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AN AFFINE GINDIKIN-KARPELEVICH FORMULA

A. BRAVERMAN, H. GARLAND, D. KAZHDAN AND M. PATNAIK

ABSTRACT. In this paper we give an elementary proof of certain finiteness results about
affine Kac-Moody groups over a local non-archimedian field . Our results imply those
proven earlier in [5],[4] and [16] using either algebraic geometry or a Kac-Moody version
of the Bruhat-Tits building.

The above finiteness results allow one to formulate an affine version of the Gindikin-
Karpelevich formula, which coincides with the one discussed in [4] in the case when K has
positive characteristic. We deduce this formula from an affine version of the Macdonald
formula for the spherical function, which will be proved in a subsequent publication.

1. INTRODUCTION

1.1. Notations. Let K denote a local non-archimedian field with ring of integers O and
residue field k. Let m denote a generator of the maximal ideal of O, and g denote the size
of the residue field O/7O.

Usually we shall denote algebraic varieties over K (or a subring of ) by boldface letters
X, G etc.; their sets of KC-points will then be denoted X, G etc.

Let G be a split, semi-simple, and simply connected algebraic group (defined over Z) and
let g be its Lie algebra. ! As agreed above, we set G = G(K). In this Subsection we recall
the usual Gindikin-Karpelevich formula for G. Let T C G be a maximal split torus; we
denote its character lattice by A and its cocharacter lattice by AV; note that since we have
assumed that G is simply connected, AV is also the coroot lattice of G. Given an element
z € K* we set 22 = AV (z) e T.

Let us choose a pair B, B~ of opposite Borel subgroups such that BN B~ = T. We
denote by U, U~ their unipotent radicals. We denote by R the set of roots of G and by
RY the set of coroots. Similarly Ry (resp. RY) will denote the set of positive roots (resp.
of positive coroots). We shall also denote by 2p (resp. by 2p") the sum of all positive roots
(resp. of all positive coroots). For any v € AY set [\Y| = (\Y, p). Note that if \Y = n;a
where o) are simple coroots, then |[\Y| = >"n;. We let W denote the Weyl group of G.

In addition we let K = G(QO). This is a maximal compact subgroup of G.

For a finite set X, we shall denote by | X| the number of elements in X.

1.2. Gindikin-Karpelevich formula. It is well-known that

G = |_| KV K.
AVeAi

IThe reader should be warned from the very beginning that later we are going to change this notation;
in particular, later in the paper G will denote the corresponding affine Kac-Moody group
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For any AV € AV we set

cg= Y |K\Kn" U™ nKrt 1w yled g =l (1.1)
HVGA\/

It is easy to see that the right hand side is independent of \V; usually we shall take AV = 0.

Theorem 1.3. [Gindikin-Karpelevich formula]

—1,—aV

1—qg e

e«
aER

Let us note that classically, the Gindikin-Karpelevich formula computes the result of
application of a certain intertwining operator to the spherical vector in a principal series
representation of G. However, it is trivial to see that the classical Gindikin-Karpelevich
formula is equivalent to the one presented above.

1.4. The affine case: a preview. The above formula (more precisely, some generalization
of it) plays an important role in the theory of Eisenstein series (it allows one to compute
the constant term of Eisenstein series through automorphic L-functions). In the recent
years, some aspects of the theory of Eisenstein series for affine Kac-Moody groups have
been developed (cf. [5], [14], [15], [22]), so having an analog of (1.2) in the affine case is
highly desirable. While trying to generalize (1.2) to the case when G is replaced by an
affine (or, more generally any symmetrizable) Kac-Moody group, one is immediately lead
to the following questions:

1) Does the right hand side of (1.1) make sense? (A priori, the sets which appear in the
right hand side of (1.1) might be infinite, when G is infinite-dimensional).

2) If the answer to question 1 is positive, is Theorem 1.3 true in the Kac-Moody setting?

It was shown in [4] that when char(KC) > 0, the answer to question 1) is positive; the proof of
this fact given in [4] is algebro-geometric, and apparently it can’t be adapted to p-adic local
fields. Also (still in the case when K has positive characteristic) an answer to 2) was given:
it was shown (modulo the assumption that the results of [3] hold in positive characteristic)
that some corrected version of (1.2) holds when G is an untwisted affine Kac-Moody group.

The main purpose of this paper is to give a uniform approach to the above problems
for all local non-archimedian fields. Namely, we show (cf. Theorem 1.9) that the answer
to question 1) is positive for any local non-archimedian field and for any untwisted affine
Kac-Moody group (the generalization to the twisted case is probably straightforward). The
proof is elementary; as a byproduct we reprove certain similar (weaker) finiteness results,
that were proven before by other means - cf. the discussion after Theorem 1.9.

In addition we also formulate an analog of the formula (1.2) in the affine case. We give
a proof of this formula, based on a certain affine analog of the so called Macdonald formula
for the spherical function, which is going to appear in our forthcoming paper [7]. Before we
discuss the affine case in more detail, let us first recall this formula in the usual case (i.e.
when G is a finite-dimensional semi-simple group as before).
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1.5. Macdonald formula. For any \Y € AY let us set
SAY) = Y |K\Kr" KnEKn Ulger et (1.3)
/L\/GAV

This is an element of the group algebra C[AY]. Actually, general facts about the Satake
isomorphism (see Section 1.7) imply that S(\V) € C[AV]W.

Theorem 1.6. [Macdonald] Let us set

1- cfle*‘lv
A =
H 1 6_06\/
aER
Then for any XY € AY we have
(PAY)
q wAY
SA\)= ———— w(A)e 1.4
) = g 2 ) (14)

Here Wyv is the stabilizer of \V in W and

Waw(g™) = > ¢

weWyv

It is easy to see that Macdonald formula implies (1.2). The reason is that (as is well-
known) for any fixed " we have

KeVKNKr\' U =KaN U nKat U (1.5)

for any sufficiently dominant \V. Using (1.5) to take the limit of (1.3) as AV is made more
and more dominant (which we write as \Y — +00) one gets (1.2).

