
VERTEX ALGEBRAS AS TWISTED BIALGEBRAS: ON A THEOREM OF BORCHERDS

MANISH M. PATNAIK

To Joe Gallian on his 65th birthday

ABSTRACT. Following Borcherds, we show a certain class of vertex algebras can be uniquely constructed from
a bialgebra together with a twisted multiplication by a bicharacter. We illustrate this construction in the case of
Heisenberg and lattice vertex algebras. As a consequence, we see that these vertex algebras can be recovered
from their 2-point correlation functions and their underlying bialgebra structure.
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1. INTRODUCTION

(1.1) Today, vertex algebras have become rather ubiquitous in mathematics. Among the subjects on
which they bear direct influence, we can list representation theory, finite group theory, number theory (both
through the classical theory of elliptic functions and the modern geometric Langlands theory), combina-
torics, and algebraic geometry. Despite their firm entrenchment within the world of pure mathematics, ver-
tex algerbas (or rather their consituent elements vertex operators) actually first arose in the 1970s within the
early string theory literature concerning dual resonance models [S]. Independently of this, [LW] Lepowsky
and Wilson were interested in constructing representations of a twisted form of the affine Lie algebra ŝl2
using differential operators acting on the ring of infinite polynomials C[x1,x2, . . .]. To do so, the main diffi-
culty they faced was in representing a certain infinite dimensional Heinsenberg algebra. This they achieved
using rather complicated looking formulas. Howard Garland then observed that essentially the same for-
mulas occurred within the physics literature, and he thus imported the "vertex operator" into mathematics.
Shortly thereafter, Igor Frenkel and Victor Kac [FK] (and G. Segal [Se] independetly) constructed the basic
representation of untwisted affine Lie algebras, again using the newly christened vertex operators. Within
the world of representation theory of affine Lie algebras, vertex operators were thus seen to play a central
role.

Another significant impetus to the development of vertex operators came from the theory of finite
groups. In the classification of finite groups, the Fischer-Greiss Monster (aka, "friendly giant") is the largest
of the 26 sporadic simple groups. A number of very mysterious empirical phenomena concerning this
group began to surface [see Bo3 for a review]. These results collectively went under the title Monstrous
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moonshine, and one particular facet of moonshine was the prediction was that most natural representa-
tion of this finite simple group was actually of infinite dimension! The question then arose as to explic-
itly construct such a representation. Again, vertex operators proved to be essential here, and in [FLM1],
Frenkel-Lepowsky-Meurman construted the sought-after Moonshine module with the aid of vertex opera-
tors. Richard Borcherds [Bo1] then proposed an axiomatic framework to deal systematically with all these
occurrences of vertex operators, and define what we today refer to as vertex operator algebras. Then in
[FLM2], the authors showed that their Moonshine module had a natural vertex algebra structure and more-
over that the Monster group could be realized as the group of automorphisms of this vertex operator algebra.
Motivated by these results, it was widely believed by the mid 1980s that other vertex operator algebras
should similarly encapsulate other sporadic simple groups. However, it was not until the work of John
Duncan [Du1, 2], nearly two decades after the pioneering work of [FLM], that this was to come to fruition.

Though there is no geometry in this paper, it was motivated by a connection between vertex algebras
and algebraic geometry. H. Nakajima [Na] and I. Grojnowski [Gr] have constructed the Fock space repre-
sentation of an infinite dimensional Heisenberg algebras on the cohomology of the Hilbert scheme of points
on an algebraic surface. This Fock space is none other than the ring of symmetric functions in infinitely
many variables, the working ground for many combinatorialists. The fact that this same Fock space also
possesses a vertex operator algebra structure has facilitated the migration of results back and forth between
combinatorics and the theory of vertex algebras. For example, the Boson-Fermion correspondence from
vertex algebras has been shown by I. Frenkel to encode (or be encoded by) the combinatorics of Littlewood-
Richardson coefficients [FJ]. Returning to our geometric setup, certain "halves" of vertex operators have
been shown to act on the cohomology of Hilbert schemes by means of cup-product with the Chern classes
of certain tautological bundles [Na]. Essentially this observation was enough to unravel the cup-product
structure on Hilbert schemes, a problem that had otherwise seemed intractable [LS]. I. Frenkel has then
posed the question of understanding the full vertex algebra structure geometrically. Despite interesting
progress [Le], the answer to this question still remains quite mysterious. Our approach was a synthetic
one which attempted to first pare down the axioms of a vertex algebra so that each part may have a clear
geometric meaning. This we do by means of Borcherds’ theorem.

