}, suppose {P1(m
1
1, . . . ,m

1
t1
), P2(m

2
1, . . . ,m

2
t2
), . . . , Pn(m

n
1 ,

. . . ,mn
tn
)} are the payment results on the paths. Using these payment results, the range [lab ,uab ]
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Table 1. Defined Symbols

Symbols Description

G(N,E) The topology of LN

N The set of LN users

E The set of payment channels

eab
The payment channel between

user a and user b

bab
The balance of channel eab from

user a to user b

cab The capacity of the channel eab

uab The upper bound of balance bab

lab The lower bound of balance bab

B The set of all balances in G(N,E)

C The set of all capacities in G(N,E)

L
The set of lower bounds of all

balances

U
The set of upper bounds of all

balances

M1, M2
The two attacker’s nodes (i.e., the

monitoring nodes)

pi
The ith end-to-end path between

M1 and M2

bi
k

The kth balance on path pi

l i
k

The lower bound of bi
k

ui
k

The upper bound of bi
k

ni The number of balances on path pi

pi (m)
The result of a payment on pi with

an amountm

Pi (m
i
1, . . . ,m

i
ti
) The set of results of payments on pi

η The predefined payment budget

Gaini (m) The gain of paymentm on path pi

Gaini
k
(m)

The gain of paymentm on balance

bi
k

H i
k
(m) The kth additive term in (14)

ûi
k

The minimum value of {ui
j },

1 ≤ j ≤ k

EIk The effective interval of H i
k
(m)

λi
j The positive interval of Gaini (m)

π̄
The average width of the balance

ranges

d̄ The average degree of LN nodes
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Fig. 4. An example of the length of balance ranges that can be cut off by a payment.

can be updated further as

lab = max
bi

k
=bab ,1≤i≤n

l ik (3)

uab = min
bi

k
=bab ,1≤i≤n

ui
k , (4)

where bi
k
= bab means payments on path pi traverse the balance bab , where bab is the kth balance

on pi . According to Equations (3) and (4), the range [lab ,uab ] of balance bab can be narrowed down
given each payment result.

Inferring all balances in a given LN topology can be formulated as

Minimize
∑

bab ∈B

(uab − lab ) (5)

s .t .
∑

1≤i≤n

��Pi

(
mi

1, . . . ,m
i
ti

) �� ≤ η (6)

lab = max
bi

k
=bab ,1≤i≤n

l ik (7)

uab = min
bi

k
=bab ,1≤i≤n

ui
k , (8)

where |Pi (m
i
1, . . . ,m

i
ti
)| denotes the number of payments on path pi . η is defined as the payment

budget that limits the total number of payments we could conduct.

Remark 3. (The budget η) As discussed in Section 2.1, the cost for opening/closing channels in
our method is fixed (i.e., fees for opening/closing two channels). Hence, we only need to control the
routing fee. Since the per-hop transfer fee is extremely low, we can treat the routing fee for each
end-to-end payment roughly the same, and as such the η value can well reflect the actual monetary
cost. Besides, when setting a suitable budget η, we should also consider another important factor—
the time used for balance inference, which is directly linked to the total number of payments.
For this reason, we use the total number of (end-to-end) payments η to control the “budget,” i.e.,
inequality (6).

According to the goal in (5), the quality of a payment can be quantified by the total length of the
ranges that the payment can cut off. For example, consider the path pi = {b

i
1,b

i
2, . . . ,b

i
ni
} shown

in Figure 4. The corresponding lower and upper bounds of these balances are {l i1, l
i
2, . . . , l

i
ni
} and

{ui
1,u

i
2, . . . ,u

i
ni
}, respectively. When the payment that carries m amount is fulfilled (as shown in
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Figure 4(a)), it can reduce the total length of balance by
∑

1≤j≤ni
max{0,m − l ij }; Otherwise, if the

payment failed at the kth balance (as shown in Figure 4(b)), then it can reduce the total length of
balance by

∑
1≤j≤k−1 max{0,m−l ij }+max{0,ui

k
−m}. We define the expected length of the balance

ranges that a payment can cut off as the gain of the payment. The gain of a paymentm on path pi

can be formulated as

Gaini (m) = Gaini
1(m) + prob

(
bi

1 ≥ m
)
Gaini

2

+ · · ·

+ prob
(
bi

1 ≥ m
)
· · ·prob

(
bi

ni−1 ≥ m
)
Gaini

ni
, (9)

where 0 ≤ prob(bi
k
≥ m) ≤ 1, 1 ≤ k ≤ ni is the probability that payment amountm can go through

bi
k

. Gaini
k

is the gain on bi
k

that can be calculated as

Gaini
k (m) =prob

(
bi

k ≥ m
) (
m − l ik

)
+ prob

(
bi

k < m
) (
ui

k −m
)
. (10)

Remark 4. When m exceeds the maximum payment amount allowed in one payment (denoted
by z), m will be split into multiple sub-payments: z, z, . . . ,m − �m

z
� · z. Then, Gaini (m) will be

calculated by summing up the gain of each sub-payments. To avoid redundancy, we only present
partial of our methods based on Equation (9) in this section under the assumption that m ≤ z,
while the evaluations in Section 4 are carried based on the full version of our methods.

Before performing any measurement, we do not have any information regarding the balances.
As such, the best one can do is to follow the “principle of insufficient reason” [10], i.e., “assign-
ing uniform prior distributions to unknown parameters.” Using this principle, we assume initially
that the balance bi

k
follows the uniform distribution on the range [l i

k
,ui

k
]. The probability density

function of the balance bi
k

is thus

f (x) =

{
1

u i
k
−l i

k

l i
k
≤ x ≤ ui

k

0 otherwise .
(11)

Therefore, the probability of prob(bi
k
≥ m) can be calculated by

prob(bi
k ≥ m) =

ui
k
−m

ui
k
− l i

k

. (12)

Gaini
k
(m) in (10) can be rewritten as

Gaini
k (m) =

ui
k
−m

ui
k
− l i

k

(
m − l ik

)
+

m − l i
k

ui
k
− l i

k

(
ui

k −m
)

(13)

=
ui

k
−m

ui
k
− l i

k

· 2
(
m − l ik

)
.

Then, Gaini (m) in Equation (9) can be rewritten as

Gaini (m) =
ni∑

k=1

2
(
m − l ik

)
·

k∏
j=1

ui
j −m

ui
j − l

i
j

. (14)

Remark 5. In Equations (12)∼(14), ∀k : 1 ≤ k ≤ ni , ifm < l i
k

,m−l i
k
= 0 and

u i
k
−m

u i
k
−l i

k

= 1. Ifm > ui
k

,

thenm − l i
k
= ui

k
− l i

k
and

u i
k
−m

u i
k
−l i

k

= 0.
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Hence, the objective function in (5) can be written as

Maximize
∑
pi ∈P

∑
1≤j≤ti

Gaini
(
mi

j

)
, (15)

where P is the set of all paths, and {mi
1, . . . ,m

i
ti
} is the set of all payment amounts on path pi .

Due to the iterative bound update process, the optimization problem does not render an
analytical solution. To tackle this, we design a heuristic strategy that conducts the end-to-end
payment with the maximum gain in each round until the number of payment exceeds η or there
is no payment that can obtain any gain. In the following sections, we first propose an optimal
payment amount algorithm that can efficiently compute the optimal amount with the maximum
gain on each path. We then develop a path construction algorithm using reinforcement learning
to construct the near-optimal path that renders potential optimal payment over all end-to-end
payments. Finally, we propose our balance tomography strategy to infer all balances with limited
payment budget.

