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Exposure to a few task-relevant numerical facts often
influences subsequent numerical estimates. This point has
been demonstrated through a method called seeding the
knowledge base. The typical experiment has three phases:
First, participants are presented a set of items and required
to estimate the value of a particular quantitative property
(e.g., national populations). Next, they learn the actual
values of a subset of the items; we call these items seed
facts. Finally, participants reestimate the values of the
items in the initial set. These experiments have demon-
strated that the seeding procedure can improve estimation
of national populations (Brown & Siegler, 1993, 1996;
Experiment 1, below), the latitudes and longitudes of cities
(A. Friedman & Brown, 2000a, 2000b; A. Friedman,
Kerkman, & Brown, 2001), and the nutritional contents
of various foods (Walbaum, 1997). The present study adds
between-city distances to the set of quantitative dimen-
sions that have been examined.

These seeding effects raise general issues concerning
how people learn from examples and how new informa-
tion is integrated with existing knowledge. The findings
also have obvious educational implications. Understand-
ing the principles that govern revision of quantitative esti-
mates should enable instructors to reduce domain-specific
innumeracy by teaching students a small number of well-
chosen numerical examples. Seeding effects have been
shown to depend on what people already know about the
target domain and on the specific identities of the seeds
and the transfer items (Brown & Siegler, 1993; A. Fried-

man & Brown, 2000a, 2000b). Therefore, both theoreti-
cal and instructional applications of this method hinge
on our ability to predict how seeds will interact with do-
main knowledge. This, in turn, requires a thorough under-
standing of the cognitive mechanisms that produce pos-
itive seeding effects.

In the present study, we pursued this last goal by com-
paring predictions that would follow from two plausible,
but different, seeding mechanisms: feedback/inductionand
anchoring (Brown & Siegler, 1996). In the next sections,
we describe these approaches and introduce a variant of
the seeding method within which reliance on the two
mechanisms would produce different outcomes. These
predictions are then tested in two parallel experiments, one
dealing with populations and the other with between-city
distances.

The Feedback/Induction Position
Prior research has demonstrated that people access

two independent sources of knowledge when they gener-
ate real-world estimates: mapping knowledge and metric
knowledge. Metric knowledge is information about the
statistical properties of the target dimension—for example,
the range, central tendency, and form of the distribution
(Brown & Siegler, 1993, 1996). Mapping knowledge is
the (often nonnumerical) information about particular
items in the domain used to order items relative to one
another along a target dimension.

People are very skillful at extracting metric informa-
tion from sets of numbers presented in experimental set-
tings (e.g., Malmi & Samson, 1983; Spencer, 1961). Ac-
cording to the feedback/induction position, the numerical
induction process that underlies this ability also produces
seeding effects, in two ways. First they provide feedback
on the accuracy of preexisting metric beliefs—for exam-
ple, beliefs about the mean value of the entities on that
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dimension. Second they provide data necessary for in-
ducing more accurate beliefs.

To make this perspective concrete, consider a person
in a typical seeding experiment who initially believed that
most countries have population around 50 million and
who then learns that the actual population of a represen-
tative subset of countries is around 25 million. In this sit-
uation, the participant is likely to realize that his or her
metric beliefs were incorrect and to revise his initial es-
timates downward for countries whose populations were
not presented, as well as for those countries that were. Sim-
ilarly, someone who believed that countries typically have
10 million people should react to the same set of seeds
by revising his mean estimate upward. In both cases,
postseed-set estimates should be more accurate than
preseed-set estimates.

The Anchoring Position
As is implied by its name, the anchoring position

holds that people use numerical examples as anchors or
reference points. On this view, (1) seeds are stored in
memory during a learning phase. (2) At least one seed is
retrieved when a participant provides a postseeding esti-
mate for a transfer item. (3) Similarity between the seed
and the transfer item determines whether a given seed is
retrieved. (4) Estimates for the transfer item are “drawn
toward” the retrieved seed(s). Consistent with Assump-
tion 1, participants in seeding experiments typically learn
the seeds they have studied (Brown & Siegler, 1993,
1996). Assumption 4 is simply a restatement of the core
finding in the anchoring-and-adjustment literature, which
is that transfer values tend to move toward anchor values
(Tversky & Kahneman, 1974; for recent reviews, see Ja-
cowitz & Kahneman, 1995; Strack & Mussweiler, 1997).
Assumptions 2 and 3 are necessary to ensure a nonarbi-
trary relation between seeds and transfer items; although
they have not been tested directly, they do a play a cen-
tral role in a recent model of reconstructive event dating
(Kemp, 1999).

