
REAL-WORLD ESTIMATION: ESTIMATION MODES 
AND SEEDING EFFECTS 

Norman R. Brown 

I. Introduction 

More people live in Ethiopia (64 million) than in the Untied Kingdom (59 million). 
Located at 34 ° north latitude, Atlanta, Georgia is just one degree north of Tijuana 
Mexico. At the moment, Bill Gates is worth about $64 billion; the GDP of Tunisia 
(with its population of 9.7 million people) was $63 billion in 2000. Montreal is 
about 2900 kilometers from Edmonton, Alberta; the distance between Edmonton 
and the city of Chihuahua in Mexico is about 2800 kilometers. At $48,000 a new 
Honda $2000 cost more than a new BMW Z3 sports car which goes for $45,000, 
etc, etc. 

To many people, these facts taken separately, or in tandem, are surprising, even 
counterintuitive. From a cognitive perspective, this is an interesting response be- 
cause it suggests that people do have intuitions about many different real-world 
quantities and that these intuitions can be very wrong. At the same time, expo- 
sure to numerical facts like these can be highly informative. This latter point has 
been made a number of times using a method called seeding the knowledge-base 
(Bostrom & Brown, 2001; Brown, 2001; Brown, Friedman, & Lee, 2001; Brown 
& Siegler, 1993, 1996, 2001; Friedman & Brown, 2000a,b; Friedman, Kerkman, 
& Brown, in press-b; LaVoie, Bourne & Healy, in press; Murray & Brown, 2001; 
Walbanm, 1997). In the usual seeding experiment, participants first provide nu- 
merical estimates for a set of items; they then learn the actual values of a subset 
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of these items; and finally they provide a second set of estimates for both the 
seed facts and the transfer items. Typically, postseeding estimates for the transfer 
items are more accurate than the preseeding estimates, and at times, the seeding 
procedure produces dramatic reductions in estimation error. 

To date, experiments that have used the standard 3-phase seeding procedure have 
demonstrated robust and positive seeding effects on estimates of national popula- 
tions (Brown & Siegler, 1993, 1996, 2001; LaVoie et al., in press). Seeding has 
also been shown to increase estimation accuracy when people estimate latitudes 
and longitudes (Friedman & Brown, 2000a,b; Friedman et al., in press-b), city- 
to-city distances (Brown & Siegler, 2001; Brown et al., 2001), automobile prices 
(Murray & Brown, 2001), fatality rates (Bostrom & Brown, 2001), university tu- 
itions (Lawson & Bhagat, in press), and the nutritional value of fast food (Walbaum, 
1997); In addition, recent studies that employed a simplified procedure (one seed 
fact and one transfer item) have shown that seeding also improves accuracy when 
people estimate corporate sales figures, CD sales, national land area, populations of 
endangered species, and the heights of mountains (Beck & Carlson, 1998; Brown, 
2001; Friel & Carlson, 2000). Finally, there is evidence that seeding effects can 
be long-lived. For example, Brown and Siegler (1996) found that the benefits of 
seeding were undiminished after 4 months (also see LaVoie et al., in press). 

Many of the seeding studies just cited are part of a broader research program, one 
that is concerned with understanding (a) the processes used to generate real-world 
estimates, (b) the nature and representation of the domain-specific knowledge that 
these processes operate on, and (c) the ways that seed facts and other forms of po- 
tentially relevent information affect these processes and this knowledge. This work 
has been motivated by both theoretical and practical concerns. On a theoretical 
level, this project represents an attempt to understand a little-studied but impor- 
tant form of thinking, a form that might be called open-ended complex cognition. 
Although experimental methods are used to study real-world estimation, there are 
fundamental differences between this research program and the experimental study 
of related topics such as problem solving, reasoning, and judgment and decision 
making. Specifically, the mainstream study of higher-level cognition has relied 
heavily on knowledge-lean tasks and has been primarily concemed with under- 
standing the application of a small set of formal operations to a well-defined prob- 
lem space and/or identifying and explicating deviations from normatively pre- 
scribed patterns of performance. In contrast, the central goal of current research 
programs is to develop an empirically grounded understanding of the nature and 
use of domain-specific knowledge. 

More generally, this research has been motivated by the observations that people 
have a great deal of real-world knowledge (i.e., facts about the world learned 
through experience), that they continually and successfully draw on this knowledge 
to understand the world and to behave intelligently in it, and that the knowledge 
used to accomplish these feats is often incomplete, and at times inaccurate and 
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contradictory. These observations raise two broad issues, the first having to do 
with acquisition, representation, and organization of real-world knowledge, and 
the second having to do with the utilization of this knowledge. It turns out that the 
study of real-world estimation sheds light on sets of both issues. On the one hand, 
quantitative estimates are affected by and often reflect the content and structure of 
the information used to generate them. As a result, quantitative estimates can reveal 
much about a given domain of knowledge (Brown, 1990; Brown & Siegler, 1993; 
Friedman & Brown, 2000a,b; Friedman, Brown, & McGaffey, in press-a; Murray 
& Brown, 2001). On the other hand, because real-world knowledge is complex, 
and relevant between-domain differences are large, estimation strategies vary from 
task to task, and different strategies often compete within the same task. It follows 
that the study of real-world estimation should produce information about the range 
of estimation strategies people use, the factors that influence strategy selection, and 
the ways that people coordinate competing sources of information (Brown, 1995, 
1997; Brown & Siegler, 1993; Conrad, Brown, & Cashman, 1998). In brief, because 
performance on many real-world estimation tasks reflects the systematic interplay 
of process and content, it is possible to employ these tasks to investigate both. 

In addition to its theoretical contribution, an understanding of real-world esti- 
mation has obvious practical value. Survey methodology is one area where this sort 
of research could have immediate impact. Here, an accurate model of real-world 
estimation should provide guidance for the designers of questionnaires intended 
to elicit quantitative information from survey respondents and should also aid in 
the interpretation of biased or inconsistent survey responses (Brown & Sinclair, 
1999; Conrad et al., 1998; Sudman, Bradburn, & Schwarz, 1996). There are also 
direct educational applications of this work. For example, the evidence that seed- 
ing often improves estimation accuracy suggests that educators should be able to 
counter domain-specific innumeracy by exposing their students to a few key facts. 
However, there is also evidence that the effectiveness of the seeding procedure 
depends on what people already know about the target domain and on the specific 
identities of the seeds and the transfer items (Brown & Siegler, 1993; Friedman & 
Brown, 2000a,b; Kerkman, Friedman, Brown, Stea, & McCormick, 2001; Murray 
& Brown, 2001). Thus, the selection of an optimal set of seed facts may well 
require a thorough understanding of the relevant domain knowledge and of those 
cognitive mechanisms that produce positive seeding effects. 

The goal of this chapter is to provide a synthetic overview of the research 
on real-world estimation and seeding. To this end, I adopt a plausible reasoning 
architecture as a general processing framework (Collins & Michalski, 1989). I 
identify two basic estimation modes, the numerical-retrieval mode and the ordinal- 
conversion mode, and describe a number of processes engaged by each of these. 
In addition, I define two types of seeding effects, one of which involves revising 
the metric, and the other (re)partitioning the range. In the course of developing 
these points, I also contend that ordinal conversion is far more common than 
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numerical reconstruction, that people generally use the same mode to generate their 
preseeding estimates and their postseeding estimates, and that seeds are effective 
because they allow people to identify and revise inaccurate assumptions about the 
magnitude and/or the division of the response range. 

II. Es t imat ion  Processes 

A. PLAUSIBLE REASONING AND THE RETR/EVAL-INFERENCE CYCLE 

In a real-world estimation task, experimental participants are presented with a set 
of target items and a target dimension and are required to estimate as accurately as 
possible the value of each target item. For example, participants might be presented 
with a set of country names (target items) and be asked to estimate the current 
population (the target dimension) of each. Or, they might be given names of a set 
of automobiles and be required to estimate the current sales price of each, etc. One 
way to respond to such questions is to retrieve the value directly from memory 
and state it as an answer. However, the obvious precondition for providing this 
type of response is rarely met; in most domains, prestored numerical facts are few 
and far between (Nickerson, 1980; Paulos, 1990). Although people rarely know 
the answers to questions posed in these tasks, they often produce responses that 
are at least partially correct; it is common to find a reliable correlation between 
the magnitude of the numerical responses and the actual magnitudes of the to-be- 
estimated values, and, under some conditions, the numerical values provided by 
participants are quite close to (but different from) the to-be-estimated values. 

The dearth of accessible numerical facts rules out simple fact retrieval as a 
common response strategy, and the existence of a nonarbitrary relation between 
the subjective and objective values indicates that people generally do not answer 
these questions by guessing at random. Rather, people often find a way to use their 
limited knowledge of the world to arrive at a fairly sound estimate, or at least to 
produce a response that bears some correspondence to the to-be-estimated value. In 
the next section, I discuss two estimation modes that describe how these educated 
guesses are produced. Before moving on to this discussion, however, it is useful 
to make explicit several of the assumptions that underpin the current approach. 

The first of these assumptions is that a retrieval-inference cycle is almost in- 
variably engaged when people generate real-world estimates. This cycle consists 
of three processes carried in sequence and often iteratively (Brown, 1990; Norman 
& Bobrow, 1979; Williams & Hollan, 1981). The first of these is a retrieval pro- 
cess, the second an inference process, and the third an evaluative process. On this 
view, when a question is posed about a target item, information about that item 
is accessed in memory. If the answer to the question cannot be recalled, a fact 
related to the target item and the target value is retrieved. If this retrieved fact is 
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relevent to the question at hand, it triggers apIausibIe inference which may serve 
to narrow the range of possible responses or to increase the certainty associated 
with a particular response. Following this inference, an evaluation is performed to 
determine whether task demands have been meet. Often, a single inference will not 
provide sufficient constraint to allow for a precise confident estimate of the target 
value. As a result, people may iterate through this cycle, retrieving information 
and drawing inferences until they conclude that they have come up with a good 
answer or until they run out of time or potentially relevent information. 

