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Part 1. Introduction and Generalities

1. INTRODUCTION

(1.1) The aim of this paper is to make precise the relation between two
proposals for Eisenstein series on loop groups, one group theoretic in nature
and the other geometric. The group theoretic Eisenstein series were defined
by the first named author [Gar0O4] who has used the arithmetic theory of
loop groups and algebras [Gar78, Gar80] to study the analytic properties
of these series. On the other hand, motivated by a desire to mathemati-
cally explain the modularity phenomenon underlying the S-duality principle
from string theory, Kapranov [Kap0O] has introduced a formal generating
function counting bundles (equipped with certain data) on an algebraic sur-
face. These generating functions satisfy the same functional equations as
the loop Eisenstein series and their very definition parallels the construction
of [Gar04] in many ways. Our purpose here is to interpret the elements of
the group theoretical construction geometrically and thereby obtain exactly
Kapranov’s generating series.

(1.2) Let us briefly review the classical case of which this paper is an
infinite-dimensional analogue. Let G be an algebraic group (simply con-
nected, split, semi-simple for convenience) defined over a function field
F /F, of finite characteristic in one variable. Assume also that I, is the
exact field of constants of F, i.e., that I/ QF, Fq is a field, where Fq is the
algebraic closure of [F;,. Denote by A the ring of adeles over F' and for any
place v of F we let 0, C F, be the ring of integers. Let

Ky :=[]G(6y) C Ga,
v

be the maximal compact subgroup and denote by B a Borel subgroup and
H a split torus contained in B. The Eisenstein series we are interested in are
constructed from quasi-characters A : H — C* on the split torus. Using the
Iwasawa decomposition, we can extend A to a map @, : Gy — C*. We then
form the Eisenstein series,

Ey(g):= ) ®i(gy)

veGr /Bp
which is defined on the double coset space
(1.2.1) Ky \Ga/GF.

The construction above has a analogue in the case when F is a number
field, and in this context, Langlands [Lan76] has established the basic ana-
lytic properties of Ej (g) : he has shown that for A in a suitable half-space

specified by conditions known as Godement’s criterion, Ej (g) converges
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uniformly in a suitable sense. Moreover, it is a result of Langlands that
E; (g) admits a meromorphic continuation in the parameter A and satisfies
a functional equation. By now, Eisenstein series have achieved a near ubig-
uitous role in the modern theory of automorphic forms. Let us only mention
here two of Langlands original motivations for studying them: (a) the func-
tional equations which govern their constant terms may be unravelled to
provide strong analytic information about classical L-functions in number
theory [Lan71]; and (b) the continuous part of the spectral decomposition of
L?(Gy/Gr) is governed by the Eisenstein series coming from cusp forms
[Lan76] on lower rank groups. In the function field case, the above results
also remain true [Har74] and in general are much simpler.

In the case when F is a function field, the basis for the geometric inter-
pretation of Eisenstein series (and in general for automorphic forms) is the
classical observation due to A. Weil that the adelic double quotient space
on which the Eisenstein series is defined (1.2.1) parametrizes G-bundles
on a non-singular projective model of F. One might then ask whether the
Eisenstein series itself has a geometric meaning. In [Har74], Harder has
in fact interpreted the series £, (g) as a generating function counting ratio-
nal sections of a flag bundle associated to the G-bundle corresponding to the
element g € K5 \ G5 /Gr. This idea proved instrumental in Harder’s compu-
tation of certain Tamagawa numbers as well as his proof of the Hasse prin-
ciple for Chevalley groups [Har74]. Several years later, Laumon [Lau88]
used a sheaf-theoretic version of Harder’s construction to obtain some of
earliest examples of automorphic sheaves. This idea was then vastly gener-
alized by Braverman and Gaitsgory [BG02] in their work on the geometric
Langlands conjecture.

(1.3) Parallel to classical theory of automorphic forms on finite dimen-
sional groups, there is an arithmetic theory for loop groups [Gar78, Gar80]
which allows one to introduce the central object of this paper, the loop
Eisenstein series. The analytic properties of this series are also now well
understood: in [Gar04] , the convergence and meromorphic continutation
and functional equations of the constant term were studied; in [Gar06], the
absolute convergene was proven; and in [GarQ7a, GarQ7b, GarO7c, Gar05],
the Maass-Selberg relations have been established from which the mero-
morphic continuation of the loop Eisenstein series, as a locally integrable
function in the number field case and as an actual function in the function
field case, follows.

The starting point for this paper is the work of Kapranov [Kap00], who
defines, in the spirit of [Har74, Lau88] a geometric generating function in-
volving now the moduli space of G-bundles on a surface S. We note in
passing here that through the work of Nakajima and others, moduli spaces

3



of bundles on a surface have been intimately connected with the representa-
tion theory of loop algebras. In analogy with the theory of Eisenstein series,
Kapranov establishes certain functional equations for his generating func-
tions, and in so doing offers a mathematical explanation for the modularity
phenomenon underlying S-duality. From this geometric point of view, how-
ever, analytic properties remain somewhat obscure and one consequence of
this paper is that Kapranov’s geometric Eisenstein series enjoys the same
analytic properties as the loop Eisenstein series.

The idea underlying the comparison between the group theoretical and
geometric series is quite simple and we proceed to sketch it here in the
complex analytic case (though in the remainder of this paper, we shall work
over finite fields): let G be a group and LG the corresponding loop group
which can be viewed as the set of maps from C* — G. Let X be a complex
curve, and suppose we would like to study LG-bundles on X. The usual
Cech formalism suggests that we cover choose an open cover of {U; — X}
and then consider trandition functions

gij(x) : UiﬂUj — LG.

But by the "law of exponents,” this is the same thing as considering the
maps
gij(z,x) : (UinUj) x C* — G.

In other words, LG-bundles on the curve X may be regarded as G-bundles on
the surface X x C*. Using this idea with the arithmetic theory of [Gar80],
we can almost completely give the identification between the two defini-
tions of loop Eisenstein series. The essential difficulty is that that we are
not just dealing with loop groups LG, but their central extensions! Kapranov
has elucidated the meaning of the central extensions through the (relative)
second Chern class of a bundle on a surface. Thus, one of our main points
will be to identify this (relative) second Chern class in group theoretical
terms. To do so, we need a local Riemann-Roch type on the level of Cech
cocycles. This is similar in spirit to a local Deligne-Riemann-Roch theo-
rem [Del87] and one way to understand our result is that it provides a group
theoretical construction of this Riemann-Roch isomorphism.

(1.4) This paper is organized as follows: in the remainder of this chap-
ter, we discuss some preliminary material on sheaves, torsors, gerbes, and
groups. In Chaper 2, we discuss some of the arithmetic theory of loop
groups and introduce the loop Eisenstein series. In Chapter 3, we interpret
the elements of the group theoretical definition of loop Eisenstein series in
geometric terms. Finally in the last chapter, we make precise the connec-
tion between central extensions of loop groups and local Riemann-Roch

theorems for bundles on a surface.
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2. SITES AND SHEAVES

(2.1) Let & be a category. Recall that a Grothendieck topology on €
consists of a set Cov(%’) of families of maps {U; — U }ic; (where I here is
some index set) in ¢ called coverings satisfying the following conditions,

(1) If V. — U is an isomorphism in %, then the set {V — U} is a cover-
ing.

(2) If {U; — U}ics € Cov(%) is a covering and V — U is any map in
%, then the fibered product U; xy V exists for i € I, and the

{Ui xyV — V}iel € COV(%).

(3) If {U; — U}icr € Cov(%), and for each i we are given a covering
{Vij — Ui} jes, then the composition

{V,'j —U; — U}[e]Je] € Cov(%).

A category with a Grothendieck topology is called a site.

Let Sch (Schy) denote cateory of schemes (resp. schemes over k, for
some base k). If § € Sch, we denote by Sz, the big Zariski site consisting
of some full subcategory of schemes over S equipped with the Zariski topol-
ogy. The exact choice of subcategory will be fairly unimportant for us. We
can usually choose schemes of finite type, but sometimes may need to work
with more general cases when dealing with infinite dimensional groups. We
shall be more precise when we need to be.

(2.2) Generalizing the classical notion of a sheaf on a topological space,
we have the following. Let S be a site, C a category with products. Then a
presheaf on S with values in C is a functor F : S — C. A sheaf if a presheaf
satisfying the following condition: For every {U; — U} € Cov(T), the dia-
gram,

F(U) — H,’F(Ui) = H,‘ij(Ui XU Uj)

is exact. Often we will be interested in sheaves of groups on a site S which
are defined in an analogous manner.

Let T be some category of sheaves on a site. For example, 7 may be the
category of locally free sheaves of G-bundles for G some group. Often we
would like to view an element X of 7 as a space in its own right. This is
achieved by considering the topos 7' /X consisting of pairs (F, f) where F
isa sheafin 7 and f : F — X is a map of sheaves. One can then consider

some category of sheaves over this topos, etc.
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3. TORSORS AND GERBES

(3.1) Let S be some topological space, and G a sheaf of groups on S.
We call a sheaf F on S a G-torsor (or sometimes we shall just write (prin-
cipal) G-bundle) if F is equipped with a right action p : F x G — F such
that locally on S, the pair (F,p) is equivalent to the pair (G,m) where
m: G xX G — G is the multiplication map. Morphisms of G-torsors are
defined in the natural way, and we denote the category of G-torsors on S
by TORS(S,G). Actually, for what follows S only needs to be a topos and
Giraud has developed the general theory of torsors in this context [Gir71].
Let H'(S,G) := my(TORS(S,G)) denote the set of isomorphism classes of
the category TORS(S, G). In case G is abelian, this is the usual sheaf coho-
mology group, but in general H'(S,G) only has the structure of a pointed
set, the distinguished point corresponding to the trivial torsor.

There are several operations of torsors which provide an interpretation for
the functorial properties one would expect the (non-abelian) cohomology
set H!(S,G) to have. More precisely, we have the following operations,

(1) Pushforward: Let F| be a G torsor, and let f : Gy — G, be a
morphism of groups. Then there exists a G, torsor F; := f.(F;)
defined uniquely by the condition that there should exists a map
of sheaves also denoted f : F; — F; satisfying f(tg) = f(t)f(g)
locally. This pushforward operation descends to a map

H'(S,G1) 5 H'(X,G).

(2) Pullback: Let ¢ : S1 — S be a map of spaces. Let G a sheaf of
groups on $7 and F a G-torsor. Then the pullback of sheaves equips
¢*F with the structure of a ¢*G-torsor on S;. This operation de-
scends to a map

¢* :H'($:,G) — H'(S1,0*G).

(3) Sum: Let F; be a G; torsor for i = 1,2. Then F; x F; is a G| X G-
torsor. This operation descends to a map,

H'(S,G) x H'(S,Gy) — H'(S,G| x G»).

In the case when H is abelian, we may push by the map G X G — G
to obtain a sum on torsors which recovers the usual group structure
on H'(S,G).

Let S be a fixed space, and u : H — G a morphism of sheaves of groups
on S. Let P be a G-torsor. Then by a reduction of P to H, we shall mean
a pair (Q,q) where Q is a H-torsor and ¢ : Q — P is a morphism cov-
ering u. If (Q,q) and (Q',q’) are two such reductions, then a morphism
(Q,q) — (Q',q’) is a H-morphism f : Q — Q' such that ¢’ f = f. Let us note
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that all morphisms of reductions are actually isomorphisms, and if u is a
monomorphism, two isomorphic reductions are canonically so.

Proposition 3.1.1. [Gir71, Ch. III §3.2.1] Let u : H — G be a monomor-
phism of sheaves of groups, and let P be a G-torsor. Then the set of re-
ductions of P to H is isomorphic to the set H(S,P/H), where P/H is the
quotient sheaf on S.

(3.2) For us, it will be useful to view torsors from a Cechy perspective.
Let S be a space and % = {U; — S} a covering. We adopt the following
notation: Let 7 : X; X X; X X; — X; x X be the natural projection. If .7
is any sheaf, and a;; € .7 (X; x X;), we shall denote by 7} (a;;) by a;*.
Similarly, we define a;/ and ' j;, where raised index corresponds to which
factor is being projected out.

A Cech 1-cocycle of a sheaf of groups G with respect to the cover % is
a family

gij € G(Uij) where U;;=U;xyUj,
such that one has
gk =8ij* gk € G(Uijx) where U= Ui xyU;jxy Uy

Two cocycles {g;;} and {h;;} are said to be cohomologous if there exist a
family of elements a; € G(U;) such that

hij=al -gij - (a5)~" € G(Uy).

The notion of Cech 1-cocycles is essentially equivalent to the notion of
a torsor. Given a cocycle {g;;} we can construct a torsor F on S by gluing
together the trivial torsors on U; by the maps g;; : G(U;NU;) — G(U;NU;)
which sends g — gg;;. Similarly, given a torsor F on S which trivializes with
respect to the cover % , we obtain a Cech 1-cocyle. The natural operations
of pushforward, pullback, and sum have easy Cech descriptions.

(3.3) In the same way as torsors correspond to elements of H!, gerbes are
the geometric objects corresponding to H?2. Let S be a space. Then recall
that a stack C over S is a sheaf of groupoids: this consists of the data of
a groupoid C(U) for every open set as well as a notion of comparison of
objects (restriction) for C(U) and C(V) for V C U which satisfies certain
descent conditions. See [Gir71] for the precise definitions.

A gerbe on X will be a stack ¢4 on X which locally has an object and such
that locally any two objects are isomorphic. Suppose ¥ is a gerbe on X, and
suppose that for all objects P € ¢ (U) for U C X open, the sheaf Aut(P) over
U of automorphisms of P is commutative. Then the sheaf Aut(P) does not

depend on the choice of P and the sheaves Aut(P) may be glued to form a
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sheaf of abelian groups on X called the band of ¢. For a sheaf A of abelian
groups on X, we say that ¢ is a gerbe with band A if ¢ is a gerbe with band
isomorphic to A.