Again, an example is useful. Consider a person who
initially believed that 20 million people live in Austria
and who then learned the population of Switzerland. If
this person were required to estimate Austria’s popula-
tion after learning that of Switzerland, he or she might
recall that there are 6.6 million people in Switzerland,
recognize that Austria and Switzerland are similar in rel-
evant respects, and infer that Austria’s population is sim-
ilar to Switzerland’s. Alternatively, the transfer country
might first be compared with a retrieved seed fact, and
this comparison could lead to the selective activation of
information that supports the conclusion that Austria has
a population similar to that of Switzerland (Chapman &
Johnson, 1999; Mussweiler & Strack, 1999; Strack &
Mussweiler, 1997). In either case, explicit knowledge of
Switzerland’s population would provide grounds for es-
timating that there are about 7 million Austrians.

As was noted above, the anchoring position assumes
that participants will adjust initial estimates in the direc-
tion of anchors. Seed values provide one type of anchor.
Thus, when seed values are, on average, larger than peo-
ple’s estimates for other countries were before they en-
countered the seeds, postseeding estimates for these trans-
fer countries should increase. The opposite pattern should
be observed when the seed values are, on average, smaller
than the preseeding transfer estimates.

Distinguishing Between Anchoring
and Feedback/Induction

As the preceding discussion suggests, both the feed-
back/induction position and the anchoring position pro-
vide plausible accounts for the positive effect of seeds
on estimation accuracy. There are, however, two lines of
evidence that favor the former over the latter. One was
reported in a study of whether seed facts exert lasting in-
fluences on estimates of transfer items (Brown & Sieg-
ler, 1996). Participants first estimated the populations of
99 countries; next, they learned the actual populations of
24 of the countries; then they estimated the populations
of all 99 countries a second time. Four months later, the
same participants returned to the laboratory and pro-
duced a third set of estimates for the 99 countries.

We expected that specific seed facts would be forgot-
ten during the lengthy retention interval; our interest was
in determining whether performance for transfer coun-
tries would decline with the delay. The anchoring posi-
tion predicted that accuracy for the seed countries and
accuracy for the transfer countries should decrease in
tandem. Within this view, accuracy of estimates is directly
linked to the quality of knowledge of reference points. In
contrast, the feedback/induction position did not predict
a decline. Within this view, people use seeds to revise
their metric beliefs, as when thinking “small European
countries have fewer people than I would have guessed.”
Once beliefs are modified, the seeds themselves play no
further role in the estimation process. Thus, the feedback/
induction position predicted that delayed postseeding es-
timates would remain more accurate than initial estimates
even after the seeds were forgotten.

The prediction of the feedback/induction position proved
accurate. Improvement in estimates for the transfer coun-
tries was undiminished after the 4-month delay, whereas
recall of seed populations was much less accurate than it
had been immediately after the seeding procedure.

The second line of support for the feedback/induction
position arose in a set of experiments on how seeds af-
fect geographical knowledge (A. Friedman & Brown,
2000a, 2000b). This research indicated that the same
seeds could move postseed estimates for some cities to-
ward seed values (assimilation effects) and estimates for
other cities away from them (contrast effects). Such find-
ings are incompatible with the anchoring hypothesis
(which holds that postseeding estimates consistently move
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toward the seed [anchor] values or are unaffected by them).
However, such findings are entirely consistent with the
feedback/induction position.

To illustrate, in one experiment (A. Friedman & Brown,
2000b, Experiment 1), participants first estimated the
latitudes of cites in Canada, the United States, and Mex-
ico. Then they learned the actual latitudes of Tijuana (33º)
and Chihuahua (29º). Finally, they generated a second set
of latitude estimates. Postseeding estimates for the Mex-
ican cities shifted northward toward values for the seed
countries, whereas postseeding estimates for the U.S. and
Canadian cities shifted northward away from them. Ap-
parently, the participants reacted to the seeds by first up-
dating their beliefs about the latitude of the U.S.–Mexican
border and then revising their metric beliefs about the
latitudes of other locations in a way that maintained or-
dinal relations among regions.

