IWAHORI-HECKE ALGEBRAS FOR p-ADIC LOOP GROUPS
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ABSTRACT. This paper is a continuation of [3| in which the first two authors have introduced the
spherical Hecke algebra and the Satake isomorphism for an untwisted affine Kac-Moody group over
a non-archimedian local field. In this paper we develop the theory of the lwahori-Hecke algebra
associated to these same groups. The resulting algebra is shown to be closely related to Cherednik’s
double affine Hecke algebra. Furthermore, using these results, we give an explicit description of
the affine Satake isomorphism, generalizing Macdonald’s formula for the spherical function in the
finite-dimensional case. The results of this paper have been previously announced in .
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1. INTRODUCTION

Let I denote a non-archimedian local field with ring of integers O. Pick 7 € O a uniformizing
element and denote the residue field O/7O by k. It is a finite field, whose cardinality we denote by
q.

Usually we shall denote algebraic varieties over K (or a subring of ) by boldface letters X, G
etc.; their sets of K-points will then be denoted X, G etc.

1.1. Finite Dimensional Case. We shall first describe the finite-dimensional case of which this
paper is an affine generalization.

1.1.1. Notations on Groups. Let G, be a split, simple, and simply connected algebraic group
(defined over Z) and let g, be its Lie algebra. As agreed above, we set G, = G,(K). Let A, C G,
be a maximal split torus, which we assume is of rank ¢; we denote its character lattice by A, and
its cocharacter lattice by AY; note that since we have assumed that G, is simply connected, A is
also the coroot lattice of G,. For any = € K*,\Y € AY we set 2} = XY (x) € A,.

Let us choose a pair B,, B, of opposite Borel subgroups such that B, "B, = A,. We denote
by R, the set of roots of G, and by RY the set of coroots. Similarly R, + (resp. R(\{? +) will denote
the set of positive roots (resp. of positive coroots), and II, (resp. IT)) the set of simple roots (resp.
simple coroots). We shall also denote by 2p, (resp. by 2p.) the sum of all positive roots (resp. of all
positive coroots). We denote by Ay (resp. AJ . ) the set of coweights (resp. dominant coweights).
Let W, be the Weyl group of G, which is a finite Coxeter group with generators simple reflections
w1, ..., wp corresponding to the simple roots II,.



For a reductive group H over K we denote by H" the Langlands dual group defined over C
defined by exchanging the root and coroot data of H.

1.1.2. Hecke algebras. Let J, C G, be an open compact subgroup of GG,. Then one can con-
sider the Hecke algebra H(G,,J,) of J,-bi-invariant compactly supported functions with respect
to convolution. Studying the representation theory of GG, is essentially equivalent to studying the
representation theory of the algebras H(G,, J,) for various J,.

There are two choices of open compact subgroups of G, that will be of interest to us. The first
is that of K, = G,(O); the corresponding Hecke algebra H(G,, K,) is called the spherical Hecke
algebra. The second is that of the Iwahori subgroup I, C K,, which is by definition equal to the
preimage of B,(k) C G(k) under the natural projection map K, — Gy(k). The corresponding
Hecke algebra H(G,,1,)is called the Iwahori-Hecke algebra. Let us recall the description of the
corresponding algebras in these two cases.

1.1.3. Spherical Hecke Algebra and the Satake isomorphism. The Cartan decomposition asserts
that G, is the disjoint union of double cosets K, o K, \V € AZ,JH hence, H(G,, K,) has a vector
space basis corresponding to the characteristic functions of these double cosets hyv, AV € A;ﬂ 4
As an algebra, H(G,, K,) is commutative, associative, and unital, with unit 1x, equal to the
characteristic function hyv with AY =0 (i.e. the characteristic function of K,).

Let C[AY] denote the group algebra of A) : it consists of finite C-linear combinations in the
symbols e*” with AV € AY, where e e’ = X' +1" for \Y, ¥ € AY. The natural W,-action on
A lifts to C[AY]; for f € C[AY] and w € W we denote by f* the application of w to f. The
Satake isomorphism S, makes clear the algebra structure of H(G,, K,): it provides a canonical
isomorphism (see [31])

Sy H(Go, K,) = C[AY]W, (1.1)

where C[AY]"° is the ring of W,-invariant elements in C[AY]. The algebra C[AY]" admits other
interpretations: it is isomorphic to the complexified Grothendieck ring Ko(Rep(GY)) of finite-
dimensional representations of GY ( the Langlands dual group of G,); it is also isomorphic to the
algebra C(AY)"e of polynomial functions on the maximal torus AY C GY which invariant under
W

For many purposes, it is desirable to have an explicit formula for the elements S,(hyv). Such
a formula was given by Macdonald (and independently by Langlands [24, Chapter 3| in a slightly
weaker form), and we shall present the answer below.

1.1.4. The Iwahori-Hecke algebra. As follows from the work of Iwahori and Matsumoto [19], the
group G, is the disjoint union of I,-double cosets indexed by W, := W, x A, the affine Weyl group
associated to Wgﬂ It is well-known ([29]) that W, is itself an infinite Coxeter group which has
simple reflection generators wy, ..., wp11 where wy, ..., wy correspond to the previously introduced
generators of W,. Denote by ¢ : W, — Z the length function on W, corresponding to this set
of generators, and also let T, be the characteristic function of the I,-double coset corresponding
to © € W,. Then in loc. cit, it was shown that the algebra H(G,, I,) has the following simple
presentation: it is generated by {7} }ew, and has relations
IM 1 T,T, = Tyy for z,y € W, with £(zy) = {(z) + {(y)
IM 2 72 =qTi+(q—1)T, =0fori=1,...,0+1.
The algebra H(G,,I,) has an important alternative description, the Bernstein presentation :

it is generated by elements ©yv for \V € AY and T,, for w € W,, with relations:

B 1 T,Ty = Ty for w,w' € W, with £(ww') = {(w) + £(w');

B 2 ©,v0,v = O,v,v; in other words, the ©,v’s generate a (commutative) subalgebra C[A}]

inside H(Gy, I,);
lrecall that we have assumed that G, is simply-connected, so that W, = W, x QY where Q. is the coroot lattice
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B 3 For any f € C[A}] and any simple reflection w; for i = 1,...,¢ we have

w; f - fwi
fTw, — Ty, f" =(q—1)—=— (1.2)
1—0_,v
where a;" are the simple coroots of G,. Note that the right hand side of the above equation
is an element of C[A)].

1.1.5. Explicit description of the Satake isomorphism. For any subset ¥, C W, we define
Solg™) =Y ¢t (1.3)
WED,

For any AV € AY, let W, v denote the stabilizer of \¥ in W,. The following result is due to
Macdonald.

Theorem. [26] For any \¥ € Ay, we have

1-— qile*O‘v
So(hyv) = M Z wl e aEII;IO’Jr (1.4)
o AV ) = WO’)\V (q_l) H 1 o efav ’ .

wEWO OCERO,+

where recall that p, was defined as the half-sum of the positive roots of G,.

Note that it is not immediately clear that the right hand side of belongs to C[A)]. Of
course this follows from the theorem as the left hand side of is in C[AY].

Since S, is an algebra map, it sends the identity in the Hecke algebra 1 (i.e., the characteristic
function hyv with AV = 0) to the identity 1 € C[AY]"°. Specializing to AY = 0 and noting
that S,(ho) = 1 we obtain the combinatorial identity

X [ 1—gte®
acR, +
1:W Zw( i ) (1.5)

weWo a€R, 4

(see [27]). We emphasize this point, as the naive analogue of the above identity fails in the affine
setting.

1.2. The Affine Case. The main purpose of this paper is to extend the results described in §§

to the case of (untwisted) affine Kac-Moody groups, the results in § having been
generalized already to the affine setting by the first two authors in [3].

1.2.1. Notations on Loop Groups. As before, we start with a split, simple, simply connected group
G,. Fix a symmetric, bilinear form (-, -) on the coroot (or coweight) lattice of G, (which is specified
in . For this fixed choice of (-, -) the polynomial loop group G,[t,t~!] (i.e. the functor whose
points over a ring R are given by G,(R[t,t~!])) admits a non-trivial central extension by G,, which
we denote by G. The full affine Kac-Moody group is then G := Gy, x G [ where Gy, acts by
rescaling the loop parameter ¢. Denote by

n:G—= Gy (1.6)
the projection onto the rescaling parameter. We choose a pair B, B_ of opposite Borel subgroups
of G (see for precise definition of this notion) whose intersection A = B N B_ is equal to the
group A = G,, X A, X G,,, where the first G,, corresponds to the central direction and the second
to the rescaling parameter. Let R (resp. R") denote the set of roots (resp. coroots) and II (resp.

ITV) the set of simple roots (resp. coroots) of A. Recall that the roots (resp. coroots) come in two
flavours: the real roots (resp. coroots) shall be denoted by R, (resp. R,,) and the imaginary ones

2The reader should be warned that in the main body of this paper a slightly different (but equivalent) construction
is adopted coming from the general theory of Kac-Moody groups
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by Rim (resp. R}.). The minimal imaginary coroot shall be denoted by ¢, and corresponds to the
central extension. Also let AY denote the cocharacter lattice of A instead of A and Ai the set of
dominant cocharacters. We have that

A =ZoAN @7, (1.7)

where again the first Z-component corresponds to the center and the last to the loop rescaling.
As before, let C[AY] be the group algebra of AY. We denote by W the Weyl group of G. The
group W is an infinite Coxeter group, which leaves invariant the imaginary roots and coroots. We
define the Tits cone X as the union Uy,cww(AY). Unlike the finite-dimensional case, X # AY;
in terms of the decomposition , the Tits cone is characterized as the subset of all elements
(a, N\, k) € Z® N} @ Z such that either k > 0 or k=0 and A\ = 0.

For the groups G or A we denote by GV and AY the Langlands dual group (defined over C, see
[3] for more details). If G is simply-laced, then the dual group to its affinization G is again an
untwisted affine Kac-Moody group. But in general the dual group GV is a twisted affine Kac-Moody
group.

Remark. To simplify matters, we assume that G, simply-laced throughout this paper. In so doing,
not only do we avoid having to leave the realm of untwisted affine Kac-Moody groups, but there
is also some simplification in the final formula for the spherical function. Namely, we have the
particularly simple expression in this case. For a general affine root system, we refer to [1]
for a corresponding formula. As far as we can see, there are no serious complications which arise
when dropping the simply-laced assumption.

1.2.2. p-adic Loop Groups. Our main object of interest is the group G = G(K). It was observed
in [3] that one should work with a certain semigroup G4 C G. To describe G4, recall the map
n: G — Gy, from (|1.6)) which induces the map

ml:G— kK37 (1.8)

where the last map is the valuation map val : K* — Z. We define G C G as the sub-semigroup of
G generated by the following three types of elements:

(1) the central K* C T' C G;

(2) the subgroup G(O) C G;

(3) All elements g € G such that |n(g)| > 0.

We define affine analogues of Ky and Iy as K := G(O) C G4 and I := 1 ' (B(k)) C K where
mx : G(O) — G(k) is the natural projection. The following result, proven in §3, generalizes the
Cartan and Iwahori-Matsumoto decompositions from the theory of p-adic groups (see e.g., [26]),

Proposition. There are bijective correspondences between the following sets

(a) AY and the set of double cosets K \ G4 /K
(b) Wx := W x X and the set of double cosets I\ G4 /I (recall that X was defined to be the
Tits cone).

Part (a) of this Proposition follows form the results in and Part (b) from those of

1.2.3. Spherical Hecke Algebras and the Satake Isomorphism. Due to the infinite-dimensionality of
K and I, one cannot resort to the usual techniques to define a convolution structure on the space
of I or K-double cosets on the group. However, it was shown in [3] that an associative algebra
structure can still be defined on a certain completion of the space of finite linear combinations of
K-double cosets of G;. We would like to emphasize that this claim is by no means trivial, and we
refer to the remarks in for more on this point.

Denote by H<(G 4, K) the spherical Hecke algebra of K-double cosets of G, where the subscript
< denotes that a certain completion (depending on the dominance order < on AY) of the space
of finitely supported functions is necessary. The precise definition is reviewed in §5. The algebra
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H<(G4,K) is commutative and unital with 1x (the characteristic function of K) as the unit.
The algebra H< (G4, K) comes with two additional structures: a grading by non-negative integers
coming from the map |n| of and a structure of an algebra over the field C((t)) of Laurent
power series in a variable t (not to be confused with the loop variable ’t’) coming from the center
of G.

The statement of the Satake isomorphism for G is very similar to that for G,. First, in [3]
the natural analogue of the algebra C[AY]"° was defined (it had also made its appearance in the
literature earlier by Looijenga [23]). The definition again involves a certain completion C<[AY] of
group algebra of AY. We shall denote the corresponding space of W-invariants here by C<[AY]W.

This algebra also has natural interpretations in terms of dual groups: either as the subring
C<[TV]W of W-invariants in a certain completion of the space of polynomial functions on TV or
as a suitable category Rep(G") of representations of GV (stable under tensor product) so that
K,(Rep(GY) =2 C<[AV]W (see

The algebra (CS[AV]W is also a finitely generated Zs>o-graded commutative algebra over the
field C((t)) of Laurent formal power series in the variable t. The affine Satake isomorphism asserts
that

Theorem. [3| There is a natural isomorphism of graded C((t))-algebras
S:H-(G,K)— C<[AV]V. (1.9)

We shall present below a generalization of (|1.1.5)) giving an explicit formula for S on certain
basis elements of H< (G4, K).

1.2.4. The Iwahori-Hecke algebra for G. As we observed in Proposition m(b)7 G+ can be written
as a disjoint union of I-double cosets paramterized by the semigroup Wx := W x X where X was
the Tits cone of AV. The semigroup Wx plays a role similar to W, in the usual theory of p-adic
groups; however, it is not a Coxeter group. Although we largely circumvent a systematic study of
the combinatorics of this group, we do introduce here certain orders on this group and show how
they arise naturally from a group theoretic point of view.

Denote by H(G4,I) the Iwahori-Hecke algebra associated to G, which is the space of I-bi-
invariant functions on G4 supported on a union of finitely many double cosets. It has a vector
space basis T, for x € Wx where T, is the characteristic function of the double coset Iz, x € Wx.
In this paper we show the following result, which follows from the finiteness theorems in [3] or [2].

Theorem. The space H(G4,I) can be naturally equipped with a convolution structure.

Note the difference from the spherical case, where the convolution was only defined on a com-
pletion of some space of finitely-supported functions.

In the finite-dimensional case, one has two presentations for the algebra H(G,,I,) as was
described in one in terms of the basis {1, }rey, and the relations IM 1, IM 2 | and the
other in terms of a basis {©yv, Tw}rveay,wew, subject to the relations B1, B2, B3. We do not
know how to generalize the former presentation, but H (G, I) does admit a description similar to
the latter. To describe this it, recall that we have from that AY =Z @& A) & Z. Let H denote
the algebra generated by elements ©yv, \Y € AY and T, for w € W C Wx with relations B 1, B
2, B 3 asin The algebra H is Z-graded; this grading is defined by setting

deg Ty, = 0;  deg O,y k) = k where (a,\), k) e AV =Z SN B L. (1.10)

We denote by H, the subspace of all elements of degree k£ in H. Note that Hy is a subalgebra of H,
which is isomorphic to Cherednik’s double affine Hecke algebra.
Let us now set,

H, = C(Ty)wew ® (@Haﬂa : (1.11)

k>0
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The following is one of the two main results of this paper:
Theorem. The algebra H(Gy,I) is isomorphic to the algebra Hy. .

In particular, the algebra H(G, I) is closely related to Cherednik’s double affine Hecke algebra.
We note that another relation between the double affine Hecke algebra and the group G was
studied by Kapranov [22]. In op. cit, the double affine Hecke algebra was constructed as an
algebra of intertwining operators on some space built from G. As such, it naturally comes equipped
with a Bernstein type presentation. Our algebra H (G4, I) is first constructed as a convolution
algebra of double cosets, and then shown to admit a Bernstein-type description by studying certain
intertwining operators. Hence, by definition the algebra H (G, I) is endowed with a natural basis
corresponding to characteristic functions of double cosets of I on G4. It is natural to conjecture
that this basis has a purely algebraic or combinatorial description as well.

1.2.5. Affine Macdonald formula. As observed in Proposition (see also Theorem ), the semi-
group G4 is equal to the disjoint union of K-double cosets K K, \V € AY. Denote by hyv €
H(G, K) the characteristic function of the corresponding double coset and let C, := C((v)) denote

the ring of Laurent series in the formal variable v. Define C, <[AY] := C, ®c C<[AY]. The element
(a¥)
1—v2ea"\"
a€Ry

where m(a") is the multiplicity of the coroot a" may be regarded as an element in C, <[AY] by
expanding each rational function in megative powers of the coroots. For w € W, we also define

) 1 y2e—wa" m(a")
AY to be the expansion of the product Ha€R+ (%)

Fpe— in negative powers of the coroots.
—€

One can then show that the following element

. v=2(pAY) Z AW A (1.13)
vV = —/——— € .
AT W (v2) =

lies in C, <[AY], where p € A is the affine analogue of p, (see (2.11)) for a definition). The following
is the other main new result of this paper,

Theorem. The element HTAOV lies in the ring Clv?, v=2]@cC<[AV], and its specialization at v? = ¢+

is equal to S(hyv).

In the finite-dimensional case the second equality of the identity (|1.5)) ensures that the analogue
of Hy is equal to 1. However, in the affine setting

1 w
HOZW%A £1, (1.14)

although the analogue of the relation S(hg) = 1 must still hold. This explains the reason why we
divide by Hp in Theorem Observe that the function Hy was studied by Macdonald in [28]
using the works of Cherednik. Macdonald has shown that Hy has an infinite product decomposition.
For example, when G,, the underlying finite-dimensional group of G is of simply laced type, the
Macdonald-Cherednik formula reads as follows:

{ oo ) ;
1 — p2mieg—ic
Ho = H H 1 — 2(mi+1)g—jc’ (115)
i=1j=1
where ¢ was the minimal positive imaginary coroot and my, - - - ,my are the exponents of G, (defined

for example via ((7.39). A similar product decomposition for H exists for not necessarily simply-
laced groups (see [1]).



1.2.6. Relations to Previous Literature. There are two main new results in this work: (a) the
computation of the spherical function (Theorem ; and (b) the construction and identification
of the Iwahori-Hecke algebra (see §1.2.4). Let us comment on each in turn, and then make some
general remarks.

The first work that we know of to treat loop groups over local fields was Garland [15] which
studied the Cartan decomposition on such groups. There it was noticed that one needed to work
on half of the group (essentially our semigroup G, introduced above) in order for the Cartan
decomposition to hold; this was an observation analogous to one previously made while studying
the theory of loop arithmetic quotients (see [14]). Already, the work [15] was motivated by the
desire to study a theory of spherical functions for loop groups. In the setting of a general finite-
dimensional p-adic group , the theory of spherical functions was developed by Satake [31] EL but it
remained an open question how to explicitly compute these functions and determine the Plancherel
measure. This question was taken up some years later by Langlands and Macdonald H for quite
different reasons and using different techniques; both of their techniques and motivations were
actually relevant for us. In [24], Langlands needed an explicit formula for spherical functions to
prove the convergence of the L-functions he had just introduced (the now called automorphic L-
functions). His strategy for computing the spherical function is reminiscent of Harish-Chandra’s
work in the real case— the answer is show to be a sum over the Weyl group with the coefficients in
this sum asymptotically linked to certain Gindikin-Karpelevic integrals. Note that in this work, the
Iwahori subgroups play no visible role. On the other hand, in [26] Macdonald developed an intricate
strategy to compute the spherical function and thereby complete the work of Satake by using an
Iwahori-level analysis (something which is absent in Satake’s work). Note however that the actual
Iwahori-Hecke algebra does not play an explicit role in Macdonald’s work. However, Casselman
[5] revisited Macdonald’s work and gave a new proof of the formula for spherical functions which
makes the connection to the representation theory of Iwahori-Hecke algebras explicit. The work
of Macdonald has also been developed in a combinatorial direction, and we just note here that an
important deformation of the p-adic spherical function are the so-called Macdonald polynomials. In
this work (see ), a slightly different connection than what was observed earlier by Casselman
is noted between the spherical function and the representation theory of the Iwahori-Hecke algebra:
namely, the main recursion formula which Macdonald uses in [26] can be phrased in terms of the
polynomial representation of the algebra which was introduced by Cherednik much later, and not
coincidentally, in his study of Macdonald polynomials.