Analogously to torsors, gerbes with band also admit a Cechy descrip-
tion. A trivialization of a gerbe ¢ over X will be an object of ¢ (X). The
set of isomorphism classes of gerbes on X with band shall be denoted by
H?(X,A). We shall give a Cech interpretation of gerbes now: let c; ik be
a 2-cocycle with respect to a cover {U;};c;. Then we can define a gerbe
% ((cijk)) as follows: over an open set U, the objects shall be F-torsors P;
on U NU; and isomorphism of torsors p;; : P; = Pjon UNU;NUj verifying
the condition pjxp;; = pirc;ji- Conversely, given a gerbe ¢ with band A,
we can construct a 2-cocyle as follows: choose a cover {U;} and objects
Qi € G(U;) equipped with isomorphisms e;; : Qi|u;nu; 50 jlunu; which
satisfy the condition e jye;; = e;ic;jx. The gerbe ¢ can then be identified with
% ((cijk)) by associating to each object P € ¢4 (U ) the A- torsors Hom(Q;, P)
on UNU,;.

(3.4) Let f: X' — X be a morphism of schemes. Suppose that ¢ is a
gerbe with band A on X’. Then we can pushforward the underlying stack
of ¢ to get a stack on E. This will however not be a gerbe, and we denote
by Ger(%) the sheaf on X of maximal sub-gerbes of the pushforward stack
£.4. Suppose the class of & € H>(X’',A) lies in the kernel

H* (X', A)" :=kernel(H*(X',A) — H(X,R*f,A)).

Then it is known [Gir71, p.327] that the sheaf Ger(%) is a R! f.A-torsor on
E whose isomorphism class is given by the image under

H?*(E',A)" — H'(E,R'f.A).

Notation: Abusing notation, we shall often denote this torsor by f.% instead
of Ger(¥).

On the other hand, suppose we are working over a fixed X, and let Let
f : A — B be amorphism of sheaves of abelian groups on X. Then we have a
pushforward operation which takes gerbes with band A to gerbes with band
f+A. For a given gerbe ¢ with band A, the objects in the pushforward gerbe
f(¥) are the same as those of ¢ but morphisms are obtained by pushing
the A-torsor of morphisms in ¢ by f.

If ¢; is a gerbe with band A; for i = 1,2, then the product stack ¥ x %
is a gerbe with band A; x A;. This corresponds to the map

H?(X,A)) x H*(X,A2) — H*(X,A; X Ay).

In the case that Aj = A = A we can combine this product map with the

pushforward A x A — A to obtain a sum operation on gerbes.
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4. CENTRAL EXTENSIONS

(4.1) Let S be a site, and let A be a sheaf of abelian groups and G a sheaf
of groups on S. An extension of G by A will be an exact sequence of sheaves
of groups (E,a,b)

ASELG.
This is to be interpreted in the sheaf theoretic sense, so for each test object
T € S, we have an exact sequence of groups,
0 — H(T, A7) — E(T) — G(T) — H'(T,Ar).

An extension E is said to be central if H*(T,Ar) C E(T) is a central sub-
group for any T € S. We shall need the following simple,

Lemma 4.1.1. [Blo74, p. 353] Let S be a regular, separated, quasi-compact
scheme, and let
A—-FE—G

be a central extension of sheaves of groups on S. Suppose that for every
x €S, and every f € R = Us, the map E(Spec(Ry)) — G(Spec(Ry)) is
surjective. Then there exists an open affine cover {U;} of S such that on
each Ujj = U;NUj, the map E(U;;) — G(Uj;) is surjective.

(4.2) Grothendieck has reformulated the notion of central extension as

follows. We follow the exposition in [BDO1]: Let A LE LA G is a central
extension of groups. The set E becomes an A-torsor under the action

er—ea forec E,acA.

But E is equipped with more than just the structure of an A-torsor: we also
have a product map
EXE—E

which fits into the following commutative diagram,
EXE—E,
GxG—G

where u is the multiplication map on G. The full structure on the set E
which allows us to recover the fact that E is a central extension is given by
the following,

Definition 4.2.1. A multiplicative A-torsor on G as an A-torsor E provided
with a morphism of A-torsors on G x G,

m: priE+ pr;E — u*E
9



where u : G x G — G is the multiplication map and pr; : G x G — G is
the projection onto the i-th factor. Furthermore, the map m must make the
following diagram of A-torsors on G x G x G commute,

priE+ pr;E+ pr;E —— pri,u*E+ priE .

| |

priE+ pry;u*E HixE

We then have the following useful reformulation of the notion of central
extension,

Theorem 4.2.2. There is an equivalence of categories between the category
of central extensions of G by A and the category of multiplicative A-torsor
on G.

Remark 4.2.3. Using Theorem 4.2.2 as a starting point, we can reinter-
pret several notions regarding central extensions in terms of multiplicative
torsors. For example, we have,

(1) If H C G 1s a subgroup. Then there is an equivalence of categories
between multiplicative A-torsor on G/H and central extensions of
G by A splitover H.

(2) Let G and H be sheaves of groups such that H acts on G. Then there
is an equivalence of categories from the category of multiplicative
A-torsors Ep on the semi-direct product H X G to the category of
triples (a) (b) (c) as follows: (a) a multiplicative A-torsor E on
G; (b) a multiplicative A-torsor F' on H; and (c) an action of H on
(G,E) "lifting" (see [BDO1, p. 16]) the action of H on G.

Part 2. Arithmetic of Loop Groups

5. CENTRAL EXTENSIONS BY K,

(5.1) Let X be a scheme. Then we denote by Ky (X) Quillen’s higher
K-group of the category of locally free sheaves on X. The assignment to
every open subset U C X of the group K,(U) defines a (Zariski) presheaf
on X, whose associated sheaf we denote by K x. Usually we suppress the
X from the notation and just write K,. For X = Spec(A) affine, we simply

write Ky (A) for Ky (Spec(A)).

(5.2) Let A be any domain, and p C A be a prime of height 1. Then A,
is a discrete valuation ring with fraction field K coinciding with the fraction

field of A. We shall denote by Vv, (or just v for short) the valuation K* — Z.
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The residue field of A, will be denoted by k(p), and for an element of a € A,
we denote by a its image in the residue field k(p). The tame symbol

T Ka(K) — k()
X,y +— (_I)V(X)V(y)xv(y)y—v(x)

fits into the following exact sequence of groups,

T,
0 — Ka(Ap) — Ka(K) = k(p)* — 0.
See for example, [DS72]. When A is local, we omit the p from the notation.

(5.3) Let G be (sheaf of) reductive groups on Sch; Then in [BDO1], cen-
tral extension of G by K; have been classified. More precicely, they have
constructed a functorial equivalence between the categories of multiplica-
tive K,-torsors on G and some category %. In the case when G is split, then
the set of equivalence classes of this category my(%’) is equal to Z and hence
corresponding to 1 € Z, we have a unique central extension (defined up to
unique isomorphism) which we shall henceforth denote by G. So, we have
an extension of sheaves of groups on Schy,

Ky — G —G.
Recall that for any T' € Schy, we have an exact sequence of groups,
1 — H(T,Ky) — G(T) — G(T) — H'(T,Ky).

Example 5.3.1. When T = Spec(k) for k a field, then we have get an exact
sequence of groups,

1 — K(k) — G(k) — G(k) — 1
which agrees with the central extension constructed by Matsumoto.

Example 5.3.2. Let R be an essentially smooth local k-algebra and f €
R a local parameter. Then if T = Spec(Rs), we have by [Qui73] that
H'(T,K,) = 0. Thus in this case we get an exact sequence,

1= Ky(Ry) = G(Ry) — G(Ry) — 1

(5.4) For any ring Spec(R) € Schy, we may consider the rings R[t,t 7]
and its formal version R((¢)). The results of [BDO1] then give central ex-
tensions (not necessarily exact on the right),

(5.4.1) Ko(R[t,t™')) = G(Rt,t7"]) — G(R[t,r™"])

(5.4.2) Ka(R((1))) — §<R1(1<r)>) — G(R((1)))



Actually, to obtain the second, one needs to use the generalization of Ger-

sten’s conjecture by Panin [Pan00] to case of equicharacteristic local rings

(see also the recent work of [Moc07] and the the remark in [BDOI, p.10]).
Now, let us define sheaves locally by the following,

Glt,t"'1:R — G(R[t,r™']),
G((t)):R — G(R((r)))

Similarly, we define sheaves Ky[r,# '], Ka((¢)) and G[r,r '] and G((1)). No-
tation: We shall often drop the R from our notation and just write for ex-
ample Ky[t,#~!] in place of KoR[t,#~!]. The sequences 5.4.1 and 5.4.2 may
then be written as central extension of sheaves on Schy

(5.4.3) Kolr, ™' — Gl — G,
(5.4.4) Ka((1) = G((1)) —G((1))

~_(5.5) We shall really be interested in "twisted" versions of the groups
G((r)) where the twist comes from rotation (and in general automorphism)
of the loop parameter 7. So, let us first define the sheaf Aut[[¢]] on Schy
locally via,
Aut[[f]]: R {}] ait'la; € R*,a; € R}.
i>0
We also have a subsheaf G,, C Aut|[t]] where G,,(R) = R*. There is a nat-

ural action of Aut|[[r]] on G((¢)) which is localy given by the following: let
a(t) € Aut(R[[t]]) and g(¢) on G(R((¢))). Then

a(r).g(t) = g(a(r)).

This action lifts to the central extension G((r)): given an element of Aut(R[[1]]),
we obtain an isomorphism

K> (R((2))) — K2(R((1)))-

Pushing 5.4.2 by this map, we obtain a new central extension which is
canonically isomorphic to G((¢)) and hence we have a map from G((r)) —
G((1)). It is clear that this action covers the action of Aut([r]] on G((r)), and
thus we obtain a diagram,

Ka((1)) — G((1)) x Aut[[1]] — G((1)) x Aut[[]].

We obtain similar diagrams in the case of Laurent polynomials and also

when Aut[[¢]] is replaced by G,,.
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6. LOOP ALGEBRA BASICS

(6.1) Let k be any field and g be a simple Lie algebra over k with invariant
bilinear form (-,-). The affine Lie algebra g is the vector space
9= g®k((t)) ke,

equipped with the unique Lie algebra structure satisfying the conditions,

(1) cis central,

(2) ifx®0,y® 1T e g®k((t)). Then,

k®o,y®1] =[xy ®oT—(x,y)Res(cdT)c,
where Res is the residue at O :

Res: k((t)) — k ,Zajtj —a_

Remark: We may replace k((t)) by the Laurent polynomials k[t,¢~!]
above in which case we obtain a Lie algebra which we denote by gpol-

We consider the degree operator which is the k-linear map D: g — g
defined by the rules,

D("E) =m"E, for E€g

D(c) =0.
With these rules, it is easy to see that D is a derivation of the Lie algebra
g and thus we may form the semi-direct product Lie algebra of g and the

the one dimensional Lie algebra kD, which we denote as the extended affine
algebra

9 =g D ke DkD.

(6.2) Let h C g denote a Cartan subalgebra and denote by A C h" the
set of roots with respect to . Let o € A be the highest root. Define the
extended affine Cartan subalgebra by

~

h¢ = b BkD.

We shall denote by (66)\/ the k-dual of Ge. Then we define the affine roots
A C (h°)V as follows. Each classical root o € A extends to an element
a € (h°)V by requiring that

o(c)=a(D)=0.
Furthermore, we construct an imaginary root 1 € (6"’)v by requiring

Upoke =0 and 1(D)=1.
13



Then we may define,

A:={a+nt}acanez U{nl}nGZ\O'
We shall call
Ay ={a +nl}a€A,neZ
the set of Weyl or real roots and
A= {nl}nEZ\O

the set of imaginary roots. Setting ;1 = —p+1, we shall write {ay,..., 01}
for the set of affine simple roots. Let hjy; = —hg, + ¢, and denote by
{hi,...,h 1} the set of affine simple coroots.

For each o0 € A, we define as usual,
g% = {x € g|[x,h] = a(h)x, forall h € h¢}.
Then we obtain the root space decomposition for the extended affine Lie
algebra,
& =5 D

ach
where it is easy to verify that

% = "gPa=B+meAy
% = "ha=nm €N

(6.3) We call that A € (6‘3 )V a dominant integral weight if
A(hi) €Z>oy for i=1,....01+1
and if in addition
A(hi) € Z~o forsome i=1,....,1+1.

Associated to such a dominant integral weight, there exists a g¢-module v
over k, which admits a decomposition,

A A
Vi = @ 14
pe(b)”
where
Vi = {veV*hy=p(h)yvheh}.
If VL% = 0, then we call 1 a weight and we must have

I+1
n= A— Zk,-oc,-, ki € Z>p.
i=1
14



We then define the depth of such a weight weight to be
I+1

dp(u) := Z ki.
i=1

Finally, we define a coherently ordered basis of V* as a basis % = {vo,v1,...}
such that every v; lies in Vl% for some weight p and so that if v; € V‘% and

v € VZLL, and i < j, then we must have dp(u) < dp(u’). Moreover, we as-
sume that for each weight u the v; which occur in the basis % which belong
to V‘% occur consecutively.

(6.4) In [Gar78], Chevalley forms gz C g and gz C g have been con-

structed. Let
a=hPz”

aeA
be a root space decomposition as above. Then set
bz :==hNgz

and for any o € K,

O

gz =9 Ngz.
Then it is shown in [Gar78] that the coroots Ay, ..., defined above can
be taken to form a Z-basis for hz. Furthermore, for each B € A, there exist
elements Xg € gP such that if e = B +n8 € Ay, then

9y =28y where Eq=1"®Xg,i=1,...,1.
On the other hand, if @ = né € Zl, then we have that
oy =0"Ngz =2Z& (n) & ®ZE(n) where &i(n) =1"®h;
(6.5) The representations v* also admit Chevalley forms VZ’l c V*. Re-
call the weight space decomposition
Vi =euvi.
Letting V[j: 7= Vl% N Vﬁ/}’ we have that
A A
VZ - @MVM,Z.