3.3 Computing the Optimal Payment Amount on Each Path

For path pi , Gain
i (m) can be maximized by searching m∗ = arg maxGaini (m) on the range

[min1≤k≤ni
l i
k
,max1≤k≤ni

ui
k
]. However, as the ranges of balances are generally in the order of

103 ∼ 107 Satoshis, it is intractable to find m∗ through brute force. However, we will demonstrate
next that the optimal amount m∗ can be found by a binary search with logarithmic complexity.

Let us use H i
k
(m) to denote the additive terms in Equation (14):

H i
k (m) = 2(m − l ik ) ·

k∏
j=1

ui
j −m

ui
j − l

i
j

. (16)

Denoting ûi
k
= min{ui

j }, 1 ≤ j ≤ k , we have ∀k : 1 ≤ k ≤ ni ,

H i
k (m)

{
> 0 l i

k
< m < ûi

k

= 0 Otherwise.
(17)

Considering Equation (17), we define the interval (l i
k
, ûi

k
) as the effective interval, denoted by EIk ,

of the function H i
k
(m).

Let l i = minni

k=1
l i
k

and ui = maxni

k=1
ûi

k
. The interval (l i ,ui ) is the widest range where Gaini (m)

can be positive. Sort the values {l i1, û
i
1, l

i
2, û

i
2, . . . , l

i
ni
, ûi

ni
} in the ascending order. Then, these

ordered values can divide (l i ,ui ) into at most 2 × ni − 1 sub-intervals, which are denoted by
λi = {λi

1, λ
i
2, . . . , λ

i
2×ni−1}. Each sub-interval λi

j falls in one of the following three (exclusive) cases:

(1) |λi
j | = 0, i.e., λi

j is a point.

(2) |λi
j | > 0 and ∀k,m : 1 ≤ k ≤ ni ,m ∈ λ

i
j ,H

i
k
(m) = 0.

(3) |λi
j | > 0, there exist some non-empty set Ai

j ⊆ {1, 2, . . . ,ni }, such that ∀k,m : k ∈ Ai
j ,m ∈

λi
j ,H

i
k
(m) > 0. In other words, some H i

k
(m) are positive in the sub-interval λi

j .

For the first two cases, we get Gaini (m) =
∑ni

k=1
H i

k
(m) = 0. For the third case, we get ∀m : m ∈

λi
j ,Gain

i (m) =
∑ni

k=1
H i

k
(m) =

∑
k ∈Ai

j
H i

k
(m) > 0. Hence, in the third case, we call λi

j as a positive

interval of Gaini (m).

Proposition 1. Gaini (m) is a strictly concave function with only one maxima on its positive

intervals.
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ALGORITHM 1: Optimal Payment Amount Algorithm (optPayAmt )

Input: pi , Li, Ui

Output:m∗, Gain∗i

1 EIi ← e f f ectiveIntvl(Li,Ui,pi )

2 λi ← positiveIntvls(EIi )

3 for λi
j ∈ λ

i do

4 [Gain∗ij ,m
∗
j ] ← binarySearch(λi

j ,pi )

5 [Gain∗i ,m∗] ← maxλi
j
(Gain∗ij ,m

∗
j )

6 return m∗

The proof of Proposition 1 can be found in the Appendix.
By Proposition 1, we can find the optimal payment amount m∗ by searching the maximas on

each positive intervals and selecting the maximum value among all these maximas (as shown
in Algorithm 1). On each positive interval λi

j , we use a binary search to find the maxima. This

requires O(log |λi
j |) iterations. We name this process binarySearch and omit its pseudo-code in

Algorithm 1.
The time complexity for calculating the gain of a payment along path pi is O(|pi |), where |pi | is

the number of balances on path pi . By Proposition 1, the gain function is concave on each positive
interval, thus, we can use a binary search to find the optimal payment amount. Therefore, the
maximum number of iterations on interval λi

j is log |λi
j |. The maximum complexity for searching

an optimal payment amount on λi
j is O(|pi | · log |λi

j |). Hence, the time complexity of Algorithm 1

is O(|pi | · |λ
i | · log |λi

m |), where |λi
m | is the average width of positive intervals in λi .

3.4 Constructing End-to-end Paths Using Reinforcement Learning

In this section, we aim to find a near-optimal end-to-end path that can render a near-maximum
gain between our two accounts. The optimal path can be obtained by simply forming a complete
path set that includes all possible end-to-end paths between our two nodes and comparing their
maximum gains. However, the time complexity for searching all end-to-end paths between a pair
of nodes is O(n!), where n is the number of nodes in the network. In a network with thousands of
nodes, it is impossible to form the complete set of all end-to-end paths. A practical way is to design
a path optimization method that can find the optimal path in a heuristic manner. In the research
area of optimization, there are several classical heuristic approaches, such as genetic algorithms
and simulated annealing. However, these methods utilize static policies that interact over multiple
episodes with a separate instance of the environment. In our problem, the environment will be
updated once a new payment result is observed. Hence, the policy should have the ability to inter-
act with the environment and make sequential decisions based on both previous knowledge and
the new observations. Fortunately, reinforcement learning (RL), which searches for an optimal
(or near-optimal) solution in sequential decision systems, can well address the above issue. In the
following, we first formulate our path construction problem as an RL problem and then propose
our RL-based path construction algorithm.

In RL, we need to explicitly define four components: (1) the environment E, which interacts with
the RL agent; (2) the state space S that the agent can transit; (3) the action space A, from which
the agent can take an act; and (4) the reward function r (s,a), which determines the agent’s reward
when the agent takes action a in state s . Figure 5 illustrates the above four components in the
context of path construction:
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Fig. 5. Formulating the path construction problem as an RL problem.

(1) Environment E: The environment E is defined as the LN system together with the ranges of
all balances. In this environment, we aim to find an optimal path between our two accounts
that has the maximum gain over all end-to-end paths;

(2) State spaceS: When the agent starts to explore an optimal path hop-by-hop from the source
node to the destination, a state s is defined as the current node and the ranges of balances
that we currently know;

(3) Action spaceA: An action a is defined as choosing a next hop from the available successors
that directly connect with the current node. All available successor nodes form the action
space;

(4) Reward function r (s,a): When the current state is s , the reward function of taking action a
is defined as follows: r (s,a) = 0, if the next state is not the destination; r (s,a) = Gain(m∗, p̂),
if the next state is the destination, where Gain(m∗, p̂) denotes the maximum gain on path p̂,
where p̂ is the path constructed by all previous hops in the current episode,m∗ is the optimal
payment amount on p̂, computed by Algorithm 1.

In RL, the agent can provide an optimal (or near-optimal) control policy for a Markov decision

process (MDP). We adopt the tabular method [33], where a Q table records the cumulative weight
across all states and actions. In our model, the rows of the Q table represent the nodes of states,
and the columns represent the successor nodes by taking the corresponding actions. Q(s,a) is
initialized to 0 if a is a feasible action for s (i.e., there is a link connecting the node of s and the node
of a); Otherwise,Q(s,a) is set to −∞. The values in Q table are updated in each single step according
to the reward function. In our path construction model, it is more reasonable to issue a reward to
every experienced state/action that contributes to the reward than to just reward the current step.
Therefore, we adopt a model-free on-policy RL scheme—Sarsa (λ) [33]. In particular, Sarsa (λ) looks
up the next policy value when it updates the Q-value. It uses an eligibility trace to record all the
experienced actions in current episode and updates the Q-value for all the experienced actions
by the current reward. The attenuation parameter λ, which ranges from 0 to 1, determines the
importance of previous actions on obtaining the reward: when λ = 0, only the last action is eligible
for the reward; when λ = 1, all experienced actions can obtain an equal reward.