Overview of the Present Study
In brief, we have found that delay periods have differ-

ing effects on seed and transfer items and that seeding
produces contrast effects on some items and assimilation
effects on others. We believe that both findings support
the feedback/induction hypothesis and that both are in-
consistent with the anchoring position. However, there
are other ways of interpreting these data. For example,
results of the long-term recall study are consistent with
a hybrid position that assumes that seeds can be used as
anchors and that they also can support the assessment
and revision of underlying metric beliefs. On this view,
participants might have revised their metric beliefs dur-
ing the learning phase, used the seeds to anchor their es-
timates during the immediate postseeding test, and then
relied on appropriately revised metric knowledge when
generating their estimates during the delay test. In a sim-
ilar vein, an anchoring advocate might argue that latitude
estimation is not representative of other real-world esti-
mation tasks. This is because the functional categories (i.e.,
geographical regions) are mutually exclusive, and as a
result, a shift in estimates for one region necessitates a shift
in adjacent regions. Thus, the contrast effects observed
in the latitude estimation studies could be limited to rig-
idly structured domains.

In light of such alternatives, and given the intuitive ap-
peal of the anchoring position, we felt that other types of
evidence were required to discriminate between the an-
chor and the feedback/induction positions. To this end,
we devised a variant of the seeding paradigm that gener-
ated clearly contrasting predictions and was not subject
to the types of objections that might be leveled at the ev-
idence previously available. We used this new approach
in the two experiments reported below.

In both experiments, seed sets were selected so that
the actual value of seed items (SA) would be greater than
the preseeding estimates for items in the transfer set (T1)
but less than the preseeding estimates for the items in the
seed set (S1)—that is, T1 < SA < S1. In this situation, the
anchoring and feedback/induction positions make oppo-

site predictions. To the extent that anchoring influences
postseeding estimates for transfer items (T2 ), they should
be drawn toward the actual value of the seed items, rel-
ative to the initial estimates for the same items (T2 > T1).
In contrast, the feedback/induction position predicts that
these estimates will move away from the seeds (T2 < T1).

The logic for these predictions is relatively straightfor-
ward. First, consider the logic underlying the anchoring
predictions. Seeding experiments present participants
with a more complex situation than does the typical an-
choring study. However, there is evidence that people re-
spond to multiple anchors as if they were responding to
a single anchor with a value equal to the average of the
presented facts (Pohl, 1996; Switzer & Sniezek, 1991).
Thus, if participants use seeds as anchors, postseeding
estimates should be drawn toward the seed values, even
if more than one seed is presented.

The best way to understand the feedback/induction
prediction is by example. Consider a person who first es-
timates the population of 96 countries, then learns the
actual populations of 10 of these countries, and finally
provides a second set of estimates for the 86 transfer coun-
tries and the 10 seed countries. Suppose that this per-
son’s initial estimates averaged 60 million for the seed
countries (S1) and 20 million for the transfer countries
(T1) and that the actual average population for the seed
countries was 35 million (SA). While learning the actual
populations of the seed countries, this person should
come to realize that his or her initial estimates for the seed
countries were too large. In turn, this should lead to the
conclusion that the initial estimates for the transfer coun-
tries were also too large. Having arrived at this conclu-
sion, it would make sense to decrease previous estimates.
More generally, if the seeds provide participants with
feedback about the accuracy of their metric beliefs, then
participants should adjust their estimates downward
when the seeds indicate that the initial estimates tended
to be too large (i.e., when SA < S1), and they should move
them upward when the seeds indicate that the initial es-
timates tended to be too large (i.e., when S1 < SA).1

In summary, the anchoring hypothesis and the feedback/
induction hypothesis provide two plausible explanations
for the seeding effects observed in prior experiments. In
this article, we report two experiments designed to pro-
vide a direct test of these positions. In both, we selected
seeds whose actual values fell between participants’ ini-
tial estimates of their values and their initial estimates for
the transfer items. Under these conditions, the feedback/
induction hypothesis predicts that postseeding transfer
estimates should shift away from the anchors’ values,
and the anchoring hypothesis predicts the opposite.