There is a notion of coherently ordered basis similar to that descriped above.
The Chevalley forms of these reprsentations also satisfy the following im-
portant properties with respect to the Chevalley forms g7, described above.

Proposition 6.5.1. Ler oo = 3 +né € Aw and let Eq as above.
15



(1) For each non-negative integer m, the divided powers ﬁém) = %
stabilize V%

(2) Givenv € V’l, there exists mg € Z>o such that for all m > mg, we
have

&"v=0
(3) Given v € V* and B € A, there exists ng € Z>o such that for all
n > ng, we have
€B+n5 v=0.

Remark 6.5.2. Using the Chevalley forms above, we may define, for any
commutative ring with unit R,

gr = RQ®z9z,
/g\R = R®Z []27

Ao A
VR «.— R®ZVZ

The constructions above extend to this case and in particular the analogue
of Proposition 6.5.1 holds.

7. CENTRAL EXTENSIONS FROM REPRESENTATION THEORY

(7.1) Let R be a commutative domain. We shall fix A a dominant inte-
gral weight throughout, and write VI% for the corresponding highest weight

module. For a € KW, and s € R, the formal sum

Xals)= Y &5

mGZZO

defines an element of Aut(VI%) by Proposition 6.5.1 (2). Furthermore, if
0 =Y;>i,ait’ € R((r)), then we using Proposition 6.5.1 (3) above, we can
also make sense, for o € A of the infinite product

Xa(0) = i Xotis (a;)

as an element of Aut(V7).

Definition 7.1.1. For a given A, we define a sheaf of groups, G locally by
the assignment,

R (Xa(0)|a € Ao €R((1))) C Aut(Vg),
where for any subset X C Aut(Vlél, we denote the group generated by X by

(X

16



Remark 7.1.2. We shall often drop the superscript A and just denote this
sheaf by G when no confusion will arise.

(7.2) We would now like to define certain useful subgroups of G. To do
this, we need the following notations: let

wa(0) = Xa(0)X-a(—0"")xa(0)
ha(0) = Wa(0)Wa(1)™!
For a ring R, we then define the following subgroups,

(1) §(R) is the subgroup generated by elements of the form yu(0),
where,

(@) a € AL(A) and o(r) € R[[t]]
(b) ¢ € A_ and o € tR[[t]];

(¢) hg(o) fora € Ay, o € R[[t]]";
(d) hg,,,(s) for s € R*.

(2) U(R) is the pro-unipotent radical of B and is generated by elements
of the form (a) and (b) as above. Fix an order on the positive, classi-
cal roots A4 (A) so that & < B when the height of « is less than the
height of B. Similarly, fix an order on A_ which is consistent with
respect to heights. Then, it can be shown [Gar98, 5.2] that each
element of u € U (R) has an expression,

(7.2.1) u= Xa(Oo(t))h H Lo (0a(1))
ach, (A) acA_(A)

where

0q() € R[[f]], a € AL(A),

o, (t) €tR[[t], ¢ € A_(A)
where the products are taken with respect to the fixed orders on
A4 (A) and where

1
=Tha(ci(0)

with o;(¢) € R[[t]]* satisfying
oi(t) = 1(mod ).
We also define the congruence subgroups of level j, say uwv (R), to

consist of elements u € U (R) such that in an expression of the form
7.2.1, we have

04 (t) =0 (mod t/) for a € A, (A),

o, (t) =0 (mod t/) for & € A_(A),
17



and '
oi(t) = 1(mod /) fori=1,...,1.
(3) H(R) is the split torus and is generated by elements of the form
hg(s) for s € R* and a € Ay .
Remark 7.2.1. With respect to a coherently ordered basis % of VI§L the
groups above admit the following descriptions,

(1) B is the subgroup of all b € G which are upper triangular

(2) U is the subgroup u € G represented by upper triangular, unipotent
rEatrlces. R
(3) H 1is the subgroup of all @ € G which are diagonal.

(7.3) Let now F be a function field of finite characteristic and for each
place v we denote by F, and &) the completion and maximal compact
subring respectively. In this case, we can define a maximal compact sub-

group K, C G(Fv) as the subgroup which preserves the lattice Vg, C Vp, .
We shall also adopt the shorthand notation Gy := G(Fy),Uy := U(F,), and

Hy, := H(F,). With these notations and methods similar to that of [Gar80,
§16], we have

Theorem 7.3.1 (Iwasawa Decomposition).
(7.3.1) Gy = KyH, U,

(7.4) Keep the same notations as in the previous paragraph, and let Ry :=

(ﬁ’v) Then clearly R, C Ky, and the aim of this paragraph is to show that
Proposition 7.4.1. If the characteristic of F is sufficiently large, then

Ry =K.
Proof. We need to show that if x € Kv, then x € Rv The arguments in
[Gar80, §16] applied to Rv instead of Kv allows us conclude that
(7.4.1) Gy =R,H,U,.
Then the proposition will follow from
Claim 7.4.2. If the characteristic of F is sufficiently large, then
HyUyNKy CRy

Indeed, suppose that Claim 7.4.2 has been verified. Then decomposing x

according to 7.4.1 as x = ryayuy, we have that

r;l)CGﬁvl/]\vﬂEv Cﬁv
18



and hence
X = FVFJIXGRV.

Now we proceed to the verification of Claim 7.4.2. This will in turn be
reduced to the verification of

Claim 7.4.3. If the characteristic of F is sufficiently large, then
U,NKy, CR,.
Indeed, suppose that Claim 7.4.3 has been verified. Then we may factor
(HyUy)NKy = (Hy NKy)(Uy NKy).

With respect to this decompostlon let us write x € (Hv Uv) NKyasx=d, L,
for d, € Hv N Kv and u), € Uv N Kv But clearly Hv ﬂKv - Rv since an
element 1 = Hl L hey(sy) with sy € F) will preserve Vg, if and only if

sy € O%. So, if Claim 7.4.3 is verified, then x = &, i}, € I/Q\v.
Finally, we turn to the verification of Claim 7.4.3. By 7.2.1, we may write

(7.4.2) = [I x«(oa(®)h H xa Ot

acA; (A) ocA
where
0u(t) € Fy[[t]], € Ay (A),
o,(t) €tFy[[t]], @ € A_(A)

where the products are taken with respect to the fixed orders on A4 (A) and
where

!
h= Ilhai(ﬁi(f))
with o;(r) € F,[[t]]* satisfying
oi(t) = 1(mod1).

An argument similar to [Gar98 Lemma 5.6] shows that if u, € I?v, then we

must have oy € Oy|[[t]] and o}, € tﬁv[[ ]]. Hence it suffices to show that if

h=TI'_, ha,(0i(t)) as above is in Ky, then &;(¢) € Oy [[f]]*, fori=1,...,1.
For each j=1,...,1, we have

h%aj(l)h_l = XOCj(Tj) S I/(\V

where




But again using the methods of [Gar98, Lemma 5.6], we may conclude that
foreach j=1,...,1

Tj= 1+ Z Cklk

k=1

where ¢, € 0. Now, set

2(06,‘, (Xj) .

= =1,...,1
Cij (ai7ai) L] )

and denote the matrix C = (¢;;). The elements of C have integral entries, and
hence so does the determinant. Now for any field F in which the primes
dividing this determinant are invertible, the matrix C has an inverse D =
(d;;) with integral coefficients. Then we have,

and so

! d ik ciid ik
,L.jj — HHGi 74
j=1 joi
Yjcijdj
= HGZ- IR = o
l

It follows from a that the coefficients of o are then in &),. This concludes
the proof of Claim 7.4.3 and hence of the proposition. U

Definition 7.4.4. We say that the characteristic of F is good if we can iden-
tify Ky and Ry .

(7.5) The groups G introduced above are essentially central extensions
of the loop group G((¢)). We make this relation explicit in this section. We

now have to be careful which of the groups G* we are dealing with, so we
reintroduce the A into our notation.

We begin by noticing that the same arguments in [Gar80] applied to case
of G* (R), where R is an integral domain (instead of a field) show that the
following relations hold in G(R) :

)
X (0)Xa(T) = Xa(0 + 1)
2)

(Xa(0),28(7)) =T1; jo0, iat jpeaia) Xiat i (€ijo'T/)
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where the ¢;; are constants which depend only on &, 3,1, j (so not on R).
If we further impose the relation

ha(07) = he(0)he(T)
upon the group G* (R) we obtain a quotient group which we denote by
G (R).
Theorem 7.5.1. [Gar80, §12] For each field F there is a central extension
of groups

F* — GMF) — G (F).

Moreover, this extension splits over the image of the subgroup U (F) in

G (F).

(7.6) The groups G" are related to the loop groups G((t)) when A is
suitable chosen. Let G be the simply connected Chevalley group associated
to g. Then let E;L be the lattice of weights on V* and denote by L) := Z;L N
b the associated finite dimensional lattice. Then we say that a dominant
integral weight A is clasically maximal if L, is the lattice spanned by the
fundamental weights of . Then, as follows from the arguments in [Ste67],
the map

G((t) — G
which in general is only surjective with finite central kernel, is an isomor-
phism for A clasically maximal. From now on, we shall assume that A
satisfies this hypothesis in addition to being dominant and integral.

Notation: Henceforth, we drop the A from our notation for groups. Let
B((t)), U((r)) and H((t)) be the images of the corresponding groups in G.
We sometimes refer to these groups as B,U, and H.

(7.7) We would now like to introduce a twisted version of the groups
above as in §1.4. To do so, we first construct an action of the subgroup G,
on V,gl for any k-algebra R. Recall that A was chosen to be dominant integral
and satisfy A (D) € Z. For r € R* We then define the maps,

n(r): Vi — v
on the weight space ViR where u = A — Zfi% kio; as the multiplication

operator by r*(®)=ki+1_ Then it is an easy to see that 1(r) normalizes G(R),
and in fact,

N(r)xa(0)n(r) ™" = xu(o)

o = Zaiti anleGl = Zai(}”l‘)i.

where



On the quotient G((¢)) the action of 7n(r) is thus rotation by the loop pa-
rameter, which agrees with the action introduced in §1.4.

Now we may form the semi-direct product group, G x G- Analogously
to Theorem 7.5.1 we have an sequence

0" — G x Gy — G((1)) X G

(7.8) Finally, we can relate the central extension 7.7 and 5.5 in the fol-
lowing way,

Theorem 7.8.1 ([Gar80, BDO1)). Let F be a field and assume that A is
dominant integral and classically maximal. Then there exists an map of
exact sequences of groups,

Ka(F((2))) —= G(F((£))) X Gy —= G(F((t))) X Gy ,

: |

F* G(F) x Gy,

G(F((1)) % Gm

where d : Ky (F((t))) — F* is a power of the tame symbol depending only
on A.

8. ADELIC GROUPS

(8.1) Let F be a global field of finite characteristic over a finite field
k =T,. Suppose F = k(X), the function field of an algebraic curve X. We
denote the set of places of F' by 7 and identify this set with the closed
points of X. We shall denote an element of # by v € ¥ if we want to
regard it algebraically and P € X if we wish to think of it geometrically. For
each v € 7', we denote the completion of F' with respect to this place any
F,, and denote

v:F, —Z
the corresponding discrete valuation. Let &, the ring of integers of this val-

uation, my the maximal ideal, and 7, a uniformizing element. Furthermore,
we consider the norm,

(8.1.1) |-lv:Ff — ¢*CR
(8.1.2) a — laly:=qg"@
The adeles over F by are given by
AF = H IFV

vey
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where the restricted direct product is considered with respect to [,y Oy .
Similarly, we define the ideles over F' by

HF = H /FJ
vey
where the restricted direct product is with respect to [[,cy O,. If E C 7 is
a finite set of valuations and W = ¥\ E, then we shall denote by

AW = H /Fv
vew

where the restricted product is with respect to [, cw Oy. Similarly, we con-
struct Iyy. Note that Ay = Ar and Iy = Ir. When there is no danger of
confusion, we write shall omit the subscript W from our notation. The local
norms 8.1.1 above induces one on the ideles which shall be denoted by |- |,
or just | - |1 for short.

(8.2) We fix a dominant integral weight A which is classwally maximal.
Recall that for each place v of F we have constructed groups GV, H Vs Uv7 KV,
and Bv in section §3.3. Let us define,
RA = H Rv.
vey
Then we can then form the adelic groups GA, H A u A, and B A by the usual
restrlcted d1rect product constructlon w1th respect to the subgroups [[,cv Kv Jlvey Kv N

Hv Jlver Kv N Uw and [[yey Kv N Bv
From the local Iwasawa decompositions 7.3.1 we have

Gy = KaHuUy.
Ifge éA and we may write (nonuniquely),
g = kghgug , for ky € Ky, hy € Hy uy, € Uy,
then the element /¢ has an expression

I+1
hy =[]ha(0i) .0i €1

i=1
with

I+1 N

|| := [T heu(|il) € H(R)

i=1

uniquely determined by g.
Finally, we shall need a twisted version of the Iwasawa decomposition.

Let 7 € I consider the automorphism of G, defined by 1(7). Denote the

subgroup of the semi-direct product G\A x I (where an element of I acts by
23



rotation as usual) generated by G, and 1() by Gon(t) for short. Then as
n(7) normalizes Uy, may write,

Gan(t) = KaHan(t)Uy.