The pseudo-code of path construction using RL (RLPath) is shown in Algorithm 2. The algorithm
receives the LN topology G(N,E), the lower and upper bounds of balances L and U, the source
and destination nodes Ms and Md , the attenuation parameter λ, and the number of maximum
episodes I as inputs. It outputs the set of all discovered paths pathSet with their corresponding
gains Gain(pathSet). RLPath first initializes the QT (the Q table), the set of the discovered path
pathSet, and the number of current episode i (line 1∼line 3). It then performs I episodes to explore
the end-to-end paths and update the Q table (line 4∼line 22). In each episode, it first assigns the
current state s by the source node Ms (line 6), adds the first node to the path trace (line 7), chooses
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ALGORITHM 2: Path Construction Using Reinforcement Learning (RLPath)

Input: G(N,E), U, L, Ms , Md , λ, I
Output: pathSet, Gain(pathSet)

1 QT ← init(G(N,E))

2 pathSet← NULL

3 i ← 0

4 while i ≤ I do

5 i + +

6 s ← Ms

7 pathTrace ← addTrace(s)

8 [a, s ′] ← chooseAction(QT , s, ϵ)

9 while True do

10 pathTrace ← addTrace(s ′)

11 if s ′ == Md then

12 R ← optPayAmt(pathTrace,U, L)

13 [pathSet,Gain(pathSet)] ← addSet(pathTrace,R)

14 else

15 R ← 0

16 [a′, s ′′] ← chooseAction(QT , s
′, ϵ)

17 QT ← updateQTable(QT ,R, s
′,a′,pathTrace, λ)

18 if s ′ == Md | |s
′′ == NULL then

19 Break

20 else

21 s ← s ′

22 s ′ ← s ′′

23 return pathSet, Gain(pathSet)

an action a based on QT by ϵ-greedy, and observes the next state s ′ (line 8). Then, it uses a while
loop to construct a path from Ms to Md hop-by-hop (line 9∼line 22). In the while loop, the next
state s ′ is first added to the path trace (line 10). If s ′ is the destination, then the reward R is assigned
to the maximum gain of the path computed by Algorithm 1 (line 12). The path trace together with
its gain will be added to pathSet and Gain(pathSet), respectively (line 13); otherwise, the reward
will be set to 0 (line 15). Afterwards, the algorithm chooses the next action a′ based on s ′ (line 16)
and updatesQT (line 17). Finally, the exploration will move forward until it reaches the destination
or meets a dead end.

After I episodes, Algorithm 2 outputs all discovered paths and the corresponding gains. Our
experimental results in Section 4.2 show that as the number of episodes goes up, the average path
gain discovered by Algorithm 2 increases. This demonstrates that the algorithm is effective in
exploring the optimal paths.

In Algorithm 2, the top two time-consuming operations are optPayAmt and chooseAction. As
mentioned in Section 3.3, the time complexity of optPayAmt is O(|pathTrace | · |λi | · log |λi

m |). As
the number of nodes in pathTrace and the number of intervals in λi is limited, the time complexity
of optPayAmt is mainly affected by the width of interval λi

m , which is no more than the average
width of the balance ranges π̄ . The average time complexity of chooseAction is O(d̄), where d̄ is
the average degree of LN nodes. Therefore, the time complexity of Algorithm 2 is O(I · (log π̄ + d̄)).
In theory, the Lightning Network (LN) can accommodate payment paths with cycles or loops.
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Fig. 6. The frameworks of our non-intrusive balance tomography methods.

In practice, however, such looped paths are typically avoided due to their inefficiency and high
cost. Despite this, Algorithm 2 can construct paths with loops as well. However, focusing our
search on only simple paths within LN can significantly reduce the computational time required by
Algorithm 2 due to the reduced d̄ in non-loop paths. Our experiments revealed that including both
loop and non-loop paths in the search for optimal paths increased accuracy by approximately 1%,
while it led to a substantial increase in computational time, by nearly an order of magnitude, com-
pared to searching only among non-loop paths. Given that LN employs a source routing policy,
where payers determine the routing paths for their payments, Algorithm 2 prioritizes the construc-
tion of simple paths to optimize efficiency.

3.5 Inferring All Balances in the Topology

Using the above results, we propose our two balance tomography approaches, named NIBT-RL
and NIBT-RL-β , to infer the minimum ranges of all balances in the LN topology.

The framework of NIBT-RL is shown in Figure 6(a). Using the topology of LN as input, RLPath
first constructs the end-to-end path set and provides the path with the maximum gain, then NIBT-
RL computes the optimal payment that should be made on the path. After the payment result is
observed, the ranges of balances on the path are updated according to the result. NIBT-RL repeats
the above operations round-by-round until the number of payments exceeds a budget η or no bal-
ance ranges can be further cut off. The detailed pseudo-code of NIBT-RL is shown in Algorithm 3.

Algorithm 3 receives the LN topologyG(N,E), the set of channel capacities C, the two end nodes
M1 and M2 that are connecting with our two accounts, the attenuation parameter λ, the maximum
number of episodes I , and the payment budge η as inputs. It outputs the inferred upper and lower
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ALGORITHM 3: Non-intrusive Balance Tomography Using RL (NIBT-RL)

Input: G(N,E), C, M1, M1, λ, I , η
Output: L, U

1 L← 0

2 U← C

3 np ← 0

4 while Gain∗ > 0& np ≤ η do

5 pathSet1 ← RLPath(G(N,E),U, L,M1,M2, λ, I )

6 pathSet2 ← RLPath(G(N,E),U, L,M2,M1, λ, I )

7 p∗ ← topMaxGain(pathSet1, pathSet2)

8 [m∗,Gain∗] ← optPayAmt(p∗, L,U)

9 Result ← conductPayment(p∗,m∗)

10 [L,U] ← updateRanдe(p∗,m∗,Result)

11 np + +

12 return L,U

bounds of all balances. At the beginning of the algorithm, the lower and upper bounds of the
balances are initialized to 0 and their channel capacities, respectively (line 1∼line 2). The number of
payments is initialized to 0 (line 3). The algorithm then starts to update the upper and lower bounds
of the balances until there is no payment that can obtain any gain or the number of payments np

exceeds the threshold η (line 4∼line 11). In the while loop, it first constructs end-to-end paths by
Algorithm 2 (line 5∼line 6) and picks out the path p∗ with the maximum gain (line 7). Note that
the algorithm constructs two path sets pathSet1 and pathSet2 in each round, where M1 and M2

alternately act as the source and destination. Then, it computes the optimal payment on p∗ by
Algorithm 1 (line 8) and conducts the payment on the path (line 9). After observing the payment
result, it updates the lower and upper bounds of the balances on the path (line 10) and proceeds
to the next round.

The most time-intensive step is constructing the path set by RLPath (line 5∼line 6). As the time
complexity of Algorithm 2 is O(I · (log π̄ + d̄)), the time complexity of Algorithm 3 is O(2 · η · I ·
(log π̄ + d̄)), where π̄ is the average width of balance ranges, and d̄ is the average node degree.
In practice, NIBT-RL is quite time-consuming in large-scale networks because of the following
two factors: (1) Since a large-scale network has a large number of nodes, the algorithm requires
a substantial number of episodes (i.e., a large I ) to discover the optimal path. (2) As a large-scale
network contains a large number of balances, the algorithm requires to make many payments (i.e.,
requires η to be large) to shrink all balance ranges to their minimum.