1.7. Interpretation via Satake isomorphism. Let us explain the meaning of (1.3) in
terms of the Satake isomorphism. Let Hp, denote the spherical Hecke algebra of G. By
definition this is the convolution algebra of K-bi-invariant distributions with compact sup-
port on G; by choosing a Haar measure on G for which the volume is K is equal to 1, we
may identify it with the space of K-bi-invariant functions with compact support. Thus the
algebra Hgpn has a basis hyv where hyv is the characteristic function of the corresponding
double coset. The Satake isomorphism is a canonical isomorphism between H and C[AY]W.
By its very definition this isomorphism sends hyv to S(AY). Thus (1.4) can be thought
of as an explicit computation of the Satake isomorphism in terms of the above basis. In
particular, since hg = 1, the right hand side of (1.4) for A\¥ = 0 must be equal to 1; this is
not completely obvious from the definition.

1.8. Affine Kac-Moody groups. Our aim in this paper is to discuss a generalization of
the Gindkin-Karpelevich formula to the case when G is an untwisted affine Kac-Moody
group. When K has positive characteristic this was already done in [4] (modulo the as-
sumption that the results of [3] hold in positive characteristic).

Let G, be a simple, simply connected group. Then one can form the polynomial loop
group G,|[t,t~!] which admits a central extension by G,, which we denote by G. The full

affine Kac-Moody group is then G = G x Gy where G, acts by rescaling the loop parameter
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t. We shall be interested in the group G = G(K). In this setting, we may define analogues
of the groups K,U,U".

Theorem 1.9. With the above notation we have:
(1) For AY, ¥ € A the set K\ Kn*'U~ N Kn"'U is finite. Moreover, it is empty
unless \V > pV.
2) For any AV € AY, u¥ € AV as above the set
( 34 —+ 2

K\Km"'KNKx"'U

is finite. Moreover, it is empty unless AV > uV.
(3) The set Km*'K N Knt U~ is empty unless \Y > 1"
(4) For \V sufficiently dominant and fixed " we have

KeVKNKrY' U = KaN U - nKat U (1.6)

The third statement of Theorem 1.9 is easy; it is also easy to see that (1) and (3) imply
(2). Statement (4) is also not difficult, once we know (1) (details can be found in Section 6).
Thus essentially it is enough to prove (1). This is the main result of this paper. To prove
it, we develop some techniques for analyzing the infinite dimensional group U~ : the main
idea is to break up the group U~ into pieces U, indexed by the Weyl group of G. These
pieces are not finite-dimensional, but if we replace U~ in the above intersection by U, the
resulting set is finite. We can then also show, using a certain result from representation
theory, that only finitely many w contribute to the above intersection.

Theorem 1.9(1) is apparently new. On the other hand, Theorem 1.9(2) appears in [5]. In
addition, while this paper was in preparation, the paper [16] has appeared, where an analog
of Theorem 1.9(2) is proved in a greater generality (for G being any almost split symmetriz-
able Kac-Moody group). However, the proofs in both [5] and [16] are quite cumbersome
and use some rather complicated machinery. From the results of this paper we get a new
elementary proof of Theorem 1.9(2). Let us also add that if one assumes Theorem 1.9(4)
that clearly Theorem 1.9(1) follows from (the earlier known) Theorem 1.9(2). However, we
don’t know how to prove Theorem 1.9(4) without using Theorem 1.9(1).

Using the above theorem, we can then make sense in our infinite dimensional setting
of the formal Gindikin-Karpelevich sum cgy. Let us now formulate the statement of the
affine Gindikin-Karpelevich formula. For this we first want to discuss the affine Macdonald
formula.

1.10. Affine Macdonald formula. Let us define S(\Y) as in (1.3). Note that it makes
sense due to Theorem 1.9(2).
Let us also set
I t(p,)\v) Z (A) WAV (1 7)
A = >~ w (& . .
Wiv (t 1) oW

Here t is a formal variable (which should not be confused with t!), A is defined as in the
finite-dimensional case (with g replaced by t) and p is the element of A such that (p,a)) =1
for any simple coroot .

Theorem 1.11. S()\Y) is equal to the specialization of g—g att=q.
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This theorem will be proved in [7].

Note that contrary to the finite dimensional case, Hy # 1. In fact, the function Hy was
studied by Macdonald in [26] using the works of Cherednik. Macdonald has shown that H
(which a priori is defined as an infinite sum) has an infinite product decomposition. For
example, when g, is simply laced, Macdonald’s formula reads as follows:

1 —t~mie=d0
HH e P (18)

11]1

Here ¢ is the minimal positive imaginary coroot of g and mq,--- ,my are the exponents of

9o-
A similar product decomposition for Hy exists for any g, (cf. [26]).

1.12. Affine Gindikin-Karplevich formula. We are now ready to formulate the affine
version of the Gindikin-Karpelevich formula.

Theorem 1.13. For any g as above, we have

1 (1‘q_1€_a ) B (1.9)

(XER+

Here the product is taken over all positive roots (or, equivalently, coroots) of g and m,,
denotes the multiplicity of the coroot a".

The proof is very simple, and we shall state it here.

Proof. 1t follows from Theorem 1.9(4) that the coefficient of some e’ in cg is equal to the
coefficient of e*" =7 in S (\Y) divided by ¢PA") for sufficiently large \V. However, it is
clearly equal to the right hand side of (1.9) (since only the term with w = 1 in the formula
(1.7) can contribute to the coefficient e =7 for sufficiently large \V; also if AV is sufficiently
large, then it is also regular and thus W)y is trivial). O

Let us stress that Theorem 1.13 depends on Theorem 1.11 which will be proved in another
publication. Also, when K = F,((t)), Theorem 1.13 was proved in [4] modulo an assumption
that certain geometric results from [3] hold in positive characteristic ([3] deals only with
characteristic 0).