(8.3) We would now like to introduce an arithmetic subgroup of G A For
each v, we have an embdedding

GF — GFV
which induces a map
i:Gr— [] Gr-
vey

However, as discussed in [Gar(04, §2] the image of this map is not contained
in G4 . To remedy this situation, we define,

Ir:={g € Grli(s) € G(A)}.
We then have the following,
(8.30y/(Tr NBF) = Gr /Br = Gr/Br = G(F[t,t""|/B(F[t,t "))

9. ON ARITHMETIC QUOTIENTS

The loop Eisenstein series introduced below in §6 is a function defined
on the double quotient space,

Ka\Gan(z)/Tr

for 7 € Ir. Later in Chapter 3 we shall see that this doube coset space
parametrizes formal G-bundles on some surface. On the other hand, we
would like to interpret the space as a moduli space for actual G-bundles on
a surface. To do so, we need to be able to choose for each g1(7) € Gan(7)
a representative modulo K A and '+ which is a Laurent polynomial valued
loop rather than a Laurent power series valued loop. The aim of this section
is to use a part of the reduction theory developed in [Gar80] to show how
such a representative can be chosen. Note that the full strength of reduction
theory is not used here, just the fact that one can find a fundamental domain
for the pro-unipotent radical U, under IrNU A-

(9.1) For our given function field F, let k be the field of constants. Our
first goal will be to state an approximation theorem for Ag. To state it, let
us introduce some notation. By a divisor, we shall mean a formal sum

a= ) a(v)v
vey
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with a(v) € Z and a(v) = 0 for almost all v. For each place v, recall that
7y € Oy was a uniformizing element. Define the degree of v by

deg(V) - [ﬁv/nvﬁv . k],
and the degree of the divisor a by the expression

deg(a) := Z aydeg(v).
vey
Given any divisor a, we define the subgroup a A,
Q)= ] =, “Vo,.
vey
Then it is essentially a consequence of the Riemann-Roch theorem for curves
(over finite fields) that,

Proposition 9.1.1 ([Wei74]). There exists a positive integer g called the
genus of F such that if a is a divisor whose degree is > 2g — 2, then

Ap=F+ Q.(Cl)
The form in which we shall use this result is as follows: Let {P;,...,P,}
be a set of points of X (k) and let Q be a point distinct from the P,. Then,
given non-negative integers @; fori = 1,...,n, we have,

Corollary 9.1.2. Let a be the divisor
a= Z —a;P; +mQ.
i

LetU :X(k)\{Ph?PI’va}If
mdeg(Q) >m > 2g—2+2aideg(}’i),

then we have
n
AF :F“‘(I:[P?/;ﬁvl ><p’\/,//lgﬁ)VQ) X H ﬁv

i=1 veU

(9.2) We begin with the following,

Definition 9.2.1. We say that an element & € G(A) has finite 7-expansion if
it may be written as a product of xo (0) where o = (0y) and 6, € F,[t,t].
Also, we say that an element £1(7) € G(A)n () has finite 7-expansion if &
does.

The main result of this section is then,
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Theorem 9.2.2. Let T = (Tp) pex (k) € I be such that 0 < |t|y < 1. Then for
any element in the double coset space

Ka\Gan(o)/T
we can find a represenative E1(t) € Gon /() which has finite t-expansion.

Remark 9.2.3. Tt is crucial here that 0 < ||y < 1. See Chapter 3, §2.3 for a
geometric interpretation.

Proof. Step 1: The Iwasawa decomposition for G,1(7) allows us to write
Gan(t) =KaHaM(7)Uys. Given gn(7), let us write this factorization as

gn(t) = (kp)p(hp)pn((tp)p)(up)p
where P denotes a place of F. Now, we can choose a set & such that for
PeX\E,wehave hp € Hgp,, up € Ug,,and Tp € Op. Then set kz = (kp)pez
and similarly define hz,uz, 7z. It is then enough to show that
gzN(tz) := kzhzn(t2)uz € [ [ Grn(tp)
PcE
has a t-finite expansion since for all other points P € X \ E, gpn(tp) is

integral and hence contained in Kp1 (1p).
Step 2: By 7.2.1 every uz € Uz has an expression of the form

Uz = H Xa(Oa)h H Xa(0a)
acA, acA_

where 1
hz::[l’hm(oﬁ
i=1

and O, 0; are |E|-tuples of formal power series of the form, Y oc jtj where
co=0ifax € A_, and cy = 1 for each component of o;. Furthermore, using
Proposition 9.1.1 and an argument similar to [Gar80, Thm. 18.16] we may
conclude that the magnitudes of c; in the above expression are uniformly
bounded.

Step 3: For uz as above and g € N, we would like to introduce the notion
of a g-truncation of uz which we shall denote by uz[g| as follows: for ¢ =
Y socjt!, let 6(q) = X% c;t/, and extend this definition to |Z|-tuples of
power series in the obvious manner. Then we define,

uzlgl = [1 xa(oa(@)hlgl [ xa(oalq))

oaeA L aeA_

where it remains to define /(g). This we do as follows: recall that

hai (Gi) = XO!;’(GI')X—OG (2;61'_1 )xOﬂi (Gi>WOli(1)_1 .



We then define
l
hlq] = H%Oﬁ(ai(q))x06:'(_61'l(q))xai(ci(q»WOCi(l)1'

With this notation, we can factor uz € Uz as

uz = uz[qluz|q]

(9)

where uz[qg] € UY is the product over & of the congruence subgroups of

—
)
=

level g introduced in §3.2. For y € lA“F N [](3‘1) we have
uzy = uz[qluzlqly = uz(v)lqluzlq]
where uf(y)[q] € U(Eq).
The proof of the theorem is now reduced to,

Claim 9.2.4. There exists g > 0and y€T'N ﬁéq) such that
hzn(z) uz(V)lg (1) 'hs' € Kz
Indeed, suppose we have verified Claim 9.2.4 , then
g=n ()Y = kehzn (t2) uz(v)[q] 1(12) " hz ' han (t2)uz[q).
So, modulo Kz, we can write gz (7= )7 as a product
hz1(2)uzlq]

which clearly has a finite #-expansion.

Step 4: For any given 0 < € < 1, define the subset
Kt = (xa(0) € Ky|o = Y cit',|cily < &) C Ky
i>io
Then form
KE = [T k&
veE
The proof of Claim 9.2.4 can then be reduced to the following,

Claim 9.2.5. Given any 0 < € < 1, there exists g € Nand y € rn ﬁéq) such
that

n(tz) uz(Y)g) n(1z)"" € K.
Indeed, suppose we have verified Claim 9.2.5. Then we may choose €
such that
hgl/(\éhg_ L I/(\E,
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as follows from knowledge of the the explicit action of AonU (see, [Gar80]13.10,
14.11).

Step 5: We would now like to prove Claim 9.2.5. As [[pez || < 1, we
may break up Z into a union of disjoint sets Z; where in each E; there exists
exactly one point Q/ € & j such that [7y;| < 1. We enumerate the elements
of the set Z; by

{Q/,P/,... ,P,{',, .
Let us first verfiy the following,

Lemma9.2.6. LetE={Q,Py,..., P} where |1p| <1, |tp| > 1, and []pez |TR| <
1. For each pair of positive integers j and D consider the following trun-
cated version of the sets K§, and K introduced in Step 4,

KED,D+ j] == {xa(c) €KE|lo =Y cit' ,|ci| <& for D<i <D+ j}
i>ig
KEID,D+ j] == [ KY[D.D + ).
veE
Then consider the following statement which we call P(D, j):
(1) For each D < k < D+ j there exists Y € Tr such that Ye = Yier1
modulo fp N UE(]H).
(2) Letting u;- = uyj, the coefficients of t* for D < k < j in the expression
n(t=)u'n(te) ! lie in KE[D,D + j).
Then there exists D >> 0 such that P(D, j) holds for all j € N.

Proof of Lemma. Let us first show that there exists a D >> 0 such that
P(D,0) is true. From the Corollary 9.1.2 above: given (ap)pez, ap € Fp
with each |ap| bounded by 2¢, we can find for each n € N an element ¢, € F
such that
(dp)pez = (ap)pez + Pn

satisfies the conditions,

o if P O, then |ap| < pe-ndeg(P) and

° |a’Q| < 2atndeg(P)+e ywhere ¢ is some fixed constant (depending only

on the genus of the field).

Let Xo(0) € [pez Gp, Where 6 = (op), and op = Y.>o0¢npt". Then
translating an element ¥ (0z) by X (¢.tP), we obtain an element (o)
where the coefficient of r in o, satisfies the condition:

o if for P, i=1,...r, then |c}j p| < pa—nideg(F)
® |cp pl < 297" where c is as above and n = Y} n; deg(P).
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Hence the coefficient of t” in n(7z)xq(0’)n(7z) "' satisfies the condi-
tion,
o for P, i=1,...r, then |cp p| < 2Dpita—nideg(P) and
o |cp pl <2P4T4THC where c is as above and n = Y/ n;deg(P;).

Finally, we conclude the proof of the lemma from the following,
Claim 9.2.7. Let p1,...,pr,q be integers such that
pi1+-prtg<0.
For fixed positive numbers a,c,M, there exist numbers D,n; € N such that

Dg+a+) nideg(P)+c<—-M
i

and
Dpi+a—n;deg(P) < —M.

Proof of claim. Suppose that |tp| = 27 and |sp| = 24 for some p; > 0 and
q < 0 satisfying
pit-+patqg<o.
Thus, there exists D >> 0 such that D(p; - - - 4+ p, +¢) can be made as small
as possible. Choose D such that this value is smaller that —(r+1)M —r —
ra—c.
For this fixed D choose n; such that

Dp;+a—n;deg(P)=—-M—1
for all i. We then have that

r

1

So then
Dg+a+Y nideg(P)+c< —(r+1)M—r—r(-M—1) = —M,
i

and the claim is proven. U

From this, it follows readily that there exists D such that P(D,0) is true.
An induction similar to that of Theorem 18.16 from [Gar80] then allows
one to conclude P(j+ 1,D) from P(j,D). This finishes the proof of the
lemma. U

The validity of P(j,D) for all j € N implies statement Claim 9.2.5 for the
special case of £ as in the lemma. The case when E is more complicated

and is the union of sets & = UE; also follows from a similar argument.

O
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Remark 9.2.8. Let G A°1n (7) be the polynomial version of the group Gan (1),
i.e., the group generated by ) (o) for o a Laurent polynomial rather than a

Laurent series. Similarly, we define P! and RXOI. The theorem above gives
a surjective map,

KR\ G2 () /T — Ku \ Gn (1) /T

We do not know whether the above map is bijective.

10. LooPr EISENSTEIN SERIES

(10.1) Let u: Q(R) — C* be a quasi-character. Our notation shall be
at :=p(a)
fora e H\(R) Such a u corresponds uniquely to an R-linear map
h— C*.
We say that a quasi-character u satisfies Godement’s criterion if
ReA(hj)) < -2 for i=1,....,1+1.

Using the Iwasawa decomposition, we can also extend our quasi-characters
to the whole group Gan(t) as follows: writing gn(7) = keagun(t), we
know that |a,| € H(RR) is well-defined by §4.2. We then define,

@, :Gun(t) — C
en()  lagl

(10.2) Let u be a fixed quasi-character. Then we can form the formal
sum

En(gn(n))= ), @ulgn(v)y),

fp/fpﬂ@p
for g € (A?A, T € . The above series is called the loop Eisenstein series, and
its basic analytic property is given by the following
Theorem 10.2.1. The series E, (gn (7)) is defined on
Ka\Gan(7)/Tr

and it converges absolutely on the domain in which | satisfies Godement’s
criterion. Furthermore, it has a meromorphic continutation to the region

Re(t+p)(c) <0

where p(h;) =1fori=1,...,1+1.
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(10.3) In [Gar04], the quotient space u A/ (U AN f‘F) is realized as a pro-
jective limit of compact spaces, and is thus equ1pped with a measure du

normalized so that the volume of U F/ U FN FF is equal to 1. Using this
measure, we may define the constant term of the Eisenstein series as the
integral,

Bh(en(0) = [ o )Eulen(dudu

which convrges on the same half-plane as E(u,gn(7)). By a loop analogue
of the Gindikin-Karpelevich formula, we have,

Theorem 10.3.1 ([Gar04]). The constant term Eﬁ (gn (7)) admits an ex-
pression,

Ei(gn(t)) = Y (agn(7))"“P)=P&(u,w)

wew

where we have the following notation: ag is the A component of g in the
Iwasawa decomposition;

10 Cr(—(u+p)(ha))

RN S S A e (A )

(x€Z+ﬂw*
with
—s\—1
Cr(s) =T1(1 - 4"
v
the zeta function of the curve corresponding to F.

Part 3. Geometric Construction of Loop Eisenstein Series

11. BLOCH’S MAP

(11.1) Globalizing the situation of Chapter 2 §1.2, we have the have the
following: Let S € Sch; be integral with function field Fg, and let D C S be
an irreducible divisor with function field Fp. The local ring A = Og p (which
is Osx, where x € D is the generic point), is a discrete valuation ring. We
denote by vp the corresponding valuation on Fg. For each x € Fg, there are
only finitely many irreducible divisors D such that vp(x) is non-zero. Thus,
we may form the map,

T = @TVD : Kz(FS) — @DFS

where the sum is over all irreducible divisors D on S. Viewing K;(Fs) as
a constant sheaf on S and F} as a constant sheaf on S supported on D, we

may view the map T above as a map of sheaves on S.
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Proposition 11.1.1. Let 6, be the cokernel of the map of sheaves T : K, (Fs) —
®pFy. Then there exists an exact sequence of sheaves on S,
0 — Kas — Ka(Fs) 5 ®pFjy — € — 0
where T is the sheafified tame symbol introduced above.
Remark 11.1.2. Let S € Sch; be a regular scheme of finite type. Denote

by SU) the set of codimension j points of S. For x € SU), we denote by
iy : {x}~ < S the corresponding closed embedding. Denote the sheaves

G;]; = D50 (i) Kn—i(k(x)),
where k(x) is the function field of {x}~, we know that
0—K,s— G,

is a flasque resolution called the Gersten resolution. In the case whenn =2,
and S is integral, we are reduced to situation above.