(1.2) What exactly is a vertex algebra? Unfortunately, this question does not have a very short answer.
For example, the statement that a vertex algerba is a particular type of algera is false! Rather one may think
of a vertex algebra as a vector space V (usually infinite dimensional) endowed with an infinite family of
multiplications ◦n,

◦n : V ×V → V
a×b 7→ a◦n b

These products are neither associative nor commutative, but satisfy conditions somewhere in between them,
the so called Borcherds identities [Bo1]. An alternative starting point for vertex algerbas is the axiomatic
treatment of Frenkel-Huang-Lepowsky [FHL]. Here one begins with a vector space V equipped with a
"state-field correspondence," i.e. a linear map,

Y (·,z) : V → End(V )[[z,z−1]]
a 7→ Y (a,z)

The Y (·,z) may be viewed as a generating function encoding all the infinite products ◦n into one object:
indeed, applying Y (a,z) to b, we obtain

Y (a,z)b = ∑
n∈Z

(a◦n b)zn.

One then develops a formal calculus to deal with these series and phrases the axioms of a vertex algebra in
terms of properties of Y (·,z). This viewpoint is reviewed in section 3.

There is yet another related viewpoint put forth by Borcherds which purports to "make the theory of ver-
tex algebras trivial" [Bo4]. In other words, a fairly elaborate categorical framework is constructed in which
one can view vertex algebras as commutative ring objects. Borcherds’ motivation for such a description
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seems to have come from the important question of quantizing vertex algebras, but in our exposition we will
not be concered with any such quantum deformation. Neither will we deal with the categorial framework
which Borcherds has constructed. Rather, our goal will be to present in as simple-minded a way as possible
the new construction of vertex algebras contained in [Bo4]. The reader is warned here of the obvious danger
that such a simplification necessarily introduces and is referred to the original works [Bo3, 4] for further
motivations.

In our formulation, the essence of Borcherds’ construction is that starting from some rather innocuous
algebraic elements– a commutative, cocommutative bialgebra V equipped with a derivation T : V →V and
a symmetric bicharacter r : V ⊗V → C[(z−w)−1]– one can show how to construct the seemingly richer
structure of a vertex algebra on V. In this light, a natural predecessor to Borcherds’ result is the simple
fact (due to Borcherds too?) that a holomorphic vertex algebra structure on V , i.e., one in which the fields
Y (a,z)v ∈ End(V )[[z]] are just power series, is equivalent to the structure of a commutative algebra with
derivation on V . Briefly, this equivalence is constructed as follows: given a holonomic vertex algebra, we
may define a product on V by

a ·b := [Y (a,z)b]z0

where by [A(z)]z0 denotes the coefficient of the constant term of A(z) ∈ V ((z)). The axioms of a vertex
algebra then provide V with a natural derivation compatible with this algebra structure. Conversely, given a
commutative unital algebra with derivation T , we can construct a state-field correspondence by the formula

Y (a,z)b = (ezT a) ·b.

The axioms for a vertex algebra then follow readily from the ring properties V.
Since the most interesting vertex algebras are not holomorphic, we might wonder how to modify

the above construction by somehow introducing singularities (i.e., negative powers of z) into the picture.
Borcherds answer to this question is as follows: given a bialgebra V, a derivation T compatible with the
bialgebra structure, and bicharacter r : V⊗V →C[(z−w)−1] he defines a state-field correspondence through
the the following elegant formula which combines all the data which we are given:

Y (a,z)b = ∑
(a)

T (k)(a′) ·b′ · r(a′′,b′′),

where the coproduct on V is written as ∆(a) = ∑(a) a′⊗a′′. Our first goal will be to directly prove that this
formula does in fact define a vertex algebra on V .

The next question we address is what types vertex algebras can be constructed using the new approach.
Along these lines, we define a certain class, called r-vertex algebras, which contain the vertex algebras
constructed as above from commutative, cocommutative bialgebras V . For example, Heisenberg and Lattice
vertex algebras are contained in this class. The second main result in this note is a uniqueness theorem
which shows that if the underlying bialgebra of an r-vertex algebra V is primitively generated, then it is the
vertex algebra as constructed above from a bialgebra V , derivation T , and bicharacter r determined by the
2-point functions. There are many other natural examples of vertex algebra in representation theory, among
them the vacuum modules for affine Kac-Moody and Virasoro algebras. These vertex algebras do not have
a commutative algebra structure and thus do not fall under the twisted bicharacter construction presented
in this paper. It is an interesting question as to how this construction can be modified to account for such
examples.

We would also like to add that since this paper was written, Anguelova and Bergvelt have extended and
clarified many aspects of Borcherds proposal for quantizing vertex algebras in their interesting paper [AB].

(1.3) This paper is organized as follows: In section 2, we set up some preliminary algebraic machinery.
The reader is advised to atleast skim over this part as many terms like bialgebra, derivation, etc. are given
slightly nonstandard meanings. In section 3, we review some basics from the theory of vertex algebras, and
in section 4, we state and prove Borcherds’s theorem. In section 5, we state a converse, and we conclude
with some examples in section 6.
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2. ALGEBRAIC PRELIMINARIES

We fix an algebraically closed field k of characteristic zero.