Leaving aside any issues of finiteness, an obstacle that had impeded the development a theory
of spherical functions on loop groups was finding a way around the (absence of the) longest element
of the Weyl group. In the finite dimensional case, this longest element plays a simple but persistent
role, and it turns out to be a subtle point (essentially related to the Macdonald constant term
conjectures) how to properly account for its absence. In our approach, the issue is addressed by
first making a link between a certain Iwahori-level decomposition of the spherical function and the
polynomial representation of the double affine Hecke algebra mentioned above. This provides a
reduction to a purely algebraic/combinatorial question which was previously studied by Cherednik.
Note that in our approach a certain normalization condition is natural and essential for pinpointing
the mysterious factor Hy in the formula for spherical function. In hindsight, we recognize
its complicated shape as the main obstacle to a direct approach to the calculation of the spherical
function.

Prior to [15], Cherednik had introduced the double affine Hecke algebra as a new tool to study
certain conjectures of Macdonald, one of which was the constant term conjecture mentioned in
previous paragraph (essentially the equality in our notation). It was a natural question
(posed sometime in the mid 1990s) whether one could recover the double affine Hecke algebra

3for certain rank 1-groups, there was previous work by Mautner [30])
4Langlands work is in slightly less generality, and perhaps for this reason, the formula for the spherical function is
nowadays just referred to as Macdonald’s formula



from the p-adic loop group setting. The first affirmative answer to this question came with the
work of Kapranov [22] where it was shown that, attached to a p-adic loop group G (not G ), one
could construct a family of operators acting on some natural p-adic symmetric space. The algebra
generated by these operators was shown to be equal to Cherednik’s double affine Hecke algebra.
This work was then extended by the second-named author in several directions [9-11]. Note that
in these works, the double affine Hecke algebra arises naturally through the Bernstein presentation
and the issue of defining a convolution structure on the group itself is avoided. Thus, it remained
an open question whether one could actually construct a convolution structure on the group. This
problem was first resolved by the first and second-named authors in [3] where it was shown that
if one restricts to working within G4 (not G) one can in fact define a convolution structure on
(a suitable completion of) the space K-double cosets. The main point of that work was to verify
certain ”spherical finiteness” conditions (see below) and this was achieved by interpreting the
problem geometrically. Subsequently, new proofs of this result have been found. One such proof
is given in 2] which works in an ”elementary” context (essentially using representation theory of
affine Lie algebras and structure theory of the p-adic loop group). Note that in loc. cit a stronger
result is proven (see [2, Theorem 1.9(1)]) which we refer to as ” Gindikin-Karpelevic” finiteness and
from which spherical finiteness follows immediately. This stronger Gindikin-Karpelevic finiteness
is actually used in the present work when we construct the Iwahori-Hecke algebra. Another very
different proof of the spherical finiteness which works for general Kac-Moody groups was found by
Gaussent and Rousseau [16] by developing an analogue to the theory of buildings (called hovels).
These techniques enabled them to attach a spherical Hecke algebra to any Kac-Moody group over
a local field, and also to prove that the structure coefficients of the corresponding algebra are
polynomials (in the size of the residue field). It would be interesting to understand whether the
techniques of loc. cit extend to allow one to construct Iwahori-Hecke algebras on a general Kac-
Moody group (one may also ask the related question: can the techniques of [16] allow one to
prove the Gindikin-Karpelevic finiteness?). Let us note here that the techniques of this paper also
allow one to prove the polynomiality of the structure coefficients of the spherical Hecke algebra
(as we indicated in , but we do not study the corresponding problem for the Iwahori-Hecke
algebras.

Having constructed a convolution structure on certain (finite) combinations of Iwahori double
cosets, it remains to identify the corresponding algebra as a close variant of the double affine Hecke
algebra. At this point, one could use (a slight extension of ) the work of Kapranov [22] (which in
turn uses the certain constructions from [17]). We opt here for a direct, if somewhat cumbersome,
approach. The main difficulty is to construct a family of commuting operators ©,v for AV € X
inside the Iwhori-Hecke algebra and we do this inductively on the length of the chamber in which
AV lies. One then needs to verify the construction is independent of certain choices made along the
way, which we address in

In we develop some basic structure theory for p-adic loop groups. Aside from the Cartan
decomposition, this is a quite standard extension of the finite-dimensional case, but we could not
find a suitable reference for certain results we needed. Along the way, we realized that a criterion
established earlier for detecting when unipotent elements are integral (see |2, Lemma 3.3]) yields a
proof of the Cartan decomposition that may extend to a general Kac-Moody group (the proofs of
the Cartan decomposition in [15] and [3] do not seem to extend). We decided to include a sketch of
this proof in the affine case in Appendix A, but we do not pursue the general Kac-Moody case here.
Finally, in Appendix B, we explain a certain pre-order on the double affine Weyl group (which, we
recall is not a Coxeter group by any means) that naturally arises from the group theoretic point of
view. It is analogous to the Bruhat order on the usual affine Weyl group when this group is viewed
as a semi-direct product of a finite Weyl group and an infinite subset of translations. We expect a
closer study of this order may play some role in understanding the questions posed at the end of

q1.2.4]



We conclude by pointing out that a limit of the spherical function (see [2]) may be used to com-
pute the Gindikin-Karpelevic integral. |E| This integral is the local input needed in a generalization
of the Langlands-Shahidi method to loop groups— i.e. to compute the constant terms of certain
Fisenstein series on loop groups and relate them to L-functions of cusp forms on finite-dimensional
groups. This was one of the main motivations for us to undertake this study.
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2. BAasic NOTATIONS ON GROUPS AND ALGEBRAS
2.1. Lie Algebras.

2.1.1. Finite Dimensional Notations. Let g, be a simple, simply-laced, split Lie algebra of rank
£ over a field k. In general the index o will denote objects associated to a finite-dimensional root
system. Choose a Cartan subalgebra h, C g, and denote the set of roots with respect to h, by
R,. Choose a Borel subalgebra b, and denote by II, = {aq,...,as} the simple roots of R,. Let b}
denote the algebraic dual of b, and denote the natural pairing b} x b, — k by (-,-). Let 6 denote
the highest root. Denote by (-, -) the Killing form on bh,, which induces an isomorphism v : h, — b.
We continue to denote the induced form on b by (-,-), normalized so that (#,0) = 2. For each
root a € R, denote the corresponding coroot by a" := (Ofa)z/ﬁl(a) € b,. For each a € R, we let
wq @ b — b} be the corresponding reflection, and denote by W, the Weyl group generated by the
reflections w,, for i = 1,...,¢. Let A, C b} denote the weight lattice of g,, defined as the set of
A € b such that (\, ) € Z for i = 1,...,¢. We define p, € A by the condition that (p,,a) =1
fori =1,...,¢. We let Q, C b} denote the root lattice, and observe that @, C A,. Dual to these
notions, we denote by AY and Q) the coweight and coroot lattice of g, in the usual way.

2.1.2. Affine Lie Algebras. For a field k, we denote by g the affinization of the Lie algebra g,. As
a vector space g := kd @ g’ where d is the degree derivation and g’ is the one-dimensional central
extension of the the loop algebra g, ® k[t,t~!] which is specified by the form (-, -) defined in
Let h C g denote a Cartan subalgebra containing the finite-dimensional Cartan b,, the degree
derivation d, and the center of g. One has a direct sum decomposition

b = bo @ hcen @ kd (21)
where beep, is the one dimensional k-vector space containing the center, and we may equip § with
a symmetric, non-degenerate bilinear form on (-|-) as in [20]. Let h* be the algebraic dual of h. As
before we denote by

()b xbh—k (2.2)
the natural pairing.
Let R be the set of roots of g, and RY the set of coroots. We denote the set of simple roots of
g by
I = {al,...,ag+1} C h* (23)
Similarly, we write
Hv = {a\l/v'-'vazarl} - b (24)

5 Note that this is essentially the inverse of the strategy employed by Langlands in his computation of the spherical
function.



for the set of simple affine coroots. Note that the simple roots a; : h — k satisfy the relations
(aj,dy = 0 for i =1,...,¢

(2.5)

and (agy1,d)y = 1.

Each root a € R, extends to an element of h* which we denote by the same symbol « by requiring
that (o, X) = 0, for X € bheep @ kd. Let § € h* be the minimal positive imaginary root defined by
the conditions,

(0,X)=0for X € heen, ®h, and (6,d) = 1. (2.6)
As is well known, we have a; = o; fori =1,...,1 and ap; 1 = —6 + 9.
We define the affine root lattice as
Q = Zay + -+ + Zag_,_l (27)

and the affine coroot lattice as
QY = Za} + -+ + Zaj,,. (2.8)

We shall denote the subset of non-negative integral linear combinations of the affine simple roots
(respectively, affine simple coroots) as Q4 (respectively, QY). The integral weight lattice is defined
by
A = {Debh | (\ag/) €Z fori=1,....,0+1and (\d)€Z}. (2.9)
The lattice A is spanned by § and the fundamental affine weights Ay, ..., Agy1, which are defined
by the conditions that (A;,d) =0fori=1,...,£+ 1 and

(Aia) = {(1] 2;? for1 < ij<0+1. (2.10)

We define the element p € A by the conditions
(p,aY)y = 0fori=1,...,4+1, and {p,d) = 0. (2.11)
The dual space h* is spanned by ay, a2, - ,agr1, Aeyr1. We also let ¢ € h be the minimal imaginary

coroot, characterized by the conditions,
(a,c) =0,a € R and (Apq,¢c)=1. (2.12)
We denote by AV the coweight lattice in g which is defined as

A =\ ebh | (a,\)eZfori=1,....,0+1and (Ap;1,\") € Z}. (2.13)

In other words AV = Homg(A,Z). Let us denote by < the dominance partial order on AY: i.e., for
2V € A

' < AV if and only if \Y — u¥ € QYF. (2.14)

2.1.3. Structure of Affine Roots. For each ¢ = 1,...,¢ + 1 we denote by wg, : h — b the reflection
through the hyperplane H; := {h € b|(h|a;’) = 0} and denote by W C Aut(h) the group generated
by the elements w; for ¢ = 1,...,¢. It is a Coxeter group. We denote by <y the usual Bruhat
order on the group W. The group W acts on h* in the usual way, i.e. wf(X) = f(w™'X) for
fep" X ehweW Aroot a € R is called a real oot if there exists w € W such that wa € II.
The set of such roots is denoted as R,.. Otherwise, a is called an imaginary root, and the set of all
such imaginary roots is denoted R;,,. We have decompositions,

R = RyeURip (2.15)

and we may define R,. + and R;, + accordingly. The set of real roots admits the following descrip-
tion:

Rye ={a+mé|a € R,,meZ}. (2.16)
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The set of positive real roots is then

Ry ={a+mé|acR,y,m>0}U{a+mé|aecR,_,m>0}. (2.17)
The set of imaginary roots is equal to
Ry, ={md | meZ\O0}. (2.18)
Let a € R, and choose some w € W such that wa = a; € II. We define the corresponding coroot
a :=wta}, (2.19)

and note that this construction does not depend on the choice of w (see |20, §5.1]). Recalling that
0 was the highest root of the underlying finite-dimensional root system, we now have

a1 =—0"+c. (2.20)
The element c also spans the one-dimensional center of g and we have a decomposition
h=kcdh, ®kd. (2.21)
Parallel to the decomposition we have a decomposition of the coroots
RY=RY, UR}, (2.22)
into real and imaginary coroots where
RY,={a"+mc|a€R,,meZ} and R}, ={mc|meZ\O}. (2.23)

2.1.4. The Tits Cone. The group W also has an alternate description as

Elements in this group are sometimes denoted as wty where w € W, and H € Q. The coweight
lattice AV can be written (see (2.21))) as AV = Zc @AY & Zd, where the elements in A are regarded
as elements of AV by defining their pairing with respect to 6 and Ay; 1 to be zero. One can check
that for any H € QY,m,r € Z and A\ € A},

ty(me+ A, +rd) = (m+ (N, H) — r(H’2H))c + A —rH +rd. (2.25)
Moreover, one can also see that if w € W,,m,r € Z and A\ € A/, then
w(me + A, +rd) = me +w()\)) + rd. (2.26)
Setting
A ={\Y e AY|(5,\Y) =1}, (2.27)
we see from the above two formulas that A) is W invariant and
A = ez (2.28)
The elements in A are referred to as elements of level r. Let AY be the set of dominant coweights,
AY :={\ €A | {a;,\)>0fori=1,...,0+1}. (2.29)
The Tits cone X C AV is defined as
X = wAY. (2.30)
weW
One may then show that [21, Proposition 1.3(b)]
X = {\Y € AV|[{a, \) < 0 for only finitely many a € Ry +}. (2.31)
In terms of the description of AV given above, one has from [21, Proposition 1.9(a)],
X ={\V e AV[(5,\V) > 0} U Zc. (2.32)

In other words, the Tits cone just consists of elements of positive level, and the multiples of the
imaginary coroot ¢ (which are of level 0.)

11



2.1.5. Ring of Affine Invariants. We next define a completion C<[AY] of the group algebra of AV
which is used to describe the image of the Satake isomorphism. This ring has also been introduced
earlier by Looijenga [23] who calls it the dual-weight algebra.

To any \Y € AV we associate a formal symbol e and impose relations: M et =M We
define C<[AY] as the set of (possibly infinite) linear combinations

F= Y ene (2.33)

AVeX
such that there exists finitely many elements Y, ..., A/ € AY so that
Supp(f) := {\]exv # 0} C U_ye(N), (2.34)
where with respect to the dominance order < from , we set
c(A) = {u € X|p¥ <AV} (2.35)

One may easily verify that C<[AY] is a unital, associative, commutative ring. Using the natural
action of W on AV we may define the notation of W-invariant elements of C<[AY], namely

C<[AIW = { Y cuvet’ € C<[AY] | ey = cuv for allw € W, p¥ € AV}, (2.36)
HVGA\/

The ring C<[AY] carries a natural grading, with graded pieces

C<[AY), = {f € C<[AY] | Supp(f) € AY N X} (2.37)
As follows from and (2.27)), we have
C<[AY] = ®r>0C<[AY],. (2.38)

It is easy to see that in fact C<[AY] is a graded module over the commutative ring C<[AY]o.
Moreover, the piece C<[AV]y is easy to describe explicitly.

Lemma. Let ¢ be the minimal imaginary positive coroot. Then C<[AY]p = C((e™®))

Proof. First note that if f € C<[AY]o then its support is contained in the set of elements in the Tits
cone of level 0 and such elements are of the form Zc. The Lemma will follow from the following
claim, whose proof is given below.

Claim. Let m € Z and set ¥ = me. If \V € AY is such that p¥ < XY, then X = nc, with n > m.

Indeed, if f € C<[AY]o it follows from the claim that then there exists finitely many integers
ni,...,n, such that every u¥ € Supp(f) is of the form pu = m;c with m; < n;. The Lemma follows
from this. ]

Proof of Claim. First note that if pV has level 0 and A\Y > pV then necessarily AV also has level
0. But a dominant coweight of level 0 must be of the form nc : if not, then AV = nc + \) where
A/ € A). By the dominance property of A we must have

{ai, \Y) = (a;, \YYy >0 fori=1,....0+1, (2.39)
Suppose there exists i € {1,...,¢} such that (a;, \)) > 0. Then we have

<a€+17 )‘\o/> = <_9 + 67 A;/) = _<97 )‘(\J/> <0, (240)
since 6 is a positive sum of the elements a; for i = 1,...,¢. So {(a;, \)) =0 for i = 1,...,¢ and in
fact AV = nc for some n € Z. If in fact ¥ < AV then AV — p" = (n — m)c must be a positive sum
of coroots, and so in fact n > m. O
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2.1.6. Dual Root Systems. The affine Kac-Moody algebra may also be defined as a Lie algebra
associated to a generalized Cartan matrix. For the construction, we refer to [20]. Suppose that a
generalized Cartan matrix M corresponds to the untwisted, affine Lie algebra g, then the transpose
tM is also a generalized Cartan matrix corresponding to the dual Lie algebra g. In general gV is
again an affine Lie algebra, but could be of twisted type. On the other hand, if M is of simply-laced
type (i.e., the underlying finite-type root system attached to M is simply laced), then ! M will again
correspond to an untwisted affine Lie algebra. In fact, in this case, gV is the untwisted affine Lie
algebra attached to g/, the dual of the underlying finite-dimensional root system.

To avoid complications of twisted affine types, we shall throughout restrict to the case that g,
is of simply-laced type.

2.1.7. Modules for Affine Lie Algebras. A g module is called h-diagonalizable if V' = P, cp« V()
where V' (\) are the weight spaces V(\) := {v € V|h.v = (A, h)v}. We define the set P(V') of weights
of V by

P(V):={Xxep*|V(N) #0}. (2.41)
Given \, u € h* we define the dominance partial order on P(V') by
A>p <= A—peQy. (2.42)

We define Rep(g) as the category of g-modules Vsuch that

(1) V is h-diagonalizable

(2) V(A) are finite dimensional for each non-zero A € P(V)

(3) there exist finitely many Aq,--- , A\, € h* such that P(V) C U_,¢();), where ¢();) is defined

analogously to (2.35)).

One checks that Rep(g) is an abelian category stable under tensor product. Therefore we may
form its complexified Grothendieck ring Ky(g), and then easily check that the map which sends a
representation to its character defines an isomorphism,

Ko(g*) = C<[A¥]". (2.43)
2.2. Loop Groups.

2.2.1. The Tits Group Functor. We review in this part the construction of affine Kac-Moody group
G due to Tits. [32]. A set U C R, is pre-nilpotent if there exists w,w’ € W such that w¥ C Rye 4
and w'U C R, _. If such a set ¥ also satisfies the condition:

ifa,be ¥,a+b€ Ry, thena+be W, (2.44)

we say that WU is a nilpotent set. For any a € R,. we denote by U, a corresponding one-dimensional
additive group scheme, and fix an isomorphism z, : G, — U,. For any nilpotent set ¥ of roots, Tits
has constructed (see |32, Proposition 1] a group schemes Uy equipped with inclusions U, — Uy
such that for any choice of an order on ¥ the map, [[,.¢ Us — Uy is an isomorphism of schemes.

Given any pre-nilpotent pair of roots {a,b} we set 0(a,b) = (Na + Nb) N R,.. Tits has shown
that for any total order on 6(a,b) \ {a, b}, there exists a unique set k(a, b; c) of integers such that
for any ring S we have

(2o (u), zp(u)) = H z.(k(a, b;c)u™u™) (2.45)
c=ma+nb

for all u,u’ € S and where ¢ = ma + nb varies over 6(a,b) \ {a,b} and (xq(u),xp(u’)) is the
commutator. We then define the Steinberg functor St to be the quotient of the free product of the
groups U,,a € R, by the normal subgroup generated by the above relations .

We let A be the functor which sends a ring S to

A(S) = Homgz(A, S). (2.46)

13



For s € §* and \Y € AV = Homgz(A,Z) we write s* for the element of A(S) map which sends
cach p € A to stA) e .
The Weyl group W of g acts on functors St and A. For w € W we denote by w* the cor-

responding action on either of these functors. For each ¢ = 1,...,¢ + 1 we choose isomorphisms
Za; : Gg = Uy, and z_,, : G, = U_,, and for each invertible element » € S* and i =1,...,0+1
denote by w;(r) the image of the product

Ty (1) T —a; (= 1) aa,(7) (2.47)

in St(.5). We set w; := w;(1).