To speed up NIBT-RL, we design a fast version named NIBT-RL-β , which makes a tradeoff be-
tween accuracy and efficiency. The framework of NIBT-RL-β is illustrated in Figure 6(b). In NIBT-
RL-β , we define a batch parameter β to control the number of paths selected from the constructed
paths in each round. Then, multiple payments are conducted sequentially on the β paths to shrink
the ranges of the balances covered by these paths to their minimum. When these balance ranges
become small enough, NIBT-RL-β updates the system and calls RLPath for the next round of path
construction. As the frequency of invoking RLPath is greatly reduced in NIBT-RL-β , the running
time is significantly reduced. Our experimental results in Section 4.2 demonstrate that NIBT-RL-β
has a much faster running speed than NIBT-RL with only a slight loss on inference accuracy.

Note that limiting the total number of payments (i.e., payment budget η) in NIBT-RL-β is no
longer effective for controlling the stopping time of the algorithm, because the payments have
been divided into groups to cut down the balance ranges on β paths in each round. Nevertheless,
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ALGORITHM 4: Non-intrusive Balance Tomography Using RL with Batch β (NIBT-RL-β)

Input: G(N,E), C, M1, M2, λ, β , I , δ
Output: U, L

1 U← C

2 L← 0

3 pathSet1 ← RLPath(G(N,E),U, L,M1,M2, λ, I )

4 pathSet2 ← RLPath(G(N,E),U, L,M2,M1, λ, I )

5 P← topMaxGain(pathSet1, pathSet2, β)

6 whilemaxGain(P) > δ do

7 Gain∗ ←maxGain(P)

8 while Gain∗ > δ do

9 for pi ∈ P do

10 [m∗i ,Gain∗i ] ← optPayAmt(pi ,U
i, Li)

11 [pi∗,m
∗i ,Gain∗] ← optPay(Gain∗1, . . . ,Gain∗n)

12 Result ← conductPayment(pi∗,m
∗i )

13 [L,U] ← updateRanдe(pi∗,m
∗i ,Result)

14 pathSet1 ← RLPath(G(N,E),U, L,M1,M2, λ, I )

15 pathSet2 ← RLPath(G(N,E),U, L,M2,M1, λ, I )

16 P← topMaxGain(pathSet1, pathSet2, β)

17 return L, U

we can use an alternative threshold δ to control the stopping time. Specifically, the algorithm will
stop shrinking down the balance ranges once the maximum gain is smaller than δ . Obviously, the
number of required payments is inversely proportional to the threshold δ .

The pseudo-code of NIBT-RL-β is given in Algorithm 4. The algorithm picks the top β paths
from pathSet1 and pathSet2 (line 5) and shrinks the ranges of balances on these paths in a while

loop until the maximum gain on these path is smaller than δ (line 8∼line 13). In the while loop, the
algorithm first computes the maximum gain of each path by Algorithm 1 (line 10) and conducts the
optimal payment on the path with the highest gain (line 11∼line 12). After observing the payment
result, it updates the lower and upper bounds of the balances (line 13) and then proceeds to the
next round. After the end of the while loop, Algorithm 4 calls RLPath to construct the next β paths
(line 14∼line 16).

As the frequency of invoking RLPath is greatly reduced, its time complexity is much lower than
Algorithm 3. Let ω(δ ) denote the number of iterations of the first while loop in Algorithm 4 and
η̄(δ ) denote the average number of payments made in the second while loop. The time complexity
of Algorithm 4 is O

(
ω(δ ) · (η̄i (δ ) · β log π̄ + 2 · I · (log π̄ + d̄))

)
. In a large-scale network, the time

for constructing paths dominates the total time of NIBT-RL-β . Hence, for large-scale networks, the
time complexity of Algorithm 4 is O

(
ω(δ ) · 2 · I · (log π̄ + d̄)

)
. There is also a correlation between

the batch parameter β and the number of iterations ω(δ ): If we turn up β , then ω(δ ) will drop,
and the time complexity of NIBT-RL-β is reduced accordingly. However, as the value of β increases,
the quality of the top-β paths cannot be guaranteed, and the accuracy of NIBT-RL-β may decline.
In Section 4, we will evaluate NIBT-RL and NIBT-RL-β from different angles.

3.6 Parallel Mode

We propose a special form of parallel processing to accelerate the running speed of Algorithm 3 and
Algorithm 4. Specifically, we divide the LN network into several sub-networks and infer balances
simultaneously in each sub-network with separate pairs of attacking nodes.
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Graph partitioning is one of the most common ways to enable parallel computation on large
networks. In the past, numerous works have been proposed to partition the VERTICES of a net-
work into roughly equal disjoint subsets while minimizing the edges crossing the subsets [2, 8, 11].
However, in our parallelization problem, we expect to partition the EDGES of the network (i.e.,
the channels in LN) into roughly equal disjoint sets, so the attacking workload can be balanced
across the subsets. Recently, some edge partitioning methods have been proposed to partition
the edges in a network as even as possible [7, 31, 41]. Among them, the neighbor expansion

(NE) proposed in Reference [41] leads to the state-of-the-art partitioning results in terms of
replication factor [7]. Particularly, suppose network G(N,E) is partitioned into ω parts: G1(N1,E1),
G2(N2,E2), . . . ,Gω (Nω , Eω ), where ∀i ∈ {1, 2, . . . ,ω}, Ni ⊆ N, Ei ⊆ E, ∪i Ei = E, and ∪i Ni = N.
∀i, j ∈ {1, 2, . . . ,ω}, i � j, Ei ∩ Ej = ϕ, |Ei | ≈ |Ej |. The replication factor of the partitioning is
defined by

RF =
1

|N|

ω∑
i=1

|Ni |. (18)

NE starts with a random core node in each round and expands the core-node set by a variant
breadth-first search until the number of edges in the set exceeds a predefined threshold. For each

sub-networkGi (Ni ,Ei ), we create a pair of accountsM (i)1 andM (i)2 to perform the balance inference.
Obviously, the more parts we partition the LN, the more cost we need to spend on opening the
accounts. Hence, there exists a tradeoff between the cost and the running speed. In Section 4.2, we
compare NE with an alternative edge partitioning method and vary the number of sub-networks
ω to evaluate the performance of our approach in the parallel mode.

4 PERFORMANCE EVALUATION

4.1 Experimental Settings

4.1.1 Lightning Topology. We generated the LN topology using a snapshot of LN taken on July
5, 2020. This snapshot includes 6, 072 nodes and 30, 026 payment channels. Our experiments were
carried out on three subsets of the whole network: (1) a small network with 513 nodes and 8, 474
balances; (2) a medium network with 1, 354 nodes and 20, 916 balances; (3) a large network with
3, 732 nodes and 55, 428 balances. To evaluate the performance of our method under different
snapshots, we also carried out our experiments on five more snapshots of LN that are taken from
December 2019 to March 2020.

4.1.2 Capacities and Balances. We generate the capacities of channels based on the public LN
statistics [6], where the upper bound of the capacity is 0.167 BTC. Once the capacity ci j for channel
ei j is generated, the balance of one side bi j is then drawn from [0, ci j ] following uniform distribu-
tion. The balance on the other side is then set to bji = ci j − bi j .

4.1.3 Connecting Our Accounts to LN. In our preliminary work [27], the experimental results
showed that connecting our two accounts to the LN nodes with the highest node degrees can lead
to the best performance of NIBT over other connecting methods. In this section, we directly con-
nect our two accounts to the two nodes that have the highest degrees and use RLPath to construct
the end-to-end paths between our two accounts.

4.1.4 RL Model. In the RL model, the learning rate is set to 0.1, as our data shows that this value
achieves the highest performance in our methods. For the ϵ-greedy policy in RL, we let ϵ = 0.7.
This means that the policy has 70% chance of choosing the action with the maximum Q value and
30% chance to explore a new path.
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Fig. 7. Average reward over different episodes.