(2.1) For us, an algebra A will be a commutative Z+-graded k-algebra with unit, A = ⊕∞
n=0An, where

each An is a finite dimensional k-vector space.
Dually, a coalgebra will be a cocommutative Z+-graded k-coalgebra (C,∆,ε) where ∆ : C→C⊗C is

the comultiplication. We adopt Sweedler notation to write the coproduct, ∆(x) = ∑(x) x′⊗ x′′. Generalizing,
we will also write for example

∆2(x) = (∆⊗1)∆(x) = (1⊗∆)∆(x) = ∑
∆2(x)

x(1)⊗ x(2)⊗ x(3).

Writing C =⊕∞
n=0Cn, then we assume Cn is a finite k-vector space, ε(Cn) = 0 for n 6= 0, and ∆Cn ⊂∑

n
i=0Ci⊗

Cn−i. We say that a coalgebra is connected if C0 = k.
We define a bialgebra to be an algebra A with a coalgebra structure (A,∆,ε) such that the gradings on A

as an algebra and coalgebra agree and ∆ and ε are algebra morphisms. We say that an element of a bialgerba
is primitive if ∆(x) = x⊗1+1⊗ x and group-like if ∆(x) = x⊗ x.

(2.2) By a bialgebra with derivation, we shall mean bialgebra V with a linear map T : V → V be a
degree 1 satisfying

(1) T (1) = 0
(2) T (a ·b) = T (a) ·b+a ·T (b)
(3) T (∆(a)) = ∑(a) T (a′)⊗a′′+∑(a) a′⊗T (a′′)

We say that a set {aα |aα ∈V}α∈S is a T -generating set of an algebra V if {T (k)aα}α∈S generates V as
an algebra. Here, as usual, T (k) := T k

k!

(2.3) We next describe the additional piece of information on a bialgebra with derivation which allows
us to construct interesting vertex algebras.

Definition 1. Let V be a bialgebra with derivation T. Then a bicharacter is a bilinear map rz,w : V ×V →
k[(z−w)±1] satisfying

(1) r(a,b) = r(b,a);
(2) r(a,1) = ε(a);
(3) r(a ·b,c) = ∑c r(a,c′)r(b,c′′)
(4) r(Ta,b) =− d

dz r(a,b)
(5) r(a,T b) = d

dw r(a,b).
(6) For a ∈Vm and b ∈Vn, r(a,b) = c(a,b)

(z−w)−m−n , where c(c,b) is some scalar.

Suppose now (V,T,r) is a bialgebra with derivation and bicharacter. In what follows, we will also make
use of the following multivariable generalization of r.
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Definition 2. Let a1, . . . ,an ∈V . Then we recursively define

rz1,...,zn : V ×V · · ·V → k[(zi− z j)±1]1≤i6= j≤n,

to be
rz1,...,zn(a1, . . . ,an) = ∑

∆n−1(a1),(a2),...,(an)
rz2,...,zn(a

′
2, . . . ,a

′
n)Π

n
j=2rz1,...,ẑ j ,...zn(a

( j−1)
1 ,a′′2 , . . . , â′′j , . . .a

′′
n)

Example 1. To make things more transparent, we unravel the above formula to get,

rx,y,z(a,b,c) = ∑
(a),(b),(c)

ry,z(b′,c′)rx,y(a′,b′′)rx,z(a′′,c′′)

and similarly
rx,y,z,w(a,b,c,d) = ∑

∆2(a),∆2(b),∆2(c),∆2(d)
rx,y(a(1),b(1))rx,z(a(2),c(1))rx,w(a(3),d(1))ry,z(b(2),c(2))ry,w(b(3),d(2))rz,w(c(3),d(3))

Using the properties of r and the (co)commutativity of V, we then have,
Lemma— Let a1, . . . ,an ∈V and σ ∈ Sn a permutation. Then

rz1,...,zn(a1, . . . ,an) = rzσ(1),...,zσ(n)(aσ(1), . . . ,aσ(n)).

(2.4) Given a bialgebra V, we can form its graded dual V∨ =⊕∞
n=0V ∗n . By a bilinear form on V we will

mean the following a non-degenerate, symmetric, bilinear form (·, ·) on the vector space V satisfying
(1) (Vm,Vn) = 0 unless m = n (identifying V with V∨ naturally)
(2) (1,v) = ε(v)

3. VERTEX ALGEBRAS

(3.1) We must first introduce the concept of a field.

Definition 3. Let V be a vector space over k. A formal power series

A(z) = ∑
j∈Z

A( j)z
− j ∈ EndV [[z±1]]

is called a field on V if for any v ∈V we have A( j) · v = 0 for large enough j.
In case V is Z+ graded, we can define a field of conformal dimension d ∈ Z to be a field where each

A( j) is a homogeneous linear operator of degree − j +d

A useful procedure for dealing with fields will be normal ordering, defined as follows.

Definition 4. Let Let A(z),B(w) be fields, and denote by A(z)+ and A(z)− the non-negative and negative
parts (in powers of z) of A(z). Then define : A(z)B(w) := A(z)+B(w)+B(w)A(z)− to be normally ordered
product of A(z) and B(w).