EXPERIMENT 1

Participants estimated the populations of the 96 coun-
tries, learned the actual populations of 10 of these, and
then provided a second set of estimates for all 96. As was
noted above, the anchoring and feedback/induction po-
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sitions make different predictions only when SA falls be-
tween T1 and S1. To maximize the frequency with which
this would happen, we selected seed countries that had
relatively large populations but that elicited population
estimates that were even larger. On the basis of pilot data,
we expected that the participants would often generate
S1 estimates that were larger than SA, and T1 estimates
that were smaller than SA. For reasons outlined above, we
were particularly interested in learning how those par-
ticipants whose first estimates conformed to this split
pattern would respond to the seed facts.

Method
Materials . The stimulus set used in this experiment consisted of

96 country names (mean population 5 49.11 million; median 5
15.6 million; standard error 5 14.9; skew 5 6.5). This represented an
almost complete listing of the world’s 100 largest countries at the
time. Recent events compelled us to exclude the Soviet Union, Yu-
goslavia, and East Germany, and the United States was excluded be-
cause it served as an example. The full set of countries, along with
their 1992 populations, can be found in Brown and Siegler (1993,
Table 1). The seed countries are listed in Table 1.

Procedure. This experiment included four tasks. First, partici-
pants rated their knowledge of each of the 96 test countries, using
a scale from 0 (no knowledge) to 9 (a great deal of knowledge). This
task was conducted to familiarize the participants with the stimulus
set and with the data collection procedure. Second, participants were
asked to estimate each country’s current population. Third, they
proceeded through four rounds of a study–test procedure; in each
round, they were presented the actual populations of 10 seed coun-

tries and tested on each of them. Fourth, the participants provided
a second set of estimates for all 96 countries. In all phases, country
names were presented one at a time, in a unique random order, at
the center of a computer-controlled video display; all responses were
typed at the computer’s keyboard.

Participants. Thirty Carnegie Mellon University undergraduates
participated in this experiment. Some received course credit for
their cooperation; others were paid. The procedure lasted approxi-
mately 1 h.

Results and Discussion
For each participant, medians were computed for the

preseeding estimates for the 86 transfer countries (T1)
and for the postseeding estimates for those countries (T2),
and the 10 seed countries (S1). In addition, separate rank-
order correlations were computed between the actual pop-
ulations and the preseeding and postseeding estimates
for the transfer and seed countries. These rank-order cor-
relations provided an index of mapping accuracy. A 
measure called order of magnitude error (OME), which
converts estimation error to a percentage of an order of
magnitude, provided the main measure of metric accu-
racy (Brown & Siegler, 1992, 1993; Nickerson, 1981).
On this measure, the lower the score, the closer the par-
ticipant’s estimate to the actual population. A separate
OME value was computed for each estimate according to
the following equation:

OME 5 | log10(estimated value/actual value) | .
Mean OMEs were computed for preseeding and post-
seeding performance on seeding and transfer countries
for each participant.

Metric and mapping performance. The data pre-
sented in Table 2 indicate that the participants’ general pat-
tern of performance was much like that observed in past
studies (Brown, Cui, & Gordon, 2000; Brown & Siegler,
1992, 1993). Performance initially was quite poor in an ab-
solute (metric) sense and moderately good in a relative
(mapping) sense. Also, consistent with prior results, the
seeding procedure produced a substantial improvement in
absolute accuracy but had little effect on relative accuracy.

To be specific, the mean preseeding OME for the
transfer countries was .54, and the postseeding mean was
.40 [t(29) 5 4.09, p < .001]. In contrast to this large im-
provement in metric accuracy, the average rank-order
correlation between estimated and actual populations de-
creased slightly, although significantly, from .40 to .35
[t(29) 5 2.48, p 5 .02]. As was expected, given the ex-
tensive practice on the seed populations, postseeding es-
timates were much more accurate than preseeding esti-
mates. OME decreased from .43 to .07 [t(29) 5 10.13, p <
.0001], and the correlation between estimated and actual
populations increased from .17 to .82 [t(29) 5 9.93, p <
.0001]. These data indicate that the participants learned
the seed populations during the learning phase.