(11.2) Let S € Schy be smooth, and let X C S be an irreducible divisor.
Then following Bloch [?], we may define a map

P : Pic(X) — Hz(S,Kas).

In the notation of [?, Theorem 5.11], this map is called a and it is also
shown that in [?, Theorem 5.11] that this map is injective. We shall need
this injectivity in the proof of Theorem 14.5.2.

Let €1 x be the sheaf of Cartier divisors on X. It fits into the exact se-
quence of sheaves on X,

0— 0y —Fy — %1 x—0,
where Fy is the constant sheaf on X. Taking global sections we have that
Fy —T'(¢1x) — Pic(X) — 0

since H!(X,Fy) = 0.
Let j: X — S be the closed embedding. Then we may define a map of
sheaves on §

VY i x — HY(S, %)
on the level of presheaves as follows: let V C §, and write U =V NX and
choose (U, f) € 61 x(U), where f € Fy(mod O ). Denote by f|x € ©pFj
the element whose component in F}; is 0 unless D = X, in which case the
component is f. The presheaf map V¥ defined by

(V.f) = (V. flx(mod im(T))
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is well-defined. Hence it defines a map of sheaves, which is again denoted
by W. Taking global sections, we obtain a map, also denoted ¥,

¥ I(X,% 1 x) — HY(S, ).

The Gersten complex may be split into two short exact sequences as fol-
lows,

0 — K2,S — Kz(Fs) — |m(T) —0
0 — im(T)— &pFp—%6 —0

Having done so, we may apply the functor I'y, and taking the associated
long exact sequence on cohomology, we obtain a map 0 as the composition,

5 HY(S, %) & HY(S,im(T)) 2 HF(S,Ky).
Bloch’s map £ is then defined through the following diagram,

* o
FY —— HY(S,%)) — Hg(S,Ky) —> 0.

S

Fy —= H(S, %61 x) — Pic(X) ——0

(11.3) In what follows, we need the following explict form of the map %.
Let .Z € Pic(X), and choose an open cover {V; — S} such that U; = V;NX is
a cover of X such that we may choose {(U;, f;)} € I'(X, %) x) representing
. Then we may explicitly describe a Cech representative of %(.%) as
follows: Choose lifts f;; of the elements f;/f; € Oy C Fy under the map
Ty, : Ko(Fs) — Fy. Then the desired cocycle representative of #(.Z) is
given on the open set V;j; = V;NV; NV, by

— 1
Jijfirfix

To see this, we need only trace through the sequence of maps defining %,
(X, %1x) —Ix(S,%) — Hy(S,im(T)) — Hz(S,Kys)
. _ ~ ———
fir fi(mod im(T)) —  fif 7' =T(fij) — fijfinfu
12. ADELEIC LOOP GROUPS AND G-BUNDLES ON A PUNCTURED
SURFACE
(12.1) Let X € Schy be a smooth, irreducible, projective curve with func-
tion field F = k(X). Then let

X[t =X xi (Ap\ {0})
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be the punctured affine line over X. Let G be a sheaf of groups, assumed to
be a simply-connected Chevalley group. Let P be a G-torsor on X|t,t7!].
We say that P is rationally trivial if there exists an open subset U C X and
an isomorphism between

G : Plyy, 1 = U1 xG.

This is equivalent to the existence of a section s € P(F|t,t~']). Similarly,
we say that P is locally trivial at x € X if there exists an isomorphism

Ty : P‘ﬁx[lyfl] = ﬁx[t,til] x G.
This is equivalent to the existence of a section sz, € P(O,[t,t~']).

Definition 12.1.1. We call P admissible if it admits both a rational trivial-
ization and a local trivialization for each x € X, and denote the set of isomor-
phism classes of admissible G-bundles on X [t~ '] by Bun&™ (X [t,r~1]).

A natural question now is to determine how large is the class of admissi-
ble G-bundles. Along these lines, we have the following,

Proposition 12.1.2. Let P € Bung(X[t,t~']) be a G-bundle which can be
extended to a G-bundle on X|t]. Then the P is admissible.

Proof. The statement is local, and so it suffices to prove the following local
statement: Let R be a domain, and M a projective module over R[f]. Then
there exists f € R such that My = M Qg R¢[t] is free.

Let R[t] — R be the map ¢ — 0 which corresponds to the closed embed-
ding, i : Spec(R) — Spec(R|t]). Since M is projective, so is i*M, and so there
exists f € R such that (M ®gj,) R) @r Ry = M @y Ry is free. We would like
to show that M ®gj,; R¢[t] is then free. In other words, we are reduced to the
following claim: Let A be a domain, and N a projective Alt]-module such
that N @4 A is free. Then N is a free Alt]-module.

To prove this last statement, fix an embedding N C A[t]" for some n.
Then, choose non-zero elements ny,---,n, € N, and suppose there is some
relation

ay(t)ny+---+a(t)n, =0

in N, where each ¢;(t) is of minimal degree. Then the same relation persists
in N ®,[;) A, and so we must have

a1(0)n; +---+a,(0)n, =0.

Since N ®4,A was assumed to be free, we can assume that ¢ divides a; (¢),.. ., a,(t),
and so we may write our original relation as,

t(d)(t)nm + -+ +a.(t)n,) = 0.
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Since N C A[t]", and A was assumed to be a domain, we must have that
ay(tny +---+a.(t)n, =0,

contradicting the assumption that @;(¢) were of minimal degree.
U

(12.2) Recall that we have defined a non-centrally extended loop group
G in section Chapter 2 §3.6. In this section, we shall consider a polynomial
version of the same group and retain the same notation. So for example, the
group G shall now refer to the functor which locally is defined on a domain
R by,

R+— G(R) := G(R[t,t71]).

Similarly, we define K,B,H, and U. We denote by G, the adelization of
this group as in Chapter 2, §4.2 with respect to the group K 4. Note that in
this polynomial setting, ['r = Gr.

Generalizing A. Weil’s observation (see Chapter 1, §1.2), we have

Proposition 12.2.1. There is a bijective correspondence between the set
of isomorphism classes of admissible G-bundles Bu n‘é;dm (X[t,t™"]) and the
double coset space

EA\EA/EF.

Proof. The proof is very similar to the corresponding result in the finite
dimensional case, so we just sketch the details here.

Step 1: Given an admissible bundle (P, o,{7,}), we obtain an element
of G, as follows. From ¢ we obtain an element s € P(F[t,t~']) and hence
an element s, € P(Fy[t,t~!]) for each point x € X. From 7 we obtain, for
each x € X an element of ¢, € P(0,[t,t~']) and hence also an element #, €
P(F.[t,t']). We can then find an element g, € G(F,) such that

Sx = Ix8x-

The collection (g,) € Gy as is easily verified.

Step 2: Conversely, given an element g € G, we can obtain a Cech rep-
resentative for a G-bundle on X [t,#~!]. To do so, we shall need the following
approximation theorem: for any proper open set U C X, we denote by

EU = HEV
xeU

Then using Chapter 2 Proposition 9.1.1 and an easy induction, we can show
that for any such U,
Gy, = KuGr.
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Hence, if we are given an open cover cover {U; — X }, we obtain factoriza-
tions

EAU,. = Ky.Gr.
So, for each g € G, we may write
g =kiPi = k;P;
where B, B; € G and k; € Ky, and k; € Ky;. Then the elements,
gij = BiB ' =k ki € GUNU))[t,t7"]

as they are both in Gr and EU,-ﬂUj- The transition functions for the bundle
constructed from g are then g;;.

Step 3: The two constructions above are clearly inverses to one another.
For example: start with an g € G and construct a G-bundle by Step 2 called
P;. Then P, is equipped with rational trivializations 3; (with notation as in
Step 2) and local trivializations obtained from k;. But at any point x € X, we

have

8x - (Bi)x(ki)x
where (J3;), is the image of f3; in G(F;) and similarly for (k;),. But this just
means that the element of G, obtained from Step 1 can be chosen to be
(8x)- 0

(12.3) Let L be a line bundle on X. We may then form the surface which
is the total space of L,
p:Sp:=Spec(L) — X.

We have a closed embedding corresponding to the zero section z: X — Sp.
We denote the punctured surface

S7 =S\ z(X).
Recalling the isomorphism
(12.3.1) Pic(X) =1/(F*+ [] &y)
veX
we now have the following easy consequence of [Ful98, p. 67, 3.3.2]

Proposition 12.3.1. Let s; € I denote an idele representing L € Pic(X).
Then the self-intersection of L in Sy is given by

(L.L) = |SL|]1

We also have the notion of rationally trivial, locally trivial, and admis-
sible G-bundles on S¢. We denote by Bung(S?) the set of isomorphism
classes of admissible G-bundles on S7. The same arguments as in Prop

12.1.2 give,
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Proposition 12.3.2. Let P € Bung(S}) be a G-bundle which can be ex-
tended to a G-bundle on S;. Then the P is admissible.

(12.4) Our next task will be to describe admissible G-bundles on S7 in
group theoretical terms. Usually, we think of G-bundles on $7 as equiva-

lent to Cech 1-cocyles in H 1(SIOJ, G). However, the admissibility condition
allows us to view G-bundles on the surface S? as (twisted) loop group bun-
dles on the curve X. This is of course implicit in the Proposition 12.2.1,
and we formalize it and extend it to the case of the surface S7 as follows:
As in Chapter 2 §1.4 , we have defined the action of the group G,, on G
by "rotation of the loop." Given r € R* and g(¢) € G(R), we have an action

p : G, — Aut(G) defined by

p(r)-g(t) = g(rr).

Thus we form the semi-direct product group G x G,,. The following propo-
sition is then essentially a twisted restatement of the simple "law of expo-
nents,"

ABXC — (AB)C
where A, B, C are spaces and X* denotes the space of maps ¥ — X.
Proposition 12.4.1. There exists a morphism of stacks

TORS(S?,G) — TORS(X,G x G,,)

Proof. Fix an open cover {U; — X }. This gives a covering {V; := Uj[t,t '] —
S7}. By descent, the surface S7 is equivalent to the affine pieces V; equipped
with the gluing map,
7(,,‘]' vinv; — v;ny;
UNU)[e - (UinU) Y
f@) = f(jt)

where {A;;} is a Cech cocycle for L. Note that the map A; ; also induces a
map which we denote by the same symbol,

A,ij : G(ViﬂVj) — G(ViﬂVj).

For a given P € TORS(SY, G), assume that P trivializes over such an open
set. Then P is equivalent to the its descent data with respect to the cover

Vi, i.e., trivializations P|y, 9, G(Vi), which induce maps ¢;; fitting into the
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following commutative diagram,

¢..
Plyny; ———— Plvw,

I o

A
G(VinV)) ——G(V;nV))

o,k

Aij
GUyjlt,r™ 1)) —= G(Uy[r,r 1)

and satisfying the condition,
Gij o Pjk = Pik-

Unraveling this last condition, we find that the ¢;; may be viewed as a Cech
cocyle with values in the twisted loop group,

(Pij € Hl({Ui},EIX Gm)

This construction works not just on the level of isomorphism classes, but on
actual torsors so we obtain an element of TORS(X,G x Gy,). O

(12.5) We use the identification of line bundles with ideles 12.3.1 and
the the same arguments as in Prop 12.2.1 to show,

Proposition 12.5.1. Let L be a line bundle on X which is represented by an

element T € [p. Then there is a bijective correspondence between the set of

isomorphism classes Bun‘éd’"(SZ) and the double coset space,

EA\GAT[(T)/GF.
13. AFFINE FLAG VARIETIES AND EXTENSIONS OF G-BUNDLES

(13.1) Let us keep the notations of the previous section. Let P’ be an
admissible G-bundle on S7. Let B C G be a Borel subgroup.

Definition 13.1.1. Let (P, ¢,r) be a triple where P is a G-bundle on Sy,

equipped with an isomorphism P| 7 LA P? and a reduction r of the structure
group of P to B along X. There is an obvious notion of isomorphism of such
triples (P, ¢,r) and we denote by

Bung:B(SL)

the set of isomorphism classes of such triples.
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The goal of this section is to establish a bijective correspondence between
Bung 5(Sr) and a certain affine flag variety.

(13.2) In §2.4 we have seen how to view our bundle P’ as an G x G,,
bundle on X. The elements of the set Bunlg;: 5(Sr) have the following de-
scription,

Lemma 13.2.1. The set Bunk: 3(Sy) is in bijective correspondence with re-
ductions of G x G,-torsor P° to a B X G,,-torsor:

Using this lemma, we can then prove the following

Proposition 13.2.2. The set of extensions of Bu ngiB(S L) is in bijective cor-
respondence with the set Tp /(BF NTF).

Proof. By Chapter 1, Proposition 3.1.1, we know that reductions of P° to
an B x (g;,-torsor are in bijective correspondence with sections

HY(X,P°/Bx G,,).

But, locally over X we know that P° /B X G,, is just the affine flag variety,
which we know has an ind-proper scheme structure. As P’ is assumed to
be rationally trivial, we have

Hom(Spec(F),P° /B x G,,) =Tr/(BF NTF).
This concludes the proof. U

(13.3) Explicit reduction: We can make the reduction procedure de-
scribed in the last paragraph explicit, on the level of cocycles, as follows.
Let y € I'r be arepresentative for an element of I'z /(Bp NI'r). Analogously
to Step 2 of Proposition 2.2.1, we can associate to each

x=gn(t) € Gyn(r) fort €l

a cocycle representative {x;;} for a bundle P? on the surface associated to
the line bundle corresponding to 7. This is achieved by using the factoriza-
tion over an open set U C X of the element x as

x = kyn(xv)Bun ()

where By € Gr,1y € Fky € Ky, and ky € [Iyey O Now, given a cover-
ing {U; — X}, the bundle P is represented by the cocyle,

(133.1) xi = (k) ky'kun (k)
(13.3.2) = Bun(w,)n(w,) By € H' ({U},Gx Gy).