The affine Kac-Moody group functor (Tits functor) is the functor G which associates to a given
ring S the quotient of the free product St(S) x A(S) by the smallest normal subgroup containing
the canonical images of the following relations, where i = 1,..., ¢+ 1, r € S, and t € A(S)

tae, (1)t = x4, (t(a;)r) (2.48)
witw; = wi(t) (2.49)
wi(rw; Y = r% forr e S* (2.50)
wiuw;, ' = wi(u)for u € Uy(S),a € Rye. (2.51)

Note the following important, but simple identity holds in the group G(\5),

-xfa(s_l) = ma(s)(_s)avwa(l)xa(s)a (2'52)
where s € §* and a € R,..

2.2.2. Bruhat Decompositions. Now we describe the structure of G := G(k) for any field k. For
each a € R, we define U, = U,(k), and A = A(k). Let U denote the subgroup generated by U, for
a € R+ and U™ the subgroup generated by U, for a € R, —. Define now B, to be the subgroup
of G generated by U, and A. Also, set B and B~ to be the subgroups generated by all the B, for
a € Rye 4 and R, _ respectively. We have semi-direct products B = Ax U and B~ = AxU~. We
let N be the group generated by A and the w;, where the elements w; were defined above. There
is a natural map

C:No>W (2.53)

which sends w; — w; and which has kernel A. This map is surjective, and induces an isomorphism
¢ : N/JA — W. For each w € W, we shall write w for any lift of w by (. If w € W has a reduced
decomposition w = wg,, - - - Wq, , with the a; € II, we shall also sometimes write

w = wil ce ’wir (2.54)

for a specific lift of w (with respect to a given reduced decomposition of w) where the w; were

defined after (2.47).
Proposition ([32]). One has the following Bruhat-type decompositions
G = UpewBwB = Uyew B wB™ (2.55)
= UpyewB wB = UpyewBwDB™, (2.56)
where W is any lift of w € W to N under the map ﬁ

Note that it is important here that we are working with the so-called minimal Kac-Moody
group in order to have Bruhat decompositions with respect to B and B~. We shall also need the
following claim whose proof we suppress (see the remarks after 8, Corollary 1.2].)

Claim. Suppose that wi,ws € W such that Buw1B N BuwyB~ # (). Then we have wo < wy in the
Bruhat order on W.

6Usually, for w € W we shall often just write BwB for the coset BwB, as the choice of representative does not
change the subset of the group.
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2.2.3. Integrable Modules. Fix a Chevalley form gz C g as in [13,32]. For any w € Ay we let V¥
denote the corresponding highest weight module for g. It is shown in [13] that V* can be equipped
with a Z-form V}” which is stable under the elements of the Chevalley basis of gz and their divided
powers. Moreover, the action integrates to an action of G(Z). We shall write V5 for V;’ ® R, which
is naturally a G(R)-module.

Let now K be a local field, so that we then have a representation the group G := G(K) on
V = Vg. Let Vp := O®zVz C V, and denote by v,, be a highest weight vector, i.e., 0 # v, € V(w).
For v € V we can set

ord;(v) = min{n € Z|r"v € Vp} (2.57)
and define
o] = g, (2.58)
where ¢ is the size of the residue field of k. If v, w are in different weight spaces, then
v+ wl| = [[v]]. (2.59)

Also, we can choose v, to be primitive, i.e., ||v,|| = 1. The elements of K preserve the norm
| - ||. Note also that elements from U stabilize the highest weight vector v,,. Moreover, an element
s*" € A with s € K* acts on an vector in the weight space V(1) as the scalar s,

3. BASIC STRUCTURE OF p-ADIC LooP GROUPS

Recall the conventions for local fields K from the start of this paper. The goal of this section
is to study the basic properties of the group G := G(K).

3.1. Subgroups of G(O). In this part, we define various subgroups of the group of integral points
K := G(O) C G and establish some elementary properties of them.

3.1.1. The integral torus. Recall that we have set A := A(K) = Homgz(A,K) C G. Let
Ap = A(0), (3.1)

and note that we have an identification A/Ap = AY. Recall further that we have defined N as the
group generated by A and the elements w; in §2.2.2) and we have an isomorphism ¢ : N/JA — W
(2.53). We define the ”affine” Weyl group as

W:=W x AY, (3.2)
and note that ¢ can be naturally lifted to a homomorphism also denoted
N = W. (3.3)

From now on we shall denote this homomorphism by (. The kernel of this map is Ap, and we have
No := NN K = (~Y(W). If we write w for the representative of w € W as in (2.54), we have that

No = |J Aow. (3.4)
weW

Recall that for \Y € AV, we have an element 7" € A. For each 2 = (w,\Y) € W, or w € W we
shall abuse notation and denote by wr” the element W’ € N. Sometimes, we shall just write
wr” for any element in the set ¢ _1(w7r>‘v), hoping no confusion will arise.
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3.1.2. Iwahori Subgroups. For each a € R,., the elements of the one-dimensional group U, :=
U, (K) C G will be written as z,(u) for u € K. For m € Z we set

Utam) = {za(u)lval(u) = m}, (3.5)
where val : £ — Z U {00} is the valuation map. As a shorthand, if a € R, we write
Ua7(’) = U(a,O) = Ua(O), Ua,7r = U(a71), and Ua[m] = U(a,m) \ U(a,m—l) (36)

Let us also set Uy to be the group generated by U, with a € R, 4 and U, the group generated
by U_q,0 for a € R,¢ 4. Similarly, we may define the groups U(JQr and U_.

The group K = G(O) is generated by the subgroups U, ¢ as one can see by referring back to
the definition of the functor G. Let

k: K — Gy (3.7)

denote the map induced from the natural reduction @ — k We shall define the lTwahori subgroup
I C K to as

I :={z € K|k(z) € Bx}. (3.8)
Similarly we can define the opposite Iwahori subgroup
I :={zx e K|kr(x) e B} (3.9)

The proof of the following is entirely analogous to the classical situation (see [19] §2]), so we suppress
the details.

Proposition. Keeping the notation above, we have the following decompositions

(1) The groups I and I~ admit the following decompositions,

I =UoU; Ao =U;UpAo (3.10)
and
I =UUyAo = U,UrAo (3.11)
(2) Choose representatives w € K for w € W as in (2.54]). Then there exist disjoint unions,
K = Upewlwl = Upew I wiI™ (3.12)
= Upewl wl = Upewlwl . (3.13)

3.2. Iwasawa Decompositions. Recall that we have defined subgroups K, A,U C G, together
with a subgroup Ap C A. Setting

A =N DAV e AV}, (3.14)

we have a direct product decomposition, A = A’ x Ap which gives the identification A/Ap = AY
The Iwasawa decomposition in this context states,

Theorem. Every g € G has a decomposition g = kn* u where k € K, 7 € A', u € U, and
XY is uniquely determined by g. Furthermore, we also have an opposite Twasawa decomposition:
every g € G may be written as g = kr'u™ where k € K, 7 € A, u e U™, and A is uniquely
determined by g.

The existence of the Iwasawa decomposition can be deduced via a standard manner (see [14} §16]
and the references therein) from the Bruhat decomposition and a rank one computation. Note that
in order to have both Iwasawa decompositions with respect to the groups U and U™ it is important
that we are working in the minimal Kac-Moody group.

As for the uniqueness in Theorem let us just show uniqueness in A’/Al, where A} is the
subgroup generated by 74 with n € Z. Fix notations as in Ifg= k7w then

llgvol| = |7 va|| = g7, (3.15)
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One then sees that AV is uniquely determined (modulo Zd) from g by varying w over a set of
fundamental weights of g.

For the uniqueness statement with respect to U, we argue slightly differently. Suppose that
we have KmX' U~ N Kat' U~ # 0, ie., Kr¥' U™ = Ka*'U~. Then Kn*'U~ N Ka*'U # 0, and
we also have Kn# U~ N K7 U # ), and hence from [2, Theorem 1.9 (2)] , ¥ > AY and A > Y,
and so AV = uV.

3.3. Cartan Decomposition and the semigroup G, . Unlike the finite-dimensional case, the
Cartan decomposition does not hold for the group G, i.e., not every element g € G can be written
as g = kym ko with k1, ks € K and AV € AY. On the other hand, this property does hold for the
semi-group G4 introduced in § (see [3L/15]). Recall that G4 was defined to be the semigroup
generated by K, the central ¥, and the elements g € G such that |n(g)| > 0 where the map |7
was constructed in .

Theorem ([3,15]). The semi-group G can be written as a disjoint union,
Gy = Uyvery K K (3.16)

In lieu of the above result, we shall often refer to G4 as the Cartan semigroup. The above
result implies in particular that the right hand side of (3.16|) is a semi-group, a non-trivial fact. In
appendix [A] we shall give another proof of this theorem based in part on the argument from (|15]).

3.4. ITwahori-Matsumoto Decomposition.

3.4.1. 7Affine” Weyl (semi)-group. We would now like to study another descriptions of G, which
is the analogue of the Iwahori-Matsumoto decomposition for a classical p-adic group into cosets
indexed by the the affine Weyl group. The set indexing Iwahori double cosets of G4 will be called
the ”affine” Weyl semi-group Wx |Z|Which is defined as follows: recall that X C AV was defined to
the Tits cone, which carries a natural action of W the Weyl group of G. We have already defined
the ”affine” Wey group W =W x AV in , and we now set

Wx =W x X. (3.17)

For an element z = (w,\Y) € W, with w € W and \Y € AV we shall abuse notation and just write
wr” for the corresponding lift " in N, where @ € K was defined in . Sometimes we shall
also just write x = wr’ € W to mean the pair z = (w,\V) € W hoping this will not cause any
confusion in the sequel.

3.4.2. Iwahori-Matsumoto Semigroup. Let us define, following Iwahori and Matsumoto [19],

M= | IaI, (3.18)
rEWx

where for each x € Wx we denote by the same letter a corresponding lift to an element of G .
Proposition. We have an equality of semigroups Giﬂw =Gg.

Proof. If ©x = wr*’ € Wy, with w € W and AV € X then clearly Twr™'I ¢ KnV'K C G.
Conversely, since we also have a decomposition K = J,,cy Jw! from (3.12), we obtain

KK c | TwIn Iw'T c IWa™ WI c IWx, (3.19)
w,w' eW

where the second inclusion is a consequence of Lemma [3.4.2] below. So the two sets in question are
equal, and by Theorem the semigroup property of GW follows. O

In the proof of the previous Proposition, we used the following simple result,

"We use the term ”affine” Weyl group to refer to what some other others call the double affine Weyl group. Our
present notation is meant to emphasize the analogy with the usual theory of groups over a local field.
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Lemma. Let \Y € AY. Then,

(1) For each wi,wy € W we have wiTwar ' T C leewlw%)‘vl. Symbolically, we write WIWmN'I C
IWaN'T
(2) Similarly we have that It WIW C Iz W1.
Proof. Let us establish the first statement, the proof of the second being similar. Notice that it

suffices to the consider the case when w; = w, is a simple reflection (a € II). Now, given any
w € W, it is easy to see (see e.g. |19, Proposition 2.6] for an essentially similar argument) that

wl C TwU,[0] where Uy0]= [  Ual0], (3.20)
a€R:w-a<0
where the notation U,[0] was introduced in (3.6]). In particular, if w = w, for a € II a simple root,
we have,

walwgw/\vl C IwaUa[O]wgﬂAVI. (3.21)

Letting z = w27r’\v, we have two possibilities

a. If z71U,[0]z € I then

wolwom' T C Twwor 1. (3.22)

b. If 271U,[0]z ¢ I, then one can check that z71U_,[0]z € I. Now, a rank one computation
as in (2.52) shows that we can write

WUy [0]wam T C woU—q[0]waU—g[0]wor™ I (3.23)

Now, waU_q[0Jw, € I and also 27 1U_,[0]z € I by our assumption. Thus,
WaU—q[0lwaU—_g[0lwor® T € Twyr*'T. (3.24)
U

3.4.3. Disjointness of I-double cosets. We would like to show that the decomposition ([3.18]) above
is disjoint. In other words,

Lemma. Let x,y € Wx. Then Izl N Iyl # 0 implies that x = y.

Proof. Suppose that x = wr and y = vmH with w,v € Wand AV, u¥ € X. If the above intersection
is non-empty, we have that in fact Twr*' I = Iva*’ I. Hence we also have K72 IU = Ka#IU. Now
using that I = ApU; Up we obtain K1t ApU-U = Kn'ApU-U. Thus 7 € Kn#'U-U and so
KN UNKa" U~ # (). Using [2, Theorem 1.9(3)], we conclude that p¥ > AV. A similar argument
shows that u¥ < AV. So u¥ = \V.

So we may assume now that x = wr” and Yy = oI TwrN T N Tort T # (), then again
using the decomposition I = UpU_ Ap we obtain

Twr™ Up N Tvn UZ # 0. (3.25)

As 7" normalizes both U and U~ we may conclude that TwU N TvU~ # 0. Suppose that we take
some element in this intersection

iwut = i'vu” where i,i’ € I, ut € U*. (3.26)
Then rearranging this last equation, we find that u~ € KU. By |2, Lemma 3.3] (or see (A.7)) below),
this implies that u~ € U, = U~ NK and so it follows form (3.26)) that we may assume that ut € Up
as well. Thus, we have produced an element which lies in the intersection of Iwl N IvlI~. From
here, we may proceed by a simple induction to conclude that w > v in the usual Bruhat order on

W (see Claim [2.2.2)). Reversing the role of v and w in the above argument, we may also conclude
that v > w and so v = w. OJ

18



3.4.4. An order on WW. An analysis of the argument above suggests the following order on W.

Definition. Let x,y € W, which we write as x = ™ w and Yy = v with w,v € W and

AV, uY € AV. We say that x < y if either
o \ < iV, where < is the dominance order on AV;
o \ =V and w < v with respect to the Bruhat order on W.

It is easy to see that < is a partial order on W. For us, this order will be important due to
the following result, which translates into showing the the Iwahori-Hecke algebra H (G4, ) acts
faithfully on its generic principal series M (G, I).

Proposition. Let x € Wx andy € W. If IxtI N Uyl # ), then x < y.

Proof. Write z = 7w and y = 7* v with w,v € W and \Y € X, p¥ € AY. Then if Ur* vl N
Im> wI # (), we also have that
Ur* KN Km\' K # 0. (3.27)
It follows from this (see [2, Theorem 1.9(1)]) that p¥ > AY where AY is the dominant element in
the W-orbit of AV. Hence also ¥ > AY since A\Y > AY.
Thus, we shall assume p¥ = X\, and so I7* wl N Ur* vl # 0. Using the decomposition
I = UpU: Ap we obtain that U7 wINUr* vl # 0, or in other words, U7 7 NU vIw™! # 0.
From here it follows that U~ N UvIw™! # (. From [2] (see also (A.7) ), we may conclude that
U NUK C U™ NK, and so we may conclude that U, N UvIw™! # (. From this last statement,
we conclude that U, N Upvl w™ # (). Thus we have produced an element in the intersection of
I~wI N Ivl, which implies that w < v.
]

3.4.5. A double coset decomposition. In the sequel, we shall also need to understand the double
cosets of G under the left action of the group ApU and under the right action of the groups I or
I~. The following result follows immediately from the Iwasawa decomposition and and we
suppress the proof.

Lemma. The maps W — ApU \ G/I and W — ApU \ G/I~ which send x € W to ApUxI and
ApUxI~ are bijections.

4. GENERALITIES ON CONVOLUTION ALGEBRAS

In this section, we describe some axiomatic patterns which our construction of Hecke algebras
and their modules in the next two sections will follow. The notation is independent of the previous
sections. Throughout this section we shall fix the following notation: I' will be a groupand I'y. C T’
will be a sub-semigroup. All constructions will take this pair (I',I"y) as data, though we shall often
omit I' from our notation.

4.1. Convolution of Finitely Supported Functions.

4.1.1. Basic Notations on Spaces of Double Cosets. Let L, R C I'y be subgroups of I'; and further
assume that there exists a set Ay r equipped with a bijection to the set of (L, R) double cosets of
F+7

Xpr:ALr— L\T{/R, XA— X* (4.1)

When there is no danger of confusion, we shall often omit the subscripts L and R from our notation
and just write X : A - L\T'}/R.

Given a function f : I'y — C which is left L-invariant and right R-invariant, there exists a
subset Ay C A defined as

Ap:={N€A| f(z) #0 for any = € X} (4.2)

19



We shall often write f = ZueAf ¢, X* where ¢, = f(z) for any € X#. We shall say that f has

finite support if Ay C A is finite. Denote by F(L \ I'y/R) the set of finitely supported left L and
right R-invariant functions. It is clear that F(L \ I'y/R) is a C-vector space with basis indexed by
the characteristic functions X* for A € A.

4.1.2. Fiber Products. Let R C T'y be a subgroup. Given a right R-set A (i.e., a set with a right
R-action), a left R-set B, and any set S, we say that a map m : A x B — S is R-linear if

m(ai,i~*b) = m(a,b) for a € A,b e B,i € R.
Equivalently, if we endow the set Hom(B, S) with a left R-action via

ip(b) = @(i~'b) for i € R, € Hom(B, 9), (4.3)
then an R-linear map from A x B — S is a map ¢ : A — Hom(B, S) such that
Y(ai~t) =i.ab(a) for i € R,a € A. (4.4)

Indeed, for each m : A x B — S the map 9, : A — Hom(B, S) given by ¢, (a) = m(a,-) satisfies
(4.4); and it is easy to see that all such maps come from R-linear maps m. Using either of these
two descriptions, it is easy to verify that the functor

F B(S) = {R-linear maps A x B — S} (4.5)

is corepresented by the quotient set

AxprB:=AxB/= (4.6)
where (a,b) = (ai,i~'b) for a € A,b € B,i € R: i.e., Hom(A xg B,S) = Fa p(S).
A variant of the above construction is as follows: let A; be a right R-set, Ao, ..., A,._1 be left-

right R-sets, and A, a left R set. Then for any set S, an R"!-linear map m : Ay x --- x A, = S
is one such that

P . | 1 .
m(aiit, iy agiz, iy ,...,5,_qa,) =m(ai,...,a,) for ar € Ay, i; € 1.

One can then check that the functor
Fa,..a.(8)= {RTfl — linear maps m : A; X --- x A, — S}

is represented by
A1 XRA2 Xoee XRAT ::Al XA2-~~ XAT/E

where (a1, ...a,) = (a1i1, il_lagiz, ig_l, ... ,i;_llar) for (i1,...,i,_1) € I"~! generates the equivalence
relation. Suppose in addition that A, Ao, A3 carry both a left and right R-action. Then A; xg Ao
inherits a left and right R-set structure, and similarly for As xg A3. Hence we may form the sets
(A1 xg Ag) xp As and A; X (A2 Xg As). It is then easy to verify the following associativity of
functors,

Fay 45,45 = Fayxpas,as = Fay Asx g Ags (4'7)

which will be used below in the proof of Proposition below.

4.1.3. Explicit Description of Fibers. Let R C I'y be a subgroup, and let A be a right R-coset and
B a left R-coset of I'. Define the multiplication my g : A x g B — I'y which sends (a, b) — ab. For
any x € '}, we can easily verify that there is a bijection of sets

mZ}B(a:) =R\ A 'zNB. (4.8)

Variant 1: Suppose that A, B are R-double cosets of I'y. Then we can describe the fibers
m~(z) in terms of left or right R-cosets:

m Y(z)=R\A'sNB=AnzB"'/R. (4.9)
In this case, we see that m~!(z) only depends, up to bijection, on the coset of x in R\ T'y /R.

20



Variant 2: Let L, R, H are three subgroups of I'y, and A be a (L, R) double coset and B a
(R, H) double coset. Then we have

mt(z)=R\A'2NB (4.10)

and we see that m~!(x) only depends, up to bijection, on the class of x in L\ G/H.

4.1.4. Finite Hecke Datum. Let R C I'; be as above. Let us write AL := Ag g, the set indexing
R-double cosets of I'y, and X : A, — I'y. For A\, € Ay let my , : X* xp X* — T'y denote the
multiplication map. Note that by the fibers m~!(x) for z € I'y only depend, up to bijection,
on the class of z in R\ Ty /R = A. We thus write |m ™! ()| to denote the cardinality of m~!(x) for
any ¢ € X*.