We conclude with a final remark regarding the constant term conjecture of Macdonald
(Cherednik’s Theorem), which is essentially the statement that H 1is the imaginary root
part (or constant term in the terminology of [23], [24] of A~!): using the techniques of [7]
and this paper, we can show (without resorting to the work of Cherednik) that the constant
term of A™! can be related to the Gindikin-Karpelevich sum cg. On the other hand, in
the case when the local field K has positive characteristic, the Gindikin-Karpelevich sum cg
has been computed in [4] using a geometric argument which is independent of Cheredniks
work. Thus the combination of the works of [7, 4] and this paper also yield an independent
proof of the constant term conjecture of Macdonald.
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1.14. Organization of the paper. In Section 2 we recall some basic facts about affine
Kac-Moody group schemes. Section 3, Section 4 and Section 5 are devoted to the proof of
the first assertion of Theorem 1.9. In Section 6 we prove the other assertions of Theorem 1.9
and explain how to deduce Theorem 1.13 from Theorem 1.9 and Theorem 1.11.

1.15. Acknowledgements. A. B. was partially supported by the NSF grant DMS-0901274.
A.B. and D.K. were partially supported by a BSF grant 2008386. M.P. was supported by
an NSF Postdoctoral Fellowship, DMS-0802940 while this work was being completed.

2. AFFINE KAC-MOODY GROUPS

2.1. Affine Kac-Moody group functor. Let G, be a split simple simply connected group
over Z; let g, denote its Lie algebra. To this group one can attach a group ind scheme G
(called the affinization of G,) in the following way.

First, one considers the polynomial loop group functor G,[t,t+~!], which by definition
sends a commutative ring R to G,(R[t,t"!]. We also may define the formal loop group
functor G,[[t]] which sends a ring R to G,(R((t))). In this paper, we will mostly work
with the polynomial loop group, but will occasionally need to use the formal version in the
course of our proofs. The multiplicative group G,, acts on G,[t,t!] by rescaling the loop
parameter ¢t and we denote by G’ the corresponding semi-direct product. It is well-known
(cf. e.g. [9]) that any invariant integral bilinear form on g, gives rise to a central extension
of G’ by means of G,,. In the case, when the bilinear form in question is the minimal one
(equal to the Killing form divided by 2hY where h" is the dual Coxeter number of G,) we
denote the corresponding central extension by G. Thus, by definition we have a short exact
sequence of group ind-schemes

1-G,—-G—>G —1.

The above central extension is known to be split over G,[t] and in what follows we choose
such a splitting.

We choose a pair of opposite Borel subgroups B,, B, with unipotent radicals U,, U, .
The intersection T, = B, N B, is a maximal torus of G,.

Let T = G,, x Ty X Gy,. Let G,[t]g denote the preimage of B, under the natural map
G,[t] = G,. We let B to be the preimage in G of G,[t|lg x G,,, C G’. This is a group-
scheme, which is endowed with a natural map to T. We denote by U the kernel of this
map. This is the pro-unipotent radical of B.

Similarly, let G,[t~!]g- be the preimage of B, under the map G,[t™!] — G, coming
from evaluating ¢ to co. We let B~ C G to be the preimage of G,[t~!]g- X G,, C G’. This
is a group ind-scheme, which (similarly to B) is endowed with a natural map to T and we
denote its kernel by U~.

In addition, the intersection B N B~ is naturally isomorphic to T.

2.2. The affine root system. We denote the Lie algebras of G, T,B,B~, U, U~ respec-
tively by g,t,b, 67, n,n”. We shall denote by R, the set of roots of g, and by R the set of
roots of g. We denote by W the Weyl group of R. Although there is a natural embedding
R, C R, in the future it will be convenient to use different notations for elements of R, and
R: we shall typically denote elements of R, «, 3, ... and elements of R by a,b, ....
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Let IT = {aq,...,a;11} be the set of simple roots such that for i <[ the element a; is a
simple root in R, (which we shall also denote by «;). We define the height of a root o € R,
as follows: if a = 22:1 p;c;, then

l
ht(a) = Zpi.
i=1

Recall that a;41 = —60 + § where 6 is the classical root of maximal height and J is the
minimal positive imaginary root. Let @ be the (affine) root lattice. Any v € @ we may
write it uniquely as

+1

Y= Zpiai-
i=1
We define the depth of v to be

dep(y) = —pr41-
If we have dep(y) =0 (i.e. pj+1 = 0), then we define the order of v to be
ord(7) = — ht(7).

Note that if we write a € R as a = o + nd for a € R,, then dep(a) = —n.

We denote by R, (resp. R,_ the set of positive (resp. negative) roots of g,. For
each a € R, (resp. a € R,_ we denote by xo : G, — U, (resp. Xxao : Go = U,) the
corresponding homomorphism. We shall use similar notation for real roots of g.

2.3. The Chevalley basis and the integral form. Let us pick a Chevalley basis for g
which we write as follows: if @ = o —nd € R, — then the basis element in g is denoted by
€a = &—n,a- Let {fi}ézl denote a Chevalley basis for t, and if a = —nd then we denote by
{€,.:}'_, the Chevalley basis for g™ =t, @ t~™.

One may also construct an integral form Uyz(g) of the universal enveloping algebra of g
(see [12, 28]) which admits a triangular decomposition

Uz(g) = Uz(n™) @ Uz(t) ® Uz(n).

2.4. Integrable modules. We let A denote the lattice of characters of T; let also AV
denote the dual lattice. Let A* denote the set of dominant weights (and (AY)" the set
of dominant coweights). For any A € AT we let VZA denote the corresponding integrable
highest weight G(Z)-module (a.k.a. Weyl module). It is defined over Z and we shall write
Vi for V2 ® R (this is a G(R)-module). We shall usually set V* = V.

The module VZ’\ has a weight decomposition

Vi = ®Vy ().
For every w € W the weight module V}(w)) is of rank 1. For every such w we set

Vu))\,Z = Uy(b) - V2 (w). This is a free Z-module of finite rank inside V' (usually called ”the

Demazure module”). Hence V) is a finite-dimensional K-vector space (endowed with an
action of B).
7



In addition, let us set V*(m) to be the direct sum of all the V*(u) for which dep(u) > m
and

VAm] = VAV (m), (2.1)

which is a finite-dimensional U~ -submodule.