(3.2) We are now in a position to define the main object of study,

Definition 5. A vertex algebra (V, |0〉,T,Y ) is a collection of data:
• (state space) a Z+ graded k-vector space V =⊕∞

m=0Vm, with each dimVm < ∞

• (vacuum vector) |0〉 ∈V0
• (translation operator) T : V →V of degree 1.
• (vertex operators) Y (·,z) : V → End(V )[[z±1]] taking each A ∈Vm to a field

Y (A,z) = ∑
n∈Z

A(n)z
−n−1

of conformal dimension m (i.e., degA(n) =−n+m−1).
satisfying the following axioms:
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• (vacuum axiom) Y (|0〉,z)= IdV . Furthermore, for any A∈V , Y (A,z)|0〉 ∈V [[z]] and Y (A,z)|0〉|z=0 =
A.
• (translation axiom) For every A ∈V , [T,Y (A,z)] = d

dzY (A,z) and T |0〉= 0
• (locality 1) For every A,B∈V , there exists a positive integer N such that (z−w)N [Y (A,z),Y (B,w)] =

0 as formal power series in End(V )[[z±1,w±1]].

(3.3) Example: Heisenberg Vertex Algebra Let h be an l-dimensional complex vector space equipped
with a non-denegerate, symmetric, bilinear form (·, ·). The Heisenberg Lie algebra is defined to be ĥ =
h⊗C[t, t−1]⊕CK with relations [K,h] = 0 and [a⊗ tm,b⊗ tn] = (a,b)mδm,−nK. We will denote a⊗ tn,a∈ h
by a(n). For each λ in the dual space h∗, we may construct the Fock space by the following induction:

Π
λ = U(ĥ)⊗U(h⊗C[t]⊕CK) C

where C is the one dimensional space on which h⊗ tC[t] acts as zero, K acts as the identity, and h⊗ t0 acts
via the λ . As vector spaces,

Π
λ = Sym(h⊗ t−1C[t−1]).

The space Π := Π0 has a vertex algebra with vertex operators are described as follows: for h ∈ h, set
h(z) = ∑n∈Z h(n)z−n−1 where h(n) acts as the operator h⊗ tn on the ĥ-module Π. Explicitly, K acts as the
identity, h(n) acts by multiplication for n < 0, derivation defined by h(n)a(−s) = nδn,s(h,a) for n > 0, and
0 for n = 0. Then set

Y (a1( j1) · · ·ak( jk),z) =
1

(− j1−1)! · · ·(− jk−1)!
: ∂

j1−1
z a1(z) · · ·∂− jk−1

z ak(z).

The verification of the vertex algebra axioms is left as an exercise, and will also follow from our theorem
below.

(3.4) Let (V, |0〉,T,Y ) be a vertex algebra, and assume that it is equipped with a non-degenerate, sym-
metric, bilinear form (·, ·) which identifies V with its restricted dual V∨. With this assumption, denote 〈0| ∈V
the dual to the element |0〉 ∈V. Then, we introduce the

Definition 6. Given a1, . . . ,an ∈V. We define the n-point functions to be

(〈0|,Y (a1,z1) · · ·Y (an,zn)|0〉) ∈ k[[z1,z2, . . . ,zn]][(zi− z j)]1≤i< j≤n

4. BORCHERDS’S THEOREM

(4.1) In this section, we state and prove Borcherds’s theorem [?]. Let V be a bialgebra with derivation
T and bicharacter r. We aim to construct a vertex algebra on V with translation operator given by V and
2-point functions specified by r. We first define the following maps which will allow us to construct vertex
operators,

Definition 7. Let

Φ
n(z1, . . . ,zn) : V ⊗V ⊗·· ·⊗V →V [[z1,z2, · · · ,zn]][(zi− z j)−1]

send
a1⊗a2 · · ·an 7→ ∑

(a1)···(an)
∑

j1,... jk≥0
T ( j1)(a′1) ·T ( j2)(a′2) · · ·T ( jn)(a′n)rz1,...,zn(a

′′
1,a
′′
2, . . . ,a

′′
n).

So, for example, we have that

Φ
2(z,w)(a,b) = ∑D( j)(a′)D(k)(b′)rz−w(a′′,b′′).

The following is easy to see from (co)commutativity of V and the corresponding facts for r,
Lemma— Let a1, . . . ,an ∈V and σ ∈ Sn a permutation. Then

Φ
n(z1, . . . ,zn)(a1, . . . ,an) = Φ

n(zσ(1), . . . ,zσ(n))(aσ(1), . . . ,aσ(n))

as elements of V [[z1, . . . ,zn]][(zi− z j)−1]1≤i< j≤n.
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(4.2) Following Borcherds, we make the following fundamental definition:

Definition 8. Let a,b ∈V . Then define the field Y (a,z) by

Y (a,z1)Y (b,z2)|0〉= Φ(z1,z2)(a,b).

In particular, we have Y (a,z1)b = Φ(z1,0)(a,b).