In prior studies, we found that the information pro-
vided by the seed sets determined the direction and mag-
nitude of metric adjustments. In particular, those partic-
ipants who initially overestimated the populations of the
transfer countries reduced the magnitude of their post-

Table 1
Seeds Used in Experiments 1 and 2,

Along With Actual and Median Estimated Values

Quantity

Seed Actual Estimated*

Experiment 1
Mexico 85.4† 120.0
Great Britain 57.5 75.0
Spain 39.2 50.0
Poland 38.2 50.0
South Africa 40.6 43.0
Argentina 32.3 45.3
Canada 26.1 142.5
Romania 23.9 25.5
Iraq 17.8 28.9
Australia 17.3 53.0

Mean 37.8 63.3
Median 35.3 50.0
Standard error 6.5 12.2

Experiment 2
Beijing, China 5138‡ 8550
Los Angeles, United States 5588 10000
Rio de Janeiro, Brazil 5681 10250
Cape Town, South Africa 5782 7000
Tokyo, Japan 6034 8050
Manila, Philippines 6677 9500
Buenos Aires, Argentina 6857 9250
Honolulu, United States 7452 10000

Mean 6151 9075
Median 5908 9375
Standard error 273 399

*Median values derived from pilot data. †In millions. ‡Distance in
miles from Paris, France.
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seeding estimates, and those who initially underestimated
increased their postseeding estimates. The strength of this
tendency was measured by computing the correlation be-
tween the median of the initial estimates for the seed coun-
tries and the difference between medians for initial and
final estimates for the transfer countries. Replicating prior
results, this correlation was strongly negative (r 5 2.76).

Analysis of target data patterns. The primary aim of
this experiment was to determine how participants would
react to seeds when their initial estimates for the transfer
items were, on average, less than the actual value for the
seed items and when their initial estimates for the seed
items were greater than the actual value of the seed items
(i.e., T1 < SA < S1). As it turned out, 19 of the 30 partici-
pants displayed this target split pattern. Of the 19 who
showed the desired pattern, 14 produced postseeding trans-
fer estimates that were smaller than their preseeding esti-
mates; 4 increased their estimates following the seeding
procedure, and 1 displayed no change ( p < .02, by a one-
tailed sign test). The mean of these 19 participants’ median
population estimate for the transfer countries decreased
29%, from 23.1 million to 16.5 million [t(18) 5 3.67, p <
.01].Thus, Experiment 1 produced a robust contrast effect
of the type predicted by the feedback/ induction mechanism,
rather than the assimilation effect predicted by anchoring.

EXPERIMENT 2

The participants in Experiment 2 estimated the dis-
tances between Paris, France and 60 target cities. They
then learned actual distances between Paris and 8 seed
cities within the set. Finally, they reestimated the distances
between Paris and the other 60 cities. We collected these
data for two reasons. First, we hoped to demonstrate the
applicability of the seeding approach to a task on which
participants already possess reasonably accurate knowl-
edge. We chose distance estimation because people have
a good sense of the relative ordering of between-city dis-
tances and some sense of the absolute distances (Hirtle
& Mascolo, 1991).

Second, we wanted to determine whether the seed-
driven contrast effect observed in Experiment 1 could be

replicated and extended to a new domain. To this end,
we presented the participants with large seed items that
had been overestimated in the pilot study. As in Experi-
ment 1, our expectation was that many participants would
produce a split response pattern, with the true value of the
seed set above their average estimate for the transfer
countries but below their average estimate for the seed
countries (i.e., T1 < SA < S1). As before, we were inter-
ested in whether the postseeding transfer estimates pro-
duced by these participants would shift toward the seed
values, as the anchoring position predicts, or away from
them, as the feedback/induction position predicts.

Method
Materials . The 60 cities that served as stimulus items in this ex-

periment were selected for being well known and widely distrib-
uted across the globe. As in the population estimation studies, the
to-be-estimated values spanned a large range of magnitudes. Lon-
don, England was the closest city to Paris (215 miles); Sydney, Aus-
tralia was the most distant (10,544 miles). Mean distance between
the target cities and Paris was 3,947 miles (median 5 4,124 miles).
Because care was taken to select cities from around the globe, dis-
tances were quite variable (standard error 5 345.47) and fairly sym-
metric (skew 5 0.47). The 8 cities selected from this set to serve as
seeds are listed in Table 1.