2.5. The Heisenberg subalgebra. The algebra g also contains a rank [ infinite-dimensional
Heisenberg subalgebra Heis C g,

Heis := Kc & Pt ® t"
nez

where the element c is the central element in t. We shall say that an element in t, ® t" is
of degree n.

2.6. Some decompositions. Let now I be a local non-archimedian field with ring of
integers O and residue field k. We let ¢ denote the cardinality of k; we also choose a
generator of the maximal ideal of O which we shall denote by 7.

For a scheme X over O we set X = X(K), Xp = X(0), Xk = X(k).

Let K = G(O) and let us set I (resp. I~) to be the preimage of By (resp. B, ) under
the natural map K — Gj. We shall choose a lift of all the elements of W to K and we are
going to call this set of representatives W. We shall sometimes identify W with W (when
it doesn’t lead to a confusion).

We have the Bruhat decompositions

Gy = BiWBy; Gy = BsW B,
which lift to give decompositions of the form
K=IWIand K =1"WI
In addition we have the Iwasawa decomposition
G=K-B
(cf. e.g. Section 2 of [4] for the proof).

3. FINITENESS OF THE GINDIKIN-KARPELEVICH SUM, PART I

The main goal of this paper will be to prove the following result which shows that the
sets appearing in the expression (1.1) are finite.

Theorem 3.1. Let pV € Q. Then we have,
IK\KU~ NKn " U| < 0. (3.1)

The proof will be carried out in three steps:

(1) We shall decompose the set U~ into disjoint subsets U™ = ey Un ;
(2) We shall show that there are only finitely many w € W such that U, can contribute
to (3.1)
(3) We shall show that the sets (3.1) with U™ replaced by U,, are finite;
8



Steps 1 and 2 will be performed in this Section. Step 3 will be performed in Section 5.
Step 1: We have an injection U~ < G/B. By the Iwasawa decomposition, we have that
G/B = K/K N B and so we have an embedding,

wg : U~ < K/KNB.

More explicitly, if we write v~ = khu in terms of its Iwasawa coordinates, then the above
map sends u~ — k (mod K N B).
Since K\ KU~ = U, \ U™, the map lwg descends to a map

wg : K\ KU < U (O)\ K/KNB.
Let us denote by w the reduction modulo m map w : K — Gk.

By composing the map lwg : K\ KU~ = U, \ U~ — U, \ K/K N B with the the
natural map U, \ K/KNB — U, \ Gx/Byx = W we get amap ¢ : K\ KU~ — W. Letting
Y : U~ = U, \ U™ denote be the projection map, we define

Uy =0 o H(w)cU.
We can give a more explicit description of the elements in U, as follows. First set

Gr={k € K|w(k) =1}

We can define U,, U and T} in the same way.
Then G, C I and in fact we have a direct product decomposition G, = U U T,. We
have

@ (w) = U, GrwBo = Uy Uy zwBo
where

Uw,ﬂ' = H UaJr

a>0,w—la<0

where U, is the first congruence subgroup in U, 0.
So every v~ € U, has an expression of the form

u- = uauw,ﬂwb@ﬂgu (3.2)
where lowercase elements are in the corresponding uppercase subgroups and & € AV.
Lemma 3.2. For uy x € Uy x, there exist u= € U~ ,u € U, h € T such that

Uy W = U~ hu.
Moreover, u™,u, h are uniquely defined.

Proof. 1f
Uy, = Uy hiuy = uy houg where uli,uQi eU*, hy,ho €T (3.3)
then it follows that (uy )"'u; € B, which is a contradiction unless u; = us . Similarly, we

conclude that v; = ug and hy = hs. O

Step 2: We now prove the following inequality which is the main result of this Section.
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Lemma 3.3. Fix ¥ € QY Then if

KU, NKn"'U #0,
we must have

W) < 1) = (o, "),

Proof of Lemma. Suppose u;; € U is such that Ku, ¢ KU, N Kz~ * U. Then we can
write
Uy = u(_guwﬂrwboﬂ_”vu,
which produces a relation of the form
u = uwﬂrwb@ﬂ*“vu. (3.4)
Applying both sides of (3.4) to v,, a primitive highest weight vector in V7 :
u v, = uw,ﬂwboﬂf“vuvp. (3.5)
The left hand side of (3.5) is of the form
v, + lower terms, (3.6)
whereas the right hand side is of the form
57{<p,#v>uwﬂrva7 (3.7)

where 6 € O* and vy, is again a primitive vector in V.
Consider an element u,, » € Uy » and keep the notation of Step 2. So the element w,, »
acts via a sum of the form,

S0 ofeapregt) e, (38)
N yeeey Ny
where the 3;, for i = 1,...,r are the positive real roots a € Ry 4 such that w™la < 0, and

5};0 are the divided powers of our fixed Chevalley basis elements. Let us now consider the
element v, in the highest weight space of V* in the expression (3.7).
Let us now use the following result due to A. Joseph (cf. [3], Lemma 18.2):

Proposition 3.4. Suppose that v, € F"(U(n))vy,. Then,
m = lw)/2,
where [(w) is the length of w.

By Proposition 3.4 we must apply at least [(w)/2 operators from n to v, in order to
obtain an element in V). This corresponds, in an expression of the form (3.8), to terms in
which ny +---4+n, =m > l(w)/2. Since the fg) map V(O) into itself, such an expression
will introduce a zero of order at least nj +- - - +n, into the resulting element in V*. However,

since from (3.6) the element produced in V* as a result of applying u,, » must be primitive,
we obtain the desired equality:

1] = U(w)/2
in light of (3.7).
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Thus to prove Theorem 1.13(1) we need to show that the quotient K\KU; N Kn " U
is finite for every w and pV. In other words, we need to prove the following

Theorem 3.5. The set K\KU™ (w,n") is finite, where
U™ (w, 1) = U~ NUp Towr " U. (3.9)

This will be done in Section 5. But first we need to introduce some notation related to
the group U~ and its completion.

4. COMPLETION OF U~

The purpose of this section is to discuss some sort of coordinates on a formal completion
of U™ which will be used later.