For example, a person attempting to determine when Desert Storm took place 
might recall that the first George Bush was president at the time and that Bush's 
term of office ran from 1988 to 1992. Together these facts allow for the confi- 
dent inference that Desert Storm took place during the late 1980s or early 1990s. 
Suppose during the second cycle, this individual recalled a discussion with a high- 
school friend and that she or he attended high school between 1990 and 1994. This 
fact places a new, more restrictive, lower bound on the range, but leaves the upper 
bound unchanged. The retrieval-inference cycle might terminate at this point and 
the midpoint of the 1990-to-1992 range might then be selected as an estimate. 
If so, this process would produce January 1991 as a response. To take another 
example, a person attempting to estimate the number of islands in the Indonesian 
archipelago might recognize that Indonesia is an island nation and recall that the 
state of Hawaii is composed of 8 islands. Given these two facts and assuming that 
countries are generally larger than states, this person might conclude there are, say 
20 islands in Indonesia. It is worth noting that these examples demonstrate that 
plausible reasoning can produce both accurate and inaccurate responses: Allied 
troops invaded Iraq in February, 1991; the Indonesian Archipelago consists of 
some 15,000 islands. 

Collins and Michalski (I989) have demonstrated that it is possible to develop 
a detailed and formal representation of plausible inference patterns, and other 
researchers have argued that people take this type of "problem solving" or 
"reconstructive" approach when they are required to recall autobiographical events 
or facts in response to specific cues (Brown & Schopflocher, 1998; Conway, 1996; 
Reisser, Black, & Abelson, 1985; Williams & Hollan, 1981). It appears that this 
general approach works as well as it does because the information most relevant 
to the target item and the current task is often recalled by the retrieval process and 
because plausible inferences allow people to take advantage of the many (quasi-) 
logical implications that are sanctioned by their knowledge and beliefs without 
requiring them to encode and maintain massive quantifies of detailed information. 
In addition, the open-ended nature of the retrieval-inference cycle means that a 
given conclusion may be corroborated by multiple lines of evidence. 

A second related assumption is that people take an opportunistic approach to 
real-world estimation. In other words, they generally do not approach these ques- 
tions with a deliberate response strategy in mind. Rather, it appears that people 
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"blindly" work toward a response using readily accessible knowledge to support a 
series of plausible inferences. Thus, the strategy that is adopted and the particular 
sequence of steps involved in producing a response are determined by the facts 
that happen to be retrieved. And, the availability of a given fact at a given time is 
determined by how strongly it is associated with the target item, and how recently it 
has been accessed. One implication of this view is that these retrieved facts should 
provide a representative sample of knowledge and that this sample should reflect 
the organization of this information in memory. This implication has proved to be 
valid at least for one type of knowledge, the knowledge that people have of public 
events (Brown, 1990). 

One final point. To date, the strongest evidence that plausible reasoning plays a 
role in real-world estimation comes from the work on event dating (see below). This 
task may be a special one because event knowledge is often embedded in a rich net- 
work ofinterevent associations (Brown, 1990) and because temporal landmarks are 
relatively common (Shum, 1998). Nonetheless, informal protocols suggest that the 
use of plausible reasoning is not restricted to date estimation nor does it depend on 
access to numerical facts. Rather, the retrieval-inference cycle that drives plausible 
reasoning can be evoked for a number of different reasons. At least in principle, 
plausible reasoning can be used when people transform a set of vague metric be- 
liefs into a functional response range; when they partition a derived range or an 
experimenter-provided range; when they assign an ordinal value to a target item 
in the absence of numerical facts; when they verify or fine-tune fanailiarity-based 
intuitions; and when they guess in a systemic manner. It is true that reconstructive 
processing observed in date estimation provides an excellent example of plausible 
reasoning in a real-world estimation task, but there are many others. 

B. ESTIMATION MODES 

When people estimate real-world quantities, they access relevant information from 
memory and draw plausible inferences. It has been possible to move beyond this 
very general claim and develop a more detailed characterization of real-world 
estimation, one that identifies two very different estimation modes, and to identify 
some of their underlying processes (see Fig. 1). These two modes, numerical 
retrieval and ordinal conversion, are discussed in detail in the next two sections. 
Briefly, an estimate involves numerical retrieval when at least one relevant numeri- 
cal fact is recalled and that fact serves as the basis for a response. In contrast, ordinal 
conversion typically involves a preparatory stage, called setting the metric, during 
which a response range is defined. Once the range has been established, estimates 
are generated by determining the relative or ordinal value of the target item and 
selecting a numerical value from the appropriate portion of the range. 

There are two fundamental differences between the estimation modes. First, a 
precondition for the use of numerical retrieval is access to relevant domain-specific 
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Fig. 1. A taxonomized list of processes associated with the numerical-retrieval mode (Panel A) 
and the ordinal-conversion mode (Panel B). 

numerical facts, where a numerical fact is defined as preexisting knowledge of the 
numerical value posed by a particular item for a given dimension (i.e., D-Day took 
place on June 6, 1944; about 7.5 million people live in New York City; Boston 
is about 2,500 miles from LA). In contrast, there are no preconditions for use 
of ordinal conversion; this makes ordinal conversion the default and numerical 
retrieval the special case. Second, although the process of setting the metric is 
essential to the ordinal conversion, it appears to play no role when people rely on the 
various numerical retrieval processes. This is because the retrieved numerical facts 
are necessarily defined in metric terms and thus they bring the metric with them. 

1. The Numerical Retrieval Mode 

Figure 1 lists 4 retrieval-based processes. Three of these, direct retrieval, adjusted 
retrieval, and retrieval-based computation, can be used only when a relevent 
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numerical fact is associated with the target item. The fourth retrieval-based pro- 
cesses is numerical reconstruction. This process requires only that there be a 
known or inference relation between the target item and a retrieved numerical fact. 
Because a single fact may be related or relatable to multiple items, one would 
expect reconstruction to be the most common of these. 

a. Fact Retrieval Direct retrieval is the simplest of the retrieval processes. 
When the to-be-estimated value has already been stored in memory, a response 
can be made simply by recalling and stating the recovered value. For example, 
a person asked to estimate the distance between New York and Chicago might 
simply know and state that the two cities are about 700 miles apart. Of course, if 
the value of the to-be-estimated quantity is known beforehand, the response is not 
an estimate but a statement of fact. However, because numerical facts are quite 
scarce, this strategy is uncommon. 

An estimate involves adjusted retrieval when a person has succeeded in retrieving 
an appropriate numerical value associated with the target item, but he or she is 
also aware that the value is likely to be wrong for some reason. An example of 
this would be someone who is attempting to estimate the current population of 
Los Angeles and who recalls that it had a population of about 3.5 million in 1990. 
Given that the LA population has grown since then, this value is bound to be too 
small, so it would be necessary to compensate for this by adjusting the estimate 
upward. 

The third numerical process, retrieval-based computation, also assumes that 
a numerical value is associated with the target item and is retrieved during the 
estimation task. However, in this case, the retrieved value must be mathematically 
transformed prior to responding. Consider a sports fan who is trying to determine 
the attendance at last night's well-attended home game. This person might know 
that the local basketball arena holds 18,500 and might figure that 75% of the seats 
are sold on a good night. Given this fact and this belief, it would be reasonable to 
place attendance at about 14,000 ( ~  18.500 * 0.75). 

At present, it appears that these retrieval strategies are quite uncommon. This is 
not surprising given the dearth of explicit numerical information in many real-world 
domains. It is worth noting, however, that strategies like these are often used when 
people estimate event frequencies. For example, when Brown and Sinclair (1999) 
asked several hundred undergraduates to estimate the number of sexual partners 
they have had in their lifetimes, about a third of the sexual sample responded 
with a retrieved tally--this would be classified as direct retrieval in the present 
scheme. Similarly, several researchers have reported that people often estimate the 
frequency of recurring events by retrieving a rate from memory and multiplying it 
by the appropriate value--this would be classified as retrieval-based computation 
(Blair & Burton, 1987; Conrad et al, 1998; Menon, 1993). Finally, an analogue to 
adjusted retrieval has been seen in the lab. Here it is common for participants to 



Real-World Estimation 329 

generate frequency estimates by retrieving some subset of relevent instances and 
then adjusting their enumerated counts to account for the unretrieved items (Brown, 
1995). Thus, although numerical strategies appear to be uncommon in many real- 
world estimation tasks, people can and do retrieve, adjust, and transform numerical 
values when they are available. 

b. Numerical Reconstruction The three retrieval strategies can only be used 
when a relevant numerical fact has been stored with the target item. Because this 
situation is uncommon, people are rarely in the position of using one of the retrieval 
strategies to generate their estimates. Of course, numerical facts can be very useful 
when there is a known or inferable relation between them and a target item. 

Examples of numerical reconstruction were presented above as part of the dis- 
cussion on plausible reasoning and the retrieval inference cycle (also see Brown 
1990, Experiment 1). Certainly, numerical reconstruction fits easily within this 
framework. Basically, this strategy is used when the retrieval process has access to 
numerical facts and these facts are used to support inferences that restrict the range 
of possible responses or to numerical reference points. There is good evidence that 
numerical reconstruction is common when people estimate the dates of personal 
and public events (Brown, 1990; Friedman, 1993; Thompson, Skowronski, Larsen, 
& Betz, 1996). This evidence comes in two forms. First, when people are asked 
to think aloud while estimating dates they often mention landmark events or tem- 
porally bound historical or personal periods (Brown, 1990). Similarly, post hoc 
strategy reports indicate that people rely on temporal landmarks and dated period 
boundaries when they date events (Thompson, Skowronski, & Betz, 1993). Second, 
better-known events tend to be dated more accurately than less well-known events 
of the same objective age (Brown, 1990; Butt, 1992). This is what one would 
expect if ability to access and utilize related numerical reference points and other 
types of temporally informative facts is related to the richness of the information 
associated with the target items. 