4.1.5 Payments. Payments are conducted sequentially: A new payment is made only after the
result of the last payment is obtained. According to LN specification, the maximum amount in one
transaction is 0.043 BTC. Therefore, when the conducted payment amount exceeds this value, we
need to divide the payment into several sub-payments, each of which carries an amount of at most
0.043 BTC.

4.1.6 Estimation of Cost. We estimate the cost for opening and closing one channel as 1.72×104

Satoshis (≈ 1.53 USD) according to the average transaction fee from February 25, 2020, to May 25,
2020 [5]. The routing fee charged by intermediate nodes includes two parts: a constant base fee
that nodes charge per transfer and a flexible additional fee that is proportional to the transferred
amount. For LN nodes, the default values for base fee and additional fee are 1,000 msat (10−3

Satoshi) and 1 msat (10−6 Satoshi) per transferred Satoshi. As reported in Reference [21], 98% and
65% of LN nodes set their base and additional charges, respectively, equal to or smaller than the
default values. Hence, without a risk of underestimating the cost, we assume that all channels use
the default values as their base and additional charges for transfers.

The source codes of our methods with the detailed experimental settings and LN snapshots are
available at https://github.com/duoduoqiao/NIBT-RL.

4.2 Results

Figure 7 plots the average rewards over different RL episodes ranging from 1 to 5,000. As shown
in the figure, RLPath can discover more informative paths as the number of episodes increases.
Figure 7 compares the average reward in each episode under different value of λ. When λ = 0,
RLPath will not attach any reward to the previous steps except of the last step of the episode;
when λ = 1, all previous steps will be issued an equal reward. As we can see in Figure 7, the
average reward in each episode increases as λ increases. This implies that earlier steps have the
same importance as the last step in each episode in our path construction. Comparing the curves
in different scales of networks, we can see that within the same episodes, RLPath can obtain the
highest reward in small network. This means that larger networks require more episodes to dis-
cover optimal paths. In the following experiments, the value of λ is set to 1, and the number of
episodes is set to 2,000.

Table 2 compares the performance of NIBT-RL and NIBT-RL-β , where β ranges from 50 to 500.
We did not limit the budget η or threshold δ in the two algorithms. Instead, we only stopped
when no payments could cut down more balance ranges. We separated balances into two groups:
(1) small balances that are smaller than 0.043 × 108 (≈ 382.6 USD), taking up about 89.8% of all
balances and (2) large balances that are larger than 0.043×108, taking up about 10.2% of all balances.
Note that the range of a balance equals the upper bound minus the lower bound of the balance.
When the range of a balance is smaller than 10 Satoshis (≈ 0.00089 USD), we say the balance is
determined. The more balances determined in a method, the more accurate the method is. Table 2
shows that: (1) As the scale of network increases, the accuracy slightly drops. Furthermore, the
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Table 2. Performance of NIBT-RL and NIBT-RL-β in Different Scale of Networks

Networks Methods
Average

Path

Length

Fraction of

Determined Balances
Number of

Required

Payments

Routing

Fees

(USD)

Computational

Time

(Seconds)Total
Small

balances

Large

balances

Small

Network

(513 nodes

8,474

balances)

NIBT-RL 11.22 94.12% 98.12% 59.61% 64,899 3.29 4.54 × 105

NIBT-RL-50 9.10 92.23% 97.12% 52.87% 64,403 2.86 3.04 × 103

NIBT-RL-100 8.72 92.03% 96.78% 51.12% 64,343 2.58 2.33 × 103

NIBT-RL-200 8.11 91.97% 96.97% 52.69% 64,723 2.46 2.67 × 103

NIBT-RL-300 8.01 92.02% 96.95% 50.94% 65,055 2.16 1.89 × 103

NIBT-RL-500 7.48 91.67% 96.68% 50.69% 64,837 2.06 1.76 × 103

Medium

Network

(1,354 nodes

20,916

balances)

NIBT-RL 11.78 94.10% 98.45% 58.03% 160,948 7.44 1.29 × 106

NIBT-RL-50 9.61 91.66% 96.78% 49.37% 157,412 4.69 1.06 × 104

NIBT-RL-100 9.13 91.60% 96.52% 49.47% 158,588 4.47 7.80 × 103

NIBT-RL-200 8.56 91.33% 96.47% 48.92% 159,355 4.58 7.02 × 103

NIBT-RL-300 8.41 91.44% 96.42% 48.81% 159,577 4.48 6.36 × 103

NIBT-RL-500 8.14 91.11% 96.40% 47.57% 159,668 4.29 6.20 × 103

Large

Network

(3,732 nodes

55,428

balances)

NIBT-RL 12.31 93.37% 97.92% 55.29% 425,293 16.04 4.89 × 106

NIBT-RL-50 9.99 91.43% 96.36% 50.28% 416,714 11.10 4.13 × 104

NIBT-RL-100 9.46 91.13% 96.21% 48.15% 417,297 10.13 3.27 × 104

NIBT-RL-200 8.93 90.99% 96.16% 47.98% 418,938 8.85 2.82 × 104

NIBT-RL-300 8.65 90.63% 96.05% 45.65% 418,098 8.73 2.63 × 104

NIBT-RL-500 8.42 90.61% 96.04% 45.72% 419,439 8.53 2.60 × 104

number of required payments, the routing fees, and the attacking time grow (roughly) linearly
with the number of balances in the topology; (2) NIBT-RL can accurately infer more balances than
NIBT-RL-β by 2% ∼ 3%. However, its routing fee is 15% ∼ 88% higher, and its attacking time is 2
orders of magnitude higher than NIBT-RL-β ; (3) As the batch parameter β increases, the accuracy
slightly drops, and the number of required payments goes up. This indicates that turning up β may
affect the overall quality of the constructed paths. However, as the batch size rises, shorter paths
have more chance to be selected to carry the payments (long paths are generally more informative
than shorter paths). Therefore, as β is turned up, the average path length slightly drops, and the
total routing fee declines accordingly. Moreover, when we increase β from 50 to 500, the computing
time is reduced by at least 40%.

To verify the performance of our method on different LN snapshots, we apply NIBT-RL-300 on
five more snapshots of LN from December 2019 to March 2020 in Table 3. The results on the five
snapshots are similar with the results in Table 2. Particularly, the fluctuation is within 1% in terms
of the total determined balances. The results demonstrate that our method performs quite stably
in different network environments.

In the following, we evaluate different aspects of NIBT-RL-300 in the small network in Table 2.
All results are averaged over 20 runs.

Figure 8 and Figure 9 plot the distributions of the ranges of balances in the small and large groups,
respectively. Each slice in the pies denotes the proportion of the marked ranges. For example,
(0, 103](1%) in Figure 8(a) means that 1% of balance ranges are between 0 and 103. From Figure 8(a),
94% of the original balance ranges are larger than 104 Satoshis (≈ 0.8898 USD), and 72% are larger
than 105 Satoshis (≈ 8.898 USD) before we perform balance inference. After inference, 97% of
balances have the ranges smaller than 10 Satoshis (≈ 0.00089 USD). From Figure 9(a), all balance

ACM Trans. Priv. Sec., Vol. 27, No. 1, Article 12. Publication date: February 2024.



12:22 Y. Qiao et al.