Definition. We shall say that (R, A) (we drop the map X from our notation) is a finite Hecke
datum for the semi-group U'y. C T if it satisfies the following two conditions,

(1) (H1) For any A\, p,v € A we have \mib(v)\ is finite.

(2) (H2) Given any A\, u € A, the set of v € A such that \m;h(l/)\ # 0 is finite.
Let (R,Ay+) be a finite Hecke datum. Recall that we have the space of finitely supported R-

binvariant functions which we shall just denote by H(I'y, R) := F(R\I'+/R). Given any A\, u € A4,
the assumptions (H1) and (H2) above allow us to make sense of the sum

> Imy, ) XV (4.11)

veEAL

as an element of H(I'y, R) and so we can define a map »: H(I'y,R) x H(I'y,R) - H(I', R) by
linearly extending the above map,

A -1
XA Xt =" |my,(v)] X (4.12)

I/EA+

4.1.5. Finite Convolution Hecke Algebras. The importance of the notion of finite Hecke datum is
provided by the following result, which is certainly well-known. We sketch a few points of the proof
as we shall need several variants of it in the sequel.

Proposition. Let (R,A}) be a finite Hecke datum. Then the map * in equips H(T'y, R)
with the structure of an associative C-algebra with a unit. The unit is given by convolution with
the characteristic function of R.

Proof. Let us show the associativity of x : let A\, i, € A,. Given £ € Ay, and 2 € X¢ we would
like to see that

(XA % XH) % XV (x) = X% (XH % XV) (). (4.13)

Let my ., : X X p Xt xp XY — '+ be the map induced by multiplication. Consider the R-bilinear
sets X xp X* and X* xp X¥. From (4.7), we have

Foorg pxmxpxy(T+) = Fxaypxnx pxv (T4) = Fxoay pxnx g xvy (D) (4.14)

The map my ., € Fiyay,xux,xv(I'+) and hence defines corresponding maps which we denote by

M) € Fxrxpxmyx pxv(T+) and my (u0) € Fxayp(xuxpx»)(I'+). Then one can show that the
left hand side of 1j is equal to |m(j\1u) ,(z)| and the right hand side is equal to |m§%u ) (2)[;

both of which are in turn equal to ]m;\L ,(x)| which proves the associativity. We supress the proof
of this fact, as well as that of the rest of the Proposition. O
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4.1.6. Finite Hecke Modules. Let L, R C I'y be asin §4.1.1] Let us write Ay for Ar g, and continue
to write H(I'y, R) for F(R\T'y/R). Now suppose that {2 := Ay, g is a set of representatives for the
(L, R)-double cosets of I' (note: we want to really consider I" here instead of Iy, as this is the case
which comes up in the sequel). For each A € Q we denote the corresponding double coset by YA,
Let us write M (L,T, R) for the set F(L\T/R). Given A € Q,u € A4 we have a map

axy YA xp XP =T
induced from multiplication.

Definition. We say that the collection (R, A4; L, Q) is a finite Hecke module datum if

(1) (MO0) (R,A+,X) is a finite Hecke datum

(2) (M1) For any A € Q and pu € Ay the map ay, has finite fibers.

(3) (M2) For any A € Q and p € A, the there are only finitely many v € Q0 such that a;}h(u)
18 mon-empty.

Using the properties (M1) and (M2) we can make sense, for each A\ € Q, u € Ay of the sum,
> lay, )Y (4.15)
veq)

as an element of M (L,T', R). Thus, we can define a map *, : M(L,I',R) x H{IT'+,R) —» M(L,T', R)
by linearly extending the following formula,
Vg XH = " Jay ), (V)Y (4.16)
ves
We omit the proof of the following since it is very similar to that of Proposition
Proposition. Let (R,A1;L,Q) be a finite Hecke module datum. Then x, defines an associative,

unital right H(I'4, R)-module structure on M(L,T", R), where the unit element of H(I'y, R) acts as
the identity map on M (L,T’, R).

4.1.7. A Simplified Critrerion. In what follows, we shall use the following variant of the above
results, which reduces the number of conditions one needs to verify for (R, A1; L,2) to be a finite
Hecke module datum. We leave the proof to the reader (see Proposition for more details in a
slightly more complicated context).

Proposition. The quadruple (R, Ay; L,Q) is a Hecke module datum if (R, A+) satisfy (H2) and
(R,A4; L, Q) satisfy (M1) and (M2).

4.2. Completions of Convolution Algebras.

4.2.1. Semi-infinite Support. Let A be an abelian group whose underlying set is equipped with a
partial order < that is compatible with the group structure: i.e, if A < p then A +v < p+ v for
A, p, v € AL For elements A > p we shall write

A ul ={veAX<v<u} (4.17)
For an element A € A we shall set
cN)={peA:p<A}

A subset = C A is said to be semi-infinite if there exists a finite set of elements Ay, ..., A\, such that

(1]

C O C()\Z) (4.18)
=1

If AT C A is a sub-semigroup, it inherits an order which we shall continue to denote by < and
all of the constructions above can be repeated with A™ in place of A.
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4.2.2. Semi-infinite Convolution Hecke Algebras. Let 'y C I', R, X be as in As before set
Ay = Arpg. Let A D Ay be an ordered abelian group with order denoted < (the restriction of
< to A4 makes it into an ordered semi-group; the restricted order is also denoted by <). Let
f: T4 — C be a function which is R-binvariant. We may define its support Ay C A4 as in .
We shall say that f has semi-infinite support if Ay C A, is a semi-infinite subset. Denote the set
of R-binvariant semi-infinitely supported functions on I'y by H<(I'y, R). For A\, u € A4 denote by
LW XA xp X* — T, the natural multiplication map.

Definition. A collection (R, Ay, A, <) will be said to be a semi-infinite Hecke algebra datum if the
following conditions are met,

(1) (F) For every pair A\, € A, X < pu, the set [\, p] is finite.
(2) (SH1) For any A\, € Ay the fibers of the map my ,, are finite.
(3) (SH2) For any A\, u € Ay, if ]m;h(u)] #0, thenv < XA+ p.

Given any A, u € X, the assumptions (SH1) and (SH2) allow us to make sense of the sum

> Imy, )] XY

veAy
as an element of H<(I'y, R). Setting

XA Xt =" my ) (v)] XY,
veAL
the Proposition below tells us in particular that we may extend this multiplication to a map
x:H<(I'4,R) x H<(I'+,R) - H<(T'y, R) (4.19)

using the assumptions (F), (SH1), and (SH2).
Proposition. Let(R, Ay, A, <) be a semi-infinite Hecke datum. Then the product + endows H<(I';, R)

with the structure of an associative, unital algebra with unit being given by the trivial R-double coset
R.

Proof. The proof is very similar to that of Proposition and so let us just verify that the above
formula extends to give a well-defined map as in (4.19)). Then let fi, fo € H<(I'y, R) which are of
the form

fi=2 o aX? and  fo=37 o\ b XY
Suppose that
Xtx XY= " X7,

n<p+v
Then we write
fixfa = Z a,b, XH + XY (4.20)
n<A1,v<A2
- Z by ( Z ey’ XY) (4.21)
HSALY< A2 n<ptv
= > @by co” X7 (4.22)

u<A,v<Aen<ptv

For fixed n we have that n < u+ v < A; + A2 and by property (F) there are only finitely many
values which p + v can take. Again for fixed 7, since p < Ay and v < Ay there are only finitely

many terms in the sum,
“7”
g aub,,c77

p<A,v<Ag,n<ptv
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and hence the formula for f; x fo is well-defined. To show that f; x fo has semi-infinite support, we

note that
Afiups C U Axuixv C U ¢(n) C U ¢(n)
u<A1,v<A2 p<AL, <A n<u+tv N<A1+A2

0

4.2.3. Semi-infinite Hecke Modules. Let L C I'y be a subgroup of I'. Denote by 2 := A g the set
parametrizing (L, R)-double cosets of I'. Assume that 2 is an ordered abelian group with order < .
Furthermore, we assume this construction is compatible with the constructions from the previous
paragraph in the following sense: we are given a fixed embedding Ay C € such that the order on
A is the restriction of the order on . For a function f : I' — C which is (L, R)-binvariant, we can
define its support {2y C Q as in nd we say that f is semi-infinitely supported if Qy C Q2 is a
semi-infinite subset. Denote as in §4.1.6[the map Y :  — I'" which sends v € €2 to the corresponding
coset (L, R)-double coset Y. Given A € Q, € Ay we have a map ay , : Y xp X* — T, defined
via multiplication.

Definition. We say that the collection (R,A4+;L,Q, <) as above is a semi-infinite Hecke module
datum if

(1) (M0) (R,A+,9Q,<) is a semi-infinite Hecke module datum
(2) (SM1) For any A € Q2 and pn € Ay the map ay, has finite fibers.
(3) (SM2) For any A € Q and € Ay, ifa;h(l/) £ () thenv < XA+ p.

Using the properties (SM1) and (SM2) we can make sense, for each A € Q, u € A4 of the sum,
> lay, Iy
Ve
as an element of M<(T"; L, R). Thus, we can define %, via the formula
Y X0 =" Jay ), (V)Y (4.23)
Ve
The following proposition, whose proof we omit, then shows that x, extends to a map
M<(T;L,R) x Hc(T'y,R) - M<(I'; L, R). (4.24)

Proposition. Let (R,Ay;L,Q, <) be a semi-infinite Hecke module datum. Then x, defines a right
(H<(T'y, R),*)-module structure on M<(I'; L, R).

4.2.4. A Simplified Criterion. In practice, one has the following slight but useful strengthening of
the above result.

Proposition. Let (R, Ay; L,Q, <) satisfy all of the conditions of being a semi-infinite Hecke module
datum except (SH1). Then (SH1) follows and (R,A4+,L,Q,<) is in fact a semi-infinite Hecke
module datum.

Proof. Let A\, u € Ay, v € 2, and consider the map,
ayap: Y xp X* xg XM =T (4.25)

induced by multiplication, i.e., which sends (x,y, z) — xyz. It suffices to show that the fibers of
this map are finite. Indeed, if (SH1) were not satisfied, then there would exist some A\, pu € Ay
and £ € Ay such that m;h(f) is infinite. Choose any element z which lies in the image of the

multiplication map a, ¢ : YV xXpg X¢ - T. Then a;i M(z) will be infinite.
By condition (SM2) the image of a,,  lies in the union UnSA-H/ Y. For any such 7, if Y¢ lies in
the image of a, ,,, we must have { < v + p. Hence, for each such { we have inequalities,
E<n+p<At+ptv.
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From this it follows that there can be only finitely many n for fixed &, A, i, v. The finiteness of the
fibers of a,, ,, follows from associativity using (SM1): for any element z in the image of this map,
we must have z € Y¢ as above for fixed &, \, i, v as above. O

5. IWAHORI THEORY I: ” AFFINE” HECKE ALGEBRAS AND CONVOLUTION HECKE ALGEBRAS

Fix the notations of §3 in this section. We shall now apply the axiomatics developed in the
previous section to construct a convolution algebra H(G4,I) on the space of I-double cosets of
G . This algebra may be identified with an ”affine” Hecke algebra (a slight variant of Cherednik’s
DAHA) as we show in Theorem [5.3.3] The proof of this theorem rests on the construction of a
certain family of commuting elements H (G, I) (see Proposition whose proof is deferred to
40!

5.1. ” Affine” Hecke Algebras. We begin by defining the precise variant of Cherednik’s DAHA
which will arise from our group theoretic convolution algebra.

5.1.1. Garland-Grojnowski Algebras. Fix the notations as in The Weyl group W of our Kac-
Moody Lie algebra g is a Coxeter group with length function, ¢ : W — Z. As such, we can associate
a Hecke algebra to it as follows: first, define the Braid group By as the group with generators T,,
for w € W subject to the relations,

Tow, Ty = Ty, if £(wr) + £(w2) = £(wiws). (5.1)

Let v be an indeterminate, and consider F' = C(v), the field of rational functions in the intermediate
. |§| The Hecke algebra Hyy associated to W is then the quotient of the group algebra F[Byy] by
the ideal generated by the relations

(Ty 4+ 1)(Ty —v™2) =0 for a € IIY. (5.2)

Recall that AV was the weight lattice of g, and consider the group algebra R = C[A"]. For
AV € AV, denote by ©,v the corresponding element of R subject to the relations ©\vO,v = O v v
if \Y,p" € AV. Following Garland and Grojnowski [12] we can then define H, the “affine” Hecke
algebra associated to W as the algebra generated by Hy and C[AY] subject to the relations
Ox\v — Oy, 2

1—-0_,

Expanding the right hand side of (5.3)) as a series in ©_,v, it is seen to be an element in F[AY],
i.e.,

T,O)\v — @wa()\\/)’]ra = (1)72 — 1) (53)

0 if (a, \V) =0
(V™2 = 1)(Oxv + Opnv_gqv + -+ Oprviav) if (a,\Vy>0  (5.4)
(1 - U_2)(@wa>\v + @wa)\v_av + -+ @wa)\v,(<a,wa)\v>,1)aw if <a, )\\/> <0

Recall from §2.1.4] that AV is equipped with a grading AV = &,czA). Hence, F[AY] is also
equipped with a grading

(5.3) =

FIAY) = D FIAY] (55)

reZ

where F[A)] is the F span of ©,v for (§,\V) = r. The algebra H also inherits a Z-grading in
this way, and we denote by H,. the typical graded piece for r € Z. As each graded piece AV is
W-invariant, so too are the pieces F[A)]. Using we can easily deduce that for each r € Z, the
subspace F[A)] is a Hy-module. In general H, is not a subalgebra since A is not closed under
addition. However, Hy is a subalgebra and is essentially the Double Affine Hecke Algebra (DAHA)
of Cherednik . Let Hf, C H be the subalgebra generated by Hy and ©,, for n € Z and c the

8 One could also consider the ring Clv, v in what follows
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minimal positive imaginary coroot. As W fixes ¢ and Zc is closed under addition, the subspace HI,

is also a subalgebra of H. What will be important for us is that the following subspace of H,
H, :=Hy o PH, (5.6)
r>0
is also a subalgebra. Indeed, this follows from the following simple result whose proof we omit

Lemma. The algebra Hy is the subalgebra of H generated by Hyy and F[X], the group algebra of
the Tits cone X C AV.

5.1.2. A module for H. Let M be the F-vector space with basis v, for z € W (denote by v; the
basis element corresponding to the identity element of W.) Then we set
Oyvvy = v_,v for AV e A (5.7)
TwV, v = V_v,for weW,pu’ en. (5.8)
It is easy to see that this defines a representation of H on M. Let M denote the F-subspace of M
which is generated by v, for x € Wx. Then one has that Ml C Hy -v;. Indeed, if x = ™ w e Wy,
then

TwOuvvi =V v, (5.9)

We shall show below (see Step 2 of the proof of Theorem [5.3.3) the reverse inclusion: Hy -v; C M.

5.2. Convolution Algebras of I-double cosets. We would like to show that the set of finite
linear combinations of I-double cosets on the semigroup G4 can be equipped with the structure of
a convolution algebra. We shall moreover construct a natural action of this convolution algebra on
the space of functions on G with are right I-invariant and left invariant by the subgroup ApU.

5.2.1. Constructing H(G4,I) and M(G,I). From and Proposition , the space of I-
double cosets of G4 is parametrized by the semi-group Wx (see . Denote by T : Wx —
G4,z — T, the map which assigns * € Wy to the corresponding I-double coset T, := IxI.
Consider the subgroup ApU C G and note that from Lemma the set of (ApU, I)-double
cosets of G are parametrized by the set WW. Denote by v : W — G, y — v, the map which assigns
to each x € W the corresponding double coset v, := ApUxI C G. We then have the following,

Theorem. The data (I, Wx) forms a finite Hecke datum for G4 (in the sense of Definition ,
and the the triple (I, Wx; AoU, W) forms a finite Hecke module datum for G4 (in the sense of

Definition .

We denote by H(G4,I) and M(G,I):= M(AoU,G,I) the corresponding convolution algebra
and module, noting that we have an action

*: M(G,I) x HG4+,I) - M(G,I) (5.10)
given by right-convolution as in (4.24)) . The remainder of is devoted to the proof of Theorem

b21
5.2.2. Reformulating Theorem[5.2.1. The following result will be shown to imply Theorem [5.2.1

Proposition. We have the following,
(1) Let x,y € Wx. Then there exist finitely many z; € Wx,i =1,...,n such that

Ielyl C | J Izl
=1
(2) Let z,y,z € Wx. Then
I\ Iz Tz Iyl (5.11)

s a finite set.
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(3) Let x € Wx andy € W. Then there exists finitely many z; € W,i =1,...,¢ such that
4
ApUyIzl C | J AoUznl (5.12)
i=1
(4) Let x € Wx and y,z € W. Then
I\ IyApUzN Izl (5.13)
s a finite set.

Proof of Theorem [5.2.1] from Proposition[5.2.9. For x,y € Wx consider the multiplication map
May : Ty X1 Ty — G4. The image is clearly equal to Ixlyl, and hence (H1) is equivalent to Part
(1) of the above proposition. The fiber over z € Wy is equal to I \ Ix~11z N Iyl by and
hence (H2) follows from part (2) of the above proposition. Similarly, one checks that Part (3) is
equivalent to (M1) and Part (4) to condition (M2). O

We are now reduced to showing Proposition parts (1), (3), (4) , since by invoking Propo-
sition part (2) will then follow automatically.

5.2.3. Proof of Proposition part (1). Recall that I = UpU_ Ap and so
Izxlyl = IzUpU_yl

since W normalizes Ap. The following result is the group theoretic analogue of Proposition
from Appendix B.

Lemma. For x,y € Wx the following spaces of cosets are finite,
I\IzUp and U yI/I. (5.14)
Proof. Let us write x = wrh’ where w € W and 1Y € X. Furthermore, as p € X we may write
it as gV = o tAY with AV € AY and o € W.
Decompose Up into a semi-direct product Up = UJU, 0, where as before

Upo={u€Up|ouc™ €U} and U= {ucUp|oustecU}, (5.15)

and note that Uy o is a finite product of one-dimensional groups. So Twrh Uy = Twrh’ UsUs 0.
\% .
On the other hand, we know that 7* Ugw_“v C UG since

\ \ \ \
™ UG = o N oUGo N o C UG (5.16)

and 77, \V € AY normalizes Up. Hence Twm* Up C TwUpr"" Us,0. It is easy to see that I\ TwUop
is finite, and so it follows that that I\ I wU@ﬁ“v Us,0 is finite, by the finite-dimensionality of U,.

A similar argument shows that U_yI/I is finite. O
From the Lemma [5.2.3, there exist uy,...,u, € Up and uy,...,u; € U; such that
IxIyl C UIxuiuj_yI. (5.17)
i?j

Part (1) of Proposition then follows from the semi-group property of G.
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5.2.4. Proof of Proposition part (3). Given x € Wx and y = wr’ € W with w € W and
AV € AV, we have that

ApUylzl = ApUwr Izl = ApUr"N wUpU; z1 (5.18)
= ApUn" wU, oU; zI (5.19)
C ApUr™ I"wzl (5.20)

where Uy, 0 is as in (5.16)). Thus, we are reduced to showing that for any x¥ € AY and € Wx the
set A@UW“VI*J:I is contained in a finite union of (ApU, I)-double cosets. Since I~ = U U, Ap we
have

AoUr" I7al = ApUn" U, Uy Apxl = ApUr* Ugl. (5.21)
Arguing as in Lemma we see that U, xl /1 is finite, and part (3) of the Proposition follows.

5.2.5. Proof of Proposition part (4). first, we claim that we may choose z € W to lie in
W C W. Indeed, suppose that z = wr®’ = 7%* w with w € W and A € AY. Then

IzI N IyApUz = Izl N IyAoUn" w = IzI N Iym AoUw. (5.22)

Replacing y by yTr“’)‘v we may assume that z € W.