4.1. The completion. Recall that the group ind-scheme U~ is the the preimage of U,
under the natural (evaluation at oo) map G,[t™'] = G,. Let U~ denote the preimage of
U, in G,[[t™!]], where G,[[t™!]] is the formal loop group functor in the variable ¢~!. This

is a group-scheme; we have a natural map U™ — U~ which induces an injection
iU U,
We shall often identify U~ with its image in U-.
For every m > 0 we shall set U~ (m) to be the subgroup of U~ consisting of elements

which are equal to 1 modulo t~™. We set U~ [m| = U~ /U~ (m) and we shall denote by w,,
the natural projection,

U™ = U [m]. (4.1)

4.2. Some infinite products. For o € R, and 8 € R, _ let us set

o0 o0

oo = cit et K[t )] and o5 =) et~ € K[[t7V]].

i=1 i=0
Then we may consider the following products as elements of U-
oo o
Xa(0a) = [ [ Xa—is(c:) and xs(08) = [ [ xs-is(ci)-
i=1 i=0
Suppose we are given a unit o € K[[t71]]*. If o = 1(mod ¢~ 1), we have a factorization,
o=J]a+et), (4.2)
Jj=1
where the ¢; are uniquely determined. For ¢ = 1,...,] we form the expressions,
hl(g) = Xo (O')X*Oti(*o-_l)xai(U)Xai(l)xfai(*nxai(l)
which again define elements of U~. With respect to the factorization (4.2) we then have
hi(o) = [ hi(1 + ;7).

j>1
11



Fix a positive integer m > 1 and consider now an element of U~ of the form
!

u”[m] = H Xa(t™" Sm.a) Hhi(l—i—c@mt*m) H X—a(t™™8m.a), (4.3)

acR, 4 =1 aER, +

where the products are with respect to a fixed ordering on R, 1 and sy, o, Sma, Cim € K.
If m = 0, consider elements of the form

u 0] == J] x-a(50a) withSoa € K. (4.4)
QERO,-‘r

4.3. ”Coordinates” on U~. Though there is no easy way to put coordinates on U™, one
can use the above infinite products to define coordinates on U~. Restricted to U, we have
the following,

Theorem 4.4. Every element u~ € U~ C U~ has a unique expression of the form
[e.e]
u = H u [m]=---u"[mlu"[m—1]---u"[0]
m=0

(the product is considered in decreasing order of m) where the u™[m| are of the form (4.3)
or (4.4). Furthermore, with respect to the map wy, : U~ — U~ [m] we have

wn(u™) = wm(u”[m]u”[m—1] -+ u[0]).

4.5. For future use, we shall need to understand the action of the various components of
u~[m] on a highest weight vector vy € V*. This is essentially contained in the following,

Lemma 4.6. Let m € Z>o be a positive integer and a = a ®t™™ € R_,. be a root of
depth m. Assume also that X\ is regular and dominant. Then in the highest weight module
VA we have

(1) §—m,aux # 0

(2) Ifh € Heis is of degree —m, then hvy # 0. Moreover, the family of vectors {&_, ivx},
t=1,...,1, are linearly independent.

(3) Xa(s)vx = vy + s€_m avx + terms of greater depth

Proof. Parts (1) and (3) are clear. Let us prove (2). For any element of degree n in Heis,
say h, := h ®t" with h € t,, we may find an element h_,, := b’/ ® t™" € Heis with I/ € t,
such that

[An, h—yn)] = ke

with k # 0. Indeed, the this follows immediately from the commutation relation,
[, h_n] = n(h|h")c
and the non-degeneracy of (-|-) when restricted to t, But we also have,
[Py h—n]uan = hph_pvy

from which it must follow that h_,vy # 0. The linear independence of {£_,, vz}, for
i=1,...,[ follows easily. O
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4.7. A reformulation. In the theory of vertex operators, one encounters expressions of
the following form for i € {1,...,l} and p € Z>,

— Eph,is”
Pi(s,p) := exp( Z T)
k>0
It is easy to see that that P;(s,p) is a well defined operator in Autx(V*) in the case when
K has characteristic 0. Moreover, we know from [12, Theorem 5.8, Remark (i)] that if we
define the element Ag(&;(p)) via the relation,

Pi(s,p) = Y Ai(&i(p))s”
k>0
then the elements A(&(p)) will actually lie in Uz(g), our fixed Z-form of the enveloping
algebra. We then have the following,

Proposition 4.8. As elements of the corresponding completion of Uz(g) we have an equal-
ity,
Pi(s,p) = hi(1 — stP).

Proof. We are going to check that the left hand side and the right hand side act in the same
way in any irreducible integrable representation. Let us first note that from [13, Lemma
12.2], it follows that h;(1 — stP) is in U, and hence fixes any highest weight vector. From
the definition of P;(s,p), we see that it has the same property.Hence, by the analogue of
Schur’s Lemma [13, Lemma 9.1], in order to show that P;(s,p) and h;(1 — stP) are equal,
we need only to consider their action on the adjoint representation. But we may use the
perfectness of g as a Lie algebra and [13, Lemma 8.11] to reduce to a computation in the
adjoint representation of the loop algebra g, ® IC((t)). To complete the proof we know that,
working in g, ® IC((t)), one has (in the notation above) that

Ar(&(p))as = (~1)F <<ﬁ];5>>x5 o 7

where x5 € go° for B € R,. By the usual binomial formula, one now has that

Pi(s,p)rs = Z(—1)k <</3];£>>m R PP = (1 — 175) &P g5

k
This agrees with the action of h;(1 — st”) on 23 and so the lemma follows. O
An entirely similar argument to the above shows the following,

sk ~
Proposition 4.9. The element P; (s,p) := exp(— > ;<o E*PZ”S ) defines an element of U~

)

and we have an equality of elements of ﬁ_,
P (s,p) = hi(1 —st™P).

7

Corollary 4.10. Let ¢; € k fori =1,...,l. Then there exists a positive integer mg so that
for all m > mg we have we have an equality in V[m],

l l
H hi(1 —cit™™)vy = vy + Z ¢i&m,ivx + terms of greater depth.
i=1 i=1

13



Moreover, 22:1 ¢i&m,ivx # 0, provided not all ¢; =0 fori =1,...,1L

The proof of the following theorem is parallel to that for U described in [13].