Table 3. Performance of NIBT-RL-300 in Different LN Snapshots

LN

Snapshots

Network

Size

Average

Path

Length

Fraction of

Determined Balances
Number of

Required

Payments

Routing

Fees

(USD)

Computational

Time

(Seconds)Total
Small

balances

Large

balances

Snapshot 1

Dec. 10, 2019

3,298 nodes

51,152 channels
8.63 90.56% 95.67% 46.13% 384,324 7.52 1.48 × 104

Snapshot 2

Dec. 26, 2019

3,269 nodes

51,638 channels
8.54 90.98% 96.19% 45.85% 391,137 8.13 1.64 × 104

Snapshot 3

Jan. 8, 2020

3,250 nodes

52,998 channels
8.61 90.69% 96.06% 46.27% 393,225 8.46 1.86 × 104

Snapshot 4

Feb. 5, 2020

3,323 nodes

53,372 channels
8.56 91.53% 96.63% 48.80% 402,198 8.74 1.76 × 104

Snapshot 5

Mar. 2, 2020

3,422 nodes

53,056 channels
8.76 90.77% 96.94% 46.69% 404,534 8.53 2.19 × 104

Fig. 8. Inferring the ranges of small balances. Fig. 9. Inferring the ranges of large balances.

ranges are larger than 4.3 × 106 (≈ 382.6 USD), 64% of them are larger than 107 (≈ 889.82 USD).
After inference, 51% of them have the ranges smaller than 10 Satoshis (≈ 0.00089 USD) and only
9% of them are larger than 107 Satoshis (≈ 889.82 USD).

Remark 6. The results shown in Figure 8 and Figure 9 are similar with the experimental results
shown in Figure 5 and Figure 6 in Reference [27]. Actually, the results in Reference [27] showed
the performance of NIBT under the best candidate path set (candidate-1: contains top-200 shortest
paths between the top-two-degree nodes), while Figure 8 and Figure 9 showed the average per-
formance of NIBT-RL-300 without any prerequisite. In other words, the results in Reference [27]
demonstrated that NIBT can work well when all routing paths are short enough (averagely 2.14
hops), while the results in Figure 8 and Figure 9 showed two new pieces of information: (1) RL can
effectively find the optimal payment paths for the attack; (2) if the paths are good enough, then the
attack can still perform well even when the average length of the payment paths is as long as 8.01.

Figure 10 plots the inference performance of NIBT-RL-300 in three stages under different number
of payments in one running case. We limit the number of payments by controlling the threshold δ
in Algorithm 4. The first stage (shown in Figure 10(a)) is NIBT-RL-300 inferring the ranges of bal-
ances covered by the first batch of paths output byRLPath; the second stage (shown in Figure 10(b))
is inferring the balances covered by the 45th batch of paths; the third stage (shown in Figure 10(c))
is the inference for the 93rd batch of paths (i.e., the last batch). In the first stage, when 1,600
payments were made, the ranges of about 38% of the covered balances can be reduced to 10,000
Satoshis. When the budget is increased to accommodate 4,500 payments, the range of the covered
balances could be reduced to 10 Satoshis. As the stage moves forward, more batches of paths are
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Fig. 10. Accuracy of NIBT-RL-300 in different inference stages: There are totally 93 batches of paths output

by RLPath. The first stage is inferring the balances on the first batch of paths, while the second and the third

stages are the inferences for the 45th and 93rd batch, respectively.

Fig. 11. The performance of NIBT-RL-300 under different number of total payments.

Fig. 12. The performance of NIBT-RL and NIBT-RL-300 in parallel mode.

involved, and the fraction of determined balances gradually increases. Nevertheless, the tenden-
cies of performance in these stages are highly similar. This tendency reveals that NIBT-RL-300
always shrinks large ranges first. Therefore, the number of required payments can be significantly
reduced at the cost of a small loss in accuracy.

Figure 11 shows the correlation between the inference accuracy and the total number of pay-
ments used in NIBT-RL-300. From the figure, if we conduct only 25,000 payments in total, then 90%
of all balance ranges can be shrunk to less than 10,000 Satoshis; 60% of the balance ranges are less
than 5,500 Satoshis. When we tighten up the threshold δ and let the number of payments grow to
35,000, 90% of the ranges will be less than 2,000 Satoshis, and 60% will be less than 1,000 Satoshis;
when the number of payments reaches 65,000, at least 90% of the balance ranges will be smaller
than 10 Satoshis.

The performance of NIBT-RL and NIBT-RL-300 in parallel mode is shown in Figure 12 (ω = 1
means the original LN topology before partition). In Figure 12(a), each recorded computing time is
equal to the maximum running time of NIBT-RL/NIBT-RL-300 over all partitions. From the figure,
when we use four accounts to perform the balance inference in two sub-networks simultaneously,

ACM Trans. Priv. Sec., Vol. 27, No. 1, Article 12. Publication date: February 2024.



12:24 Y. Qiao et al.

Fig. 13. Comparing the effects of graph partitioning methods on parallelization.

the computing time of NIBT-RL can be reduced by more than one order of magnitude. When LN is
partitioned into 6 components, NIBT-RL-300 and NIBT-RL can be sped up by one and two orders
of magnitude, respectively. In Figure 12(b), the total cost of the two methods grows near-linearly
with the number of partitions because one more partition requires two more attacker’s accounts
to perform the inference in parallel, leading to two additional fees for channel opening. It is note-
worthy that the number of balances that could be accurately determined declines slightly with the
increase of the number of partitions (as shown in Figure 12(c)); that is because some optimal paths
that exist in LN before partitioning may no longer exist in the sub-networks. Nevertheless, even
when LN is partitioned into 6 sub-networks, the fraction of determined balances can also achieve
at least 90% and 88% for NIBT-RL and NIBT-RL-300, respectively.

Aside from Neighbor Expansion, we also applied an alternative graph partitioning method,
named Split and Connect (SPAC) [31], to compare the effects of different graph partitioning
methods on parallelizing our method. Figure 13(a) compares the replication factor (see Equa-
tion (18)) of the two graph partitioning methods, and Figure 13(b), Figure 13(c), and Figure 13(d)
compare the computing time, the accuracy, and the cost of NIBT-RL-300, respectively, under the
two partitioning methods. From the figures, Neighbor Expansion has a lower replication factor
than SPAC, which means Neighbor Expansion can partition the graph more evenly. As the subsets
partitioned by SPAC are not as even as Neighbor Expansion, the computing time in the relative
larger subset will delay the overall attacking process. As a result, NIBT-RL-300 based on SPAC
requires more computing time than that based on Neighbor Expansion. Nevertheless, NIBT-RL-
300 has a similar performance in terms of accuracy and cost under the two partitioning methods,
which also demonstrates the stability of our method with different LN topologies.

In summary, (1) although RLPath only uses 2,000 episodes, NIBT-RL can accurately infer 93%∼
94% of all balances, and NIBT-RL-β can determine 90%∼92% of all the balances. NIBT-RL-β reduces
NIBT-RL’s computing time by 2 orders of magnitude at the cost of 2% ∼ 3% loss in accuracy. (2)
A larger batch size may slightly harm the quality of paths but in return can reduce routing fees
and computation time. (3) Using NIBT-RL-300 as an example, we demonstrate that NIBT-RL-β can
accurately infer more than 97% of small balances (smaller than the maximum payment amount in
one transaction) and nearly 51% of large balances (larger than the maximum payment amount in
one transaction). (4) There is a tradeoff between the inference accuracy and the payment budget:
Relaxing the requirements on accuracy can significantly reduce the payment budget. (5) We can
make a tradeoff between the cost and efficiency using the parallel mode of NIBT-RL and NIBT-RL-
300. For example, if we spend about 3 USD more on opening two additional accounts to perform the
inference, then the running time of NIBT-RL can be reduced by more than one order of magnitude,
and the running time of NIBT-RL-300 can be reduced by about 70%. Nevertheless, the partition of
LN may slightly harm the accuracy of inference (about 0.5%∼0.6% decrease).