Not all temporal inferences depend on the retrieval of landmark dates. As 
Thompson and his colleagues (1993, 1996) have pointed out, people have a good 
deal of knowledge about temporal regularities that they can draw on when dating 
personal and public events. For example, if one is attempting to determine when 
a particular picnic occurred, it seems reasonable to assume, based on our knowl- 
edge of the prototypical picnic, that it happened on a weekend during the summer 
months. Conversely, although reconstruction has been studied primarily by re- 
searchers interested in date estimation, this does not mean that dates are the only 
values that can be numerically reconstructed. Consider, for example, how a person 
from Edmonton, Alberta might estimate the population of Winnipeg, Manitoba. 
This individual might °'reconstruct" its population by recalling that Edmonton, 
Alberta has about 650,000 people and that Edmonton is larger than Winnipeg. 
Given these two facts, one a specific numerical value associated with an item 
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other than the target and the second a piece of relational information that links 
the numerical fact to the target item, it would be reasonable to conclude that 
Winnipeg has a population of about 600,000. Note that although our hypothetical 
Edmontorian did not know the population of Winnipeg, his/her estimate was a 
good one--Winnipeg's current population is 570,000. 

At present, we do not know how widespread numerical reconstruction is. Gen- 
eralizing from the event dating situation, one might predict that reconstruction 
should be common when the numerical facts are relatively common and when 
there is a fairly rich network of relevent interitem associations. A dearth of nu- 
merical reference points would hamper reconstruction because it would limit the 
number and precision of the numerical inferences that could be drawn and because 
a given reference point is unlikely to have a known or inferable relation to all target 
items. Similarly, a sparse network of interitem associations would hamper access 
to and interpretation of relevant numerical facts. 

2. The Ordinal-Conversion Strategy 

The presence of numerical facts and the existence of a reasonably rich knowledge 
domain appear to be preconditions for the use of numerical strategies. In this 
section, I describe the estimation mode that people can rely on to produce real- 
world estimates when these conditions are not met. 

Several years ago, Siegler and I proposed that people depend on two types of 
knowledge when they generate real-world estimates: metric knowledge and map- 
ping knowledge (Brown & Siegler, 1993). Metric knowledge was defined as know- 
ledge of or beliefs about pertinent statistical properties of the target dimension. At 
the most general level, metric beliefs provide a rough specification of the magni- 
tudes covered by the target dimension. At a more detailed level, metric knowledge 
may also be used to define the width of the response range (i.e., to specify the upper 
and lower bound) and to partition the range in a way that reflects beliefs about its 
central tendency and distribution of the items across its range. Mapping knowledge 
refers to information that allows people to determine the relative magnitude of a 
given target item. 

The ordinal-conversion strategy was an implicit component in the metrics-and- 
mapping formulation. As its name implies, this strategy consists of two core pro- 
cesses: an ordinal component, which determines the relative magnitude of the 
target item, and a conversion component, which generates a numerical response 
by selecting a value from the appropriate portion of the response range. Of course, 
to do this, it is necessary to have defined and partitioned a response range. Thus, 
the use of an ordinal-conversion strategy implies the existence of a prior process, 
one I refer to as setting the metric. 

As an example of how these processes work together, consider the task that con- 
fronted the university students who took part in one of our population estimation 
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experiments. At the outset of an experiment, participants were informed of the 
current population of the United States (250 million at the time) and that the test 
countries were among the largest countries in the world. Because most undergrad- 
uates are not experts in demography, it is safe to assume that these people have 
only a very limited store of additional numerical facts; they might have known that 
there are more than a billion people in China and little else. Knowledge of China's 
population is useful though, as it provides an upper bound for the response range. 
But, what is the lower bound? Well, it would be less than 250 million; but how 
much less? Let us assume that this participant simply selected a round number, 
say 1 million, as the lower bound of the range. 

At this point, a response range has been established that spans over 3 orders 
of magnitude and that includes only two reference points, the population of the 
United States and the population of China. Next (or within the first few trials) the 
participant must partition this response range. This could be done in a number of 
ways. For the sake of this example, let us assume that 5 categories were created: 
very small, small, medium, large, and very large. The population of the United 
States could serve to separate the large from very large populations. The next 
partition, separating the large populations from mid-sized populations might be 
set at 100 million, and the next two, separating mid-sized from small, and small 
from very small, might be set at 50 million and 25 million, respectively. 

Now consider what would happen when Germany is presented as a test item. The 
absence of a rich network of relevant quantitative facts rules out numerical recon- 
struction. As a result, it would be necessary to fall back on an ordinal-conversion 
strategy and to use this strategy with the adopted metric framework. (Altering 
the framework once it is established is problematic because the numerical values 
assigned to the items under different metric schemes would often fail to reflect 
the underlying ordering relations thought to hold between target items.) Here the 
participant might decide for any number of reasons (see below) that Germany has 
a large population. The conversion component would then select a value from that 
portion of the range that has been assigned to large population countries--say, 
150 million. 

Germany does have a large population it is the 12th largest country in the 
world but with an actual population of 83 million, an estimation of 150 million 
is far from accurate. In this case, an inaccurate estimate was produced because 
the range was partitioned in the wrong way. Mistaken ordinal judgments can also 
yield inaccurate responses. For example, a person who believes that Nigeria has 
a small population and that such countries have fewer than 20 million people 
would produce an inaccurate estimate as well. But in this case, it was the mapping 
decision that was wrong--Nigeria, with a population of 127 million people, has a 
large population. And of course it is also possible to be fight for the wrong reasons; 
for example, a person who believes that the Netherlands has a medium-sized 
population might provide an accurate estimate of its population (e.g., 16 million) 
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if he or she partitioned the range in a very conservative manner (e.g., assigned 
values between 10 and 20 million to mid-sized countries). 

a. Setting and Measuring the Metric The ordinal-conversion strategy appears 
to involve a preparatory stage during which individuals draw on relevant metric 
beliefs to define and partition a response range. At this point, the processes required 
to set and partition the range have not been investigated systemically. However, 
the work on seeding has demonstrated that numerical facts can be used to improve 
the accuracy of metric beliefs (see below). We have argued that this effect comes 
about because people are capable of inducing the metric properties of a target 
dimension from a set of numerical facts. This is consistent with the research on 
intuitive averaging; these studies have demonstrated that people are remarkably 
good at estimating the statistical properties of a set of numbers, even when the 
numbers are presented at a very rapid rate (Malmi & Samson, 1983; Spencer, 
1961). It has been assumed that the same numerical induction process that people 
employ when they perform a numerical averaging task is used to Create and revise 
metric beliefs. 

Given the efficiency of the numerical induction process, one might expect 
that metric beliefs would be fairly accurate. However, this would also require 
that people occasionally encounter numerical facts that reflect the metric of a tar- 
get dimension and that they attend to these facts when they do. The data suggest 
that this is rarely the case in general, it appears that people do have a (very) rough 
sense of the magnitude of the target dimension, but that the metric assumptions 
are often far from accurate. 

It is possible to assess the accuracy of people's metric beliefs and to com- 
pare accuracy across items and dimensions by computing two measures: Signed 
Order of Magnitude Error ( SOME ) and absolute Order of Magnitude Error ( OME ) 
(Brown & Siegler, 1992, 1993; Nickerson, 1980). SOME and OME are computed 
as follows: 

SOME = logl0(Estimated Value/Actual Value) 
OME = ]SOMEI 

OME converts estimation error to a percentage of an order of magnitude, with 
small OME values indicating accurate metric beliefs, and large ones indicating 
inaccurate metric beliefs. Similarly, SOME provides a measure of bias in terms of 
a percentage of an order of magnitude; a negative SOME indicates that the metric 
has been set too low, and a positive SOME indicates that it has been set too high. 

The OME measures are useful for studying real-world estimation, in part because 
they minimize the effects of outliers. Outliers are a general problem with this 
type of research because some distributions (e.g., national populations) are highly 
skewed, and because the response range often spans several orders of magnitude. 
As a result, a single estimate can differ from others by orders of magnitude and 
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thus have an undue influence on conventional accuracy measures (e.g., the mean 
of the estimates, and the Pearson correlations). 

OME and SOME are also attractive measures because they enable direct com- 
parison between different tasks. When such comparisons are made, it is apparent 
that there are enormous between-task differences in metric accuracy. For exam- 
ple, mean OME is considerably smaller when people estimate city-to-city dis- 
tances (mean OME = .24) than when they estimate national populations (mean 
OME = .45; Brown & Siegler, 2001), and it is considerably smaller when they 
estimate national populations than when they estimate the fatality rates (mean 
OME = .95; Bostrom & Brown, 2001). 

The OME values just reported were computed from initial estimates collected 
over a representative (or exhaustive) set of target items using a standard 3-phase 
seeding procedure, in several different experiments. In order to gain a better sense 
of how metric accuracy varies across dimensions, I have conducted several studies 
that included questions about a wide variety of real-world quantities (Brown, 
2001). Results from one of these are presented in Table I. In this experiment, 125 
subjects estimated 23 real-world quantities and used a 1 (no confidence) to 5 (very 
confident) rating scale to indicate how confident they were in the accuracy of each 
of their estimates. 

The data presented in this table make several points. First, they provide additional 
evidence for several claims made above. Specifically, it is obvious that metric 
assumptions are often inaccurate, that accuracy varies greatly from one dimension 
to the next, and that people are rarely in the position to respond by retrieving 
prestored numerical facts. Across the 23 items, mean OME ranged from .13 to 2.83, 
with amedian of.68, andthe percentage of accurateresponses (i.e.,responses 4-5% 
of the actual value) ranged from 23 to 0%, with a median of 1%. Second, these data 
indicate a correspondence between the magnitude of the to-be-estimated values and 
the estimates themselves. In this study, the rank order correlation between actual 
value and the median of the estimated values was .81. In other words, although 
people's metric assumptions may be off by a large amount, it appears that they still 
tended to respond with relatively small values when the dimension was defined by 
small magnitudes and with relatively large values when the dimension was defined 
by large magnitudes. Third, there was a general bias to underestimate the metric; 
the median SOME for this set of items was -.53. 