5. FINITENESS OF THE GINDIKIN-KARPELEVICH SUM, PART 2

Notation: For a constant M, we write M (z,y, 2, ...) to indicate that the choice of M depends
only on z,9, z, ....

5.1. Fix some highest weight module V* with primitive highest weight vy. Let us define a
norm || - || on V* in the following way. For any v € V* let us set

ord(v) = min {n € Z | m"v € V3 }.

Then we set

[lo]| = ¢4,

For an operator ¢ : V* — V* and a positive constant C' > 0 we shall say that ¢ is bounded
by C if ||gua|| < C. We say that g is bounded by C at depth j if when we write

=3 o

nePA

| Z vul| < C.

HEP ()
where P* and P*(j) denote the set of weights and weights of depth greater than j of the
module V* respectively.

We say that a family of elements = C G is bounded (bounded at depth j) if there exists
some C' > 0 such that every element of = is bounded by C' (respectively, bounded by C' at
depth 7).

We shall need a finer notion of boundedness in the sequel. Recall that each u™[j] can
be explicitly written in terms coordinates (see (4.3) if 7 > 0 and (4.4) if j = 0.) We say
that an element u™[j] is componentwise bounded by a positive number C'if 7 > 0 and in an
expression (4.3) we have

then

lIsjall < C: 350

| < C,||ejml|] < C where o € Ry, m >0
or j =0 and in an expression (4.4) we have
l1s0,0|] < C where a € R,

A family of elements of the form u~[j] will be said to be componentwise bounded if there
exists a constant C such that all elements in this family are componentwise bounded by C.

5.2. The relation between an element in U~ being bounded and being componentwise
bounded is partially explained by the following,

Lemma 5.3. Suppose that v~ [j] is bounded at depth j by C. Then there exists a constant
D = D(C) such that u™[j] is componentwise bounded by D.

Proof. We will consider two cases:
14



5.4. Case 1: j = 0. Let us write
w0 = JT xa(s0a)
acR,,

where the product is ordered according to decreasing height from left to right. Consider
now the following statement for each t = 1,...,ht(#).

H(t) : Suppose there exists C' > 0 such that for any

Uy = H Xa(S0,a), S0a €K (5.1)
a€R, —, ht(a)>t
that satisfies
[lugoa|| < C
then there exists a constant D = D(C) > 0 (depending only on C') such that |[sgq|| < D
for each v € R, —.

We shall show that H(t) is true for t = 1 by decreasing induction on ¢. For ¢ = ht(#) this
follows from Lemma 4.6. So we need to argue that that if (¢ + 1) is true, then also H(t)
is true. So given u; asin (5.1) we may write

U = “;+1X71(571) s ‘X%(Sw)

where s, € K, ht(y;) =t for j =1,---r and u,, 41 is a product of elements corresponding
to roots of height at least t + 1. We then have

T
Uy Uy = Uy + Z 54,6y, vx + terms of lower order ,
i=1
By Lemma 4.6 each of the &,vy # 0, and furthermore they lie in different weight spaces.
Hence by the hypothesis of boundedness in H(t) we see that there exists a constant D only
depending on C such that |[s,,|| < D for j =1,...,r. Now, if we set

g 7= (X (891) - X'yr(s'yr))_lu;rlX"ﬂ(S'n) o Xy (S9,),
then there exists a constant C' such that [T qval] < C for all u; . On the other hand, the
element 4, ; is a product over roots of height at least ¢ +1 and so we may apply inductively
the hypothesis H(t + 1) to the 4, ; and conclude that it is componentwise bounded by a
constant depending only on C. As 1;,; and u, are conjugates by a componentwise bounded
expression, we see that the u, are also componentwise bounded.

5.5. Case 2: j > 0. Suppose we write

I
u”[j] = H Xa(t™7s5.0) th’(l +cigt) H X-a(t™5ja) With $jq, §ja, cij € K.

acR, 4 =1 acR, 4

Then by Lemma 4.6 we have

!
u” [Jloa = U)\—FZ Ci i€ ivat Z Sm.a&m,aUr+ Z Sm,—a&m,—aVr+ terms or lower depth.
i=1 acRo + aCRo +
15



Again by Lemma 4.6 we have that §; ;v are linearly independent and so we may bound each
of the coefficients ¢; ;. Furthermore, each of the vectors &, vy and &, _ov) are non-zero
and lie in different weight spaces, so we obtain a bound on the coefficients s, o and 5,, _q.

O

5.6. An extension of Lemma 5.3 is given by the following,

Proposition 5.7. Let m be a positive integer, and C' a positive constant. Suppose that
F C U~ is a family such that

(a) [lu~vy|| < C for allu™ € F

(b) every u~ € F may be written as a product uw~[m]---u~[0].
Then there exists a D = D(C,m) > 0 such that u™[j] is componentwise bounded by D, for
7=0,...,m.

Proof. The proof will consist of a decreasing induction on j for the following statement
denoted by P(j):

P(j): Suppose that v~ [m]u~[m—1]---u~[j] is bounded by C. Then there exists D = D(C')
such that each u~[k] for k = j,--- ,m is componentwise bounded by D.

The statement P(m) follows from Lemma 5.3. So let us assume that P(j + 1) is true,
and let us then argue that P(j) then follows. Let us write

u” i=u [m]---u” [j+ u [jlux = vy + terms of depth j + terms of higher depth .

We then have that
(u” —u~[j])vn = terms of depth > j + 1.

As u™ belongs to a bounded family, we must have that the u~[j] is bounded at depth j.

Hence it is bounded and componentwise bounded by Lemma 5.3. Now consider

-1

a = [f] T uT ] uT [jl =aT [m] - [+ 1]

for some elements @~ [m],...,a [j + 1]. The expression 4~ is bounded by some constant
D = D(C) and so applying statement P(j + 1) we conclude that @~ is componentwise
bounded by E = E(D) = E(C). But then there exists a constant F' = F(F) = F(D) =

F(C) such that
u” = u” [laul]
is componentwise bounded (since u~[j] was componentwise bounded).
(|

5.8. In the future we are going to need the following elementary result, which is proved in
the appendix to this paper.

Proposition 5.9. Let n be a positive integer and let C > 0. There exists r = r(C,n) >0
such that for any A, B € GL(n,K) such that

(1) The entries of A, B are bounded by C

(2) A= B=0 (modn"),
Then AB~! € GL(n,0).