With the above definition, we can verify the following formula for multiplication.
Lemma— Let a1, . . . ,an ∈V. Then Y (a1,z1) · · ·Y (an,zn)|0〉= Φ(a1, . . . ,an)

Proof. The proof is a straightforward computation. For ease of notation, we just sketch the case n = 3 which
already illustrates all the main ideas. Let a,b,c ∈V. Then from the above definition, we see that

Y (a,z1)Y (b,z2)Y (c,z3)|0〉= Y (a,z1) ∑
(b),(c)

∑
k,l≥0

zk
2zl

3T (k)(b′)T (l)(c′)rz2,z3(b
′′,c′′).

Expanding

∑
(b),(c)

rz2,z3(b
′′,c′′) ∑

k,l≥0
Y (a,z1)[T (k)(b′)T (l)(c′)]zk

2zl
3,

we get

∑
(b),(c)

rz2,z3(b
′′,c′′) ∑

k,l≥0
zk

2zl
3 ∑

(a)
rz1(a

′′, [T (k)(b′)T (l)(c′)]′′) ∑
j≥0

z j
1T ( j)(a′)[T ( j)(b′)T (k)(c′)]′′,

which using the fact that ∆(a ·b) = ∆(a) ·∆(b) and property (3) of r becomes,

∑
(b),(c)

rz2 ,z3 (b′′,c′′) ∑
k,l≥0

zk
2zl

3 ∑
(a)

rz1 (a(2), [T ( j)(b′)]′′)rz1 (a(3), [T (k)(c′)]′′) ∑
j≥0

z j
1T ( j)(a′)[T ( j)(b′)]′[T (k)(c′)]′.

Observing that,

∆T (k)(a) =
k

∑
j=0

∑
(a)

D(k− j)(a′)⊗D( j)a′′,

we collect terms in the above coefficients T ( j)(a(1))T (k)(b(1))T (l)(c(1)) to get

∑
j,k,l≥0

∑
(a),(b),(c)

T ( j)(a(1))T (k)(b(1))T (l)(c(1)) ∑
p,q≥0

z j
1zk+p

2 zl+q
3 rz1 (a(2),T (p)(b(2))rz1 (a(2),T (q)(c(2)).

But Taylor’s formula and the property (5) of r give that

rz,w(a,b) = ∑
n≥0

rz(a,T (n)(b))wn.

Applying this fact to the above sum, we conclude that the terms with coefficient T ( j)(a(1))T (k)(b(1))T (l)(c(1))
is just rz1,z2,z3(a

′′,b′′,c′′) which concludes the proof.
�

(4.3) We are now ready to state the first theorem of this note,
Theorem 1— Let V be a bialgebra with derivation T and bicharacter r. Define fields Y (a,z) as in

Definition 8. Then (V, |0〉,T,Y ) is a vertex algebra.

Proof. It is obvious that the map Y (·,z) : V →V [[z]][z−1] takes a ∈Vm to a field of conformal dimension m.
So, let us verify the vacuum, translation, and locality axioms.

Vacuum: For a ∈V, the above definition gives that Y (a,z)|0〉= ∑
∞
k=0 T (k)(a)zk, from which the vacuum

axiom follows easily.
Translation: The translation axiom requires that

[T,Y (a,z)]b =
d
dz

Y (a,z)b.
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Expanding the left hand side, we get

TY (a,z)b = T

[
∑

(a),(b),k≥0
T (k)(a′)b′rz(a′′,b′′)zk

]
and

Y (a,z)T b = ∑
(a),(b),k≥0

T (k)(a′)T (b′)rz(a′′,b′′)zk + ∑
(a),(b),k≥0

T (k)(a′)b′rz(a′′,T b′′)zk

Since
T
[
T (k)(a′)b′

]
= (k +1)T (k+1)(a′)b′+T (k)(a′)T (b′),

this difference equals

∑
(a),(b),k≥0

(k +1)T (k+1)(a′)b′rz(a′′,b′′)−T (k)(a′)b′rz(a′′,T b′′)zk

which is easily seen to be equal to
d
dz

Y (a,z)b = ∑
(a),(b),k≥0

T (k)(a′) ·b′ d
dz

[rz(a′′,b′′)]zk +T (k)(a′) ·b′rz(a′′,b′′)
d
dz

[zk] .

Locality: Locality essentially follows from the Lemma above. Indeed, let a,b ∈V. Then

Φ
3
(z1,z2,0)(a,b,c) = Y (a,z1)Y (b,z2)c

and similarly
Φ

3
(z2,z1,0)(b,a,c) = Y (b,z2)Y (a,z1)c.

So, by Lemma Φ, we see that both

Φ
3
(z1,z2,0)(a,b,c) = Φ

3
(z2,z1,0)(b,a,c) ∈ End(V )[[z±1

1 ,z±1
2 ]][(z1− z2)−1]

which means that there is some positive integer N such that

(z−w)N [Y (a,z1),Y (b,z2)]c = 0.