Fourth, it is clear that the magnitude of the to-be-estimated value is not the 
only factor that determines metric accuracy. This can be seen by comparing mean 
OME across pairs of items with similar values (e.g., number of goals scored by 
Gordie Howe versus the average temperature of Venus; the price of an SUV ver- 
sus the number of square feet in an acre). These data and others (e.g., Jacowitz 
& Kahneman, 1995) suggest that metric beliefs tend to be accurate when the 
dimension is familiar and the numerical instances are encountered frequently 
(e.g., prices, salaries, city temperatures, ages). Finally, it appears that people can 
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judge with some accuracy whether their estimates are "in the ball park" or not. 
This ability is reflected by ratings which indicate that estimates were generally 
offered with little confidence and by the strong relation between OME means and 
the rating means; the rank order correlation between these two measures was -.67. 

In brief, there is good evidence that metric knowledge varies widely from one 
dimension to the next and that metric beliefs are generally not very accurate. 
However, people can distinguish between questions that can be answered with 
small numbers and those that require very large numbers. This classification of 
dimensions into small and large can be seen as metric knowledge at its most 
primitive. In addition, an examination of the well-calibrated dimensions suggests 
that metric accuracy is related to experience with the dimension and exposure to 
numerical examples. Of course, these empirical generalizations do not directly 
address processing issues. At this point, we simply do not know how domain 
knowledge, numerical beliefs, and response biases are combined to establish a set 
of provisional range assumptions. Clearly, this is an important question, and one 
that will require additional research. 

b. The Ordinal Component The ordinal-conversion strategy engages two com- 
ponents, one that determines the relative magnitude of the target item and a second 
that selects a number from the corresponding portion of the response range. The 
term "component" is used here rather than the term "process" because a number of 
cognitive processes can be used alone or in combination to produce an ordinal judg- 
ment. In this section, I describe five of these. This set includes: ordinal retrieval, 
ordinal reconstruction, categorical inheritance, guessing, and memory assessment. 

i. Retrieval and reconstruction. Ordinal retrieval, ordinal reconstruction, cat- 
egorical inheritance, and guessing all begin with a search for memory for task- 
relevant information. Ordinal retrieval serves as the basis for an ordinal judgment 
when this search encounters a fact that specifies the ordinal value of the target 
item. For example, a person might simply know that Brazil has a large population. 
Once this fact is recalled, it is possible to terminate the search and proceed to a 
numerical conversion process. 

Ordinal reconstruction is carried out in much the same way as numerical re- 
construction. In both cases, people engage the retrieval-inference cycle, recalling 
facts related to the target item and drawing plausible inferences from them. What 
differentiates the two is the presence or absence of numerical facts. When such 
facts are scarce or nonexistent, the retrieval-inference cycle can deliver little more 
than a well-grounded ordinal judgment. Nonetheless, informal protocols suggest 
that this process can be quite lengthy, with participants considering a wide variety 
of potentially informative facts. For example, a person estimating the population 
of Germany may know that it has an extremely strong economy and that it played 
an important role in the history of the 20th century and conclude from these facts 
that Germany must have a large population. 
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ii. Categorical inheritance. The study of subjective geography has revealed 
the existence of a special sort of ordinal process, one that falls between ordinal 
retrieval and ordinal reconstruction (Friedman & Brown, 2000a,b; Friedman et al., 
in press-b; Kerkman et al., 2001). In these experiments, people are presented with 
a set of cities and are required to estimate the latitude or longitude of each. Figure 2 
presents a subjective location profile constructed from data collected in one such 
study (Friedman & Brown, 2000b, Experiment 1). To construct this figure, test 
cities were ranked by their mean estimated latitudes and listed from left to right 
along the abscissa according to their rank. The black circle, the grey circle, and 
small marker plotted above a city name denote, respectively, the mean of the 
preseeding estimates elicited by that city, the mean of the postseeding estimates 
(see below), and its actual population. In this experiment and many others, people's 
latitudes estimates produce a step function in which cities from a given region are 
grouped together, but do not overlap with estimates for cities from neighboring 
regions. 

Friedman and I have argued that this pattern indicates that participants primarily 
rely on regional or categorical knowledge and categorical inferences to generate 
their estimates. We have also identified two sorts of biases in this task: one that 
leads people to overestimate or underestimate the locations of entire regions (e.g., 
Mexico), and a second that leads people to compress the range of estimates within 
a region. The former is attributed to an erroneous partitioning of the range, and the 
latter to reliance on categorical knowledge in the absence of accurate knowledge 
of the relative position of items subsumed by the category (Huttenlocher, Hedges, 
& Duncan, 1991). 

What is special about geography is that people divide the world into regions; that 
they know the ordinal relations that obtained between these regions and correctly 
believe that regional membership and location are closely linked; and that they 
have ready access to the regional membership of cities and countries. Under these 
conditions, the metric can be set by assigning upper and lower bounds to regions 
in a way that preserves their ordinal relations. Once the metric is established, an 
estimate can be generated by retrieving the test city's superordinate region and 
selecting a value that lies within its range. In other words, the target item inherits 
the ordinal properties for its superordinate category, and also its metric properties 
when they have been defined. Thus, in geography tasks, determining the region or 
category that a city belongs to is tantamount to assigning it an ordinal value. This 
process resembles ordinal retrieval because an ordinal decision can be based on a 
single retrieved fact, and it resembles ordinal reconstruction because the ordinal 
value is implicit in the retrieved information rather than explicit. 

When people have little knowledge of the internal structure of the category 
(i.e., the relative ordering of items within the category), they either pick the mid- 
point of the region or they spread their responses more or less randomly across it. 
In contrast, when people know something of the relative ordering of the items 
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Fig. 2. Subjective latitude location profile for North American cities. For each city, the mean 
preseeding estimate is represented by the black marker, the mean postseeding estimate is represented 
by the gray marker, and the actual location is represented by the cross. Postseeding estimates collected 
following exposure to two Mexican seeds (Tijuana, 33°; Chihuahua, 29°). Data drawn from Friedman 
and Brown (2001, Experiment 1). 

within a category, they display this knowledge by selecting a value from the 
appropriate part of the subrange associated with the region. The former mode 
produces a "flat step" and a weak within-region correlation between the esti- 
mated and the actual latitudes of the target cities, and the latter produces a "sloped 
step" and reasonable correlation between estimated and actual latitude. In Fig. 2, 
estimates for the Mexican cities provide a nice illustration of the former pat- 
tern and the estimations for the Canadian cities provide a nice illustration of the 
latter. 

Although latitude estimation has some unique features, other tasks have pro- 
duced step-like response profiles which indicate reliance on categorical infer- 
ences. For example, in a recent experiment, Canadian university students were 
asked to estimate the current sales prices for automobiles produced by prestige 
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Fig. 3. Subjective price profile for sports cars. For each brand, the mean preseeding estimate is 
represented by the black marker, the mean postseeding estimate is represented by the gray marker, and 
the actual price is represented by the cross. Postseeding estimates collected following exposure to the 
price of Honda $2000 ($48,000). All prices in Canadian dollars. Data drawn from Murray and Brown 
(2001). 

manufacturers (e.g., BMW, Mercedes Benz) and by nonprestigious manufacturers 
(e.g., Honda, Ford). The subjective price profile for the sports cars is presented 
in Fig. 3. This profile indicates that the brands were divided into two price cat- 
egories and that participants relied on their categorical knowledge to generate 
their estimates, assigning higher prices to automobiles produced by the presti- 
gious manufacturers and lower prices to those produced by the nonprestigious 
manufacturers. 

Although people were good at estimating the prices of these items, the reliance on 
categorical knowledge did systemically bias some responses. This point is made 
very clearly by comparing estimates elicited by the Honda $200 (actual price 
$48,000) to those elicited by the BMW Z3 (actual price $45,900). Although the 
former was slightly more expensive that the latter, participants apparently treated 
the $2000 like a typical member of the nonprestige category and the Z3 like a 
typical member of the prestige category. As a result, the estimated price for the 
Z3 ($51,400) was almost $20,000 greater than the estimated price for the $2000 
($32,200). 

iii. Guessing. In real-world estimation tasks, people occasionally encounter 
unfamiliar test items. When this happens, they guess. Guesses can be understood by 
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Fig. 4. Guessing function obtained from an event dating experiment. The function represents the 
percentage of 12,312 guessed responses (i.e., date estimates elicited by unrecognized event descriptions) 
assigned to each year in the response range. (From Lee, 2001.) 

examining responses produced when people indicate that they have no knowledge 
of the test item, and when this is done, it is clear that it is a systematic aspect to 
guessing. For example, Fig. 4 presents a guessing function obtained in an event 
dating experiment (Lee, 2001). In this experiment, participants first rated their 
knowledge of 67 public events. They were then informed that all events took place 
between January 1994 and the present and were required to estimate when each 
target event took place (September, 2000). The function plotted in Fig. 4, which is 
based on almost 1,700 guessed responses (i.e., estimates elicited by unrecognized 
events), represents the percentage of guesses that were assigned to each year in the 
response range. These data clearly indicate that guessing was nonrandom. Rather, 
it appears that when people guessed, they assumed that the unrecognized events 
did not happen in the recent past and they had a preference for selecting values 
near the center of the response range. 

Figure 5 presents another guessing function. In this case, the data come from 
an experiment in which 60 Canadian undergraduates rated their knowledge of 
114 countries and then estimated the current population of each (Brown, Cui, & 
Gordon, in press). The distribution plotted in this figure, which was based on about 
1,500 guesses, indicates that there is also a systematic aspect when people estimate 
national populations, but that guessing in this task differs from guessing observed 
in dating experiments. Here, it appears that people assumed that obscure countries 
have small populations and that they acted on this belief by assigning small values 
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Fig. 5, Guessing function obtained from a population estimation experiment. The function repre- 
sents the percentage of 12,312 guessed responses (i.e., population estimates elicited by unrecognized 
country names) falling into each of the specified bins. Data drawn from Brown, Cui, and Gordon 
(in press, Experiment 1). 

to unfamiliar countries. As it turns out, this assumption is a reasonable one, and as 
a consequence, guessed estimates tended to be fairly accurate; in this experiment, 
the median of the guessed responses was 10 million, and the median population 
of countries that were being estimated was 8.7 million. 