To obtain a reduction of the {x;;}, we first begin with the following sim-

ple,
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Claim 13.3.1. Let y,x as above. Then for any open set U C X, we can write,

xy = kyrym(ku)bun (v)
where by € By,,, ry € Ky, and Wy, ky are as above.

Proof. Indeed, we have,

xy = kun(xu)Bun(w)y
= kyn(ku)Bu(n(w)Yn(w)")n(w)
= kyn(xy)rybun (w)
= kyrun(xv)bun(w)
where r}; € Ky. In the third line we have use the Iwasawa decomposition

G, = KpB,, and we have also used that 7 (1) normalizes Gr and 1 (k)
normalizes K. O

Now, suppose we are given open sets U;,U; C X. Abbreviate by, by b;
etc. Then we have,

kirin (1) bin (1) = kjrin (k)b (1))
and so,
bin()b; )~ = (k) k; ki ()
= n(Kj)ilrjiln(Kj)rl(Kj>71kj71kin(Ki)n<Ki>71rin(Ki>
= R;'n(x) "k him () R;
== R;l.inRi
where R; = T](Ki>7lrin(1(l') € EUN RJTl = T](Kj)fll’j_ln(Kj) € EUJ., and
where x;; are the transition functions representing P’ as above. A simple
computation shows further that
bji :=bn(1,)b; 'n(u)"' € BUNU;) x Gu(U;NU;).
In summary, given x € G, 1 (7) and y € ['r, we have constructed elements
{xji} € H'(X,G x G,,) and {R;} € G(U;) such that
(13.3.3) R;'xjiRi € H' (X,Bx Gy,)
represents a reduction of {x;;}.

Remark 13.3.2. Starting with x € G4 1(7) and y € GF, we have constructed
an explicit cocycle {x;} for a G-bundle on S as well as a cocycle {b};} for
extension of this bundle to S;. The cocycle {x;;} constructed above can
also be interpreted (using the law of exponents, see Proposition 2.4.1) as
encoding a G x G,-torsor on X and the cocycle {b;;} then represents a

reduction of this torsor to a B x G,,-torsor on X. On the other hand, exactly
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the same group-theoretical procedure can be carried out in the centrally
extended groups, i.e. to elements X € G517 () and 7 € T, we can construct
cocycles x ;i and Zj,-. These cocycles then represent G x G,,-bundles on X
and a reduction of this bundle to a B x G,,-bundle, i.e., Xji € H'(X, G x Gm)
and b i €HY (X ,Bx Gy). Furthermore, there exist elements R jasin 13.3.3
which satisfy,

k\;lfjik\i = /b\ji-

The reduction of X; ; and Zj,- coincide with x;; and bj;, the cocycles cor-
responding to the reductions of x and ¥ modulo the center. To simplify
notation, we shall often drop the hat from the notation of an element in the
central extension, and continue to denote an element of G17(7) by x when
no confusion shall arise. The cocyles corresponding to x will still have a hat
over them though.

14. RELATIVE CHERN CLASSES AND CENTRAL EXTENSIONS

(14.1) Let X be a projective curve contained in a regular surface S (we
do not assume that S is projective). Let P’ be a G-bundle on S° and P; and
P> be two extensions of P° to a G-bundle on S. Recall that we have a central
extension of sheaves of groups on S,

K2—>C~?HG.

Thus, for each G-bundle P;, we obtain a gerbe of liftings, Liftllfiz. Since both
P; are isomorphic on S°, we know that the difference gerbe

Koo a Ko e Ko
LlftPth «— LIftP[ - Llf‘tP2
has a section on S°. Hence it defines a class,
.o K 2

Remark 14.1.1. In the case when P, are vector bundles, then the image of
the class Lift;lz]32 under the map H3(S,Ky) — CH?(S) is equal to c(Py) —
c2(Py), the difference of the second Chern classes (see [?]).

(14.2) The Leray map

HA(S,Ky) 25 HY (X, H' (S, Ky))

can be interpreted in terms of a pushforward of gerbes (see Chapter 1,

§3.4: since the local cohomology group H)Z( (S,K3) = 0, this pushforward
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of gerbes returns a torsor). By the Gersten resolution, we also have an iden-
tification H} (S, K,) = 0% . Hence, we obtain an &-torsor which we denote

by 6> (P1,P») on X by pushing forward Liftgz’ P
Go(P1,Py) = fu(Liftyp, ).

Recall here the conventions of Chapter 1, §3.4: f*(Lh‘tg2 p,) is not the un-
derlying pushforward stack, but rather the torsor of maximal subgerbes of
this pushforward stack.

Definition 14.2.1. Let P;, P> as above. Then we shall define the P,-relative
K-theoretic Chern class of Py, or just relative second Chern class for short,
to be the degree of the line bundle 6, (P, P»). We write this as cgl (Py).

By its very construction, the Bloch map can be seen to be the inverse of
the Leray map f. (see [Blo74, 5.11]). In other words, we have,

Proposition 14.2.2. Under the Bloch map % : Pic(X) — Hz(S,Ky) we have
an equality in H%(S,Ky),

B(Co(P,Py)) = Lifth’p,

(14.3) Our next goal will be to identify the isomorphism class of the line
bundle %, (P, P>) on X in group theoretical terms. We begin with a general

construction ¢ : G471 (7) — Pic(X) which associates to any element
x€ Gy, (1)~ clx) elp

whose image in Pic(X) is well-defined. The procedure is as follows: given
such an x, we may write it using the Iwasawa decomposition as

x=kan(t)u

where
I+1 R
a=[]hi(c;) € Hy with o; € IF.
i=1
As mentioned before, the o; are not unique, but their image in the idele class
group is unique.

Lemma 14.3.1. Let oy = Zle nih; be the longest root. For every x € I,
denote by
1
hc(x) = hl—i—l (x) Hhi(xni).
i=1
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Then every element h € Hy has an expression

/
h= hc<G)Hhi(Gi> foro,o; €lf.
i=1

Moreover, the idele class of G is uniquely defined.

Proof. Every such element 4 has an expression

I+1

h= Hhi(fi).

We choose 6 = 7751 and 7; = 7;6 . Uniqueness of the idele class follows
from the uniqueness of the idele classes of each 7;. U

Construction: To each x € G\AFT] (1), write x = uan(7)k as above. Then
using Lemma 14.3.1 we can associate to a € Hy an idele o € I such that

l

a= hc(G)Hhi(Gi)-

i=1
The image of ¢ in Pic(X) only depends on x and will be denoted ¢(x).

(14.4) Alternative construction of ¢(x): The idele class ¢(x) above de-
fines a line bundle on X, whose Cech representative can be obtained as
follows. The central extension G x G, splits over the subgroup B x G,, C

G x G,,. Let us denote the section by ®: Bx G,, — G x G,,. Fix a cover
{U; = Spec(R;) — X} (We may have to refine it below, but this can be done

by Chapter 1 Lemma 4.1.1) Then given an element x € (A?An(r), we can

construct a cocycle b;j € B(R;;) X R}; as in 13.3.3. Denote by bj; the image

of l;; under the map,
G x Gy, — G X Gy,

Lemma 14.4.1. The line bundle ¢(x) is isomorphic to the line bundle with
transition functions

)Lij = B;lcb(b,j)

Remark 14.4.2. If R — S is a map of domains then we have the following
commutative diagram,

G(R[1]) x R* X~ G(R) x R ,

| |

G(SH]) x §* 2+ G(s) x §*
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where both vertical arrows are injective. Hence, viewing b ji € (A;(F ) X F*,
we may equivalently write

Aji = b3 @p (bji).
Remark 14.4.3. The section ®f above is actually uniquely defined. This
follows from the following simple observation: let A — E Z G is a central
extension of groups such that G = [G, G]. If s,t are two sections of 7, then

s = t. Indeed, let x € G be written as x = [a,b]. Then s(a) = t(a)a and
s(b) =t(b)B where a, B € A. But then,

s(x) = [s(a),s(b)] = [t(a) e, (D) B] = [t(a),t(D)]
since o, B are central. The fact that By x F* is equal to its commutator
group follows from an argument similar to [Ste67, Lemma 32’].

(14.5) Let T € I be such that 0 < |7|; < 1. Let L; be the corresponding
line bundle on X and denote by S; and S7 the total surface and punctured
total surface attached to L. Pick x € G417 (7). By Chapter 2 Theorem 9.2.2,
we can chooseA a polynomial representative for the coset of x modulo left
translation by K, and right translation by T'r. Fix one such polynomial rep-
resentative and continue to denote it by x. Then, the reduction of x modulo
the center gives an element of K 5 \ Go7(7)/T'r. By Proposition 2.5.1, this
element corresponds to a G-torsor on S7 which we shall denote by PY.

Remark 14.5.1. We do not know whether this bundle depends on the poly-
nomial representative of x which was chosen. However, we shall not need
this fact in what follows.

We have seen that to each y € fp, or actually to its coset in fp / fp N B Fs

we can construct a well-defined reduction of P{ to an element in Bu ng 5(S7)
which we shall denote by Pyy. The main result of this section is then the
following,

Theorem 14.5.2. Let x € Go1(7) correspond to the G-bundle P° on 2. Let

Pyy, and Py, be extensions to G-bundles on S; corresponding to elements
7,% in Up. Then, we have an equality in Pic(X)

(c(xn) @c(xp) N = Go(Pay, Py
where N is the power of the tame symbol in Chapter 2, Theorem 3.7.1 (de-
pending only on the group G).
Proof. By Proposition 14.2.2 above and the injectivity of the Bloch map, it
suffices to verify the equality in HZ (S¢,K>),

A((e(xn) @e(xp) ) = Liftp?

XY 4 XY
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Step I: Let us understand the right hand side of the above equality. In
other words, given a bundle Pyy, let us compute its gerbe class Liftllffy €
H?(S;,K») group theoretically. Let {U; = Spec(A;)} be any covering of X,
which we may need to refine later. From section §3.3, Remark 3.3.2, we

can associate to x € G, 1(7) a cocycle ¥ e HU(X, G X Gy). The reduction
of this cocycle modulo the center will be denoted by {x;;} and it represents

the bundle P . Moreover glven Y€E FF, we have also constructed elements
R and a cocycle b; i€ HY(X, B % G,,) such that

P |
bji= ; XjiR; .

1

The reduction of & ;i modulo the center will be denoted by {b;} and it rep-

resents the bundle Pyy. The reduction of the ﬁ modulo the center will be
called R; and it will provide the explicit reductlon of the cocycle Xji to bji.

Then (refining the cover if necessary), we may choose lifts b; i € G(A; ilt])
Aj; of bj; under the map

Ko (4l1]) — G(Aij[t])  Af; — G(A[t]) x A}
A representative for the gerbe Liftgj/ is then given by

Zjigikg;k S KZ( jlk[ ])

Step 2: Let Fx denote the function field of X. Then we have the following
diagram of groups,

1 —— Ka(Fx (1)) —= G(Fx (1)) w Ff ——= G(Fx(t)) x Ff — 1

) iw i

1 Fy G(Fx) x Fj — G(Fx (1)) x Ff —= 1

where the map d is some power of the tame symbol (see Chapter 2, Propo-
sition 3.7.1) and the map @ is surjective. We may regard G(A) C G(Fx)
for any ring A C Fx. Thus we may choose lifts R; € G(Fx (1)) and Xji €
G(Fx (1)) x Fy of Rj and X; under @. Denoting by

hji=R%;R;" € G(Fx(t)) x Fy,

we have that ji is a lift of bj; under by commutativity of the above dia-

gram.
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Step 3: For every ring A C Fy, we also have a commutative diagram by
base change,

G(A]f]) x A*

|

G(Fx(t)) x F* — G(Fx(t)) x F*

G(A[f]) w A*

Let us continue to denote by b ji the image of b ji under the left vertical map

and b j; for the image of b ; under the right vertical map. Then as b ji 1s a lift
of bji € G(Fx(t)) under 7, there exist elements o(j; € K»(Fx(¢)) such that

Zj,' :Ejiaji € 6(Fx(l‘)) x F*.
Step 4: For any A C Fx, the map Ky(A[t]) — Ko (Fx(¢)) is injective by
the Gersten resolution. Thus, we regard computations in K, (A[t]) as actu-

ally occurring in K;(Fx(t)). So, the gerbe class of Liftgfy then has cocycle
representative

bibuby! = (RpGiRi ) (RaRe )(Re 5 Ry)egicory)

= (axge ) (ogiogo!)
where in the first line we have used that ¢j; is central and in the second that
the product )?ﬁfciijv;fl is central.

Step 5: Our next goal will be to compute the image of ¢¢j; under the map
d. In order to do this, consider the following diagram of groups,

Ka(Fx[t]) — G(Fx[t]) x F* — G(Fx[r]) x F* |

[
Ka(Fx (1) — G(Fx (1)) x F* — G(Fx(t)) x F*

: i

Fx G(Fy) x F* —> G(Fx(t)) x F*

where all rows are exact (where the top row is exact by [BDO1, 3.1.1, p.26],
and the composition of the maps Ky (Fx[t]) — Ka(Fx(t)) — F¥ is zero, and
o 1s surjective. Using the above diagram, we can define the following map
from R

Y: G(Fx[t]) — G(Fx)
as follows: let b € G(Fx[t]) x F*, and choose a lift b € G(Fx|r]) x F*. Note
that the element @ (b) € G(Fx) x F* is then independent of the choice of b,

and so we have a well-defined map W : G(Fx[t]) x F* — G(Fx) x F*, which
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is easily seen to be a section of the map 7. But such a section is unique by
Remark 4.4.3, so we must have ¥ = & where ®r was the section con-
structed previously in §4.4.