Furthermore, this number N does not depend on c as is clear from looking at the explicit formula for Φ.
�

In case our bialgebra V also has a bilinear form, we have the following formula for the n-point functions.
Corollary— Let (V, |0〉,T,Y ) be the vertex algebra constructed above and let (·, ·) be a bilinear form on

V . Then
(〈0|,Y (a1,z1) · · ·Y (an,zn)|0〉) = rz1,z2,...,zn(a1,a2, . . . ,an)

5. CONVERSE TO BORCHERDS’S THEOREM

In this previous section, we showed how starting from a bialgebra V together with a derivation T and
a bicharacter r we can construct a vertex algebra. Now, given a vertex algebra (V, |0〉,T,Y ) whose under-
lying space V also has a bialgebra structure with derivation T , we might wonder to what extent does this
completely determine the vertex algebra structure. By itself, V and T cannot know about the singularities
(hence, 2-point functions) of Y (·,z), so in order to get a meaningful answer to our question, we have to also
feed in the information of r. If the bialgebra structure on V is not reflected in the vertex algebra structure, we
will have no hope of recovering the vertex algebra structure. So, in addition to r, we need to assume some
compatability conditions between the vertex and bialgebra structures. These considerations are formalized
in the following definition.

Definition 9. An r-vertex algebra consists of the following data:
• a vertex algebra (V, |0〉,T,Y )
• a bialgebra structure with derivation (V,T ) with compatible gradings.
• a bilinear form (·, ·) on V
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satisfying the following additional axioms:
• for a ∈V primitive, a(−1)b = a ·b
• for a,b ∈V primitive, a(0)b = 0

With the above definition, we can state a partial converse to Borcherds’s theorem. This is not the
strongest statement that can be made, but the following theorem (or a slight variation of it) suffices to deal
with all of the r-vertex algebras which we know.

Theorem 2— Let V be a connected bialgebra with derivation T , bicharacter r and bilinear form (·, ·).
Assume that V is T -generated by a set of primitive elements {aα}α∈S. Then there exists a unique r-vertex
algebra structure on V such that the 2-point functions of V are given by r.

Proof. In the previous section, we showed how to construct a vertex algebra on V with two-point functions
specified by r. It is clear that this vertex algebra is actually a r-vertex algebra.

To prove the uniqueness, we shall make us of the following.
Reconstruction Theorem [FB], — Let V = ⊕∞

n=0Vn be a Z+-graded vector space, |0〉 ∈ V0 a non-
zero vector, and T a degree 1 endomorphism of V. Let S be a (countable) set and {aα}

α∈S a collection of
homogenous vectors in V . Suppose we are given fields

aα(z) = ∑
n∈Z

aα

(n)z
−n−1

such that the following conditions hold:
(1) For all α , aα(z)|0〉= aα + z(· · ·)
(2) T |0〉= 0 and [T,aα(z)] = ∂zaα(z) for all α ∈ S.
(3) The fields aα(z) are mutually local
(4) V is spanned by the vectors

aα1
( j1)
· · ·aαm

( jm)|0〉, ji < 0

Then these structures together with the vertex operation

Y (aα1
( j1)
· · ·aαm

( jm)|0〉,z) =
1

(− j1−1)!
· · · 1

(− jm−1)!
: ∂
− j1−1
z aα1(z) · · ·∂− jm−1

z aαm(z) :

give rise to a unique vertex algebra structure on V satisfying (1)-(4) above and such that Y (aα ,z) = aα(z).
Assume that we have a r-vertex algebra satisfying the hypothesis of Theorem 2. First we contend that

the vectors aα1
( j1)
· · ·aαm

( jm)|0〉 , ji < 0 generate V as a vector space. Indeed,

Lemma— Let a ∈V be primitive and b ∈V. For k ≥ 0, we have that

T (k)(a) ·b = a(−k−1)b.

Proof. For k = 0, we have that a · b = a(−1)b since a is primtive and V is a r-vertex algebra. The general
case follows by induction using the following two facts: first, if a is primtive, then so is T (k)(a); and second,
for any vertex algebra Y (Ta,z) = d

dzY (a,z). �

This shows that any r-vertex algebra satisfying the hypothesis of Theorem 2, it will also satisfy the
hypothesis of the Reconstruction theorem. Therefore, in order to show uniqueness, we just need to verify
that the fields Y (aα ,z) are uniquely specified by the given information. So, let us suppose that (V, |0〉,T,Y )
and (V, |0〉,T,Ỹ ) are two b-vertex algebra structures satisfying the hypotheses of the theorem. We may as
well assume that (V, |0〉,T,Y ) is the vertex algebra constructed in Theorem 2.

Write Ỹ (a,z) = ∑n∈Z ã(n)z−n−1 and Y (a,z) = ∑n∈Z a(n)z−n−1. Then the lemma above allows us to con-
clude that Ỹ (a,z)+ = Y (a,z)+.