Next, we claim that in fact we may choose z = 1. Indeed, for w € W, we have that IxINIyApUw
consists of finitely many left I-cosets if and only if TxJw™' N IyAoU consists of finitely many left
I-cosets. Since Tw™'I/I is finite, an application of the semi-group property of G shows that
IxIw™ 1T is contained in finitely many I-double cosets. Thus, we are reduced to showing that for
x € Wx and y € W that

I\ Izl N IyApU (5.23)

is finite. Note that Izl = [2UpU, and by Lemma there exists finitely many x; fori = 1,...,n
such that Izl C |J;, Iz;U; . Use the Iwasawa decomposition to write Iz; as [x,U~ with 2} € W
for each ¢ = 1,...,n. Noting that Ia;U,; C Iz,U~ we are reduced to showing the following,

Lemma. Let x,y € W. Then the set I\ IzU N IyU~ is finite.

Proof of Lemma. For fixed x,y € W, consider the set
Kpy={ke K|k(IzUNIyU ) C (I2UNIyU )} (5.24)

Note that the set K, , is invariant by left multiplication by I. Moreover, if we can show that I'\ K ,
has finitely many elements, the Lemma will follow since we know from [2, Theorem 1.9(1)] that
K\ K(IzU NIyU™) is finite.

To show that I\ K, is finite, it suffices to show that K , is contained in finitely many I-double
cosets. This proof of the lemma is thus concluded using the following result. 0

Claim. Let x € W. There are only finitely many w' € W such that
Iw'l - IxU N IzU # 0. (5.25)

Proof of Claim. Let z = wr” with w € W and AV € AY. Then Iw'I - IzU = Iw'Iwr*" U so that if
(5.25)) holds, we must have Tw'IwU N ITwU # (. Hence, we have Tw'Iw N TwU # 0. As [w'Iw € K
we may assume the intersection takes place in K, i.e., ITw'ITwl N Iwl # (. Over the residue field
this implies
B(k)w'B(k)wB(k) N B(k)wB(k) # 0. (5.26)
Let Uy (k) := U(k)Nw U™ (k)w and U_ (k) = wU,(k)w . Since B(k)wB(k) = B(k)wU, (k)
we conclude from (5.26)) that
U_ (k) N B(k)w'B(k) # 0. (5.27)
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For a fixed w € W, there can be at most finitely many w’ which satisfy this condition. Indeed, the
left hand side of (5.27)) is a finite set and the double cosets B(k)w'B(k) are disjoint for varying
w' e W. O

5.2.6. A faithfulness Result. Finally we record here an important property of the action of H(G 4, I)
on M(G,I), which follows from the results of §3.4.4]

Proposition. Let hy,ho € H(G4,1I). If vi x hy = v * ha then we have hy = ha.

Proof. Recall vi € M(G,I) is the coset corresponding to ApUI and let T, be the characteristic
function of the double coset Iyl, with y € Wx. Then from the definition of convolution we have
vixTy == > o |mi;(z)|vz where my, : AoUI x; Iyl — G is the multiplication map. If
mf;(z) # (), then by definition we have ApU Iyl N AoU=zI # 0, which implies that UzI N Iyl # ().
By Proposition this implies that y < z. Moreover, it is easy to see that ml_zll (y) # 0 so that

vi* Ty = cyvy + Z C2Vz, ¢y # 0. (5.28)
y=z

As < is a partial order, a simple triangularity argument yields the Proposition, since every h €
H(G4,1) is a (finite) linear combination of T}, with y € Wx. O

5.3. Convolution Iwahori-Hecke algebras as DAHAs. We would now like to state our main
result identifying H(G4, I) with H.

5.3.1. On the subspace Hyy. We have constructed the convolution algebra of H(G4,I) as well as
the module of (ApU, I) invariant functions M (G, I') over this algebra in Consider the subspace
Hyw C H(G4,I) spanned by the double cosets Ty, := [wl with w € W C W. In the same manner
as in [19], we can show

Proposition. The subspace Hy C H(G4,I) is a subalgebra. Moreover, it is spanned by the
elements Ty,, w € W together with the following relations,

T Tws, = Twiws if E(wlwg) = K(wl) —|—£(w2) (5.29)
(T, +1)(T, —q) = 0 foraell (5.30)
5.3.2. Some basic Properties of M(G,I). The module M(G,I) has a basis v, with x € W. We
then have the following simple properties,
Proposition. Let w € W and AV € AY. Then we have
(1) vi*xTy = Vi,

(2) Vi1 *Tﬂ_/\\/ = Vﬂ_)\\/.

Proof. The first result is straightforward. Let us sketch a proof of the second. First, let us first
determine the support of vi x T v. To do this, we note that

AoUIT' I = ApUUpU; Ao T = ApUU; 7 T = ApUn' I, (5.31)

where in the last line we have used the fact that 7=*" normalizes Uy for AY € AY. The above
computation shows that vy x T v is just a multiple of v_,v; moreover, the constant is equal by
definition to the cardinality of the set of left I-cosets of the intersection,

I 1N s ApU = InN' U7 NI U. (5.32)

From below we have that 7’ u-n InN'U = IT" since
IU"NIUCI(KU NU)=I(KNU) =1, (5.33)
thus, this cardinality is equal to 1. ([l
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5.3.3. Identification of Hy and H(G4,I). In Proposition we shall generalize part (2) of Propo-
sition [£.3.2] as follows.

Proposition. For any p¥ € X there exists an element 0,v € H(G, I) which satisfies the condition
Vi k0, = et ovy. (5.34)
We may now state our main result on Iwahori-Hecke algebras.

Theorem. There exists an isomorphism of algebras

o :H, > H(G4, 1), (5.35)

where the parameter v in H is specialized to v = g~ /2.
Proof. Step 1: Let H' C H(G4,I) be the subalgebra of H(G,I) generated by T, for w € W and
0, for ¥ € X. Consider the map ¢ : Hy — H’ which sends T, — Ty, for w € W and ©,v — 6,
for u¥ € X. It is easy to see that this map is actually an algebra isomorphism. We can see this for
the restriction to Hy, using Proposition |5.3.1, Then using the fact that vi x0,v = et o vy, the
algebra generated by 6,v is commutative. Using and the basic properties of the intertwining
operators from one verifies that the 6,,v satisfy the Bernstein relations . Hence the map
@ is an algebra map. It is clearly surjective by the definition of H. It remains to see that ¢ is
injective. For this it suffices to show that for example the elements {6,v7T,},vex wew are linearly
independent. However this follows by exactly the same argument as in |25, Lemma 3.4]

Step 2: It remains to show that H' = H(G,,I). This will follow if we show that vi x H' =
vix H(Gy,I). It is easy to see that My = M (G, I) C vi x H On the other hand, for x € Wx we
write vi x Ty = 3,y ¢yVy. If ¢y # 0 then we must have that AoUlIzl N AUyl # 0, or in other
words, Uyl N IxI # (). From Proposition we see that y <p z (in the notation of Definition
. Writing 2 € Wy as = 7 ¢ where AY € X and o € W, from either (§,\V) = 0 in
which case \Y = nc € AY, or (6,AY) > 0. In the former case, \Y € AY and we apply the remark
after Proposition to conclude that y = x and so in particular y € Wx. On the other hand, if
(6, \V) > 0, then from the definition of the order <p we see that y € Wx as well. Thus,

vi* H(G4, I) C M(Gy,I) C vy~ H. (5.36)
Thus H' = H(G+,I) and the Theorem is proven. O

6. IWAHORI THEORY II: INTERTWINERS AND CONSTRUCTION OF qu

6.1. Intertwining Operators. The aim of this subsection is to develop some basic properties of
intertwining operators. The arguments are mostly analogous to the finite-dimensional setting, so
we only sketch the proofs.

6.1.1. Algebraic Convolution. Let Ay, Ao, A3 C G be three subgroups. Let X,Y and Z denote the
sets which parametrize (A1, Az2), (A2, A3) and (A;, As)-double cosets of G. For x € X we denote by
v, the corresponding double coset AjxAs. Similarly, we define v,, v, for y € Y and z € Z. Denote
by M(X), M(Y), M(Z) the spaces of all functions on G which are (A1, Az2), (A2, As), and (A1, As)-
binvariant. One can formally attempt to define a convolution structure, M (X)x M(Y) — M(Z)
which is defined on characteristic functions by

Vexvy =Y |mg(2)]vs (6.1)
2€Z

where my y : vz X4, vy — G is the map induced by multiplication. To make sense of the formula
(6.1)), one needs to impose certain finiteness conditions of course.
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6.1.2. Some Completions. Let Ay = ApU and let Ay, A3 be arbitrary subgroups as above and
X,Y, Z also as above. Let Mp;,(X) C M(X) denote the space of all function ¢ € M(X) which
are supported on finitely many double cosets. Let V' = C[A"] be the group algebra of the coweight
lattice of g, which has generators e with AY € AY subject to the relation e* et = e*"*+1” with
AV, uY € AV. The algebra V acts on M (X) on the left via the formula,

N p(x) = g P g(r N x) for ¢ € Mpin(X), (6.2)
where p was defined in .

We shall also need the following completions of M;,(X) which are defined with respect to the
left V-action as follows. Let J C R,. be a finite subset of real roots, and consider the subalgebra
of V deﬁned as By =Cle av]ae 7. We can complete By with respect to the maximal ideal spanned

by e® " for a € J, and we denote the corresponding completion by Bj. Let us set Vy := By ®p ;V
and define

M;(X):=V;®y Mfm(X) (6.3)
For each w € W we let Dy, = Rye  NwWR,. — and we set

Vw == Vp,, and M, (X) := Mp,(X) . (6.4)

6.1.3. Definition of Intertwiners. Keep the conventions of the previous paragraph. Fix w € W, and

consider the group
= H Ua(lc) (65)
aGDw

It is a finite product of root groups, and carries a natural Haar measure du,, which assigns to
Uy N K measure 1. We may consider the integral operator ¥,, defined via the formula,

Tw(d)(z) = . AW Mgy ) ity (6.6)

where ¢ € M(X) is a function which is left ApU-invariant. Note that by the way T, is defined,
if ¢ € M(X) then T,,(¢) € M(X) as well. Of course, in order to use the above formula one needs
to verify certain finiteness criterion. We shall return to this point below, after considering the
following simple result.

Lemma. Let ¢1 € M(X), ¢po € M(Y), w € W, and \V € AV.

(1) Suppose that g1 x P2, Toy(P1) * P2, and Ty, (P1 x P2) are all well-defined elements in M(Z).
Then we have

Tw(d1 % ¢2) = Tu(1) * o (6.7)
(2) Suppose that Ty(e) o ¢1) and Ty (¢1) are well-defined elements on M(X), then
Tw(e) 0 g1) = e 0 Ty(e1). (6.8)
(3) Suppose that w = wg, « -+ wWq, is a reduced decomposition for w € W where w,, for i =
1,...,r are reflections through simple roots a; € 1. If T,,(¢1) and the composition Fwa, ©
-0 Ty, (¢1) are well-defined, then
Tw(d1) = Fway © 70 Ty, (¢1). (6.9)

The verification of the above Lemma is straightforward, and we suppress the details here.
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6.1.4. Intertwiners for I. Let Ay = ApU as above, and Ay = I. Then from Lemma [3.4.5] X =W
is the set parametrizing (ApU,I) double cosets, and we write M (G, I) for My;,(X) and M, (G, I)
for M,,(X), etc.

The following result is necessary to formally make sense of T, : M (G,I) — M(G,I),

Lemma. Let w € W and xz,y € W. Let i denote the Haar measure on U, which assigns U, N K
measure 1. Then p({u € Uy|lw™tuy € ApUxl}) < oo.

Finally, one can verify the following simple formula for the action of T, := Ty, : Mpin(X) —
My, (X) for a € II.

Lemma. The map T, : M(G,I) — M(G,I)y, is given by the following formula on v1,

(1—q e’
1— e’

a

[o.¢]
Tu(v1) = ¢ 'Va, + (1= )D& ovi =g vy, + o1, (6.10)
7j=1

where the fraction in the last expression is formally expanded in the completion Vi, .

6.1.5. Intetwiners for K. Finally we turn to the case that Ay = K, so that X = AV. Let us write
M(G, K) for M(X). We again have maps T, : M(G, K ), — M (G, K )y for each w,w’ € W. We
write vyv to refer to the double coset ApUn K for AV € AV, and if \Y = 0 we write 1x := vy
and call this element the spherical vector.

Lemma. [18, Lemma 1.13.1] The map T, : M(G,K) — M(G,K)y
formula on 1k

is giwen by the following

a

1,aY

1—qg e

1 — e’

Ta(lk) = 1 (6.11)

where the fraction in the last expression is formally expanded in the completion V,, .

6.1.6. Normalized Intertwiners. We shall find it convenient to renormalize T, as follows. Define

v
1—e®
Vv as
16a

Ry =—~
a 1_q7

(6.12)

and one can again verify that 8, : M (G, K), — M(G, K)yuw, for any w € W such that ¢(ww,) =
¢(w) + 1. Moreover, by Lemma above, we have that

R = Ry, 0+ 0 Ruyy, (6.13)

for any reduced decomposition w = wg, - - - wg, of w. This precise normalization is chosen so that
we have

Ru(lk) = 1. (6.14)

6.2. A Construction of Elements in H(G4,I). We now begin the construction of elements
0,y € H(G4,I) for p¥ € X which are specified in Proposition To each p¥ € X we give an
algorithm for producing certain elements 67, € H (G4, I) which depends on various choices (to be
specified below). In the we shall show that the outcome of our construction does not actually
depend on the choices made, and so we can unambiguously refer to an element 6,v € H(G4,I).
Note that these elements will satisfy

0,0 % O = 0,5 for p¥, AV € X, (6.15)
as follows from Propositions and the associativity of the action o.
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6.2.1. Basic Strategy. For Y € AY, we set 0yv := q‘(P«\V>TﬂAv, and note from Proposition m
(2) that

e ovi=vyx0yv, for A\ € AY. (6.16)

We would like to extend this construction and define elements 6,v for any ¥ € X. We refer to
the elements p¥ € w(AY) as the shifted w-chamber of X, or just a shifted chamber for short. The
length ¢(w) of the Weyl group element defining the shifted chamber will be called the length of
the chamber. Note that within each shifted chamber, we may consider the elements with respect
to the dominance order < . Our construction below shall proceed based on both the length of the
chamber and on this dominance order.

We begin with the case of chamber length 1, i.e., those 1/ € X such that there exists a simple
root a € II such that wep" € AY. We proceed by induction on the quantity (a, ") < 0, and would
like to use the formula

Oy = Ta‘gwauVTa_l = (g = D) (Owopy + Owopv—av + -+ + ewaﬂv+(<aauv>+1)aV)Ta_1” (6.17)
in a manner to be made precise below.
6.2.2. Step 1. If (a, ") = —1 then the right hand side of (6.17)) reduces to
Tl Tyt — (g — )0 T (6.18)

As wop” € Ay the term 6,,,,v has already been defined as elements in H(G,I). Moreover, the
elements T, and T, ! have also be defined in H(G,I) . Thus we may take (6.18)) to be the definition
of 0,v for any p" € wy(AY) with (a, ") = —1 ie.,

0, = Tubwoyv Tyt — (g — 1)0,, v Ty b if 1Y € wo(AY) and (a, ") = —1. (6.19)

6.2.3. Step 2. We next observe the following simple result, which is useful for our inductive con-
struction.

Lemma. Let p¥ € AV be such that wep” € AY. Set d := —(a,pn¥) > 0, and assume d > 1.
(1) If b € 11 with b # a, then
(bywep” —ja¥y >0 forj=1,2,...,d -1, (6.20)
i.e., the elements wqp” — ja” for j =1,2,...,d —1 lie in wa(AY) UAY.
(2) Forj=1,2,...,d— 1, we have
—(a, wap” — ja¥) < d. (6.21)

Proof. Part (1) follows immediately from the following two facts: (i) the inner product (b,a") <0
for b a simple root not equal to a; and (ii) (b, wap") > 0 since weu" € AY and b is a positive root.
As for (2), we compute,

_<a’7walu’v - jav> = <a71uv> + <a7jav> =—d+ 2] (622)
However, —d + 25 < d since j < d.
O

6.2.4. Step 3. Fix d > 1, and suppose now that we have defined expressions ¢,v for A= wa(AX)
such that —(a, ") < d. Choose now p" € we(AY) with —(a, ") = d. Then the right hand side of
the expression (6.17]) takes the form,

Taewau\/Ta_l - (q - 1)(9wa,uv + ewa,uvfav +eee ewauv—(d—l)aV)Ta_l' (623)

From Lemmal6.2.3] (1) we know that the elements w,p" — ja" for j = 1,...,d—1 are all in wy(AY)
or AY. Let £ be one of these elements. If £V € AY we know how to define §¢v. On the other hand,
if £ € we(AY) we know from Lemma [6.2.3(2) that —(a,£Y) < d, and so f¢v has been defined
inductively. Continuing in this way, we can define 6,v for any p" € wy(AY).
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Proceeding again by induction on the length of the chamber, and then by a second induction
based on dominance, we may construct elements 0, for every p¥ € X.

6.2.5. Step 4. It is important to note that in this construction a number of choices have been made
to define each 6,,v. We denote by QLV any element associated to a given p" € X which can be
constructed by the procedure described above. It will be shown below that the construction is
independent of the choices made. i.e., that 9:” only depends on pV. Our strategy will be to show
that for any of the elements 07, € H (G4, 1) constructed above, we have a relation of the form
1) ie., vy *HLV = et ovy. Propositionwill then imply that HLV depends only on u¥ € AV.
Our proof proceeds in an inductive manner and rests on the following fact which is obvious from
our construction.

Lemma. Let le, p € X constructed as above. If p¥ ¢ AY, there exists a simple root a € II such

that wep" > ' and a sequence of elements OQ‘UEMV,H:UWV_QV, e ,HIUG#V_“& wap¥)—1)aV such that
Ta * G:Ua‘uv = ezv *Ta + (q — 1)(9;)an + e;auv,av + -+ e;au\/_“a’wau\/)_l)av)- (624)

6.3. Proof of Independence of Construction. We now show that the elements H,ZLV defined in
do not depend on the various choices made in their construction.

6.3.1. Preliminary Computations. Let p’ € X and let QLV € H(G4,I) be any of the elements

constructed in §6.2] Recall that we have defined the intertwining operators ¥,, a € II for some
completion of the (V, H(G4,I)) bimodule M(G,I) in §6.1.4

Lemma. Let a € II and QLV as above. Then we have

%vl <05, (6.25)
Proof. Note that the right hand side a priori only lives in some completion of M (G, I'). However, if
we can prove the equality holds in some completion, it holds in M (G, I) itself since the left
hand side lies in M (G, I). The proof of the Lemma is a simple computation, using the properties
of interwining operators established earlier. Indeed, using the fact (see Lemma [6.1.3] (1)) that T,
commutes with the right convolution action and the explicit formula (6.10f), we find

Vi *Ta *HZUG#V = qga(vl *%a;ﬂ) +

Talvy* GZUG#V) = Tu(vy)* Ql'uwv (6.26)
B 1_ qfl eav .
= (q lvwa + MVl) * ewau\/ (627)
- ° 1-— q_l eav .
= q 1V1*Ta*9wau\/ + M(Vl*ewuuv), (628)
where in the last line we have used the fact (see Proposition [5.3.2)) that v,,, = v * Ty, . O

6.3.2. Proof of Independence of Construction. Let us now consider the following

Proposition. For any u¥ € X and for any of the elements (9;v constructed in &W we have
vix Oy = e’ ovy. (6.29)

In particular, GLV only depends on p" € X.