Recall that we have defined Cech cocycles for ¢(xy) in (5.2) as

c(xy)ji:= E;ITF (bji).

We then compute,

c(xy)ji = 3 Or (bji)
= b; ¥(bj)
— B w(bj;)
— Z o(hjio;)
= 5 o(hji) (o)
= b 11’118(0‘11)

In summary, «;; is a lift of ¢(x7y) ;; under a power of the tame symbol.
Step 6: Suppose we are given Py, and Pyy,. Then there exist O‘,lw Oc2 €
Ko (Fx(t)) satisfying

c(xn)i = 9(atj;) and e(xp2) ji = I (0t}

and such that the gerbe classes of Liftl,};zy1 and Liftl,léfy2 are given by,

I\ L1
(o jixixX ji )(ajio‘ik(ajk) )
and
— 1
(xj'ixikxjk )(e] o (o )

respectively. Taking the difference, we find that the class of LlftP 1 Pers is

given by
(oo (i) ™) (a0t (o) ™)~
But recalling how the map % was constructed explicitly on the level of

cocycles in §1.4, we conclude the proof of the theorem.
O

15. LooP EISENSTEIN SERIES AND GEOMETRIC GENERATING
FUNCTIONS

(15.1) In this section, we summarize our work so far on geometrizing
the loop Eisenstein series of Chapter 2 §6. Keep the conventions of §4.5.

Also, we introduce the following notation: for P € Bung(S%), and Q €
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Bung"nB(ST), we define a relative multi-degree which takes values in b =
ke® b,

(15.1.1)deg : Bung 4(S:) — B
(15.1.2) P — degy(P)=(c5(P)"/N, deg(P|x)),

where N is as in Theorem 4.5.1 and 02Q (P) was the relative K-theoretic
second Chern class of P defined as the degree of 62(P, Q).

Theorem 15.1.1. Up to a constant, the loop Eisenstein series Ey (x) is equal
to the generating function,

Y p(degy(P))

P()
PcBung 5(St)

Proof. Given our previous results, this is essentially obvious. Let us just
note that we have identified,

Bung: (Sc) < p/Tr NBp.

So it remains to show the relation between [,L((ieng) and &, (xy) (notation
as in Chapter 2, §6). But, recall that

Dy (xy) = w(lheyl),

where

~

hyy = he(0) [ Thi().
i=1
By Proposition 4.4.1, we understand that |o|Y and c2Q (Pcy) are related by
a constant (depending on our choice of Q). Furthermore, the degrees of o;
are related to the deg P|x by Harder’s work in the finite dimensional case
[Har74, Lemma 2.1.1]. The theorem follows from these obsevations.

16. RIBBONS AND A FORMAL ANALOGUE

As we have seen in §5, we can interpret the loop Eisenstein series as a
generating function for bundles on the affine surface S;. Suppose we are
in the following more general situation: let X < S be a curve contained in
any arbitrary projective surface (all schemes are over k a finite field) with
self-intersection (X.X) < 0. Let S° = S\ X, and fix P’ € Bung(S?). Then
Kapranov has defined the generating series,

Egp(q.2)= Y, x(AMcpo(n,a))q'z"

neZ,acl
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where y (4L 5(S;n,a)) is the number of k-rational points in the moduli

scheme ,//lgoB(S ;n,a) parametrizing G-bundles on S extending P°, whose
second Chern number is n (note: S is now a projective surface so we have
a well-defined notion of second Chern number), and whose restriction P|x
to the curve X is equipped with a reduction to B which has degree a €
L C hyz. The above series also admits an adelic interpretation in terms of
Einsenstein series on loop groups twisted by the higher idele group I[[¢]]
described below.

(16.1) Let S be a noetherian scheme and X a closed subscheme defined
by a sheaf of ideals .#. We denote the formal completion of S along X by
the pair (§X, ﬁ’gx). Recall that this is the ringed space whose underlying
topological space is X and whose sheaf of rings is

Os, =lim0s/ 7%,

where Zx is t}f\ideal sheaf of X. Similarly, if .% is a coherent sheaf on S,
we denote by .# :=lim.% / #".% the completion of .% along X.

By a noetherian formal scheme (or just formal scheme for short), we
shall mean a locally ringed space (X, 0y) with an open cover {{l;} such
that for each i, the pair (;, O%|y,) is isomorphic, as a locally ringed space,
to the completion of some noetherian scheme X; along a closed subscheme
Y;. Morphisms of formal schems are morphisms as locally ringed spaces.

Definition 16.1.1. Let X be a scheme. Then by a ribbon over X we shall
mean a formal scheme (X, 0%) whose underlying topological space is X
and such that there exists an affine open cover {4l; = Spec(R;)} of X such
that for each i, the pair (l;, Ox|y,) is isomorphic to (Spec(R;), O,))- By a
morphism of ribbons, we shall mean a morphism of formal schemes which
is the identity on X. Let ¥ — X. We shall denote the set of isomorphism
classes of ribbons over X by Rib(X).

As in Chapter 2, §1.4, we define for any open affine U = Spec(R) C X,
the sheaf

Aut(R[[t]]) = {Z rit'|r; € R*}.
i=1
It is clear that we have an isomorphism of (pointed) sets,
H' (X, Aut(x[[1]])) = Rib(X),

where the left hand side is interpreted as a non-abelian cohomology group.
The map

Aut(R[[f]]) — R*
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obtained by projecting onto the coefficient of + may be glued together to
obtain a map

Aut(Ox[[t]]) — O%
which induces a map,

Rib(X) — Pic(X).
We denote the degree of a ribbon to the degree of its image under the above
map.

(16.2) The rough structure of the group Autg(R[[t]]) is given as follows.
Let
R* C Aut(R][[1]])
consist of elements of the form ¢ +— rt where r € R*. Denote by Ug C
Aut(R[[t]]) the subgroup of elements of the form

t—t+at>+azr>+..., fora; €R.
Then we have,
Lemma 16.2.1. Aut(R[[t]]) = Ugr X R*.
Proof. First note Ug.R* = Aut(R[[t]]). Indeed, given x = ¥;_, b;it’ then
xo bl_lt € Up.

It is easy to verify that R* normalizes Ug. U

(16.3) Main Example: The main example of a ribbon for us will be
constructed by taking the formal neighborhood of a curve X inside a surface
S. We shall denote this ribbon by SX and the punctured ribbon SX \ X by S(’
If L is a line bundle over X, then we may form the total space S; — X as in
the previous section. The zero section z : X <— Sy defines ribbon which we
denote by S) 1. Thus we obtain a map,

Pic(X) — Rib(X).

We say that aribbon has linear structure if it lies in the image of this map. In
the case when X = P!, all ribbons with negative degree have linear structure
as we shall see below.

(16.4) We have already seen that line bundles on a curve X are clas-
sified by elements of the idelic double quotient space F*\ Ir/[Tycx -
Yongchang Zhu has informed us of an analogous presentation for ribbons
over X. The role of T is now played by the group,

=[] Auw(#[1])
veX

where the restricted direct product is with respect to the subgroups Aut (O [[t]]).
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Proposition 16.4.1. (Y. Zhu) Let X be a curve. Then we have a bijective
correspondence between the sets,

Rib(X) < Aut(F[[r]) \T[[e))/ T JAut(v[[1]])
Proof. For V C X an open, we denote by

Qv =T] Au(F[) x [T Au(ov[i]).

vex\V veV

For p € X and V, = X \ {p}, we shall write for short

Q.(p) = va.
Also, we write,
UA = H UFV
veX

where the restricted direct product is with respect to {Ug, }.
Step 1: We have an approximation theorem,

1([1]] = Autr (F[[1])2(p)-

To prove this, let x = (xy) € I[[¢]], and use the Lemma 6.2.1 above to write
this as xy, = ryuy for (ry) € I C []F; and (uy) € Uy. By the approximation
theorem for I, we may find ¢ € F* such that ry¢ € [],,, Oy Hence,

xp =rv00 luyg € H Oy xUy.
V#p

Thus it suffices to show that
Uy = (UAQQ(]))) X (UFQUA).

But this follows from the additive approximation theorem for A and an easy
induction.

Step 2: Let T € 1[[t]], and choose an open cover {Uy = Spec(Ry)} of X.
Then over each open set, we may write,

T=xqrq forrq€Qu, andxy € Aut(F[[t]]) .
Then on overlaps Uy N Up, we find
Top = Xg Xa = rpry’ € Aut(Rep[[r]]).

The 74p then form a cocycle for an Aut(Ox [[t]])-torsor (i.e., a ribbon on X).
Step 3: Conversely, suppose we are given a ribbon Y over X. Then
the ribbons ¥ ®x F and Y ® &, for any v € X are both trivial. For each
v, the difference between these two trivializations gives us an element in
Aut(Fy,[[t]]). It is then easy to see that we actually obtain an element of 1¢]]

in this way.
O
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(16.5) Our next Atask will be to describe bundles over the ribbons. I:et
us regard a ribbon S over X as a site with covers of the form {U|[[t]] — S},
where U — X 1is a Zariski open set. Then G-torsors on S are defined with
respect to these covers. In this section, we shall revert back to our original
convention from Chapter 2, §3.5 and a bar over a group will mean the formal
non-centrally extended loop group. So for example, G(R) = G(R((t))).
With this definition, the proof of the following statement follows as before,

Proposition 16.5.1. Let t € I[[t] and S; (52) the corresponding ribbon
(resp. punctured ribbon) on X from the previous proposition.

(1) There is a bijective correspondence between: (a) G-torsors on 5‘\‘1’;
and (b) elements of the double coset space,

Kp\ Gy x1[[t]/TF.

(2) Let P° be a given G-torsor on S5. Then there is a bijective corre-
spondence between: (a) the set of triples (P T,r) where hP is a G-
torsor on Sf, T: P| s P° is an isomorphism, and r is a reduction

of P | x to an B-torsor; and (b) the elements of the set
FF/(EF N I:F)

(16.6) The loop Eisenstein series construction from of Chapter 2, §6 can
be carried out when 7 € I[[¢]]. In this context, and we define the formal loop
Eisenstein series by the same formula as before,

Ey(x) = Y @v(xy)
TF/EFQTF
for x € Ko\ Gan(t)/Tr, and 7 € I[[7]].

Remark 16.6.1. The analytic properties of this series remain to be investi-
gated.

The geometric description of this series is achieved as follows: Let X — §
where S is a projective surface. Let P° be a fixed G-bundle on $°. To every
extension P € Bung:B(S), we denote its multi-degree by

deg(P) = (c2(P)"/", deg P|x) € bz,
where N is as in Chapter 2, Theorem 4.5.1. Then we can form the formal
generating series,

Hu(P)= Y uldeg(P)

PeBunk’5(S)

This series is related to a series of the form E\u as follows.
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Let 7 denote the element of I[[¢]] which corresponds to the ribbon Sy, and
denote the correspondlng bundle on S" corresponding to P° by P°. Then we
may find x € Ky A\ Gan(t)/TF whose reduction modulo the center gives an
element in K \ Gy x1[[t]]/TF which corresponds by Proposition 6.5.1 to a
formal bundle P Wthh is isomorphic to P°. The space of formal extensions
of P° to a bundle on SX can be identified with the set

FF/BF ﬂFF.

By the descent lemma of Beauville-Lazlo [BL94], we may identify the
set of these formal extensions with the set of actual extensions Bung{:B(S).
Hence for this choice of x, the formal loop Eisenstein series Eu (x) can be
indentified (up to a constant) with ., (P°) as formal series. However, it re-
mains to be seen whether this identification can be refined in any way. This
again will involve investigating the analytic properties of the formal loop
Eisenstein series.

17. EXAMPLE: LOOP EISENSTEIN SERIES ON P!,

(17.1) In the case when X = P!, ribbons are particularly easy to describe.

Lemma 17.1.1. Let X = P'. Let Y be a ribbon whose degree is negative.
ThenY is linear (i.e., comes from a line bundle on X).

Proof: Let us give a Cech computation of H' (P!, Aut(&p1][t]])). Denote
by Uy = Spec(k[s]) and U; = Spec(k[s~']) the two open sets covering P!,
So, we are reduced to computing H' ({U;}, Aut(Ox[[t]])).

Recall how the multiplication in Aut(R([[¢]]) is defined: let f(¢) =Y | a;t’
and g(t) = Yo | b;t'. Then multiplication is by composition,

f(t)og(t) = arbyt + (ayby +asb?)t* + (ayb3 +asb by +arbaby +azby) +

Let f(t) = Y2 a;it’ € Aut(k[s,s~'][¢]]) represent the 1-cocyle in H' ({U;}, Aut(Ox[[t]])).
The negative degree hypothesis means that a; = ¢s™", for n € N. Hence

k[s] C aik[s],

and it is clear form the above expression that we can choose b; € k[s] such
that

F(0og(0) = Y d
i=1
where d; € k[s~!]. Now, precomposing f(t)og(t) with h(t) € Aut(k[s~!][[£]])
we can see that
h(t)o f(t)og(t) =
where ¢ € k[s,s~1]*. O
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(17.2) From Lemma 7.1.1, we know that all on X = P!, the set of ribbons
with negative degree coincides with the space of line bundles with negative
degree. Suppose we fix such a ribbon 3’} corresponding to an idele 7 € [F.
We now wish to clasify G-bundles on §g This 1s equivalent to looking at
the double coset space,

Ka\Gan(7)/Tr.
In the case X = P!, this set has a particularly nice description which can
be seen as an analogue of Grothendieck’s theorem for loop group bundles.
We first begin with the case of centrally extended groups because it shall
be useful for us in the next paragraph. But, of course the central extension
does not play a significant role in the remainder of this section.
Recall that H A C (AiA be the subgroup generated by elements of the form

I+1

[ 1% (0i) for o; € Ir.
i=1

For x € FIA, we define

1+1
(n(e)% = [ o™ %1,
i=1

where 0, ;1 is the Kronecker delta function.