5.10. We now proceed to the proof of Theorem 3.5, which proceeds in several steps.
16



5.11. Step 1. Let AV be a regular dominant weight. Then the natural map ¢ : U~ — V?*

which sends u~ — u vy is injective. We claim that for m sufficiently large, that the same

is true for the mapC, : U™ (w, u) — V*[m] the map obtained by composing ¢ with the

projection V* — V*[m]. Indeed, since U(w, 1) C BwB, it follows that the image of ¢ lies

in V). Since the projection V, — VA[m] is injective for large m, the statement follows.
Moreover, we claim that if m is sufficiently large, then both (,;, and the map

U (w, ") x U™ (w,1") = Vm] (5:2)
(ur,uy) = uy (up) oy (mod VA(m))
are injective. Indeed, if u; ,u; € U™ (w, 1) then the product
uy (uy) ™! € BuBw 'B C U Bw'B
w’ €N

where () is a finite set. Then any m > max,/cq m, will satisfy the second injectivity
requirement.

5.12. Step 2. The second step is the following simple lemma:

Lemma 5.13. The set U(w, ") is bounded. Equivalently, there exists i > 0 such that
C(U (w,u")) C F_ZV(%‘.

Proof. Take i = (¥, \). Then for every g € K7 U we have

C(g) € TV
Hence Lemma 5.13 follows since U~ (w, u¥) ¢ Ka=+"U. O

5.14. Step 3. Let m be greater than the depth of w(\). Then for every v~ € U(w, p") in
the decomposition
U vy = Z v, where v, € VA (p), (5.4)
HEPy
we must have v, = 0 for all p of dep() > m, and where we recall again that Py denotes
the weight lattice of the representation V2.
Using Theorem 4.4 let us write u~ = [[[Zu"[j]. Then for every m as above we see

immediately that wy,(u"[j]) = 1 if 7 > m. Hence for sufficiently large m (independent of
u~ we have

um =u [mju”[m—1]---u"[0] (5.5)
5.15. Step 4. Let us choose m to satisfy the conditions of Step 1 and Step 3. From now
on let us set V,, = Vu’)\, Vw,o = Vu’)\o, v = vy). We claim that there exists ¢ > 0 such that for
any v~ € U™ (w,u") we have
u” (Vo) C V.

In other words, we claim that if we choose an O-basis for V;, o then the image of the natural
embedding ¢, : U(w, ") — GL(V,,) consists of lower-triangular matrices (with respect to
some natural basis) whose entries are bounded by some constant C' depending only on ¢
and w. This immediately follows from Proposition 5.7.

17



5.16. Step 5. We claim that there exists a finite set F C U~ (w, ") such that for any
u” € U™ (w, ") there exists ug, € U, and uy € F such that
U = u(_gu;
First, we construct, for every positive integer [ > 0 we construct a set F; as follows. We have
already constructed in the previous step an embedding (,, of U~ (w, ") into the group of
unipotent lower triangular matrices whose entries are uniformly bounded by some constant
C. For a given | > 0 there are only finitely many such matrices mod 7!, and we denote this
finite set by A;. Let F; C U~ (w, 1) then be a set of representatives of ¢, (U~ (w, 1)) mod
w!. In other words, for every element v~ € Fj, we may write

wi(u”) = Ay + € where e =0 (modn'), Ay € A,. (5.6)
We claim that if [ is sufficiently large, then the set JF; satisfies our requirements. First
we choose [ satisfying the condition of Proposition 5.9. Then for every v~ € U™ (w, u),
there exists u; € F such that §((u*))*1§(u;) has integral entries. So, we know that
(u*)*lu;w\ € V3[m] and hence also (u*)*lu;w\ € V3 by the second injectivity require-
ment from Step 1. Hence, we note that it is enough to prove the following

Lemma 5.17. Let A be a regular dominant weight. Assume that u~v) € Vé\ for some
u- €U™. Thenu~ € U,.
Proof. For simplicity let us assume that A = p (the general case is similar). We know that

w~ € Kr*'U for some pV € QY. The fact that u=vy € V) implies that u¥ = 0. Hence
u~ € U, by Lemma 3.3. g

6. PROOF OF THEOREM 1.9 AND THEOREM 1.13

6.1. Proof of Theorem 1.9(1) and Theorem 1.9(3). Let A\ € A". Then any g €
KK satisfies

g (V3) c mm NV, (6.1)
Indeed, the condition (6.1) is clearly K-bi-invariant and it is trivially satisfied by g = .
On the other hand, any g € Knh' U~ satisfies

m(g~ (V) c n= N o, (6.2)

where 7, : VA — K is the projection to the highest weight line (normalized by the condition
that my(vy) = 1). This is true because the set of all g that satisfy (6.2) is clearly invariant
under U -action on the right and the K-action on the left and it is satisfied by g = .

Thus we see that if

KN KNKr' U™ #£0,

then (6.1) and (6.2) imply that (AV,\) > (u¥, ) for every A € A*. Hence A > uV which
proves Theorem 1.9(3).

Similarly, if g € K7 U then

g H(uy) € 7 HIAVR. (6.3)
Hence (6.2) and (6.3) imply that if

KU~ nKr'U # 0,
18



then (A, \) > (¥, \) for every A € AT. Hence AV > uV. This proves the second assertion
of Theorem 1.9(1) and we already know the first assertion.

6.2. Proof of Theorem 1.9(2). The second assertion of Theorem 1.9(2) follows imme-
diately from (6.1) and (6.3). Now we need to prove that every K7’ K N K7+ U is finite.
But we can write
ENKnKr'U= |J KoV KnKr"'U nKo"'U. (6.4)
AV >V
Each Km*' K N K7¥"U~ N K7 U is finite since it is a subset in the finite set K7* U~ N

K7+ U. Since there are finitely many vV such that A\Y > ¥ > Y, it follows that the right
hand side of (6.4) is finite.