The point here is that there is a nonrandom aspect to guessing and that guessed 
responses can under some conditions be quite accurate. The shape of the guessing 
functions do differ from task to task. This fact rules out the possibility that people 
rely on some sort of content-free numerical strategy (e.g., pick the middle of the 
range; pick a small number; distribute guesses evenly across the range) when they 
fail to recognize the target item. Rather, these differences reflect task-specific and 
quite reasonable beliefs about the relation between (a lack of) item knowledge 
and the ordinal value of a target item. For dates, the guessing function suggests 
that people recognize that events can be forgotten over time and that they assume 
that an obscure event is one that has been forgotten, and hence one that is not 
recent (Brown, Rips, & Shevell, 1985). For populations, it may be that guessed 
and nonguessed estimates are produced by the same process. In the next section I 
discuss the possibility that people use familiarity or availability as an index of 
national population. 

iv. Memory assessment. Along with the numerical strategies discussed above, 
ordinal retrieval, ordinal reconstruction, and categorical inheritance depend on the 
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recovery and evaluation of relevant domain-specific knowledge. Furthermore, it 
seems that at least some guessing strategies may be informed by an understanding 
of the relation item knowledge and item value. In addition to these overt processes, 
there is evidence that implicit factors sometimes play a role in real-world estima- 
tion. In particular, an availability bias has been observed in several estimation 
tasks. This bias is defined as a tendency for people to provide larger estimates for 
well-known items than for less well-known items that have the same actual value. 
Similarly, it is common to find that estimates elicited by target items correlate 
more strongly with rated knowledge (a common measure of availability) than with 
their actual values. Availability biases have been observed when people estimate 
national populations (Brown et al., in press; Brown & Siegler, 1992, 1993), dates 
for public events (Brown et al., 1985; Kemp & Bnrt, 1998; Friedman, 1996), uni- 
versity tuitions (Lawson & Bhagat, in press), and annual revenues of Fortune 500 
companies (Brown & Brown, 1987). 

The availability bias has been explained by assuming that people are sensitive 
to the ease with which mental operations such as these are carried out and/or can 
readily assess how much they know about a given target, and that this evaluation 
of fluency, familiarity, or associative density can serve to index the relative size of 
the to-be-estimated quantity. For example, people may believe that better-known 
countries generally have larger populations than less well-known countries. If so, 
they may use some process-based measure to gauge how well known the target 
item is and use the products of this memory assessment process as the basis 
for an ordinal judgment. Item knowledge and the magnitude of to-be-estimated 
value are sometimes related (e.g., the rank order correlation between rated country 
knowledge and actual population is about .35). As a result, these familiarity-based 
intuitions can serve to inform ordinal judgments. However, because many factors 
(e.g., recency of exposure, biased news coverage, personal interest, etc.) affect 
how much people know about a topic and how accessible that knowledge is, an 
availability bias should be observed when a memory assessment process provides 
the basis for these judgments (Tversky & Kahneman, 1973). 

There are alternative explanations for the availability bias. Suppose that people 
typically use overt ordinal judgment strategies when they recognize a target item, 
that they fall back on a guessing strategy when they do not, and that these guessing 
strategies incorporate reasonable assumptions about what it means for an item 
to be unknown. For example, a person might infer that unrecognized countries 
have small populations, that unrecognized hazards are rare, or that unrecognized 
public events did not happen recently. If guesses are more common when people 
respond to less well-known items than when they respond to better-known items, 
and guesses are systemically biased and nonguessed responses are not, then the 
former should on average produce smaller or less recent estimates than the latter. 
In other words, systemic guessing could produce an availability bias in the absence 
of familiarity-based intuition. 
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There is evidence that suggests that sophisticated guessing is not solely respon- 
sible for the availability bias. This point was demonstrated in a recent priming 
experiment (Brown et al., in press, Experiment 2). In this experiment, test coun- 
tries were divided into two similar sets. At the outset of the session, participants 
in one group rated their knowledge of countries in one set and participants in a 
second group rated their knowledge of countries in the other set. Then, participants 
in both groups estimated the populations of all test countries. 

Assuming that familiarity is reflected in population estimates and that the ex- 
posure provided by the initial knowledge rating task would increase familiarity 
for rated (i.e., primed) countries but not for unrated (i.e., unprimed) countries, it 
follows that participants should provide larger population estimates for primed 
countries than for unprimed countries. Thus, the average estimated population for 
a given test country should be greater when that country had appeared in the initial 
knowledge rating task than when it had not. This prediction was supported by the 
data; well over half the test countries displayed the predicted priming effect (also 
see Brown et al., 1985, Experiments 2 and 3). 

Although this result does not rule out sophisticated guessing as a possible source 
of the availability bias, it does demonstrate that real-world estimates can be primed 
like other types of nonmnemonic judgments (e.g., fame judgments, Jacoby, Kelley, 
Brown, & Jasechko, 1989; truth judgments, Begg, Anas, & Farinacci, 1992). This 
claim, in turn, raises a set of issues concerning the integration of implicit and 
explicit sources of evidence when both can serve as input to the judgment process. 
Siegler and I have argued that when domain-specific knowledge and familiarity- 
based intuitions are available, the former is not necessarily given more weight than 
the latter (Brown & Siegler, 1992, 1993). Instead, estimates are hypothesized to 
reflect a weighted blend of competing sources of information, with the weighting of 
each source determined by its predictive strength (Brunswik, 1955). On this view, 
familiarity-based intuitions should play an especially important role in determining 
the ordinal value of a target item, when domain knowledge is sparse, and when 
these intuitions are more predictive than domain-specific knowledge. 

III. Seeding the Knowledge-Base 

At its simplest, seeding the knowledge-base requires that a person be exposed to 
at least one numerical fact and then estimate the value of at least one transfer 
(i.e., nonseed) item. The effects of seeding are assessed by comparing preseed- 
ing (or unseeded) estimates to the postseeding estimates. In the typical seeding 
experiment, postseeding estimates are more accurate than preseeding estimates. 
However, it is also common to find that the improvement is restricted to measures 
of metric accuracy and that seeding has little if any effect on the subjective ordering 
of test items. In other words, seeding almost always leads to a reduction in OME, 
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but rarely affects the rank-order correlation between the estimated values and the 
actual values (Brown & Siegler, 1993, 1996, 2001; Friedman & Brown, 2000a,b; 
Friedman et al., in press; LaVoie et al., in press). 

The dissociative effect of seeding on OMEs and correlations has been taken 
as evidence for the independence of metric knowledge and mapping knowledge 
(Brown & Siegler, 1993, 1996). Because the numerical-retrieval mode conflates 
these two types of knowledge, it follows that seeding effects may be limited 
to estimation tasks that rely on ordinal-conversion processes. And, the differ- 
ential effect of seeds on measures that reflect metric knowledge and those that 
reflect mapping knowledge implies that seeding affects the former, but not the 
latter. 

A. THE FEEDBACK/INDUCTION POSITION VS. THE ANCHORING POSITION 

This conclusion still leaves open the question of process. How does seeding af- 
fect metric beliefs? One possibility is that seeds serve as reference points or an- 
chors, in effect allowing people to shift from an ordinal-conversion mode to a 
numerical-retrieval mode. Because seed facts are expressed in the correct metric, 
the reconstructive numerical inferences sanctioned by these facts would also carry 
valid metric information with them. This is referred to as the anchoring position. 
A second possibility is that seeds provide feedback on the accuracy of preexist- 
ing metric beliefs and data necessary for inducing more accurate beliefs. This is 
referred to as the feedback/induction position. 

An example is helpful for understanding the anchoring position. Consider a 
person who initially believed that 20 million people lived in Pakistan and who 
then learned that there are 129 million Bangladeshis. If this person were required 
to estimate Pakistan's population again, he or she might recall the population of 
Bangladesh, recognize that the two countries are similar in relevant respects, infer 
that Pakistan and Bangladesh have similar populations, and conclude that some 
130 million people live in Pakistan. This second estimate is far more accurate than 
the first the correct answer is 142 million. 

More generally, the anchoring position assumes the following: (a) Seeds are 
stored in memory during a learning phase. (b) At least one seed is retrieved when 
a participant provides a postseeding estimate for a transfer item. (c) Similarity 
between the seed and the transfer item determines whether a given seed is re- 
trieved. (d) Estimates for the transfer item are "drawn toward" or assimilated to 
the retrieved seed(s). Consistent with Assumption a, participants in seeding exper- 
iments typically learn the seeds they have studied (Brown & Siegler, 1993, 1996; 
LaVoie et al., in press). Assumptions b and c describe how the retrieval-inference 
cycle and numerical reconstruction are linked. Assumption d restates the core find- 
ing in the anchoring-and-adjustment literature; extensive research conducted on 
this topic has demonstrated that transfer values are almost always assimilated to 



344 Norman R. Brown 

anchor values (e.g., Jacowitz & Kahneman, 1995; Strack & Mussweiler, 1997; 
Tversky & Kahneman, 1974). 

Taking advantage of the terminology introduced above, anchor position im- 
plies a mode switch; on this view, when seeding effects are observed, participants 
who relied on ordinal-conversion processes to generate their preseeding estimates 
use numerical reconstruction to generate their postseeding estimates. In contrast, 
the feedback/induction position holds that ordinal-conversion mode is used to 
produce both pre- and postseeding estimates and that seeding effects come about 
because the people have used the seeds to correct the metric assumptions that 
define the response range. 

More concretely, consider a person who initially believed that most countries 
have populations around 10 million and who then learns that the actual population 
of a representative set of countries is around 30 million. In this situation, this 
participant is likely to realize that the upper bound of the subjective response 
range has been too small or/and that range has been partitioned too conservatively. 
In response to this feedback, it would make sense to revise the range assumptions 
in a way that brings them in line with the metric information conveyed by the 
seed facts. This revision of the range should have two consequences; first, the 
postseeding estimates should be more accurate than the preseeding estimates, and 
second, the participant should come away with an improved set of metric beliefs. 