Procedure. With a few differences, the procedure followed in
Experiment 2 was identical to that followed in Experiment 1. One
difference was that there was no initial knowledge-rating task. A
second difference was that the participants responded to 60 items,
rather than to 96, in the preseeding and postseeding estimation
tasks. Third, 8 seeds, rather than 10, were studied during the four
learning blocks. Fourth, on each trial, the participants were presented
with a phrase (e.g., “Distance between PARIS and SINGAPORE”), rather
than with a country’s name. Fifth, the distance between Paris and
Pittsburgh was used as an example in the instructions.

Participants. The 28 participants were drawn from the Carnegie–
Mellon undergraduate participant pool; none had participated in
previous real-world estimation studies. Each of them was tested in-
dividually and received course credit or money in return. Sessions
lasted approximately 45 min.

Results and Discussion
As in Experiment 1, four median estimates, four corre-

lations between estimated and actual distances, and four
OME means were computed for each participant.

Table 2
Mean Accuracy Measures (Median Estimated Value, Mean Order of Magnitude Error [OME],

and Mean Rank-Order Correlation Between Actual Value and Estimated Value)
With Standard Errors for Pre- and Postseeding Responses Elicited by

Transfer and Seed Items in Experiments 1 and 2

Estimate OME Rank-Correlation

Preseeding Postseeding Preseeding Postseeding Preseeding Postseeding

Items M SE M SE M SE M SE M SE M SE

Experiment 1
Transfer 34.82 7.22 17.17 1.24 .54 .04 .40 .02 .40 .02 .35 .03
Seed 76.96 9.47 33.48 1.13 .43 .04 .07 .01 .17 .04 .82 .04

Experiment 2
Transfer 10,411 2,391 3,462 187 .28 .04 .20 .02 .83 .02 .84 .03
Seed 15,138 5,965 5,966 71 .27 .05 .05 .02 .38 .04 .55 .07
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Metric and mapping performance. As is illustrated
in Table 2, initial between-city distance estimates were
more accurate than the population estimates in Experi-
ment 1. This was true for measures of both metric accu-
racy (mean preseeding transfer OME 5 .28) and map-
ping accuracy (mean rank correlation between actual
distance and preseeding estimated distance for transfer
cities 5 .86).

Nonetheless, participants in this experiment responded
to the seeds in much the same way as their counterparts
in Experiment 1. Exposure to the seeds increased metric
accuracy [mean postseeding OME for the transfer
items 5 .20; t(27) 5 2.67, p < .02], but it had little im-
pact on the already high mapping accuracy [mean corre-
lation between the actual distance and the postseeding
estimates for the transfer cities 5 .88; t(27) 5 1.91, .10 >
p > .05]. Again, the postseeding estimates for the seed
cities were more accurate than the preseeding estimates.
In this case, OME dropped from .27 to .05 [t(27) 5 4.38,
p < .0001], and the mean correlation between estimated
and actual distances increased from .38 to .55 [t(27) 5
2.67, p > .02].

It is unclear why the participants did not come to a bet-
ter understanding of the relative distances of the eight
seed cities. It could be that the range of distances was too
narrow to warrant a careful encoding of the actual dis-
tances. Nonetheless, exposure to the seeds did produce
reliable seeding effects on the transfer countries, which
means that the participants must have attended to the facts
and learned something about them. Moreover, these par-
ticipants responded to distance seeds in the same way
that others have responded to population seeds. Par-
ticipants who initially overestimated the distances tended
to decrease their estimates after they studied the seed
facts, and those who initially underestimated the dis-
tances tended to increase their estimates. This resulted in
a negative correlation between initial median estimates
for the seed countries and the difference between initial
and f inal median estimates for the transfer countries
(r 5 2.49, p < .01). Moreover, the correlation increased
to 2.79 when a single outlier was removed. 

Analysis of data from split participants. Of the 28
participants, 15 produced estimates that conformed to
the split pattern (i.e., T1 < SA < S1) needed to test the
competing predictions of the anchoring and feedback/
induction positions. As in Experiment 1, the prediction
that followed from the feedback/induction position proved
accurate. Postseeding estimates for the transfer cities were
reliably smaller than preseeding estimates [3,728 vs.
3,285 miles; t(14) 5 2.17, p < .05]. Of the 15 split par-
ticipants, 10 produce this pattern of change, 3 produced
the opposite pattern, and 2 displayed no change ( p < .05,
by a one-tailed sign test).