To show that Ỹ (a,z)−v =Y (a,z)−v, we first check the result for v a primitive element of minimal positive
degree d. Note than since V is primitively generated, the minimal degree of a primitive element is also the
minimal positive degree of any element of V. By assumption, a(0)v = 0, so let us focus on a(n)v for n > 0.
Each a(n) has strictly negative degree as an operator on V, so by our assumption on v we conclude that
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a(n)v = 0 unless n = d, in which case a(n)v = λ |0〉. Furthermore, we can determine this value of λ from the
2-point functions:

r(a,b) = (〈0|,Y (a,z)b) = (ε,λ |0〉)z−d−1 = λ z−d−1.

Hence for a primitive and v primitive of minimal degree Y (a,z)v = Ỹ (a,z)v.
Now, we observe the following simple,

Lemma— Suppose Y (a,z)b = Ỹ (a,z)b, then Y (Ta,z)b = Ỹ (a,z)b and Y (b,z)a = Ỹ (b,z)a
Since V is T -generated from a set of (minimal degree) primitives, we see that Y (a,z)b is determined for

all a,b ∈ V primitive. So in particular, a(n)b is determined for all a,b ∈ V primitive. It is easy to compute
these to be:

• a(0)b = 0.
• for n > 0, a(n)b = 0 if n 6= deg(b)
• for n > 0, a(n)b = Coe f f (rz,0(a,b)) otherwise.

To finish the proof of the theorem, we need to understand the action of Y (a,z)− on products of primitive
elements. This is achieved through the following,

Proposition— Let Ỹ be a r-vertex algebra, and let a,v be a primitive. Then

Ỹ (a,z)−(v ·w) = Ỹ (a,z)−v ·w+ v · Ỹ (a,z)−w

Proof of Proposition. It is enough to show that for n≥ 0

ã(n)[v ·w] = ã(n)[v] ·w+w · ã(n)[w].

This will follow essentially from the well known Borcherds commutator formulas, a special case of which
is,

[a(m),v(−1)] =
n

∑
j=0

(
m
j

)
(a( j)v)(m−1− j).

But since for a and v primitive, a( j)v is always a scalar, so the only way (a( j)v)(m−1− j) can be a nonzero
operator is when m = j. So, the formula reduces to

[a(m),v(−1)]w = (a(m)b)(−1)w.

Expanding this formula out and recalling that for x ∈ V primitive x(−1)y = x · y, we see that the claim is
verified. �

From the Proposition and the fact that V is T -generated by the set {aα}, the theorem is proven.
�

6. EXAMPLES

In this section, we show how the Heisenberg and Lattice Vertex algebras may be given the structure of
a r-vertex algebra.

(6.1) Heisenberg Vertex Algebras: We can describe an r-vertex algebra structure on the space Π := Π0

of example ?. First, we will need to define a grading on Π, which is achieved by setting deg1 = 0 and
dega1(− j1) · a2(− j2) · · ·ak(− jk) · 1 = j1 + · · · jk and taking the grading by degree. Now Π has an algebra
structure by construction, and it is also equipped with a derivation T : Π→ Π defined by T · 1 = 0 and
T (a(− j) · 1) = ja(− j− 1). Additionally, Π has the structure of a bialgebra with derivation if we take
h(−1),h ∈ h to be primitive elements and ε(1) = 1. Also, we note that Π has a bilinear form (·, ·) defined
by (1,1) = 1 and such that h(n) and h(−n) are adjoint.

With these preliminaries, we can use Theorem 1 to construct an r-vertex algebra structure on Π with
rz,w(h(−1),g(−1)) = (h,g)

(z−w)2 . Using Theorem 2, we easily conclude that this vertex algebra structure coin-
cides with the one introduced in Example 3.3.
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(6.2) Lattice Vertex Algebras: Next, we consider the vertex algebra associated to a positive-definite,
even lattice L. Suppose L is a free abelian group of rank l together with a positive, definite, integral bilinear
form (·|·) : L⊗L→ Z such that (α|α) is even for α ∈ L. Let h = C⊗Z L equipped with the natural C-linear
extension of the form (·|·) from L. Construct Π as above associated to h, and set VL = Π⊗C[L] where C[L]
is the group algebra of L with basis eα ,α ∈ L. We will often write eα for 1⊗ eα and e0 = 1.

Since Π and C[L] are bialgebras, VL also has a bialgebra structure with gradation given by deg(eα) =
1
2(α|α) and deg(h⊗ tn) = n as before for h ∈ h. There is also a derivation T acting on VL by T · 1 =
0, T (h(−n)⊗ 1) = nh(−n− 1)⊗ 1, and T (1⊗ eα) = α(−1)⊗ eα . With this data VL is a bialgebra with
derivation. VL is also equipped with a bilinear form defined by (1⊗ 1,1⊗ 1) = 1 and (h⊗ eα ,g⊗ eβ ) =
(h,h′)(α|β ).