Four lines of evidence now support the claim that a feedback/induction mech- 
anism produces seeding effects. First, seeding effects persist even after seed facts 
are forgotten (Brown & Siegler, 1996; LaVoie et al., in press). This was demon- 
strated in an experiment designed to examine the long-term impact of the seeding. 
In this experiment, participants first estimated the populations of 99 countries; 
next, they learned the actual populations of 24 of the countries; then they esti- 
mated the populations of all 99 countries a second time. Four months later, the 
same participants returned to the laboratory and produced a third set of estimates 
for the 99 countries. For seed countries, mean OME prior to the learn phase was 
.56; it dropped to .08 immediately following the learning phase, and increased to 
.34 over the 4-month delay. Comparable values for the transfer countries were .65, 
.41, and .42. In other words, although the seed facts tended to be forgotten over 
time, the transfer estimates obtained 4 months after seed facts were learned were 
no less accurate than estimates produced immediately after the seeding procedure, 
and both were far more accurate than pretest estimates. 

The anchoring position holds that the accuracy of estimates should be directly 
linked to knowledge of the reference points. Thus, this view incorrectly predicts that 
transfer estimates collected in the 4-month condition should have been less accurate 
than those obtained immediately after seeding. In contrast, the feedback/induction 
position holds that knowledge of the actual values of indivual seed facts is unnec- 
essary once the metric beliefs have been updated. Thus, the feedback/induction 
position correctly predicted that delayed postseeding estimates would remain more 
accurate than the preseeding estimates, even after the seed facts had been forgotten. 
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A second line of evidence in favor or the feedback/induction position comes 
from research that has demonstrated that exposure to the numerical values alone 
can produce effects that are as robust as those that are obtained when people learn 
a corresponding set of seed facts. Recently two separate studies have shown this 
effect, one concerning population estimates (LaVoie et al., in press) and the other 
fatality rate estimates (Bostrom & Brown, 2001). The LaVoie study involved sev- 
eral between-subjects conditions. These included a condition in which participants 
were presented with 24 seed facts, one in which they were given the numerical 
values associated with the mean and range of the seed countries, and one in which 
they received only the mean value of the set. All three groups benefited from 
the information they received and displayed large reductions in OME. What was 
surprising was that the postseeding OME for the seed-24 group (.38) was only 
slightly smaller than the postseeding OME for the mean and range group (.41) and 
the mean-only group (.45). 

A similar result was obtained in a study in which participants were presented 
with a set of risks and required to estimate the relative frequency of each. After 
producing an initial set of estimates, participants in one group, the seed group, were 
given the actual relative frequencies of a subset of the hazards, and participants 
in a second group (the risk-scale group) were given a "community health scale." 
The community scale associated levels of risk with appropriately sized social units 
for each of the 7 orders of magnitude, ranging from 1 in 100 ("1 in 100 means 
that you can expect 1 fatality from this hazard on a street") to 1 in 100 hundred 
million ("1 in a hundred million means that you can expect 1 fatality from this 
hazard in a large country"). The seeds facts were selected to correspond to the seven 
community risk statements. For example, participants in the seed group were given 
the information that the annual mortality rate associated with all causes of death was 
1 in 100 and that the annual mortality rate for whooping cough was 1 in 100 million. 

After receiving this information, participants in both groups provided a second 
set of estimates. As in the LaVoie et al. (in press) study, posttest estimates were 
much more accurate than the pretest estimates, and the format manipulation had 
a negligible effect on performance. For both groups, the mean pretest OME was 
greater than 2.0, and mean posttest OME was about 1.2. 

On the anchoring view, when people have learned a set of seed facts, they 
shift from an ordinal-conversion mode to a numerical-retrieval mode and come 
to rely heavily on numerical reconstruction. This process requires not only that a 
numerical value is retrieved, but that the retrieved value has a known or inferable 
relation to the target item. On the one hand, the similarity of categorical relations 
that obtain between the seed items and the target items should enable the retrieval 
and interpretation of recently encountered numerical values. On the other hand, the 
absence of seed items should make it difficult if not impossible for people to relate 
the target items to numerical values when they are detached from specific categories 
or instances. Thus, the anchoring position incorrectly predicts that people can take 
advantage of numerical values only when they are presented as seed facts and fails 
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to account for the performance enhancing effects of the range and mean values 
in the LaVoie study and of the community risk scale in the Bostrom and Brown 
study. 

The feedback/induction position holds that seeding effects come about because 
the seed facts enable people to assess and when necessary to revise their metric 
knowledge. More generally, this view assumes any information that can be used to 
improve the accuracy of mistaken metric beliefs should improve estimation per- 
formance and that the format of the feedback is unimportant. Pretest results pro- 
vided clear evidence that participants in both the LaVoie et al. (in press) and the 
Bostrom and Brown (2001) studies were operating with inaccurate range assump- 
tions and a poor understanding of the relevant magnitudes. Under these conditions, 
the feedback/induction position correctly predicted that these individuals would 
benefit from exposure to numerical values that correctly defined the boundaries of 
the response range and/or its central tendency. 

B. Two CLASSES OF SEEDING EFFECTS 

1. Category-Based Seeding Effects 

The central finding in the anchoring literature is that postcomparison estimates 
assimilate to the comparison value. By extension, the anchor position predicts 
that that transfer values should only assimilate to seed values. This prediction has 
been disconfirmed by two lines of evidence. In this section I review the evidence 
that seeds produce robust contrast effects when they are used to repartition the 
response range. I also speculate on the conditions required for seeds to produce a 
repartitioning of the range and sketch the logic that has allowed us to predict when 
and how seeds of this type will affect performance. The following section focuses 
on a more general form of seeding, one that is observed when people use seed 
information for revision, rather than repartition, of their response range. In this 
section, I present evidence demonstrating that this type of seeding also produces 
contrast effects. 

Both the geography project and pricing project demonstrate that postseeding 
estimates for some target items are drawn toward the seed values while others shift 
away from them. This predictable mixture of assimilation and contrast is apparent 
in Figs. 3 and 4. The postseeding estimates presented in Fig. 3 (represented by the 
gray markers) were obtained from participants who had learned the actual latitudes 
of Tijuana (33 °) and Chihuahua (29°), and the postseeding estimates presented in 
Fig. 4 were obtained from participants who learned the actual price of a Honda 
$2000 ($48,000). In both experiments, items from the seeded category (Mexico 
and nonprestige brands) moved in the direction of the seed facts, but the items 
from the adjacent category shifted away from them (southern United States and 
prestige brands). 

The feedback/induction position, but not the anchoring position, can readily 
account for the contrast effects observed in these and other experiments. On this 
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view, the seeding effects apparent in these figures occurred because the seeds 
caused people first to redefine the range associated with seeded category and then 
to adjust the range associated with neighboring categories in order to keep the 
values assigned to items from these categories from overlapping. 

It is possible that this type of contingent repartitioning of the range will be 
observed only under the following conditions. 

1. Target items can be readily and accurately identified as members of particular 
categories. 

2. People have fairly uniform sets of beliefs about the response range either 
because the target dimension is familiar (e.g., automobile prices) or because it 
has been explicitly defined for the participants (e.g., latitude and longitudes). 

3. Categories have a known ordering and are believed to cover mutually exclu- 
sive portions of the response range. 

4. When the range is initially partitioned, numerical values are assigned indi- 
cating the upper and lower bound of categories and/or their central values. 

5. Categorical (inheritance-based) inferences play a primary role in the task. In 
other words, when people generate numerical estimates, they first determine 
the item's category membership and then select a value that falls within the 
range of values assigned to the relevant category. 

Under these conditions, seed values provide feedback on the accuracy of the 
range of values assigned to the seed's category and also information about the 
direction and size of the adjustment necessary to produce a more accurate par- 
titioning of the range. When the seed values are greater than the initial values 
estimated for the seed items (or for other comparable items from the seeded cate- 
gory), people typically respond by shifting the subrange up the scale. The opposite 
happens when the seed values are smaller than the initial values assigned to the 
seed items. These shifts have direct and obvious consequences for all items from 
the seeded regions. When category boundaries for the seeded region are shifted 
in one direction, the postseeding estimates for items from that category are also 
shifted in that direction. 

In addition, redefining the range associated with the seeded category can and 
often does trigger predictable revisions in the ranges associated with unseeded 
categories. There are several possibilities here. Seeds should have their most far 
reaching effects when the range is divided in a way that is both mutually exclusive 
and exhaustive. Here, a change in the range associated with one category would 
necessitate changes in the ranges associated with all other categories. 

A second more common situation occurs when the seeded category is considered 
to be strictly adjacent to a neighboring category (i.e., when the upper bound of one 
category is considered identical to the lower bound of the adjacent category). For 
example, North Americans certainly know that the United States and Mexico are 
part of the same land mass and believe that the southern United States is north of 
Mexico. They also tended to locate Mexico and the southern United States too far 
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to the south (Friedman & Brown, 2000a,b; Friedman et al., in press-b). As noted 
above, when people learned the actual latitudes of Tijuana and Chihuahua, they 
shifted cities from both the seeded (Mexico) and the unseeded region (the southern 
US) to the north (Fig. 3). This is also true when they learn they were seeded with two 
cities from the southern United States (Orlando FL, 29 ° and San Diego, CA 33°). 

Friedman and I have argued that these effects occurred because participants 
first used the seed facts to update their beliefs about the range of the seed region. 
Then, because the upper bound of one region is assumed to be the lower bound 
of the other (i.e., the regions are strictly adjacent), it was necessary to adjust the 
range of the neighboring region. This repartitioned range then served to guide the 
conversion process as participants again transformed their categorical (regional) 
knowledge to a set of numerical estimates. 