It should also be noted that average postseeding trans-
fer estimate (3,285 miles) was considerably smaller than
the value of even the smallest of the seed distances (i.e.,
Beijing, 5,138 miles). This fact is important because it
rules out selective anchoring as a possible explanation

for the shifts observed in this experiment. The selective
anchoring view holds that seeding effects are produced
by anchoring and that the postseeding shifts occur be-
cause participants, for some reason, chose to anchor on
only the smallest of the seed facts. At the extreme, par-
ticipants might adopt the smallest anchoring value as the
response for all transfer items. If so, one would expect
the postseeding transfer estimates to be very close in
value to the magnitude of the smallest seed value. The re-
sults of Experiment 1 are not inconstant with this interpre-
tation; the smallest seed was Australia, with its population
of 17.3 million, and the mean of the median postseeding
transfer estimates for participants who produced the split
pattern was 16.5 million. It is, however, difficult to imag-
ine any plausible version of the selective anchoring po-
sition that could produce the pattern of results obtained
in the present experiment. Not only did the postseeding
transfer estimates move away from the seed values, rather
than toward them, but the average postseeding transfer
estimate was some 2,000 miles smaller than it would have
been if the participants had given the smallest of the seed
values in response to all of the transfer items.

In summary, the f indings of Experiment 2 indicate
that seeding can produce a marked improvement in met-
ric accuracy even when participants already possess rea-
sonably accurate understanding of the to-be-estimated
values. The findings also indicate that the seeding proce-
dure is applicable to distance estimation, as well as to the
previously studied population and latitude estimation
tasks. These findings increase our confidence that seeding
is capable of fostering numeracy in a variety of domains,
both ones in which prior relevant knowledge is sparse or
inaccurate and ones in which it is more substantial.

GENERAL DISCUSSION

The results of the present study help us to understand
the mechanisms through which seeding exercises its ef-
fects. As was noted above, prior studies indicated that
seeding effects persist even after the particular seed facts
are forgotten (Brown & Siegler, 1996). Prior findings also
indicated that both assimilation and contrast effects can
arise in the same set of postseeding estimates (A. Fried-
man & Brown, 2000a, 2000b).

The present study provided a direct contrast between
predictions of the feedback/induction and the anchoring
positions. It yielded quite conclusive support for the
feedback/induction position. Specifically, in both exper-
iments, those participants whose initial estimates pro-
duced the split pattern (i.e., T1 < SA < S1) adjusted their
mean estimates for transfer countries downward after en-
countering evidence that their initial estimates for the
seed facts were too large. Such a data pattern, in which es-
timates move away from the anchor, should not occur by
the logic of the anchoring position.

Thus, three lines of evidence now support the claim
that a feedback/induction mechanism produces seeding
effects. This mechanism rests on fundamental intellec-
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tual abilities: detecting patterns over sets of examples,
representing an abstracted pattern as generalized knowl-
edge, and transferring the abstracted pattern to novel in-
stances. Moreover, both mnemonic and processing con-
siderations favor the feedback/induction approach. As
was noted above, we have previously demonstrated that
metric knowledge extracted from seed facts is retained
better than the seed facts themselves (Brown & Siegler,
1996). The memory advantage enjoyed by the metrics
makes sense when one considers that each presentation
of a seed fact provides participants with an occasion to
update and rehearse their metric knowledge. For example,
in Experiment 1, each of the 10 seed facts was presented
four times during the study phase. This means that the
participants had 40 chances to consider the metric im-
plications of the seed facts, but only 4 chances to learn
each seed. Moreover, if participants generate their post-
seeding estimates by mapping a relative value onto the
updated dimension, the subsequent application of this
metric knowledge should impede forgetting.

The processing advantage associated with the feedback/
induction approach derives from two general classes of es-
timation strategies: reconstructive strategies and mapping
strategies.2 Reconstruction of a real-world quantity in-
volves searching memory for potentially relevant facts
(i.e., seeds), assessing the relation between the retrieved
seed facts and the target item, drawing a plausible infer-
ence, and determining whether the inferred value meets
confidence and precision criteria. If the criteria are not met,
it also involves iterating through the retrieval–inference–
evaluation cycle (Brown, 1990; Collins & Michalski,
1989; Kemp, 1999). In contrast, the mapping approach
requires participants only to assess the relative magnitude
of an item along the target dimension and then to select a
value from the appropriate portion of the response range.