We proceed to give two descriptions of r-vertex algebra structures on VL, and then show they are iso-
morphic. This vertex algebra is none other than the Lattice vertex algebra (of an even lattice). First,
there is the usual vertex algebra constructed with vertex operators specified as follows: Let π1 be the rep-
resentation of ĥ on Π defined above. Also define a representation π2 of ĥ on C[L] by setting π2(K) = 0,
π2(h(n))eα = δn,0(α,h)eα for h ∈ H,α ∈ L,n ∈ Z.

Then VL becomes a ĥ module by π = π1⊗1+1⊗π2. Then for h ∈ h, set h(z) = ∑n∈Z h(n)z−n−1 where
h(n) acts as the operator h⊗ tn on the ĥ-module VL. Then, set

Y (a1( j1) · · ·ak( jk)⊗ eα ,z) =
1

(− j1−1)! · · ·(− jk−1)!
: ∂

j1−1
z a1(z) · · ·∂− jk−1

z ak(z)Γα(z)

where

Γα(z) = eαzαe−∑ j<0
z− j

j α(− j)e−∑ j>0
z− j

j α(− j)

where zα(a⊗ eβ ) = z(α,β )a⊗ eβ and eα(a⊗ eβ ) = ε(α,β )a⊗ eα+β , and ε : L× L→ ±1 is a 2-cocycle
satisfying ε(α,β )ε(β ,α) = (−1)(α|β )+(α|α)(β |β ).

Secondly, we take take the r-vertex algebra defined by Theorem 1 using the bicharacter r : VL⊗VL→
C[(z−w)−1] uniquely specified by r(eα ,eβ ) = ε(α,β )

(z−w)(α,β ) .

In order to show that the two descriptions of VL coincide, we would like to use Theorem 2, noting
that they have the same two-point functions. Unfortunately, that theorem is not applicable since VL is not
primitively generated (eα is group like). But, actually the proof of Theorem 2 can be modified in this
case as follows: Denote by (VL,1,T,Ỹ ) and (VL,1,T,Y ) the first and second vertex algebra descriptions
above. VL is T -generated from C[L], so by the Reconstruction Theorem, we just need to see that the fields
Y (eα ,z) = Ỹ (eα ,z).

Step 1: Given h ∈ h, let us show that the fields Y (h(−1),z) = Ỹ (h(−1),z). The proof of Theorem 2
shows that Y (h(−1),z)+ = Ỹ (h(−1),z)+, so what remains is to show that Y (h(−1),z)− = Ỹ (h(−1),z)−.
On Π these two agree by the same reasoning as in the proof of Theorem 2. Furthermore, on C[L], we
contend that

Y (h(−1),z)−eα =
(h,α)eα

z
.

Indeed, since the 2-point functions are

(ε,Ỹ (h(−1),z)eα) = r(h(−1),eα) =
(h,α)eα

z
,

we know that

Ỹ (h(−1),z)eα =
h(−1)(0)eα

z
=

λeα

z
,

since ã(0) is a scalar on group-like elements for a ∈VL primitive. Clearly λ is specified by r and so we have
shown that Ỹ = Y on C[L] as well. Now, use Proposition [?] to conclude that Ỹ = Y on all of VL.
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Step 2: [h(−1)(n),Y (eα ,z)] = (α|h)znY (eα ,z) and [h(−1)(n),Ỹ (eα ,z)] = (α|h)znỸ (eα ,z). This follows
easily from Borcherds’s commutator formula and the fact that Y (h(−1),z) = Ỹ (h(−1),z). Note that in par-
ticular [h(0),Y (eα ,z)] = (α|h)Y (eα ,z) and similarly [h(0),Y (eα ,z)] = (α|h)Ỹ (eα ,z). This means that

Y (eα ,z) : Π⊗C[eβ ]→Π⊗C[eβ+α ],

and similarly for Ỹ (eα ,z).
Step 3: Since eα has degree 1

2(α,α), we may write

Y (eα ,z) = ∑
n∈Z

eα [n]z−n− (α,α)
2

and
Y (eα ,z) = ∑

n∈Z
ẽα [n]z−n− (α,α)

2

where eα [n] and ẽα [n] have degree −n.

Step 4: We show that Y (eα ,z)eβ = Ỹ (eα ,z)eβ for α,β ∈ L. Indeed, by degree considerations, we have
that

eα [s]eβ = 0 for s >−(α,α)
2
− (β ,α)

and

eα [s]eβ = cα,β eα+β for s =−(α,α)
2
− (β ,α).

Similarly for ẽα [s], and examining 2-point functions we see that the cα,β are completely determined. Now,
using induction and the fact that

d
dz

Y (eα ,z) = Y (Teα ,z) =: Y (α(−1),z)Y (eα ,z)

and
d
dz

Ỹ (eα ,z) = Ỹ (Teα ,z) =: Ỹ (α(−1),z)Ỹ (eα ,z)

we see that Y (eα ,z)eβ = Ỹ (eα ,z)eβ .

Step 5: Using Step 2, we may compute Y (eα ,z)h1(−n1) · · ·hk(−nk)eβ and Ỹ (eα ,z)h1(−n1) · · ·hk(−nk)eβ

and see that they are equal by Step 1 and 4.
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