Proof. Consider the statement for each u" € X,

P(u"): For any 0% constructed as in 3. we have vy x 08, = e* oy

If P(u") is true, then we can define HLV unambiguously according to the faithfulness result, Propo-

sition We shall just write 6,v in this case. We know that P(u") is true for ¥ € AY. Given

any p” € X, assume by induction that P(£V) is true for all £V > uV. Let us show that it holds for
v

w as well.
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Step 1: Given p¥ € X, from Lemma there exits a simple root a € II such that w,u" > pV
and such that we have a relation of the form

To* by, v =05y *Ta+ (g — 1)(05,v + 000y —av + -+ 00, v (@wapv)—1)av )- (6.30)
As wep” > pV we must have (a, u") = —(a, wau") < 0. Let us next note that
wap” — ja¥ > pY for 5 =0,..., (a,wep’) — 1. (6.31)
Indeed for these values of j we find
wap¥ — ja — = (=, 1¥) = j)a" = (@, war") — )a’ > 0 (6.32)

By the inductive hypothesis, we now have that P(w,pu" —ja") is true for j as above, and in particular
the elements 6,,,,v_j,v are well-defined. So (6.30) may be rewritten as

Taewauv = HLVTQ +(qg— 1)(0wauv + Hwauv,av + -+ GIUaHV—((a,wa/LV>—1)aV)7 (6.33)

where only the element §%, may in fact depend on its construction (and not only on u").
Step 2: From Lemma we have

-1
V15 T % Bt = G Ta(V1 % O v) + ﬁﬁvl 5 Do (6.34)
which may be rewritten using the assumption P(wqu") and Lemma|6.1.3[ and (6.10]) as follows,
-1
Vi * Ty O = qTa(e”H ovy) + ﬁewauv o vy (6.35)
—e
-1
= qe“vTQ(Vl) + ﬁﬁew““v ovy (6.36)
_ 1—g et ~1

= qe" o (g v, + <1:]e“)v ovi) + 1 1= evr ovy  (637)

0 wapV
= e'“v O Vuw, — (q - 1)% oV (638)
= e ovixT, (6.39)

+ (¢— 1)(6“’”‘v 4 eWer’ 0" Ly ew““v_(<“’w““v>_1)av) ovy. (6.40)
Step 3: We may also compute vy x T, * 6,,,,v in another way using the expression (6.33)):
Vi x GLV * T, + vy * (q — 1)(91170,/1/\/ + Gwauv_av + -+ ewaﬂv_“a?wau\/)_l)av) (6.41)

= Vi O * Ty + (g — 1)(eWF + Wl =0 4o g ewer —(@wan®)=Daty oy (6.42)

where in the second line we have used the fact P(wopu” —ja") for j = 0,. .., (a,weu")—1. Comparing
with (6.39) we immediately conclude that
e o vi*xT, =v]* HLV * T, (6.43)

and hence the claim P(u") follows from Proposition since T, is invertible.
g

7. SPHERICAL THEORY

In this section, we shall first review the construction by the first two authors [3] of the spherical
Hecke algebra, i.e., the convolution algebra of certain infinite collections of K-double cosets. The
main technical step in the construction is the verification of certain finiteness properties of the
fibers of convolution. This was achieved in op. cit by interpreting these fibers geometrically. Here
we sketch an alternative construction which uses in an essential way the main finiteness result
of |2]. While this work was in preparation, there has appeared yet another approach to proving
these finiteness results by S. Gaussent and G. Rousseau [16], which works in the setting of general
Kac-Moody groups.
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The main new result in this section is Theorem which gives an explicit formula for
the image under the Satake isomorphism of the characteristic function of a K-double coset. This
generalizes the formula of Macdonald [26] (see also Langlands [24]) in the finite-dimensional setting.
Its generalization to the general Kac-Moody setting is not known to us; more precisely, although
it seems that large portions of the proof of Theorem will hold in the general Kac-Moody
setting, we do not know what is the correct analogue of the formula for the quantity defined

by (37,

We fix the notation of §3|in this chapter: so G will be an affine Kac-Moody group over a local
field I, which has subgroups I, K, U etc.

7.1. Spherical Hecke Algebras and the Satake Isomorphism.

7.1.1. Verification of property (F). Recall from Theorem that AY was in bijective correspon-
dence with the set of K-double cosets of the semi-group G4. Furthermore, from Theorem we
see that AV is in bijective correspondence with the space of (ApU, K) double cosets of G. The
abelian group AV equipped with the dominance order < becomes an ordered abelian group in the
sense of and AY inherits the dominance order to become an ordered abelian semi-group.

Lemma. The abelian group AV equipped with the dominance order < satisfies the following condi-
tion: for each \V,pu" € AV the set

Y, Y] = {6V € AY]AY < €V < V) (7.1)
1s finite.

Proof. Let \V, u¥ € A, and assume that AV < pV so that u¥ — \V = ZH% n;a; with n; > 0. Then

every £ € [A\V, "] is of the form & = \V + Zfill m;ay with 0 < m,; < ni.iThe finiteness of [\, u"|
follows. 0

7.1.2. Constructing H<(G4, K). Recall the setup of Our aim in the remainder of is to
prove the following result which was first shown in ([3]) with slightly different terminology.

Theorem ([3]). The quadruple (K,AY; AoU, A, <) is a semi-infinite Hecke module datum in the
sense of Definition[{.2.3.

Thus, as in §4.2.2] we may define a convolution algebra structure on the space of K-double
cosets H<(I'y, K), as well as an action (on the right) of this algebra on the module structure on

M(G; AU, K) := M< (G, K). (7.2)
Proof. To prove the theorem, we shall utilize Proposition [£.2.4, Thus we need to verify that

(K,AY,AY, <) satisfies conditions (F), (SH2), and (K, AY; ApU, AV, <) satisfies (SM1), and (SM2).
Condition (F) follows from Lemma so we just focus on (SH2), (SM1), and (SM2). Let

v:iA = ApU\ G/K, A\ — vy (7.3)
h:AY - K\Gi/K, A+ hy (7.4)

be the bijections induced respectively from the Iwasawa and Cartan decompositions. The properties
(SM1) and (SM2) are expressed in terms of the fiber of the map m,v v : v,v X hyv — G, for

pY € AV, AV € AY. Using (4.8),
m;vlyl\v (V)Y =K\ KN KN Kr "' Urt where \Y € AY and p”, &Y € AY. (7.5)

Now the results (SM1) and (SM2) follow respectively from the next two facts: let A\¥ € A, and
p" € A, then we have the following results from [2, Theorem 1.9(2)]

K\ Ke' KNKr*'U| < oo; and (7.6)
if Ki" KNKa"'U # 0 then p¥ < AV,
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Finally, we address the property (SH2), which involves the fibers of the map myv ,v : hyv x
hyv — G4 where AV, ¥ € AY. If myy v (€Y) # 0, then it follows from the definitions that

KN Krt' KN Kr K # 0. (7.8)

Using the decomposition (3.12) we may write K = IW I, for the Iwahori I and the Weyl group W.
Thus

KV Kt K = | ) Kot TwInV K = | ) KoY Uont K (7.9)
weWw weWw

where we have used (3.10) to write I = UpU, Ap as well as the dominance condition on AV, p"
which implies that 7% Upn~*" ¢ K and 7~ #" U;w“v C K. So if (7.8) is satisfied, one obtains from
(7.9) that for some w € W,

Ka Uon* KN K¢ K # 0. (7.10)
Trivially we thus obtain that Ka»*'*#'U N Ka¢ K # 0. From (7.7) we thus obtain that &Y <
wAY + pY < AV + pV where we have w\Y < AV since \Y was assumed dominant. O

7.1.3. M<(G,K) as a right H<(G 4, K)-module. Describing the structure of H< (G, K) along the
lines of Satake ([31]) is our next goal. Recall the construction of Looijenga’s coweight algebra
C<[AY] from §2.1.5() We can define an action of the elements e*” € C<[AY] on v,v € M<(G, K)
via the formula (6.2]) and obtain

M o \ q_<p”\v>vuv+>\v. (7.11)

This action extends to give an action of the completion C<[AY] on M<(G, K), and we can easily
verify the following result using the Iwasawa decomposition and the definition of the completions
involved.

Lemma. As a C<[AY]-module, M<(G, K) is free of rank one with generator the spherical vector
1x = vy, i.e., the characteristic function of the subset AoU K. Further, the action is a right
H< (G4, K)-module map, i.e.,

e o (v kh) = () ovw) xh, (7.12)

where h € H<(G4, K) and * denotes the convolution action of H<(G4,K) on M<(G,K) as in
.

7.1.4. Affine Satake Isomorphism. Using Lemma [7.1.3] we obtain a map,

S:H<(G,K)— C<[AY], h— S(h) (7.13)
defined by the expression
1x*xh=S(h)olg. (7.14)
Explicitly, if hyv is as in (7.4), then
S(ha)= > [K\Kr*'UnKr* Kle" ¢, (7.15)
nYeNY

The above map is called the Satake homorphism: it is a homomorphism of algebras since for
hi,he € HS(G_HK), we have

1K*(h1*h2) = (S(h1>O]_K)*h2:S(hQ)O(S(hl)O]_K) (716)
= (S(h2) S(h1)) o 1k, (7.17)
In fact, we have the following analogue of the classical Satake isomorphism,

9We may also regard C<[AY] as the (semi-infinite)Hecke algebra associated to the datum (Ax, Ao, AV, <).
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Theorem. The map S is an isomorphism of algebras,
S:Ho (G4, K) S C<[AV]Y (7.18)
where C<[AV]W is the ring of W -invariant elements of C<[AV].
The proof will be divided into three parts

7.1.5. Proof of Theorem Part 1: W-invariance of the image of S. The fact that the image
of the Satake map lies in CS[AV]W follows as in the classical case from the properties of certain
intertwining maps. Recall that have described the basic properties of spherical intertwiners in
§6.1.5] and we freely use now same notation introduced there . In particular, we have defined the
rings V,, and the spaces M,, :== V,, @y M(G,K) in (6.4) as well as the normalized intertwiners
R M(G,K) = M(G,K),, for each w € W in ([6.12}}6.13). We can extend these definitions easily
to define the spaces M<(G, K), := Vi ®y M<(G, K) and corresponding maps &, : M<(G, K) —
M<(G, K),,. Moreover, these maps R, are compatible with the right H< (G, K) action as follows,

Proposition. In the notation above, we have
(a) For any w € W, Ry, is a right H(G 4, K)-module maps i.e.,

Ru(d* ) = Ku(¢) x h (7.19)

for any ¢ € M<(G,K),, and h € H<(G4, K).
(b) With respect to the o action of C<[AY] on M<(G,K)., defined as in (7.11)), the maps Ry,
satisfy

Rpoer =e" o &, forwe W, A\ € AY. (7.20)
(¢) The maps Ry, fix the spherical vector, i.e., Ry, (1x) = 1x for any w € W.
From the previous Proposition we find that for any w € W,
S(hav)olg = 1g*hyv = Ry(lg) *hyv = Ky(lg *hyv) (7.21)
= Ry(S(hyv)olg)=S(hy)"olg. (7.22)
It follows that S(hyv)¥ = S(hyv) for any w € W.

7.1.6. Proof of Theorem[7.1.4 Part 2: Injectivity of S. To show that S is injective, we shall verify
that

S(hav) = ¢*2er + 3 cuvet, (7.23)

where ¥ < XV means that p" is strictly less than AY in the dominance order, and ¢,v € Q>o.
Indeed, this follows from ([7.7)) and the following,

Lemma. Let AV € AY. Then

KN UNKr'K = Ko’ (7.24)
Proof of Lemma. Indeed, from decompositions (3.12)) and (3.10]), we obtain
KK = | Kr"N'U; Uo. (7.25)
weW

If there exist w € W such that Kz%' U~ N Kx*'U # (. By [2, Theorem 1.9 (3)] we must have
AV < wAY. But since \Y € AY, it follows that wAY = AY for any such w. Hence from (7.25)) we
conclude that

KN KNK'Uc KrX' INKn'U c Ket' U7 nKa'U. (7.26)
Let us now show this latter intersection is K" . Indeed, ™ ue KeNU- implies that N ur A e
KU~ So by [2| Lemma 3.3] or (A.7) below, we have that 7" ur=*" € Up. O
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7.1.7. Proof of Theorem Part 3: Surjectivity of S. Finally we need to show that the map S
is surjective. The proof (in a slightly different context) is essentially contained in [23, p.25]. Let

=) cevet € C<[AV)Y (7.27)

{\/ eA\/
and let = C AY be a finite set of elements such that if A\ € Supp(z) then A¥ < pV for some p" € 2.
For any integer n we let Y(n) C AY be the set of elements of the form p" —njaY —--- —ngp1a) 4

where ¥ € 2, m; >0fori=1,...,0+1,and ny + -+ + ngy1 > n. A subset ¥ C AV is said to be
dominated by a subset X' C AY if for every 7V € ¥ there exists A € ¥’ such that 7 < A\Y. We now
construct a family of elements h,, € H<(G4, K) for n € Z>( such that: (a) Supp(h,) is dominated
by Z; and (b) Supp(z — S(hy)) is dominated by Y(n). Indeed, let hy = 0; suppose inductively

S(hn) = Z cn,fvegva (7.28)
EVEAY
we then define
hn+1 = hyp + ap; where a,, = Z q7<p’”v>(cuv — Cppv )y (7.29)
uwYeYT(n)\Y(n+1)

Condition (a) is immediately verified since Y (n) is dominated by Z; and condition (b) follows from
. Note that we have h, = a1 + --- + an—1. Thus, setting hy, = En>0 an, we see from the
definition of the completion that hoo € H<(G4, K). Furthermore, from (b), we see that  — S(hoo)
has support dominated by N ,Y(n), and is hence 0.

7.2. Explicit Formula for the Satake Isomorphism. We now present an explicit formula ((7.42))
in C<[AV]W for the image of hyv with A\¥ € AY under the Satake isomorphism S of Theorem

7.2.1. v-finite elements. Let v be a formal variable, and consider the ring of Laurent series C, :=
C((v)). Let C<,[AY] be the ring of collections as in (2.33]) where the coefficients are now taken to

lie in C,. Recall that Q" was the coroot lattice of g, which has a Z-basis {ay,...,a/,}, and that
Q" denoted the negative coroots. Denote by
Q, = C,[[QV]], (7.30)
the ring of formal Taylor series in the variables e~ with coefficients in C,, where as usual
e e™Y = 7% Y for ,j=1,...,0+1. (7.31)

Note that Q, C C< ,[AY] since for each z € Q, we have that Supp(z) C ¢(0), where 0 € AY denotes
the zero coweight and the notation is as in (2.34]) and ([2.35]).

Definition. The elements C<[v,v1][AY] C C, <[AY] are said to be v-finite. Similarly, an element
of Qy is said to be v-finite if it is v-finite as an element of C, <[AY], i.e., it lies in Clv, v~ [[QY]].

Remark: Not all f € C, <[AY] may be "specialized” at v? = ¢~ ! but this is certainly possible
for v-finite elements.

7.2.2. Macdonald-Cherednik Constant Term Formula. For each a € R4, we set

_ U2€_av
c(a’) = <11_eav> ) (7.32)

which we regard as an element of Q, by formally expanding the rational function as a series in
e’ Letting m(a") denote the multiplicity of the coroot a", we now set

A= H c(a”)y™e") = H c(a) H c(nc), (7.33)

a€ERy a€ERre, + n€l>o
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which is again regarded as an element of Q, by formally expanding the above series. In fact, it is
easy to see (see [29]) that the element A is invertible in Q,,.

For a € Ry and w € W, we shall write ¢c(wa") to denote the expansion of in Q,. For
example, if a is a real root and w = w, then

1— v2e®” e’ 2

clwaa") = e(—a¥) = S = e =0 (P e (0P e 4 (T30)
Now, for each w € W, we may consider the element
AY = H c(wa")™) € Q,. (7.35)
acERL

The same argument as in [28, p.199] shows that the sum >, ;s A" is a well-defined element in
9, which again is invertible.
For any subset ¥ C W we write its Poincare polynomial as

v) = o), (7.36)
wEeEX
Consider now the following expression, which takes its values in Q,,,
ZwEW A"
W(v?)
In fact, it is not hard to see (|28, (3.8)]) that Hy € C,[[e ¢]] where c is the minimal imaginary
coroot of g. One may give a formula for Hy as an infinite product of expressions in the variables v2
and e® (see |1, Theorem 1.7]). In the case when g is simply-laced, the formula takes the following

form, which is the result of [28, (3.8)] and the work of Cherednik [6] on Macdonald’s Constant
Term Conjecture.

Hy = (7.37)

Theorem. Let g be a simply-laced untwisted affine Kac-Moody algebra. Then we have that

2m]e ic

{ oo 1—
- 1:[1:[ — ”mﬁl p— (7.38)

where the integers m; for j =1,..., 4 are the exponents of g, defined by the relation that

¢ m]+1)

H s (7.39)

where W, C W is the finite Weyl group. In particular, we see that Hy is v-finite (and so can be
evaluated at v? = q=1).

7.2.3. Statement of Main Formula. We can now state precisely the formula for S(hyv) with AV €
AY. For any such \Y € AY, define

Wyv = {w e WwAY =XV} C W, (7.40)
and recall from that we have defined the element
v—2(p\Y " w}\v
Hyv = W () ;VA (7.41)

which we will argue is in C, <[AY].

Theorem. Let A € AY. The ratio 1Y ¢ Cu,<[AY] is v-finite, and its value at at v2 =q ! is equal
to S(h)\v)
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Informally, we shall write the above theorem as follows:

S(h L) AN 7.42
(hav) = HOVV/\V(Q_l)w;V e ) (7.42)

where A is as in (7.33)) and H is defined in (7.37) (with v?> = ¢~1). The proof will occupy and
will be broken up into four parts.

Step 1: Disassembly: We first break up the computation of S(hyv) into pieces indexed by
a set of minimal length representatives in W/Wyv. This is done via a passage to the Iwahori
subgroup 1.

Step 2: Recursion: We show a certain recursion relation between the pieces introduced in
the previous step corresponding to w,w’ € W where w and w’ differ by a simple reflection.

Step 3: Algebraic Identities: We recall some purely formal algerbaic identities from |[7]
involving the affine symmetrizers and polynomial representation of Cherednik.

Step 4: Rephrasal and Reassembly: Reinterpreting the recursion of Step (2) using the
polynomial representation of Step (3), we can rewrite the disassembly from Step (1) using
the affine symmetrizers of Cherednik. The argument is then concluded by applying an
algebraic proportionality principle from Step (3).

7.3. Proof of Theorem [7.2.3l
Step 1: Disassembly.

7.3.1. Minimal Length Representatives. Recall that we have defined the stabilizer Wyv for each
AV e AY in (7.40). If \V = (3, then Wyv = W. In the opposite extreme, if W v = 1 we say that \"
is regular. Choose a set W*" C W of minimal length representatives for the set W/Wyv, and note
that for this choice, we have

E(www) = é(w) —i—f(w,\v) for w € WAV,’U))\V € Wyv. (7.43)
Also note that every w € W has a unique factorization
w = wiwy where wy € W)‘v,wg € Wyv. (7.44)

The following observation will be useful for us later: if w € WA and Wq, a € 11 is a simple reflection
such that (w,w) < £(w) then w and w,w cannot be in the same coset W/Wv (since their lengths
differ and w is the minimal length element it its coset), and also w,w € WA, Indeed, if w,w
were not in WAV, there would exist some reduced decomposition for it ending in a simple reflection

which lies in Wyv. However, this would give a reduced decomposition of w (by premultiplying by
w,) which ends with simple reflection that lies in Wv, contradicting ((7.43]).

7.3.2. The subgroup P. Recall that I~ was the opposite Iwahori subgroup defined in (3.9). We
define

Py = Hwew,v I~ wil™, (7.45)

and note that it is a group: indeed, W)v is generated by the simple reflections wg, a € II which it
contains, so one may now argue as in the classical case, see [19]. Often we drop the subscript A"
and just denote this group by P when \Y is fixed in the discussion. If AV is regular P = I~ and in
the opposite extreme, if A\Y = 0 then P = K. Note that

UwP = Uw; P (7.46)
for w as in ([7.44)), and hence we have a disjoint union,
G = U,y UwP. (7.47)
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7.3.3. Decomposition into Twahori Pieces. Let us define for w € W,p¥ € AY, and AY € AY the
following two sets,

FPw(wY) = {(a,c) € UwP xp P Klac = "} (7.48)
FEWY) = {(z,y) € UK xx Kn*' Kl|ay =7} (7.49)
In our previous notation, we may write this as follows: consider the multiplication maps
my v UwP xp PV K =G (7.50)
my : UK xg Kot K — G, (7.51)
then we have
F£:>\V (V) = m;})\v (7*")  and FE(pY) = m;vl(wl‘v). (7.52)

Consider the map ¢, : FL\ (1) — FE (1) which sends (a,c) ~ (a,c) where a € UwP

w
and ¢ € Pm K. Tt clearly induces a well-defined map: i.e., if j € P then (a,¢) and (aj, i 'c) are
equivalent in ¥ (1"). Let us now set,

FE (1Y) == Uy v FL v (1Y) € Uy epprv UwP xp PrV' K (7.53)

and define ¢ to be the map from F, (u") — FJ (1") which restricts to ¢, on FT ., (1Y).