After updating metric information, it is a relatively
simple matter to produce new sets of estimates that are
consistent with current beliefs, at least when people rely
on the mapping strategy. All that is required is that new
numerical values be appropriately assigned to the re-
sponse range. However, if participants were to treat seeds
as anchors, they would have to persist with (or adopt) a
reconstructive strategy that is demanding but does not
necessarily produce accurate responses. Given these op-
tions, it seems that there would be little motivation to use
seeds as anchors, even when they can be recalled.

At this point, data and theory allow us to conclude that
seeds aren’t anchors. This conclusion raises an interest-
ing question: If seeds aren’t anchors, can anchors prof-
itably be viewed as seeds? To understand this question,
it is necessary to consider how anchoring effects are pro-
duced in the laboratory. Many experimental demonstra-
tions of anchoring involve quantitative dimensions about
which metric knowledge is sparse. Few people, for ex-
ample, have a good sense of the populations of most
countries. The procedure within such experiments tends
to pose participants with initial questions that include an
anchor that serves as a comparison point (e.g., “Is the
population of Kenya less than or equal to 75 million?”).

Then, participants are asked to provide a related quanti-
tative estimate without the anchor present (e.g., “What is
the population of Kenya?”). The standard finding is that
later estimates are larger following a “high” anchor (e.g.,
75 million) than a “low” one (e.g., 15 million).

In such anchoring experiments, the “uninformative”
comparison values actually may be highly informative,
at least for participants who have limited relevant metric
knowledge (Grice, 1975; Schwarz, 1996). Such partici-
pants may use anchors as they use seed facts—as sources
of metric information that indicate the magnitude of rea-
sonable numerical estimates. More generally, participants
may respond to potentially informative anchor values in
several ways: They could adopt the anchor value as an
answer, integrate it with prior knowledge, or reject it com-
pletely (Brown, 2000). Prior metric knowledge, confi-
dence in that knowledge, and beliefs about the experi-
mental situation all seem likely to influence participants’
responses to anchor values.

Note that the anchor-as-seeds interpretation provides
a fundamental reconceptualization of the anchoring ef-
fect. Anchoring effects have been viewed as biases, in-
evitable and unfortunate by-products of processes evoked
when people compare a target value with a reference value
(Chapman & Johnson, 1999; Mussweiler & Strack, 1999;
Pohl & Eisenhauer, 1997; Tversky & Kahneman, 1974).
In contrast, the present approach recasts anchors as po-
tentially useful numerical information and assumes that
these values are processed in much the same way as other
quantitative facts. On this view, what differentiates an-
chors from seeds is the absence of an explicit indication
that the anchor is informative.

Although the anchors-as-seeds approach is still being
developed, we believe that it holds promise. For exam-
ple, it correctly predicts the relation between domain
knowledge and anchoring (Wilson, Houston, Etling, &
Brekke, 1996): People with greater knowledge of a do-
main are less influenced by the size of anchors, because
plausible anchors provide no new information. The ac-
count also explains why comparison questions produce
anchoring effects when the comparison item (e.g., Kenya)
differs from the item that appears in the follow-up esti-
mation question (e.g., Somalia; Beck & Carlson, 1998).
In this case, the anchor provides information about the
correct metric to be used when estimating national pop-
ulations. Of course, further research is required to di-
rectly assess the validity of this extension of our approach
and to determine whether there are anchoring effects that
cannot be explained by it. Nonetheless, the account sug-
gests that the metrics-and-mapping framework and the
feedback/induction mechanism may well apply across a
broad range of numerical estimation tasks.
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NOTES

1. There are, of course, six ways to configure the three values SA, S1,
and T1. However, the two positions make identical predictions when SA
is greater than S1 and T1 (i.e., S1 < T1 < SA and T1 < S1 < SA) or when SA
is less than S1 and T1 (i.e., SA < S1 < T1, and SA < T1 < S1); in the former
case, both positions predict, T1 < T2 , and in the latter case, both predict
T2 < T1. In this article, we focused on only one of the two configura-
tions, which places SA between S1 and T1. We did this for the sake of ex-
pository simplicity but assume that the S1 < SA < T1 configuration would
produce comparable results.

2. In the context of event dating, W. J. Friedman, 1996, refers to these
two classes as “location-based” and “distance-based” strategies,
respectively.
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