4.3 Comparison with the State-of-the-art

Although our attacking method is, in principle, different from the existing balance disclosure at-
tacks, we still compare our method with the state-of-the-art from different angles to provide a
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Table 4. Comprehensive Comparison with the State-of-the-art Work

Methods/

Metrics

DM [15]/Improved DM [37]/

Active Probing [23]
Torrent[28] Generic attack [16]

Parallel

Probing [3]

NIBT-RL/

NIBT-RL-β

Type of Payments F F F F L

Type of Probing D R D R&D R

Probing Path S M S M M

#of Targets 1 1 1 1 All

Success Rate 89%∼98% 87%∼97% 100% 80%∼90% 91%∼94%

Required Accounts

(For all balances)
|N| 1 or 2 |N| × 2 1 or |N| 2

Attacking Time

(For all balances)
1∼2 months 1∼2 weeks 1∼2 months 1∼2 weeks 7 hours

Notations: F: Fake payments, L: Legal payments, D: Direct probing, R: Remote probing, S: Single path, M: Multiple paths.

better view on the cons/pros. Table 4 lists the main features of our attacking method and those of
six state-of-the-art balance disclosure attacks. As the DM [15], the Improved DM [37], and the Ac-
tive Probing [16] use the same attacking strategy, we group them into one category. From the table,
our attacking method presents two distinctive features: (1) Our attack is designed for discovering
all balances in the Lightning topology, while the former attacks are designed for attacking one
target balance. (2) Our attack is performed with legal payments only while all former attacks use
fake payments. Among existing attacks, Torrent and Parallel Probing use remote probing method,
while other methods use direct probing method. The advantage of remote attacking is that the
attackers do not need to connect to the target channel directly, so it only needs to open one ac-
count to attack different victims through intermediate channels. However, the main drawback is
that the target balance may be blocked by some intermediate channels that have low balances (i.e.,
bottleneck). Torrent and Parallel Probing apply multi-path probing strategies to reduce the impact
of the bottleneck channel on single path. All direct attacks need to open |N| accounts to discover
all balances in the topology. As Generic attack opens two channel accounts for each target (an
outgoing channel and an incoming channel), it can theoretically attack all balances, including the
large ones. However, regardless of the cost on opening double number of accounts, creating an in-
coming account to connect every individual channel is quite difficult to implement. The attacking
time for remote and multi-path probing is much shorter than the direct and single-path probing
methods. On the one hand, the parallel probing strategy can considerably accelerate the attacking
process. On the other hand, the remote probing can save a lot of time on opening and closing
the attacking accounts. In conclusion, compared with the state-of-the-art, our attacking method is
economical, efficient, and completely non-intrusive.

We further compare the detailed implementation of our attacking method with that of the two
representative methods, DM [15] and Torrent [28], in the large LN network. Table 5 presents a sum-
mary of the comparison results, where the results of NIBT-RL-β are averaged over NIBT-RL-50 ∼
NIBT-RL-500. From the table, DM needs to conduct, on average, 14 fake payments to accurately
discover a balance. About half of these payments cause the error message of “unknown payment
hash.” The other half of the payments fail due to insufficient balance. As Torrent carries payments
through multiple paths to attack one target balance, it requires 6∼ 7 times of payments than DM.
NIBT-RL-β , however, creates no error messages. Moreover, it requires to conduct less than 8 pay-
ments, on average, to infer a balance, where about 6.67 of the payments fail because of “insufficient
balances” and about 1.76 of them are successfully fulfilled.3 As DM connects the target channels

3The number of successful payments includes both the actual and reverse payments.
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Table 5. Compare NIBT-RL-β with Two Representative Methods on

Implementation Details

Methods/

Metrics
NIBT-RL-β DM Torrent

Error payments per balance

(Due to fake invoices)
0 7.07 43.85

Failed payments per balance

(Due to insufficient Funds)
6.67 7.02 51.94

Successful payments per balance 1.76 0 0

Prob. to disclosure small balances 96% 100% 95.89%

Prob. to disclosure large balances 47% 0 86.57%

Total Cost (USD) 12.26 5709.96 1.53

directly, it can accurately discover all balances that are smaller than the maximum payment al-
lowed in one transaction. Torrent and NIBT-RL-β , however, probe the target channels remotely.
There exists a chance that the target balances are blocked by the low balances on the routing paths.
DM cannot infer the balances larger than the maximum payment allowed in one transaction, be-
cause payment recipients do not hold fake payments. NIBT-RL-β can infer about 47% of these
balances, because the recipients in NIBT-RL-β can hold multiple successful payments. As Torrent
carries out a large amount of payments simultaneously to attack the target channel with the max-
imum flow strategy, it has a relative higher chance to disclose a large balance channel. The total
cost for NIBT-RL-β includes the fees for opening/closing channels and the fees for transferring
successful payments. Since we only need to open two accounts in total and the transaction fees
collected by intermediate nodes are extremely low, the total cost is only 12.26 USD for inferring
more than 50,000 balances. As all payments in Torrent and DM are fake payments, their costs only
include the fees for opening/closing channels. As Torrent can attack the balances remotely, it only
needs to open one account, costing about 1.53 USD. DM can only measure the balances of node
that is directly connected with attacker’s account. In the large LN network, the number of nodes
that DM needs to connect is 3, 732, which costs 5, 709.96 USD in total.

4.4 Skewed Channels Detection in LN System

A skewed channel means one balance in the channel is much higher than the other, which is
generally formed when more payments flow from one direction of the channel than the other
direction. If such a situation lasts for a long time, then one balance in the channel will become
zero, which means no payment flow can go through from this direction. Skewed channels seriously
hinder the liquidity of LN and cause other concerns, as stated in References [9, 32]. In this regard,
“attackers” who would like to detect the balances of channels may not necessarily have malicious
purpose. Instead, they may use the balance information for the social well-being, e.g., solving the
unbalanced channel problem [9]. In this section, we show the performance of NIBT-RL-300 on
discovering the skewed channels in LN system.

Figure 14 presents the number of all skewed channels in the topology and the number of skewed
channels that can be detected during the inference. The degree of the skewness is defined as the ratio
between the smaller balance over the capacity of the channel. For example, 0.1 means the balance
of one side of the channel is 10% of the channel capacity, while the balance on the other side
accounts for the remaining 90%. As shown in the figure, the majority of skewed channels can be
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Fig. 14. The number of skewed channels that were detected: The degree of the skewness is defined as the

ratio between the smaller balance over the capacity of the channel.

Fig. 15. The performance of NIBT-RL-300 in dynamic environment.

detected during the balance inference. In particular, our method can detect 95% slightly skewed
balances (i.e., those with skewness of 0.3) and 99% of seriously skewed channels (i.e., those with
skewness of 0.05).

4.5 Performance in Dynamic Environment

So far, all existing attacks for balance disclosure assume that the inferred balances must keep
stable during the attack period. Otherwise, the results of the previous probing will be useless, and
the attacks need to be re-carried from the beginning. As the probing payments in our attacks are
designed for a group of balances instead of a single balance, the previous results can provide partial
information even if one of the traversed balances changed. Besides, as RL has the ability to interact
with the system, our attack can sense the changes in the balances and adjust the policy of path
construction. To verify the performance of our attack in a dynamic environment, we let q percent
of all channels become highly active and let the rest of the channels keep stable. In each probing
round, we allow all active channels randomly adjust their balances. During the attack period, once
we find a balance of a channel that was inconsistent with its previously inferred range, the range
will be updated by the latest result, and this channel will be marked as an active channel. The
reward policy of our methods in the dynamic environment is modified as follows: The gains from
active channels will no longer contribute to the reward of the path. In other words, the paths that
cover active channels will have a lower priority of being probed. As NIBT-RL and NIBT-RL-β have
similar performance in the dynamic environment in our experiments, we only show the results of
NIBT-RL-300 in Figure 15.