Lemma. The map ¢ : FE (1Y) — FE (1) is bijective.

Proof. Let us first see that ¢ is surjective: each (z,y) € F ){5 (1) has representative of the form
z € UK and y € ™K. Write z = uk with v € Uk € K. Decomposing K according to
(I,17)-cosets (see ), we may assume k € [wl~ for w € W. Note that UlwI~ = UwlI~ for
w € W. Writing w = wywe with w; € W and we € Wiyv as in , we further observe that
UlwP = Uw; P. Surjectivity follows from this.

Injectivity will follow from the following ,

Claim. Let (a,c),(da/,d) € U, cyav FL (1Y), and suppose that p(a,c) = p(a’,c). Then ¢ = v
with v € I"wl~ and w € W)yv.
Proof of Claim. Given (a,c) and (a/, ) as above such that ¢(a,c) = ¢(d’, ), there must exist by

definition an element v € K such that ¢ = v¢’. Suppose ¢ = Ik and ¢/ = I'm*" k', where [, € P
and k, k' € K. We may assume that [,I’ € I~ actually. Indeed, if 0 € Wyv then

I'ol ™ K=I0c"K=I"7"K (7.54)
where in the first equality we use the fact that AY € AY and in the second that o € Wyv. Thus we
have a relation of the form

itk = vi' T\ K, (7.55)
with 4,7 € I~. We may suppose that v € I~"wlI~ with w € W. So, we have found an element in the
intersection of

I ™' KNI wl ™K. (7.56)
Again, since \V is dominant, we have that I~ wI N K =T wrM' K. However, 1) can only be
non-empty if w € Wyv : indeed, if the intersection was non-empty, then we would actually have

I"wr' K =TI 'K. (7.57)

Consider the multiplication maps
m:UI" x,- "7V K — G (7.58)
m:UI" x;- I"wt™ K — G. (7.59)
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The image of the former is supported on Un* K whereas the image of the latter contains the
element 7%*". This is a contradiction unless w € Wyv. ]

This also concludes the proof of the Lemma. O
7.3.4. Ju(\Y). For each w € W*", define the sum
JoX) = ST B () g e, (7.60)
pY EAY
The preceeding Lemma yields the following disassembly of S(hyv)
S(hav) = > Ju(AY). (7.61)
weWwY
Let us note that if w € W is written as w = wjwy where wy € W and wo € Wyv, then
Ju(AY) = Juw, (AY) (7.62)
since UwP = Uw; P in this case. We take as the definition of J,(\V) for any w € W (the

previous definition was for w € W").

7.3.5. Ju(\Y) as a convolution, I. Let vE be the characteristic function of UwP for w € W, va K

be the characteristic function of P’ K, and recall that we have defined v,y in 1) to be the
characteristic function of Un#" K. Using the map

My \v : UwP xp Pir K — G, (7.63)
we define
VR X0 = > Imy b (7 )|V (7.64)
pY EAV
By definition ((7.60)) we have
Vi*ef\/’K = Z |m;’1)\v () et g P ) 0 1 = Jy(AY) 0 1 for w € W', (7.65)

uYeAY

By the finiteness ([7.6) and Lemma above, we conclude that each coefficient in ([7.64))
is finite. Also from Lemma and (7.7) we conclude that if ¥ € AY lies in the support of

Jw(AY), then p¥ < AV. Hence J,(\Y) € C<[AV]. In Proposition below, we argue that in fact
Juw(AY) € C[AY] (i.e. that it has finite support).

7.3.6. Jy(A\Y) as a convolution, II. We will also need a slight variant on the above formula .
To state it, for each w € W let Yy, and vl be the characteristic function of the subset IwP and
UwP respectively. Recall that we have also defined v,, for w € W to be the characteristic function
of AoUwlI. Then for w,w’ € W we note that UwIw'P is a (finite) union of cosets Uo P with o € W.
The convolution v, *Y,, for w, w’ can be defined in the usual way: i.e., if my, v : UwI xjIw'P — G
denotes the multiplication map, then

Vi * Yy = Z |m;71w,(0)|vf (7.66)
ceEW
Lemma. Let w € W. Then
(1) vixY, = 35
(2) If w € W' and w = waw' where a € 11 is a simple root and £(w) = £(w') + 1, then
Vu, * Yy = (¢ = 1)vE, +qvl. (7.67)
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Proof. For part (1), since UITwP = UwP, it suffices to verify that
I\ IUwN IwP| = 1, (7.68)

which follows easily from the fact that if v € U and Tuw € TwP, then in fact v € U N K. Hence,
for any such u, we have Tuw = ITw. As for part (2), first note that Uw,Iw'P = Uw,U,[0]w’P and
clearly the support of the left hand side of is contained in the union of Uw,w’'P and Uw'P.
By our assumptions that w € W' and £(w,w’) > ¢(w') we have that Uw,w'P and Uw'P are
disjoint (as follows from the remarks at the end of and the disjointness (7.47) ). Now, to
verify the multiplicities in question, we need

[T\ Tw,Ug[Olwew’ N Iw'P| =q and |I\ Tw,Uy[0]w' N Iw'P| = ¢q — 1, (7.69)
which we leave to the reader. O

Remark. Defining the triple convolution vi x Yy, * 0%, ;- € M(G, K) in a natural way, part (1) of
the above Lemma gives the formula,

Ju(A) o1k = vi* Yy * 05, (7.70)
which will be used in the next section.

Step 2: Recursion.

7.3.7. Macdonald’s Recursion Formula. Now we verify a recursion relation for J,(\") introduced
in the previous step. The result is an analogue of the recursion relations obtained by Macdonald
in |26, Theorem 4.4.5].
Proposition. Let \Y € AY,w e W.

(1) The expression Jy,(\Y) actually lies in Q>o[AV]. In other words,

To(AW)= 3 @y e (7.71)
HVEAV

with @, ,v € Q>0 and non-zero for only finitely many p* € AY.
(2) If w € Wyv, then we have

Ju(AY) = J1(AY) = ¢A e (7.72)
(3) Let w € WA a € Il and w = wew' with {(w) = 1 + (w'). Then we have the recursion
relation,
Ju(\Y) = 1oglen Jur (AY)Ve + -1, (AY) (7.73)
w T T e w’ 1_ ea” w’ s .

where by J (AY)%e we mean the termwise application of w, to the expression Ju(\Y), and
the rational functions which appear on the right hand side are expanded in the ring Vi, of

.

or w € an € , there exist polynomials wuv (V9) € Qv v~ actually in
4) Fi W and \V Ai h l l Dy 2 Q[v?,v2 ll
0202 )Q[v?]) such that

Tu(W) = 3" @y (g e (7.74)
nY EAV

101y Proposition |7.3.15| we connect the polynomials ®,, ,v (v?) with the polynomial representation of the DAHA.
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7.3.8. Remarks on Part (3). From the way in which statement (3) is written, it is not clear that the
expression J,,(\Y) is actually a finite sum. However, there is a cancellation which occurs when one
expands the rational functions appearing in . Let us illustrate this with a simple example:
suppose AY € AY and a € II is such that w, ¢ Wyv. Then we may write w,\Y = AV — ka" for

k:= (\Y,a) > 0. From (2) we find that J;(A\Y) = ¢/»*")e*”. Hence, from (3) we find that

Jw

1. aV 1
() = %.qwmewaxv 4 1 oA
e —

. (7.75)
= PN A= e+ (L—g R et (7.76)
+ (=D + (g =D )Ny (7.77)
= e H (1 — g e Y (=g )N ) (1)

Hence, one can see directly in this this example that .J,,, (\) actually lies in C[A"Y]. Moreover, note
that the sum Jy(AY) + Jy, (AY) is easily seen to agree with the usual spherical function for SL(2).

7.3.9. Proof of Proposition m The proofs of (1) and (2) are quite straightforward, and we just
sketch the argument here. From the definition of J,,(AY) the support (i.e., the set of ¥ € AV such
that F7'\ (V) # 0) consists of those p such that UwPr» K N Ut K # 0. If Wyv is infinite,
then W = Wyv and P = K. Moreover, in this case,

UK K =UIWI o' K = UIWUGn\ K = UU; WrN' K = Ut K (7.79)

since \Y € AY and W fixes AY. So the only possibility is that x¥ = AY in this case. Next, assume
that Wyv is finite so P is a finite union of I ~-double cosets. Hence, it suffices to verify that for fixed
o € W there are only finitely many p¥ € A such that UsI- 7" K N Un"" K is nonempty. Using
the decomposition I~ = UrU, Ao together with the dominance of A € AY we can immediately
deduce that

Uol mKNUr' K 40 < U_gpom™ KNUT" K #0) (7.80)

where U_y » := {u € Uy | 07 luo € U} is a finite product of one-dimensional groups . From this
we may deduce that only finitely many p can occur.
As for part (2), we have already remarked in that J,(\Y) = J1(AY) if w € Wyv. The
verification that J;(\Y) = e* ¢lP2") can be deduced from Lemma and Lemma |7.3.3
As for (3), we use the intertwining operators T, defined in From Lemmas and
we have that
1 av

1y eV _
Ta(vi) = ¢ v, + (-g )" vi and F,(1lg)= 1_‘177% olg, (7.81)

1—eaV 1

where the rational functions are expanded in positive powers of e®’. We now compute the action
of To(Jw (AY) 0 1k) in two different ways. On the one hand, from we have

1—qle?
) o 1 (752

On the other hand, from 1j Ju(A) ol = vy %Yy * Hf\DV’K. So we have

To(Jw(A) o1g) = (Juw(A\)" T, (1k) =

Ta(Juw(N) 0 1x) = Ta(vi* Yo % 030 i) = Ta(vi)* Vi x 050 i (7.83)

using the fact that T, commutes with convolutions on the right. Using (7.81) we find that the
previous expression is equal to

1 g1 aV
% o) V]_) * Yw/ * 95\/ K (784)
—e )

(1—g e

1 — ea”

(qilvwa +
= ¢ 'V, * Y x050 i + o vi* Yy * 050 k. (7.85)
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Using Lemma ([7.3.6)), we have that
Vu, * Yo = (¢ — D)VE, 4+ qvl = (¢ = 1)vi x Yy 4 qvi x Vs (7.86)

Hence, the previous expression is also equal to

1— g1 aV
= v Y x O o+ (1= g v+ Y % 05, 5 + (1q)v€ ovyx Yy %08 o (7.87)
) ) — eCL )
1— -1
= Ju\)olx+ (1_qeav)Jw/(AV> o1y (7.88)

Comparing with ([7.82]), Part (3) of the Proposition follows.
As for Part (4): if w = w, this follows from the remarks in §7.3.8] The general case follows by
induction on the length of w using the recursion relation ([7.73)).

Step 3: Algebraic Identities.

7.3.10. The Polynomial Representation of Cherednik. In this part, we shall establish a purely alge-
braic identity ([7.104) which will be used in the subsequent step 4 to establish Theorem Let
v and X be formal variables, and set

c(X) = Xt and b(X) = v (7.89)
The following identities are easy to verify, see [29] p. 58, 4.2.3(i) -(iv)]
c(X) = v—b(X)=v"+bX") (7.90)
c(X)+c(X Y = v4ot (7.91)
c(X)e(X™hH = 1+bX)b(X!). (7.92)

Recall the ring Q, from anove. For each ¢ € R we may consider elements of Q,
c¢(a) := c(e””) and b(a) := b(e") obtained by substituting e*” for X in and then formally
expanding.

Denote by Q,[W] the vector space consisting of elements

f= Zci[ai], where ¢; € Q,,0;, € W. (7.93)
i=1
Let g € C,(QY) be such that g and ¢g° for 0 € W admit expansions in Q,. Then we set
[o]g = ¢°[o]. (7.94)

Warning: Let o € W. For a general g € Q,, it may not be the case that g7 € Q, (so Q,[W] is not
a twisted group algebra).
For each a € II, we consider elements

To = vlwa] + b(a)(1 — [wa]) = c(a)[wa] + b(a)[1] € Qu[W], (7.95)

where [1] denotes the element corresponding to the identity of W. One checks immediately that

1—v2ed” v -1
For w € W with a reduced decomposition w = wg, - - - wg, Where ay,...,a, € II we set
Ty =Ty - T, (7.97)

We view T, € Q,[W] as follows: first substitute for each T, the expression c(a;)[wq,] + b(a;)[1]
from ([7.95)), move all the rational functions to the left so that we may write

Ty= Y As(w)lo], (7.98)

oceW
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where A, (w) is some sum of products of rational functions in ¢(-) and b(-). It is easy to verify that
Ay (w) = 0 unless 0 < w in the Bruhat order. After now expanding the rational functions involved
in As(w) in Q,, we may view T, € Q,[W]. One may further verify that the above definition of T,
does not depend on the reduced decomposition of w. Moreover, one can check the following Hecke

identity using (7.90] [7.91] [7.92)),

(To +v ) (Ty—v) = OforaclIl (7.99)

We may summarize the above by writing,
TyTo = Tyuw, if Llww,) > L(w) (7.100)
TywTw, = Tuw, + v —0 )Ty if L(ww,) < L(w). (7.101)

7.3.11. The expression P,. In order to consider certain infinite sums of elements from Q,[W] we
introduce the formal dual Q,[W]" as the set of all possibly formal infinite sums F' = %" 1 fu[w]
where f,, € Q,. One again implements a multiplication rule as in .

Consider now the formal expression

Pyi= > o' T,, (7.102)
weWw
and let us now argue that it lies in Q,[W]Y. Using (7.98)), we write
Po= Y v"T, =Y > ™A (w)o] =D Crlrl, (7.103)

weW weW o<w TeW

where C; == 3 - v/ A, (w) is an infinite sum of rational functions. We may then attempt to
expand C; in the domain Q,, but it is not the case that, for a fixed 7 € W only finitely many
A;(w) will be non-zero. However, the following result of Cherednik ensures that C; is not just
well-defined as an element on Q, but that is a v-finite quantity.

Lemma. [7, Lemma 2.19(e)] The element P, lies in Q,[W]" and has v-finite coefficients. In other
words, for each T € W, the expansion of the sum Cr := Y v V! A (w) is a well-defined, v-finite
element in Q,.

We refer the reader to [7] for the proof, but just remark here that the essence of the argument
is to show the following: for any fixed 7 € W, the contributions A, (w) will all arise with a factor
" with n — 0o as £(w) — co. Hence, if one fixes a value e’ with ¥ € Q¥ and 7 € W, there are
only finitely many w € W such that e®” will occur in A, (w).

7.3.12. Cherednik’s Identity. For each w € W, we have the element A" € Q, as defined in (|7.35)).
Thus we have the element Y, s A%[w] € Q,[W]Y. We then have the following algebraic identity
in Q,[W]Y due to Cherednik (see also (|29, §5.5] for a finite-dimensional analogue).

Proposition ([7]). As elements of Q,[W]Y we have an equality,
Po= Y v"™T,=m Y A"[uw], (7.104)
weWw weW

where m € Q,, is some W -invariant factor.
Proof. Step 1: First we would like to explain how to make sense, for any a € II, of the expressions
T, P, and P, T, as elements in Q,[W]". To make sense of T, P,, we may proceed in two equivalent
ways: (a) we compute T,P, using the Hecke relations (7.100} [7.101)); (b) we can write T, =
c(a)[wq] +b(a)[1] as in (7.95)), and P, = > .y Cr[7] as in (7.103), with the C; some (infinite) sum
of rational functions. Then T, P, is defined to be the expansion in Q,[W]" of

> e(a)CPe [wat] + b(a)Cr 7], (7.105)

TeEW
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where C¥* is the application of w, to C;. It is easy to see that the procedure (a) gives the following
relation (see |29} 5.5.9, p. 113]),

T, Py = vPy, (7106)

which shows that the expansion of is well-defined (one could also proceed as in the proof
of Lemma to show that this expansion was well-defined).

To define P, T, we proceed similarly. We can use the Hecke relations from (a)
above to conclude as in op. cit that

Py Ty = vPy. (7107)

Or, we may proceed as in (b) and expand T, as in (7.95) and P, as in (7.103)). In this case, we
compute P, T, as the expansion in Q,[W]" of the expression

> Cre(ra)lrwa] + C-b(ra)l7]. (7.108)
TeEW

The remainder of the proof will draw conclusions between, on the one hand ((7.107) and ([7.108)),
and on the other ((7.106|) and (|7.105)).

Step 2: First, let us say that an element of Q,[W]" is W-invariant if it is of the form
> fw] (7.109)
weWw

for some f € Q, (in the sequel, f and f* will be sums of rational functions which can be expanded
in Q,). We want to show that P, is W-invariant. Indeed, combining (7.106)) and (|7.105)) we have
the following equality in Q,[W]",

> e(a)CPelwat] + Y b(a)Crlr] = Y vC,lr]. (7.110)
TeW TeEW TeW
From ([7.90)), we have that ¢(a) = v — b(a), and hence we may conclude that
Y cla)Clewat] = Y c(a)Crlr], (7.111)
TEW TEW
and hence
> C¥owar] = Crlr). (7.112)
TEW TEW

Letting I' = C (regarded as an infinite sum of rational functions) we conclude that C; = I'" for
any 7 € W. We write this formally as

Po= Y [T, (7.113)
weW

bearing in mind the above is to be interpreted as ),y [’[w] where each I' is expanded as an
expression in Q,.

Step 3: From the definition of T, we have an equality (in Q,[W]) v T, + 1 = ([we] + 1)ve(—a).
Hence, using we may write

Po(WTa+1) = O [wT)(WTa+1) = () [wT) (fwa] + 1) ve(—a) (7.114)

w weWw

= (Y [w]D)ve(=a) + (Y [w] L) [wa] ve(—a) (7.115)

weW weWw
= Z [w]T) ve(—a) + (Z[w] [we] T) ve(—a) (7.116)
weW w
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On the other hand,
Po(@?+1) = () [ D) +1)

weW

= () [wID)v(c(=a) + ¢(a))
weW

= () [wID)ve(=a) + (Y [w]T) ve(a)
weW weW

= (Y [w]D)ve(—a) + (Y [w][wd] I) ve(a).

weWw weWw

From ({7.107)), we see that (7.116) is equal to (7.120]), and so we conclude that
Iec(—a) =Te(a) € Q.
On the other hand, from the definition ([7.33)), we have that

A% c(a)
A c(—a)
And so we obtain that
[Wa  Ata
r A
An induction then gives that for any w € W we have
_aY
r A’

or in other words the element TA~! € Q, is W-invariant. Now, we may write

PoAT = (Y DA™ = Y w(@AT.

weW weW

As T'A~! is W-invariant, we obtain that
Py AT =m ) [u]
w
where m € Q, is some W-invariant factor.

Step 4: Rephrasal and Reassambly.