The work on geography also indicates that seed effects can propagate to concep- 
tually coordinated categories. These are categories that cover the same portion of 
the response range, though in parallel ordinal structures. To take a concrete exam- 
ple, latitude estimates for the Old World cities and New World cities overlap to a 
large extent and the estimates for the southern United States and southern Europe 
tend to be very similar. We have demonstrated that seeding one of these regions pro- 
duces a comparable shift in the other (Friedman & Brown, 2000b, Experiment 2). 
This effect occurred because people believe that two regions covered the same 
range of latitudes. Given this belief, a seed-induced revision to the range associ- 
ated with one region implies that the range associated with the other regions should 
also be revised. 

We have also argued that two principles, coherence and inertia, determine 
whether seeding effects will propagate from a seeded category to other categories, 
in the absence of strict adjacency. The coherence principle holds that people will 
adjust the metric values associated with an unseeded category when this adjust- 
ment is necessary to maintain the ordinal relations assumed to obtain between 
neighboring categories. The principle of inertia is the inverse of the coherence--it 
states that in the absence of strict adjacency, people will not adjust the metric val- 
ues associated with unseeded categories when the coherence of the representation 
is not compromised by the modifications to the range of a neighboring category. 

A geography experiment focused on the Old World provided a clear demonstra- 
tion of these principles at work (Friedman & Brown, 2000a, Experiment 2). In this 
experiment, Canadian undergraduates estimated the latitudes of cities in Europe 
and Africa. One group then learned the location of two southern European cities 
(Lisbon, 39 ° and Athens, 39 ° north) and another group learned the location of two 
north African cities (Tunis, 37 ° and Algiers, 37 ° north). All participants then pro- 
vided a second set of estimates for all test cities. Consistent with previous research, 
southern Europe and Africa formed distinct regions, and the cites in both regions 
were placed far to the south of their actual locations. Following exposure to the 
southern European seeds, estimates for cities in southern Europe moved north, but 
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the estimates for cities in Afr ica  did not. In contrast, the African seeds affected both 
Afr ica  and southern Europe in the same way: postseeding estimates for cities from 
both regions shifted about 15 ° to the north of  the preseeding estimates (see Fig. 6). 

An examination of  the preseeding estimates provides a starting point for an 
explanation for this asymmetrical  seeding effect. As noted above, people who took 
part in this experiment treated southern Europe and Afr ica  as separate regions; they 
knew that southern Europe is north of Africa; and their estimates for cities from 
both regions were strongly biased to the south. It also seems reasonable to assume 
that these participants were aware of  the existence and relative location of  the 
Mediterranean Sea. Under  these conditions, the African seeds had two effects. 
First, they indicated that the preseeding estimates for the African cities were too 
far to the south and implied that the range associated with Africa should be shifted 
to the north. Second, because the values associated with African seeds were north 
of  most preseeding estimates elicited by southern Europe, these seeds also carried 
implications for the location of  southern Europe. The implication here was that 
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southern Europe would have to be shifted to the north to ensure that the postseeding 
estimates still reflected the belief that southern Europe is north of Africa. 

The revision of the range associated with southern Europe is consistent with the 
operation of the coherence principle. On this view, participants who were presented 
with the African seeds updated the range associated with southern Europe because 
the failure to do so would have contradicted the firmly held beliefs about the 
position of Africa relative to Europe and not because they believed that the two re- 
gions were strictly adjacent. Evidence for this latter point comes from the southern 
European seed condition. If participants who received the southern European seeds 
had treated southern Europe and Africa as being strictly adjacent, then a seed- 
induced shift in the subjective location of the former should have been followed 
by a comparable shift in the location of the latter. In other words, the estimates 
for Africa should have been "dragged up" by the southern European seeds in the 
same way that Mexican estimates were dragged up by southern United States seeds 
(Friedman & Brown, 2000b, Experiment 1). Instead, the estimates for the African 
cities were unaffected by the southern European seeds, though the postseeding 
estimates for the southern European transfer cities were far to the north of the 
preseeding estimates. 

Given that the two regions are separated by a body of water and thus not strictly 
adjacent, relocating the lower bound of southern European had no clear impli- 
cations for the location of the upper bound of Africa. In addition, although the 
southern European seeds indicated that the range assigned to the seeded region 
needed to be revised, the updated set of range assumptions left the ordinal relations 
between southern Europe, the Mediterranean, and Africa intact. Thus, neither adja- 
cency nor coherence provided a rationale for participants in the southern European 
seed group to revise their beliefs about the location of Africa. In the absence of 
such a rationale, the principle of inertia is in effect; simply put, these people did 
not update their beliefs about the location of Africa because they did not have to. 

It is worth noting that it is possible to use the notions of coherence, adjacency, 
and inertia to generate additional predictions about the effects of seeds on geo- 
graphical knowledge. To take one example, we would expect seeding with cities 
from central rather than northern Africa (e.g., Mogadishu, Somalia, 2 ° north and 
Kampala, Uganda, 0 °) would lead participants to produce more northerly estimates 
for transfer cities from Africa, but would have no effect on the location of cities 
in southern Europe. In this case, the values conveyed by the African seeds would 
not violate the belief that southern Europe is north of Africa and thus would fail 
to trigger a coherence-driven revision of the southern Europe range. 

In principle it should also be possible to employ these transfer notions to inves- 
tigate the representation of knowledge in other categorically structured domains. 
For example, we already know that people classify automobile brands into two cat- 
egories and that learning about the price of the Honda $2000 increased postseeding 
estimates for the seeded category (nonprestige brands) and the unseeded category 
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(luxury brands). This is analogous to the effect of Mexican seeds on the southern 
United States and African seeds on southern Europe, which means that the transfer 
could have been mediated by adjacency or coherence. It should be possible to de- 
termine whether the two price categories are considered to be strictly adjacent by 
seeding with a very expensive prestige sports car (e.g., a Lexus GS400, $68,000) 
or a very inexpensive nonprestige sports car (e.g., a Ford Mustang, $21,000). If 
adjacency holds, the former should increase the prices of cars from both categories 
and the latter should decrease them. If adjacency does not hold, the seeds should 
affect only the transfer items from the seeded category. 

Finally, it should be pointed out that it is also possible to select seeds in such a 
way that removes estimation bias. This was done in a recent experiment in which 
Canadians from Alberta and Americans from Texas estimated the latitudes of 
Canadian, American, and Mexican cities (Friedman et al., in press-b). They were 
then presented with the latitudes of Ottawa (45°), Minneapolis (45°), Dallas (33°), 
and Tijuana (33 °) and provided a second set of estimates. As in prior studies, the 
preseeding estimates for Mexico and the southern United States were biased to 
the south, with the latter displaying a greater bias than the former. In addition, 
the Texans initially placed the Canadian cities far to the north of their actual 
locations, though the Albertans did not. All of these biases were eliminated in the 
postseeding estimates. It may be too soon to generalize from these findings to a 
set of prescriptions for selecting an optimal set of seed facts. But these results do 
suggest that it is important to seed each of the functional categories and that it is 
a good idea to select seeds that denote category and/or range boundaries. 

2. Revising the Metric 

In the last section, I focused on a set of seeding phenomena that appear to occur 
only when people have an accurate understanding of the response range and when 
they primarily rely on categorical (inherence-based) inferences to generate their 
estimates. Because metric beliefs are often inaccurate and category knowledge 
typically does not map onto target dimensions in a one-to-one manner, tasks that 
meet these requirements are uncommon. Nonetheless, seeding effects are readily 
obtained. The processes that produce most of effects are probably quite simple. As 
noted above, exposure to the seed facts can provide feedback about the accuracy 
of the current range of assumptions. When it is clear that these assumptions are 
inaccurate, the numerical values conveyed by the seeds can be used to induce a 
more appropriate range and/or a more appropriate partitioning of the range. 

A core prediction of these claims is that there should be a strong negative 
correlation between the magnitude of the initial estimates for the seed items and the 
magnitude of change produced in the estimates for the transfer items. Specifically, 
when the actual value of the seed items (SA) is greater than initial estimates for the 
seed items ($1), then the postseeding estimates for the transfer items (T2) should 
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be greater than the preseeding estimates for the transfer items (T0; when SA is 
less than $1, T2 should be less than T]; and the size of the change in the transfer 
estimates should reflect the degree to which the values for the seed estimates were 
initially under- or overestimated. 

The predicted correlation has been observed when people estimate national pop- 
ulations (Brown & Siegler, 1993, 2001), city-to-city distance (Brown & Siegler, 
2001), and fatality rates (Bostrom & Brown, 2001). Data from the latter study are 
presented in Fig. 7. Each point in this figure represents data from one participant. 
Each of these participants estimated the number of Canadians who die each year 
from each of 40 causes; they then learned the actual fatality rates associated with 
8 of these hazards and provided a second set of estimates. To construct this figure, 
three mean SOMEs were computed for each participant, one over the initial seed 
estimates (S1), a second over the initial transfer estimates (Ta), and a third over the 
postseeding transfer estimates (T2). Then T] was subtracted from T2 providing an 
indication of the direction and magnitude of the seed-inducing change; thus, a posi- 
tive value of this difference indicates postseeding estimates were on average larger 
than the preseeding seeding estimates, and a negative value indicates the opposite. 

This difference score is plotted against $1 in Fig. 7. The correlation between 
these values was - .85 ,  indicating that individuals who initially underestimated 
fatality rates for the seed hazards increased the magnitude of their postseeding 
estimates, and those who initially overestimated the seed values decreased the 
estimates for the transfer items. In addition, although Si and T1 were strongly 
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correlated (r = .88), $1 and Tz were not (r = - .13).  This indicates that people 
converged on roughly the same metric for their postseeding metric and that they 
did this regardless of their initial metric assumptions. 

For reasons laid out above, this pattern of results is consistent with the feed- 
back/induction position. However, an anchoring account can also explain them. 
On this view, seeding allows (causes) people to shift from the ordinal-conversion 
mode to the numerical mode. If so, when people generate their posttest estimates, 
they would recall at least one seed fact and use it as a numerical anchor or reference 
point. Given that $1 and T1 are highly correlated, this means that people who ini- 
tially underestimated $1 and Ta will be anchoring on relatively large values when 
they use the seed values to construct their Tz estimates, and those who initially 
overestimated $1 and Tl will be anchoring on relatively small values. Assuming 
that T2 assimilates to the anchoring, it follows that T2 should be greater than T1 
when T1 was initially underestimated, and that T2 should be less than T1 when T1 
was initially overestimated. This of course is what Fig. 7 shows. 