6.3. Proof of Theorem 1.9(4). This statement is well-known in the finite case and the
proof in the affine case is essentially similar. We include it here for completeness.
We need to prove the following

Proposition 6.4. Let us fix ¥ € QY. Then for sufficiently dominant \¥ we have
(1) KiN KN KnN' —#'U ¢ KnM'U~
(2K U~ N KoY —#'U c KoV K

Proof. If AV is dominant, then K7*'I ¢ K#*'U~. So in order to prove (1) it is enough to
prove the following

Lemma 6.5. For sufficiently dominant \V we have
KN KN KN ~7'U c KoM
Proof. Suppose we have an element = € KN KN KrY'=#'U. So we may write
T = klﬂ’\v ko = kgw’\v_“vu
where k; € K,u € U. This then implies that there exists k4 € K such that
™ ky = kg T (6.5)

We need to show if AV is sufficiently dominant, then ks € I. In other words, we need to
show that if ko € Twl for w € W then w = 1.

Let us choose a dominant weight A\ and let V* vy be as before. Then for sufficiently
dominant \V the following condition is satisfied:

if w# 1, and w\Y = XY — Y, 8Y € Q4, then (BY,\) > (u",\). (6.6)
Rewriting (6.5) under the assumption that ko € Jwl, we have

Vo, . v_,V . .
7 iwiy € Kot H U, foriy,ip €l

Since I = USU; Tp and 7 USTon ™" € USTe and wU;w™" C I we have that
N Twl = N ULUZ Towl € KnNwU; U,

So if (6.5) holds, then we can conclude that there exists v~ € U, k € K and u € U such
that , u o
™ wuT =kt TR (6.7)
19



Now, apply (6.7) to the highest weight vector vy :
™ wuvy = ket TR wy (6.8)
Consider the left hand side of (6.8) we obtain,

4 _ \ _\V
[ wu~vp]] 2 (|7 woy|| = ¢~

From the right hand side of (6.7) we obtain,

Hkﬂkv*ﬂvuka ::q‘«AV*HVJ>

Writing w™tAY = AV — B for 3 € Q,, we have that

_<>‘V7w)‘> _<w71>‘vv>‘> q_<>\\/_ﬁ\/7>\> < _<)\\/_MV7>\>.

q =q q
This implies that

48N < gl

which contradicts the fact that we have chosen AV to satisfy (6.6).

YA

6.6. Proof of Proposition 6.4(2). There exists a finite set 2 C U~ such that
KV UnKm U~ ¢ U Ka\u.
u~ €N

If all such v~ € Q actually lie in K we are done. Let g C € be the (finite) subset of
u~ € Q such that u~ ¢ K. Let u~ € Q. Since u~ ¢ K there exists w € W with I(w) > 1
such that u~ € U,,, where U, is as in Section 3. Let us write

U vy =vp+ E Vp—ry-
YEQ+

Then there are only finitely many ~ which appear in such expressions as u~ € . By
Lemma 3.3, we have that |[|u~v,|| > 0, so there exists v # 0 such that v,_, ¢ V.
By the hypothesis, we have an expression of the form

™ = kN Tt
Applying the right hand side to v, we find that
| |k7rx\v—uv ut,|| = g~ N me)
whereas when we apply the same expression to the left hand side, we obtain that
17w wpl| = |7 wps || 2 g7,

By choosing AV sufficiently dominant so that (A\V,~) > (p, u") for the finitely many ~ which
can occur, we obtain a contradiction.

O
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7. APPENDIX: PROOF OF PROPOSITION 5.9

7.1. Let A = (a;5) be an n x n lower triangular, unipotent matrix with coefficients bounded
by |laijl| < C. Then A~! is also a bounded matrix whose entries are bounded by some
C' =C'(C,n). For k > 0, assume we have an expression

A=Ag+e (7.1)

where Ay is lower triangular unipotent and e are n X n matrices such that the coefficients
of € all lie in 7*O.

Lemma 7.2. Let A and Ag be n X n unipotent lower triangular matrices whose coef-
ficients have norm bounded by some number C. Then given any m € Zxq, there exists
lo = lo(C,n, m) such that if A= Ag + e with e = 0(mod 7'0) then

At =45 +6
with § = 0(mod 7™).
Proof. We first note that the following two facts:
(1) Given p > 0, there there exists a positive integer dy = do(C,n,p) such that if e =
0 (mod %), then eA~! = 0 (mod 7P).
(2) The Lemma is true when Ay = I, the n x n identity matrix.

Indeed, (1) follows from the fact that if the coefficients of A are bounded by C' then those
of A~ must be bounded by some C’. Also, (2) follows from the identity of matrices,

@o+e) =T, —et+e+---.
Now if we write
A=Ay +e (7.2)
then we have
AT = (L, + Ay le) A

Choosing e sufficiently small (in the m-adic topology), then thanks to (1) and (2) we can
assume that

(I, +eAgH) ™t =1, +6
where 0 is sufficiently small. Hence,
AT = AN, +6) = Ayt + Ayt
and by stipulating that b is sufficiently small we may assume that
§=Ayts

is arbitrarily small. In sum, choosing € sufficiently small in (7.2) we have A™! = A, Lis
with § arbitrarily small (uniformly for all A, Ay lower triangular unipotent matrices with
coefficients bounded by C.) O
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7.3. Proof of Proposition 5.9. Let us write

A=Xo+e€,B=Xp+e€2,6 =0 (modn") fori=1,2.

Given a p > 0, we may use Lemma 7.2 to choose r = r(p, C,n) sufficiently large so that

B™! = X, 46 for § = 0(mod 7P).

For this choice of r we have

AB™' = (Xo+e)(Xg ' +0) =1+ Xod + e1 X5 ' + €10,

Pick p sufficiently large so that X(d (and also trivially €;6) is integral. Increasing the value
of r if necessary, we can also arrange that ;X !is also always integral. The proposition

follows.
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