Figure 15(a) plots the fraction of balance ranges within 10 Satoshis after inference. q = 0 means
that all channels are stable. As we can see from the figure, the increased number of active chan-
nels has little impact on the final lengths of the balance ranges after inference, which means, al-
though active balances have a lower priority, their balance ranges can still be cut down to their
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minimum. Figure 15(b) shows the relative error4 of the inferred ranges. From Figure 15(b), as the
fraction of active channels grows, the number of balances that can be accurately inferred drops
accordingly. Nevertheless, as our methods always update the balance ranges to their latest states,
the deviations of the inferred ranges are not significant. Specifically, when there are 5% active
channels, the relative errors of about 96% balances are less than 0.05. Even when the fraction of
active channels goes up to 30%, more than 80% of the inferred balances have less than 0.15 relative
errors.

5 DISCUSSION

In this section, we first discuss the potential countermeasures that LN may apply to prevent from
our attack. Then, we discuss the possibilities of utilizing our attacking method as a measurement
tool to benefit the efficiency of LN.

5.1 Countermeasures

Different from existing balance disclosure methods that use fake payments, all payments in our
attack are legal. Therefore, the general countermeasures that detect the attacks by a flood of can-
celled payments [3] cannot work for our attack. According to the implementation of our attacking
method, we provide two countermeasures for LN to defend against our attack.

The first countermeasure is to modify the error messages in LN. In our attack, the optimal
payments and the probing results are computed based on the critical condition that we can know
where the payments were failed from the error messages, since the returned error messages that
indicate insufficient funds contain the address/ID information of the failed channels. Hence, we
suggest that if a channel is not able to transfer a payment due to insufficient balance, then LN will
deliver an error message without any address/ID information on that channel. When the attackers
do not know where the payment may fail, it is impossible for them to discover the accurate balances
of the most LN channels with our attack.

The second countermeasure is to apply a random routing to the payments that were specified
by the intermediate channels instead of the source routing pre-specified by the senders. By doing
this, the attackers can hardly make the designed payments on the optimal paths constructed by our
algorithms, which will cause significant growth of probing budget. In addition, the LN can further
hide the actual routing from the senders, which will crack the multi-path attacks (including ours)
that probe the target balances through collaborative multi-path probing. However, making these
modifications to the current routing policy in LN requires to re-design the pricing scheme and the
onion routing protocol.

5.2 Benefiting the Functionality of LN

Although our attack is designed for disclosing all balances in LN topology, it can also be used as
a measurement tool to benefit an efficient routing, since all payments are legal and all participant
nodes have gained incentives. Suppose a user wants to make a large payment in a transaction.
Commonly, the payment is likely to fail due to the insufficient balance on the routing path. With
our balance disclosure method, the user can first form a sub-network that covers the recipient
and perform our method on the sub-network to disclose all balances. Then, the user can quickly
find a feasible routing path to carry the large transaction, if any. There exists a tradeoff between
the time/financial cost and the success rate of finding a feasible path. If the sub-network formed

4Let b̂i denote the mean value of an inferred balance range, and let bi denote the true value of the corresponding balance.

The relative error is computed by
|bi−b̂i |

bi
.
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by the user has a small scale, then our method can quickly discover all balances at a very low
cost, whereas the success rate will be relatively low as well. Otherwise, if the user performs our
method on an extended sub-network, then the success rate can be elevated, whereas the user
needs to wait for a relative longer time for the discovered results as well as to pay a little higher
transaction fee.

6 CONCLUSION

We pioneered balance tomography attack for inferring balances of LN without any interference
or fake payments. Our attack first opens two accounts each opening a channel in LN. It then
conducts multiple legitimate payments sequentially between the two accounts. To optimize each
payment, we proposed an algorithm that can efficiently find the optimal amount on each path
with logarithmic complexity. In addition, we developed an RL-based path construction algorithm
that can construct the most informative path between our two accounts. Finally, we designed two
balance inference approaches, NIBT-RL and NIBT-RL-β , to infer all balances by conducting the
optimal payments on the constructed paths. We evaluated our attack using a snapshot of the LN
Network. Experimental results show that 90%∼94% of all balances can be accurately inferred with
a small cost.

APPENDIX

Proposition 2. Gaini (m) is a strictly concave function with only one maxima on its positive

intervals.

Proof. A detailed proof is lengthy and tedious, so we only provide the critical steps.

Suppose λi
j = (λ

i
j , λ

i
j ) is a positive interval of Gi (m). That is, there exists some non-empty set

Ai
j ⊆ {1, 2, . . . ,ni }, such that ∀k,m : k ∈ Ai

j ,m ∈ λi
j ,H

i
k
(m) > 0. On λi

j , the first derivative of

Gi (m) with respect tom is

dGi (m)

dm
=

∑
k ∈Ai

j

ai
k ·

(
1

m − l i
k

−

k∑
s=1

1

ui
s −m

)
(19)

·
(
m − l ik

)
·

k∏
j=1

(
ui

j −m
)
,

where ai
k
= 2∏k

j=1(u
i
j−l i

j )
. The second derivative of Gi (m) with the respect tom is

d2Gi (m)

dm2
=

∑
k ∈Ai

j

ai
k ·

(
k∑

s=1

m − l i
k

ui
s −m

(20)

·

(
−

2

m − l i
k

+
∑

1≤t ≤k,t�s

1

ui
t −m

)
·

k∏
j=1

(ui
j −m)

)
.

To prove that Gi (m) is a strictly concave function, we need to show that the second derivative
of Gi (m) is negative. For this, we only need to consider the items

∑
1≤t ≤k,t�s

1
u i

t−m
and 2

m−l i
k

in

ACM Trans. Priv. Sec., Vol. 27, No. 1, Article 12. Publication date: February 2024.



12:30 Y. Qiao et al.

Equation (20), because all other items in Equation (20) are positive due to the fact that λi
j is a

positive interval.

We expand λi
j to (0,λi

j ), then
∑

1≤t ≤k,t�s
1

u i
t−m

is an increasing function ofm from
∑

1≤t ≤k,t�s
1

u i
t

to
∑

1≤t ≤k,t�s
1

u i
t−λi

j

, while 2
m−l i

k

is a decreasing function5 of m from +∞ to 2

λi
j−l i

k

, there must be a

pointmc such that whenm < mc , d2G i (m)

dm2 < 0.

Now, we prove that, mc ≥ λi
j . To ease notation, we define a function f (x) on domain

(b,minn
i=1 ai ), where b < minn

i=1 ai , as

f (x) = −
2

x − b
+

n∑
i=1

1

ai − x
. (21)

It is easy to prove that there exits a point xc that f (x) < 0 when x < xc , and f (x) > 0 when x > xc ,
and xc will reach its minimum value when both ai (1 ≤ i ≤ n) and b achieve their minimum
values.

Based on the above analysis, for Equation (20),mc will reach its minimum value when ∀k : k ∈

Ai
j ,u

i
k
= λi

j and l i
k
= 0. To compute the minimum value ofmc , we rewrite Gi (m) by

G̃i (m) = 2 ·
(
λi

j −m
)
·
���1 −

(λi
j −m)

|Ai
j |

(λi
j )
|Ai

j |

���, (22)

where |Ai
j | is the size of Ai

j . Then, the second derivative of G̃i (m) with respect tom is

d2G̃i (m)

dm2
= −2 · |Ai

j | · (|A
i
j | + 1) ·

(λi
j −m)

|Ai
j |−1

(λi
j )
|Ai

j |
. (23)

According to Equation (23), ifm < λi
j ,

d2G̃ i (m)

dm2 < 0. Therefore,mc ≥ λi
j . �
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