Siegler and I devised a variant of the standard seeding that was capable of 
distinguishing between these two accounts (Brown & Siegler, 2001). As in most 
other seeding experiments, we used a 3-phase procedure. However, we selected 
seed facts whose actual values were less than participants' initial estimates of 
their values, but were greater than their initial estimates for the transfer items, 
that is, T1 < SA < $1. Under these conditions, the feedback/induction hypothesis 
predicts that postseeding transfer estimates should shift away from the anchors' 
values, which implies T2 < T1. This is because the exposure to these particular seed 
values would imply that the initial estimates tended to be overestimated. If people 
recognize this fact, they should respond to it by revising their metric assumptions 
downward. In contrast, the anchoring position predicts that postseeding estimates 
for transfer items should be drawn toward the actual value of the seed items, 
which implies that T 2 > T1. This prediction is based on the general finding that 
to-be-estimated values assimilate to available anchor values. 

These predictions were tested in two experiments: in one, people estimated na- 
tional populations and in the second, they estimated city-to-city distances. In both 
experiments, we are able to select seed items so that a reasonable number of par- 
ticipants produced the "split" pattern that was critical for assessing the competing 
predictions (i.e., T1 < SA < $1). And in both, participants who displayed this crit- 
ical pattern were much more likely to decrease their estimates than to increase them. 
Thus, these experiments provide a fourth line of evidence in support of the view that 
people respond to seed facts by adjusting their metric assumptions and against the 
view that seeding fosters a more reconstructive approach to real-world estimation. 

3. Additional Points 

There are three additional issues that are worth mentioning before concluding 
this section. The first concerns the number of seeds required to obtain a seeding 
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effect. A fair amount of evidence has accumulated that even a single seed fact can 
affect the magnitude of people's real-world estimates. Specifically, single seeds, 
typically presented as examples prior to an estimation task, have been found to 
influence population estimates (Brown et al., in press, Experiment 1; LaVoie et al., 
in press), estimates of fatality rates (Lichtenstein, Slovic, Fischhoff, Layman, & 
Combs, 1978, Experiment 3), and longitude estimates (Friedman & Brown, 2001a, 
Experiment 3). Additional demonstrations of the single-seed effect have been re- 
ported in experiments in which participants were presented with several different 
real-world estimation questions and were required to read a seed fact before pro- 
ducing an estimate (Beck & Carlson, 1998; Brown, 2001; Friel & Carlson, 2000). 
Although there is some evidence that the robustness of the seeding effect increases 
with the number of seeds presented (LaVoie et al., in press), these single-seed 
effects are important because they indicate that people are very sensitive to the 
numerical implications carried by seeds and that they are often so uncertain of the 
metric that they are willing to revise their assumptions on the basis of a very small 
amount of information. 

The second point deals with the relation between seeds and mapping knowledge. 
As noted above, exposure to seed facts generally does not affect the relative order- 
ing of transfer items. This fact has been taken as evidence that metric and mapping 
knowledge are independent. However, there have been two demonstrations that 
seeds can influence the rank-order correlation between the estimated and actual 
values. One of these dealt with population estimates (Brown & Siegler, 1993, Ex- 
periment 3) and the other with estimates of college tuition (Lawson & Bhagat, in 
press, Experiment 1). In both studies, seeds were selected from specific categories 
in a way that emphasised the existence of a relation between category membership 
and the magnitude of the to-be-estimated values. And in both studies, a followed-up 
experiment demonstrated that seed facts are not necessary to alter the correlation 
between estimated and actual values. Rather, changes in mapping accuracy could be 
achieved by presenting participants with statements that either captured the gener- 
alizations implied by the seed set (i.e., "People tend to overestimate the population 
of European countries and underestimate the population of Asian countries") or 
facilitated an accurate assignment of a target item to a functional category (e.g., 
"Private schools tend to be named after people or have religious connotations"). 
This suggests seeds will affect measures of mapping accuracy when they indicate 
that categorical knowledge can serve as the primary cue to an item's ordinal value, 
when they provide the basis for determining the ordinal relations that hold between 
the functional categories, or when they facilitate categorization of the target items. 

The final point concerns the conclusion that seeding effects are produced by 
a feedback/induction process and not by an anchoring process. Again, this con- 
clusion is based on four types of evidence. Briefly, we have found (a) seeding 
effects can persist for a long time even when the seed facts have been forgotten; 
(b) experimenter-provided numbers can affect postseeding estimates in much the 
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same way that numerically comparable seed facts do; (c) contrast effects are com- 
mon when seeds are used to repartition the range; and (d) contrast effects can also 
be observed when seeds are used to reset the metric. 

Despite the existence of much evidence favoring the feedback/induction hypoth- 
esis, there are empirical, as well as intuitive, grounds to suspect that anchoring may 
play a role in seeding. Specifically, LaVoie et al. (in press) recently collected writ- 
ten strategy reports from people who had just completed a population seeding 
experiment. Nine of 12 participants who learned a set of seed facts "reported using 
the populations given to base their estimates on." Interestingly, 7 of 12 participants 
who were presented only the numerical values (in the absence of the country names) 
indicated the same thing. On the one hand, these data suggest that participants in 
the seed group may have used the seeds in a (re)constructive manner. On the other 
hand, for reasons laid out above, it seems unlikely that numerical values stripped of 
their referents could be used to support numerical reconstruction. This in turn raises 
the possibility that participants in both groups used the numerical values they were 
presented with in some other way. For example, these numbers may have been used 
to adjust their metric assumptions and then to define the boundaries that separated 
different portions of the range. Or, they may have served as examples of the types 
of numbers that could pass as a reasonable response. Thus, despite the intuitive 
appeal of the anchoring position, there is still no compelling reason to believe that 
seeding causes people switch from ordinal conversion to numerical reconstruction. 

IV. Conclus ion 

In this article I have attempted to lay out a broad framework for understanding 
real-world estimation and seeding effects. The core contentions of this framework 
can be summarized as follows: 

I. Plausible reasoning and the retrieval-inference cycle play a central but varied 
role in real-world estimation. 

2. There are two basic estimation modes: numerical retrieval and ordinal con- 
version. 

3. People use numerical-retrieval strategies when the target items are typically 
directly or indirectly associated with at least one potentially relevent numer- 
ical fact. 

4. When such facts are scarce, people rely on ordinal conversion. 
5. Ordinal conversion requires a preparatory stage during which people set the 

metric (i.e., define and partition the response range). 
6. Once the metric is set, estimates are generated by determining the ordinal 

value of the target item and then selecting a value from the appropriate portion 
of the range. 
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7. Many different processes may be used to determine the relative magnitude 
of the target item, including one that directly equates a target item's category 
membership with its ordinal value. 

8. Exposure to seed facts causes people to revise their metric assumptions and/or 
repartition the range. 

9. These changes are produced by a feedback/induction process rather than an 
anchoring process. 

10. In some situations, estimation profiles and the seeding effects can be used to 
explore the structure and nature of domain-specific knowledge. 

This set of claims captures much of what is known about real-world estimation 
and seeding. This does not mean that there are not many issues remaining. Some of 
these concem developing a more detailed understanding of the processes that are 
engaged when people generate numerical estimates. For example, I have argued 
that ordinal conversion is the default estimation strategy and that the application of 
this strategy typically requires people to draw on their rather vague metric beliefs to 
define and partition the response range. It is clear that a complete description of real- 
world estimation will be needed to explain how this essential task is accomplished 
and that additional research will be required to achieve this goal. 

Other issues concern various extensions of this approach. My colleagues and 
I have already begun to conduct research designed to examine the development 
of the knowledge structures and estimation strategies (Kerkman et al., 2001) and 
the nature, origins, and implications of cross-cultural differences in estimation 
performance (Brown et al., 2002; Friedman et al., in press-b; Kerkman, Norris, & 
Stea, 2001). Another way to extend this project is to begin the systematic study 
of additional estimation tasks. In the past, I have found that each new task has 
its unique elements and some features in common with other tasks. As a result, 
understanding a wider range of tasks should contribute additional detail to the 
current framework, while strengthening the inductive claims that it embodies. 

In addition to studying new estimation tasks and considering the developmen- 
tal and cross-cultural implications of this work, it will also be useful to deter- 
mine whether the current approach accounts for other types of estimation phe- 
nomena (e.g., anchoring effects, boundary effects) and other uses of real-world 
knowledge (i.e., non-numerical judgment, opinion formation and revision, etc). 
And it will be necessary to reconcile the current framework with other poten- 
tially relevant theories such as Anderson's feature integration theory (Anderson, 
1981), Huttenlocher's category model (Huttenlocher et al., 1991), and Gigerenzer's 
fast and frugal heuristics perspective (Gigerenzer, 1999; also see Brown, 2002; 
Friedman, 1993; Jacoby & Brooks, 1984; Parducci, 1963; Poulton, 1989). Finally, 
some clear predictions fall out the framework. For example, seeding should have 
a minimal effect on estimation performance when people can rely on numerical- 
retrieval strategies, and there should be little evidence for postseeding mode shift 
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when  seeding effects  are observed.  Di rec t  tests o f  such predict ions wi l l  contr ibute 

to an improved  unders tanding of  the relat ion be tween  domain  knowledge  and 

strategy select ion.  

Admit tedly ,  m u c h  w o r k  remains  to broaden and deepen  our  unders tanding of  

rea l -wor ld  es t imat ion and to de termine  how a theoret ical  account  o f  this class of  be-  

haviors  fits wi th  a more  general  theory of  complex  cognit ion.  Nonetheless ,  I wou ld  

argue that we  know m u c h  more  about  these issues now than we  did 10 years ago, 

and that this fact demonst ra tes  that i t  is not  only  possible  but  desirable to use exper-  

imenta l  methods  to study the organizat ion and ut i l izat ion o f  rea l -wor ld  knowledge .  
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