(7.117)
(7.118)
(7.119)

(7.120)

(7.121)

(7.122)

(7.123)

(7.124)

(7.125)

(7.126)

7.3.13. Factorization of P,. For each AY € AY, in analogy to the element P, defined in (7.102)),

define the following two elements,

Pyav = ZwEva '@, and ng =D WY !,

(7.127)

If Wyv is infinite, then in fact it is equal to W and so P, \v = P,, and Pﬁ‘v = 1 in this case.
On the other hand, if Wyv is finite, then P, v € Qu[W], and P} (an infinite sum) is seen to be
a v-finite element of Q,[W]¥ using Lemma [7.3.11] Using the defining property of W" (7.44) and

(7.100) we obtain factorizations in Q,[W]Y
Pv - ,Pi\v Pv,)\\/
where if W)v is infinite the above equality is a tautology.
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7.3.14. Applying P,. Using the natural action of W on AY we may use formula (7.95) to define an
action of Ty, a € II (and hence also T,, for w € W by induction) on C,[AV]. For example, when
a € II we have that

To(e) = c(a)e™ + bla)e . (7.129)
Using the above and (7.90)), we see that if w € W)yv then
Ty(e) = '@, (7.130)
Consider the formal applications of the elements qu\v and P, to e’\v,
AN ST WS} (7.131)
weWw Y
and
Po(eX) = 3 0 T, (M), (7.132)
weW

We have the following,

Proposition. Let \Y € AY. Then
(1) The element P} (") defined in (7.131)) is a v-finite expression in C, <[AV].
(2) The element Py(e*") is a well-defined element in Cy,<[AY] satisfying the relation,
Pu(e) = Wi (0P (). (7.133)

v

Proof. For part (1), we show that the coefficient of each e*” with ¥ € AV is a polynomial in v2.

If Wyv = W this is obvious. So suppose that Wyv is finite. We have already argued that we may
write qu‘v = gew Colo] with C, € Q, a v-finite element. Applying this to e*” we obtain

P () =Y Coe™ (7.134)
oceW

For any fixed pV, since AV is dominant and Wyv is finite, if ¢(c) is sufficiently large we have
o)XY < uV. Since each C, is an expansion in negative powers of the coroots, it follows that onl
finitely many terms in the above sum can contribute to each e“v, and the v-finiteness of
follows from that of C,,.
As for part (2), note that
'PU’)\\/ (6)\

\2 \%

)= Z vg(w)Tw(e)‘v) = Wy (v?)er.

’lUGW)\\/

If Wyv is infinite so Wyv = W and W' = {1}, then both sides of ((7.133)) are equal to W(vz)e/\v.
Suppose then that Wyv is finite, then from ((7.128]) we have

Po(e) = PY Py () = PN (W (1)

and so the result follows.

(7.135)

\4

), (7.136)

0

7.3.15. p-adic connection. The following result is the key to linking the algebraic and p-adic treat-
ments of the spherical function.

Proposition. Let \Y € AY, and w € WA'. Then J,(\Y) is the specialization of the elements
e A Yt (A atv? = ¢ e,

P gt/ 2 (Y = 1 (Y. (7.137)
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Proof. We may proceed by an induction on ¢(w). If £(w) = 0 then w = 1 and J,(\Y) = ' ¢{PA")
by Proposition[7.3.7](2) and the result follows. Assume then that ¢(w) > 0, and choose some simple
reflection a € II such that w’ := w,w has length less than w. Then by the remarks at the end of
we also have w’ € W', The result now follows from an induction using the definition of

T,, and Proposition (3). O
7.3.16. Relating P} (e*”) and S(hyv). Using (7.96)), we may write
VT (M) = > by (0?)e! (7.138)
pYEAV

with by, v (v?) € C[v?]. For fixed pV, set
> b (@) (7.139)

wewrY
Part (1) of Proposition [7.3.14| states that b,v(v?) € C[v?]. We thus write
()= D T M) = D b (v?)et (7.140)
weWAY VeV

Proposition. The expression ¢~ PV S(hyv) is the specialization of P2 (e*) at v = ¢~ 1. In other
words, for each u¥ € AV, buv(q_l) is finite and equal to the e -coefficient of q_<p’)‘v>5’(h>\v).
Proof. Recall the elements ®,,,v € Q>0 and the polynomials ®,,,v(-) from Proposition [7.3.7) (1)
and (4) respectively. From Proposition [7.3.15, we know that

bw,uv(q_l) = q_<p’>\v>q)w,uv (7.141)
for any g a power of a prime. Hence from Proposition (4), we may conclude that
bw,uv (qil) = q7<p’>\v>q>w,uv (qil) (7.142)
holds for every ¢. Thus as polynomials, we have
bus v (V2) = 02PA D, v (02). (7.143)
Setting,
= ) Dyv(0?) €C v, (7.144)
weWwY
we have from (|7.139)) that
buv (v?) = 0¥ D v (v?) (7.145)

as elements in C[[v?]]. But in fact, the above is an equality in C[v?] since the left hand side lies in

this smaller ring.
Now, from Step 2 (see (7.61) ) we have written S(hAv) = Y wewrv Jw(XY) as elements in
C<[AY], which can be further ertten using Proposition ( ) as
\4

Sthav)= > > By et . (7.146)
wEWAv \/GA\/

Since each ®,, v (¢71) € q<p’”V>ZZO and q_<p’“v> times the coefficient of each e* in S(hyv) is a

finite positive number, we may conclude that for any fixed p" there are only finitely many w € WA
such that ®,, ,v(g7') # 0. H Thus, the sum ®,v (g~ ") = >, v Pupv (g1 is finite for any 1V,
and we may write

Shav)= > By (7.147)

uYeAY
HNote that we could also conclude this from the fact that only finitely many b,, ,v (v?) #0.
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On the other hand, using ([7.145)), we may also write
Shav) = > @ et =g 3" bv(g e (7.148)
nYeAY wEAV
O

From (7.133) and Cherednik’s identity Proposition [7.3.12] we note the following equality in
Co,<[AY]

)\\/ )\\/ o 1 )\\/ o m w w/\\/
P (e )—7W/\v(v2)77v(e )_7W,\v (UZ)U%:VA e (7.149)

Hence we obtain from the previous Proposition that the expression q—(P)\WS (hyv) is the special-
ization at v> = ¢~ ! of

m \
— AVt (7.150)
5 2
W)\\/ (U ) welV
We shall simply write this as
v m v
S(hy) = ¢ —— AN 7.151

weW

7.3.17. Determining m. Finally it remains to determine m (which is independent of A\V). This is
achieved by evaluating both sides of (7.151) at AV = 0 (and v?> = ¢~!.) By definition of convolution,
we must have S(ho) = S(1x) =1, and so ([7.151)) reduces to

m
1= —1— A", 7.152
P> s
We then have m = Hj L and using 1) and the proof of the theorem is concluded.

A. THE CARTAN SEMIGROUP

This appendix is devoted to the study of the semigroup G of §1.2.2 and we will give a proof
of Theorem [3.3] here. We begin by defining the following subset of G, which we aim to show is
equal to G,

\
G = Uyear K K. (A1)

In order to work effectively with this set one needs to verify that G’, is in fact a semi-group. In the
process of showing this, we shall also see that G’, is in fact equal to G. The techniques which we
employ here are based on Garland [15], with an simplification stemming from the work in |2, Lemma
3.3].

A.1. The Semigroup of Bounded Elements. Fix the notation as in §2.2.3] and consider the
subset of G defined as follows

Gy={9e G| max l|gv|| < oo for every highest weight representation V¥, w € AL}, (A.2)
veVy
Note that if g € Gy and v, is a primitive highest weight vector of V“ then we also have that
k < A3
max [|gkv|| < oo (A.3)

since kv, € V. This shows that G is right K-invariant. In fact, G} is K bi-invariant, as the left
K-invariance follows from the way we have defined the norms || - || on V¥. We call G}, the set of
bounded elements of GG, and observe the following simple result.

Lemma. The set Gy is a semigroup.
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Proof. Indeed, let g1, g2 € Gp. Fix a highest weight representation V* and suppose that there exists
an integer M such that ||gov|| < ¢M for every v € V§. In other words, g2V C 7~ MV, and hence
919201 < ¢M||grv]] for any v € V. O

A.2. Relation of GG}, to the Tits Cone. Let us next record the relation between GGy, and the Tits
cone.

Proposition. Let \Y € AY. We have that ™ € Gy if and only if A\ € —X.

Proof. Suppose first that \Y = —AY for AY € AY. Fix a highest weight representation V¢ with
weight lattice P,. Then for any v € V& belonging to the weight space i € F,, we have
|7 ]| < g~ A, (A.4)
On the other hand, every weight u € P, is of the form u = w — 8 where § € (4. Hence,
(1 XYY = —{w, AY) + (8, AY). (A5)

Thus (u, AV) is bounded below and so M € Gy By K-binvariance, we also have that N € Gy
for any w € W. Conversely, if 72" € G, then the same argument as above shows that —(B,\V) is
bounded below as 8 € Q4 varies over the same set as above. From this one can conclude that A\
must be in —X. O

From the fact that Gj is K-binvariant, we obtain
Corollary. Let \V € AV. Then the coset Kt K € Gy if and only if \¥ € —X.

A.3. Relation between G} and G’,. Our next goal is to relate G} and the set G’ defined in
(A.1). To do so, it is convenient to also define

2

Gl_ = (G/_,'_)_l = U/\\/eAijKﬂ'_)\ K. (AG)
Proposition. We have an equality of sets (and hence semigroups) G'_ = Gy, and hence also
G =Gyt

Proof. The second statement follows immediately from the first. Note that as both G’ and G,
are K-invariant sets, the fact that G’ C G} follows immediately from Lemma It remains to
show that G, C G’_. To do this, it suffices to show that every element of g € G}, has an expression

g = k17" ko. Indeed, if this were the case, then by Lemma above (and using K-binvariance),
we necessarily have that p¥ € —X. So the proof of the Proposition can be concluded from the
following result, an alternate proof of which can be found in |15} (2.8)].

Lemma. Let g € Gy. Choose k € K which mazimizes the norm ||gkv,|| for some fized representa-
tion V,, with primitive highest weight vector v,,. Then if we write gk = kiau in terms of its Iwasawa
coordinates, we must have u € K.

Proof of Lemma[A.53 Recall from |2, §3, and especially (3.2) ] that we had a decomposition of U~
into disjoint subsets U,, where U = U, and in general, if u~ € U, then it has an expression

w =k, Y >0, |pV] > U(w)/2.
where |pV| = (p, ). From this it follows that
U-NKUCKNU- and UNKU- C KNU. (A7)

Now given g and k as in the lemma, assume that gk = kjau with v ¢ K. Then write an opposite
Iwasawa decomposition (in terms of G = U~ AK) for u : i.e.,

u = U,_T(Evk’Q. (AS)
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By the above, it follows that £V # 0. In fact £V < 0 actually: we also know from [2| Theorem 1.9
(3)] that

KU NKaN'U#0

implies that AV < 0, just take inverses in this expression. So we have

lgkky tvul| = [[krauky v|| (A.9)

= JJau 7 v,| (A.10)

> ¢ @ Javy|| = ¢~ @ Ighu,| (A11)

contradicting the original choice of k, since (w,£") < 0. Hence u € K. O
The proof of the Proposition is thus also completed. (]

A.4. Relating G/, and G, (Proof of Theorem ). In the introduction we defined a
semi-group G.. Recall again that we have defined a map |n| : G — Z in (1.8). Recall that n was
defined with respect to the description of G as a semi-direct product G = K* x G’ by projection
onto the * factor and then composing with the valuation map X* — Z. Writing an element g € G
with respect to the Iwasawa decomposition g = ur™’ k where u € U. , AV € AV, k € K one can easily
verify that

\
n(9)| = In(x*") = (5, AY), (A.12)
where 0 was the minimal positive imaginary root.

Proposition. The semigroup G', is equal to G, the semigroup defined in .

Proof. If \Y € A, then using one can verify that (5, \V) > 0, and that if (6, \V) = 0, then
AY = nc. From this it follows easily that G, C G4.

As for the opposite inclusion, it is clear that K C G’,. To show that central * C G is contained
in G’, we proceed as follows. If ¢¢ is such a central element with ¢ € K*, ¢ = 7™« with v a unit
and m € Z, then u® € K and mc € A;. Thus 6 = u°7™° € G,

It remains to show that every g € G with |5(g)| > 0 lies in G, For any such g write an Iwasawa
decomposition g = un” 'k with k € K, ¥ € AY and u € U. As observed above, |n(g)| = |n(x*")| =
(8, 1"y > 0. Consider now the element g~ = E~lr—m u—t. We may conclude that ¢—! € G} from
the following result of Garland,

Theorem. |15, Theorem 1.7] The set of element Kn—" U with (8, ") > 0 lie in Gy,

Thus for each g € G with |n(g)| > 0 we have shown that g~! € G} and so g € G/, using
Proposition

O
B. THE " AFFINE” ROOT SYSTEM AND THE BRUHAT PRE-ORDER ON W

The goal of this appendix is to introduce a notion of an ”affinized” root system attached to a
Kac-Moody root system and study some of its basic properties.

B.1. ” Affine” Roots. Recall that R,. was the set of real roots of g. Let us define four subsets of
the set of affine” roots R := R, X Z as follows,

RT = {(a,k) € Rpe xZ:a >0,k >0} (B.1)
RY = {(a,k) €E Rpe xZ:a >0,k <0} (B.2)
R {(a,k) € Rye xZ :a <0,k > 0} (B.3)
RZ = {(a,k) € RyexZ:a<0,k<0} (B.4)
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Note that upper indices shall refer to Kac-Moody parameters, and lower ones to the local field.
We also define the set of positive and negative ”affine” roots as

Ry=RIUR; and R_:=RIUR.. (B.5)

We shall sometimes write write « = a + km, with a € R,. and k € Z to denote the pair (a, k) € R.
There is a left action of W (see (3.17)) ) on R defined through the formula

wit (a+kr)=w-a+ ((\Y,a) + k)r (B.6)

where a € Ry, k € Z and wr e W.

In the usual setting of Coxeter groups, the length of an element x € W could be defined as the
size of the set xR+ NR_ or zR_ NR4+. In our setting, however these sets are not finite in general.
On the other hand, if we restrict to Wx the following is true.

Proposition. Let x € Wx. Then the following sets are finite

gREINR- and RIN aR_ (B.7)

Proof. Let us prove the first statement, the proof of the second being similar. Write x = wr for
A € X, and let a +kr € RY (so a >0,k > 0). If z.(a + k) € R_ then we must have from
that either,

wa >0, and (A a)+k<0 (B.8)
wa <0 and (\,a)+k<0 (B.9)

Since A € X for any integer n, the number of roots a > 0 such that (A\V,a) < n is finite in number,
and so there are only finitely many a which satisfy either of the above two conditions. On the
other hand, for any such a fixed a there are only finitely many k such that either equation will be
satisfied. The finiteness required follows. O

B.2. Another pre-order on . We shall also consider an action of WW on the right on R,
(a4 nm)7 w:=w(a) + (n— (\Y,a))m, (B.10)

where a € Rye,n € Z. Let us also introduce the following simple elements in W, attached to
a=a+nm R,

Wq 1= We(n) = 7" w, (B.11)

which satisfy

A

Wam W = we(n)m

wa Y +naV

‘w=m WaW. (B.12)

Definition. Given x € W and o = a + nm € R we say that o is x-positive or x-negative if
ax € Ry. For x,y € W, we shall say that y <p x if there exists a; = a; + n;m € R for
t=1,...,k such that y = wq, - - - wa, x, and

a1 is z-negative and aj is Wa,_, -+ - Wa, T-negative for j =2,... k. (B.13)

Remarks: We do not know whether the relation <p is an order: it is clear that it is a pre-order,
namely if z <p y and y <p z, then x <p z for z,y,z € W. However, we do not know whether
x <py and y <p x implies that x = y. It would also be interesting to understand: a) the structure
of the set of elements which are <p to a fixed € W; and b) the relation of <p and < of Definition
B.44
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B.3. The order <p and Iwahori intersections. Let x € Wx and y € ). Then we have seen in
Proposition that < arises naturally when one considers the intersection Uyl N IzI. We also
have the following result which relates these same intersections to <p,

Proposition. Let x € Wx and y € W be such that IxI N Uyl # (). Then y <p =.
Proof. As I =UpU_ Ap we first note
IzINUyl #0 < U_xzINUyI # 0. (B.14)

Let us write z = 720, 0 € W and A = wAY with \Y € AY and w € W (we may do this since we
assumed that © € Wx.)

Step 1: Reduction to a Finite Dimensional Problem. The first thing we would like to show is
that in analyzing the intersection above, we may actually replace U~ by a subgroup which
is a product of finitely many root groups. To explain this, we break up

R_,.=R_,URY (B.15)

where R_ ,, and RY are characterized by the conditions
wlR_,, CRy and wlRYCR_. (B.16)
Corresponding to the above decomposition, we have a product decomposition U~ = U_,,U", where
U—w:=1lger_,Us and UY:=U"nN w U w . (B.17)

This in turn implies a decomposition,
Uy =U_waUY . (B.18)

Now suppose we are given 3 € RY so that x5(s) € U¥ . with s € IC such that its valuation val(s) = ¢
(so necessarily ¢ > 1.) Then

o N xp(s)mN 0 = Xp1(gy (TN Ts), (B.19)
where

val(m = Pg) = (A, —B) + £ (B.20)
Recalling that A = wAY we have

(A, =B8) ==L, w™'8) >0 (B.21)

since w8 € R_ (as B € R*). Hence X_rl(ﬁ)(ﬂ<*)‘v’ﬁ>s) € I since —(\Y,B) + ¢ > ¢ > 1. So, we
have seen that

Uyl NU; 2l #0 < U_y o oI NUyl # 0. (B.22)

We shall now study the intersection problem ([B.22]) where we replace the integral group U_,, » with
the larger group U_,, x = U_y, i.e., we are now analyzing the problem of when

U_pr oI NUyI # 0. (B.23)

This is a problem more tractable to a ” Gindikin-Karpelevic”-type induction.

Step 2: Some finite ”Gindikin-Karpelevic”-combinatorics. Before proceeding further, we recall
some simple combinatorial facts about the group U_,,. It is easy to see that R_ ,, = R_ NwR,.
Further, if w = wq, - - - w,, is a reduced decomposition with a; € II, then

R_. = {—a1, ~wq, (a2), -, —Way -+ Wa,_, (ar)} (B.24)
= R_wU{~wa, - wa,_,(ar)} (B.25)

where w' = wwg,, = W, + - Wa, _,. Let ¥ = wg, -+~ Wa,_, (a,). Then we have,
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Claim. Suppose that x, € U, and u,y € Uyy. Then

:L’glu_w/a:7 e UWU_

where U(w') := w'Uw'~'NU CU

Proof. Note that w'Uw'~! = U(w')U~ (w') where we set U*(w’) := w'Uw'"*NU*. Now z., € U(w)
since v = w’ (). Furthermore, U~ (w') = U_ s as is easily verified. O
Step 3: Relation to positivity. We may write u_,, € U_y, 1, as

U—qy = U_gy/ U—ry (B.26)

where u_,y € U_,y and u_, = x_,(s) € U_, with val(s) = ¢. Then there are two possibilities,
a): We have o172 z_,(s)m" o € I. Equivalentl , =y + {7 is W’\va—positive.

v v v 4 Y v v

b): We have o~ 'n~* z_.(s)7* o ¢ I. Equivalently, —v + ¢ is 7 o-negative.

g Y g

If we are in case (b), we may rewrite using (2.52))

Ty (s) =y (s (=) wym(s7") (B.27)

and so
u_w/x_w(s)w)‘vaf = u_w/xw(sfl)(—s)vvwﬂ,xw(s*l)ﬂkval (B.28)
= u_w/xv(sfl)ﬂhvwvﬂ')‘val (B.29)

where we have used the condition (b) in the last line. But using the Claim above, the last expression
may be written in the form

U(w")a_ww- ()7 o, (B.30)
where we recall our notation that w.(¢) = xtr” wy. In summary, we have shown the following,

Lemma. In the notation above, if u_,, € U_y, is such that U_y o € Uyl, then either:

a: we have u_ym ol € Uyl, or
b: we have u_w/wy(f)ﬂ)‘vaf e Uyl.

A

Furthermore, the case (b) occurs if —y + Il is va-negative.

The proof of Proposition follows from an easy induction using this Lemma.
]

Remark. Actually, the proof above shows that if + = 7 ¢ with \Y € AY and o € W, then
IxI NUyI # () implies that x = y. Indeed, in this case w = 1 (in the notation of the proof), so

R_, =0 and so U_,, = {1} and (B.23) implies that y = ™.
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