Definition 17.2.1. Let H 1 C H, as the subset of elements with |(xn (7))%| <
1 for j=1,...,14+ 1, where the norm is the standard norm on I.

Proposition 17.2.2. Let © € I such that |t| < 1. Let H lc Hy, denote the
subset defined above. Then we have,

Gan(t) = KpHyn(1)Tr

Proof. Let us first construct a fundamental domain for U A under fF ol A-
Let p € X be any point. Recall that we have

AF :F-I-Q,
where
Q=m"0,x]]0Ov.
V#p

From this, it is standard that a fundamental domain for U A under lA“p NnO A
is given by the set Ug consisting of elements of the form,

!
X = Xa(0Oal(t)) Hhai(ci(f)) H Xa(Og (1))
ocA; (A) i=1 oeA_(A)
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where
o;(t) =1 +ait+ax> +azt’ +... with ¢ €Q, ,
and
O, 04 (t) =ap+ait +art’ +a3t> +... with a; € Q.
Let us now note that if x € A}, then
(17.2.1) xUox~ ! € Ky.

Indeed this follows form the definition of H }%, the formulas13.10 and 14.11
of [Gar80], and the fact that an element of € has a pole of order at most 1.

The proposition now follows from the Siegel set construction of [Gar80].
O

The above proposition also holds for the non centrally-extended loop
group G. As a consequence, we have a purely group-theoretical proof of
the following theorem originally due to Kapranov.

Corollary 17.2.3. Let X = P! and © € I an idele with negative degree d.
There is a bijective correspondence between the set of G-bundles on §‘{. and
dominant affine coweights of the form (0,a,d) € L;=Z0Ld Z., where the
first Z, corresponds to the center and the last one to the degree operator.

Proof. This set in the corollary is in bijective correspondence to the space
of double cosets,

Ka\Gan(7)/Tr.
Let 1711% be the non-centrally extended analogue of H li described above. Fix
a prime p € X. Then every element x € ﬁ}% can be written as a product,

[
X = Hhai(O'i) for o; € Iy

i=1

can be factored as x = xgx,xF, where

1
X = Hh(xi(di/) for Gi/ € I_I ﬁ:
i=1 V#p

)
Xp = Hhai(cj) for O-i,/ € k;;
i=1

and

l
xp = [ [ ho,(0]") for 6" € F*.
i=1

55



Picking a local parameter z at p, we may write

l
xp = [ 1, (") for
=1

1
where
2"y = loil.
Since every element of the double coset space has a unique representative
Xp as above, the corollary follows. U

(17.3) Recall that we have defined the constant term as

ﬁ = /I/& UQ IF
E;(x):= E,(xu)du.
( ) ~ /(A ~ ) ( )

Let us define for x € G471 () the function,

Fu(x) = Ey(x) — Ef ().
Our goal will be to show that

Claim 17.3.1. For any x € G41(7), we have Fy(x) = 0. Hence the Eisen-
stein series is equal to its constant term on P!,

Proof. Let us first show that
Ey(x) = Ey(xu) foru € Uy.
As

-~

Up =Uq(TrNUy),
it suffices to show that

Ey(x) = Ey(xu) for o € Uq
since the Eisenstein series is clearly lA“p-invariant. Suppose that (modulo
I'r) we have written

x=khn(7)u

where k € I?A, heH é, uc ﬁg Then again (modulo lA“F) we may write
x@ = khn (t)u’

foru’ € ﬁg. However, we may conjugate 4 past both u and absorb the dif-
ference into K by 17.2.1. Thus, we see that E}; (x) = Ey, (xu).

But, clearly Eﬁ (x) is also right Uy -invariant. So then F(x) as well. So,
we may compute, (by the way we have normalized the measure),

Fy(gu)du = Fy(g).
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On the other hand, by definition, we have

F, udu:/A . E udu—/A AAEﬁ u)du=0.
u(gw) Un/(UsNI'F) wlgw) Ua/(UsNTF) il

/ﬁA/ (UaMTF)
O

(17.4) Combining the results of the previous paragraph with the compu-
tation of the constant term from Chapter 2 §6, we have the following,

Theorem 17.4.1. When F = k(P'), we can indentify the loop Eisenstein
series

(174.1)  Ev(gn(r)) = Y (agn ()" P 7P&(v,w)

wew

where we have the following notation: ag is the H component of g in the
Iwasawa decomposition;

cvowy = ] @ (=(v+p)(ha))
acA w1 (A) P (=(v+p)(ha)+1)
with @p (s) = m where k =F.

Remark 17.4.2. Both the left and right hand side of 17.4.1 have geometric
definitions: the left hand side by Theorem 5.1.1; and the zeta functions on
the right hand side in terms of symmetric products of a curve. It would be
interesting to obtain a purely geometric proof do the 17.4.1.

Part 4. Appendix: Central Extensions and Riemann-Roch theorems

18. INTRODUCTION

(18.1) In this chapter, we shall be interested in formulating a certain
Riemann-Roch theorem for gerbes. Let us briefly recall, following [Del87],
the general context in which this result fits. Let f : S—X be a proper, flat
morphism of pure relative dimension N (we shall be interested in the case
when N = 1, i.e. a family of curves parametrized by a base X). Let I be
any finite set of indices and {C;7| p > 0,i € I} a set of indeterminates with
C;', having weight p. Let P be any polynomial in the Cj,, homogeneous of
weight N + 1. Given vector bundles E; on S for i € I, we may form the p-th
Chern classes of the i-th bundle ci, := cp(E;) and then define

= | P(c(E).
= fox (cp(Ei)
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There are many contexts in which the above construction may be carried
out, but we shall work with §, X as quasi-projective algebraic varieties and
take ¢, ¢}, to be valued in the appropriate Chow group. In this case, we have

c € CH'(X) = Pic(X),

1.e., ¢ determines an isomorphism class of line bundles. Deligne then poses,

Problem A: Construct in a "functorial" (see [Del87, §2.1]) manner, a line
bundle on X called
Iy/xP(Eili € 1)
whose first Chern class is equal to c.

If E is a vector bundle on S and Tg/x the relative tangent bundle of the
map f, then the usual Riemann-Roch formula gives,

(18.1.1) ch(Rf.E) = /S | HE)Td(Ts)

where ch is the Chern character and 7'd the Todd class. Focusing our atten-
tion on the component of degree 2, the class we obtain on the left hand side
is
ci(det RfLE),

the first Chern class of the determinant of the cohomology line det Rf,
constructed in [KM76]. Let RRy 1 be the component of degree 2(N + 1) in
ch(E).Td(Ts/x). It is a universal polynomial of weight N + 1 in the Chern
classes of V and Ty /g with rational coefficients. Assuming that the solution
to Problem A posed above is known, then Deligne also poses,

Problem B: Find an integer M such that M.RRy | has integral coeffi-
cients and construct a canonical isomorphism of line bundles

(DetRf,E)*M = Is/x M.RRy 1 (E, Tg)x)

(18.2) Let us now specialize to the case when N = 1. Then, Deligne has
answered both of the above questions. Let us here sketch his solution. If
N =1, we are interested in homogeneous polynomials in the C, of weight

2, and so only in C 11 C % and C%. The answer to Problem A then amounts to
two functorial constructions:

(1) Ig/x Cl1 .C} (E1,E,) assigns to two vector bundles E},E; on S a line
bundle on X whose first Chern class is the integral of the product of
the first Chern classes of £y and E» on S. However, as the first Chern
class of any vector bundle E is only dependent on the line bundle

N°PE we may restrict to the case when E; are actually line bundles.
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In this case, Deligne has attached to any two line bundles L,M on
S a line budle on X which we denote by (L,M). It has functorial
properties as described in [Del87, §6].

(2) Is/x C; (E) assigns to each vector bundle E on § a line bundle on X
whose first Chern class is the integral of the second Chern class of
V on S. The construction and its functorial properties are described
in [Del87, Prop 9.4].

Moreover, there is actually an extension of the construction of the above
two constructions to virtual vector bundles (see [Del87] for a precise defi-
nition, but here we shall just consider the extension to differences V| —V,
of vector bundles). Similarly, the determinant of the cohomology line bun-
dle det Rf can also be extended to virtual bundles. A relative form of the
answer to Problem B is then the following,

Theorem 18.2.1. [Del87, §9.9] Let S — X be as before with relative di-
mension 1. Let E|,E» be vector bundles on S with trivial determinant, i.e.
NPE; = O and such that there exists an isomorphism E|so = E;|so. Then,
there is a canonical isomorphism of line bundles on X,

Detf* (El —Ez) = IS/X G (El —Ez)

(18.3) The aim of this appendix is to provide a categorical interpreta-
tion of Theorem 18.3 above. In other words, we would like to find describe
an equivalence of gerbes from which Theorem follows by looking at mor-
phisms between objects in the corresponding gerbes. In our formulation,
this statement is essentially a comparison between two central extensions
and as such was inspired and is similar to the results of [KVO07]. It would
be interesting to establish the precise connection between these two results,
though we note that [KVO07] is for the reductive group GL(n) whereas we
are concerned with SL(n) here.

19. DETERMINANTAL CENTRAL EXTENSIONS AND GERBES

Let G = SL(n) be fixed throughout this appendix. Though this may be
unnecessarily restrictive, we assume this for convenience.

(19.1) Given an irreducible X € Schy, we have constructed an extension
of sheaves on X,

Ka((1)) = G — G((1)).
Pushing by the tame symbol d : Ky((7)) — € we obtain a central extension
Oy — G~ G((1)

which is usually called the primitive central extension.
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We would like to identify this central extension in some more concrete
terms. We do this using the notion of relative determinant lines on affine
grassmannians. Recall from Chapter 1 §4, the dictionary between central
extensions and multiplicative torors. Specializing to our case, we are inter-
ested in the category of multiplicative &*-torsors on the affine grassmannian

Grx := G((1))/G][t]] over X.

(19.2) As a preliminary step in constructing such a multiplicative line
bundle, let us recall the following notions from [KV07, §3]. Let X be a
scheme and & a locally free Ox((¢))-module of rank N. Then,

Definition 19.2.1. A lattice in & is a sheaf of Ox[[t]]-submodules .7 C &
such that Zariski locally on X the pair (.%,&) is isomorphic to the pair
(Ox[[t]]", Ox ((£))N). A special lattice is a lattice equipped with a trivializa-
tion of A’°P.Z as an Ox|[t]]-module.

The fundamental properties of such lattices are then given by,

Proposition 19.2.2. [KV07, Prop. 3.1] Let X be quasicompact and .7 ,.%,
be two special lattices. Then,
(a) Zariski locally on X, there are integers a,b such that

agl C 32.2 C l‘bgﬂ

(b) Suppose F| C F,. Then F, | F| is a locally free Ox-module of of finite
rank.

(19.3) A line bundle on a\rx is specified by a family of line bundles .7,
for every map U — X. There is, however, no canonical choice of such a
line bundle on a’X. Rather, there is a canonical line bundle on the product
é\rx X @X, described as follows: It is well known that each map f: U — Gr
gives us a lattice Fy C ﬁU(( ))". Given two such maps fi, f>, we obtain
two special lattices ., ,.%, in Oy((t))". By Proposition 19.2.2 above, we
then obtain a well-defined prOJectlve O¢;-bundle of rank 1 (i.e. line bundle
on U) by the relative determinant,

(F1 | Fp) = NPTy [(F1 0 F) @ NPT [ (Fy N F) ™!
The usual properties of the relative determinant [ACK87] give us canonical
isomorphisms,
(F1|72) @ (F2|F3) — (F1|F3).
So we have constructed an &*-torsor on a\rx X é?x, i.e. foreach f,g

U— GrX we have constructed a line bundle which we call A(f : g) onU.

For a fixed fo: X — er, we can then construct a line bundle on GrX by
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defining foreach g : U — a\rx the line bundle

A(g) :=A(fo: g)-

The usual properties of determinant lines (see [ACK87]) then show that
the A(g) form a multiplicative &*-torsor on é\rx and hence give rise to
a central extension of G((7)) which splits over G[[t]]. One can also show
that the central extension A obtained above is independent of the choice of
Jo- It is known that this central extension agrees with the primitive central
extension constructed from the tame symbol [Kum97].

Remark 19.3.1. In what follows, we shall actually need the following twisted
version of the above constructions. Let Aut [[f]] be the sheaf of groups con-
structed in Chapter 2 §1. Then, we have a central extension

Ka((1)) — Aut [[1] x Gx — Aut [[] x G((1))
which we can again push by the tame symbol to obtain a central extension,
Oy — Aut [[t]] % Gx — Aut [[£]] © G((2)).

This central extension will again be called the twisted primitive central ex-
tension.

(19.4) Determintal Gerbes: Let & be a locally free Ox((t))-module.
Then we can construct a sheaf of groupoids on X as follows: the objects
over an open U — X are given by special lattices in .% C &|y((¢)) and mor-
phisms between two such lattices .%],.%, are given by the relative determi-
nant line (.%#1|-%,). Then by [KV07, Lemma 3.3.2], this sheaf of groupoids

gives rise to a Oy-gerbe on X which we shall henceforth denote by Detg*.

Remark 19.4.1. A twisted version of this construction also holds in which
& is taken to be a Aut [[¢]] x Gx ((¢))-torsor on X. We continue to denote the

gerbe so obtained by Det?‘.

20. CENTRAL EXTENSIONS AND GERBES OF LIFTINGS

(20.1) Let (A,E,G,a,b) be a central extension as in Chapter 1 §4. Let P
be a G-torsor. Then we obtain a gerbe of liftings which we denote by Liftjé
whose equivalence class coincides with the image of P under the boundary
map

H'(X,G) — H*(X,A).
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Suppose we are given two central extensions (A, Ey,G,ay,b;) and (B, E»,G,az,by),
together with a map of central extensions,

ay bl
A—FE —G .

P, bl

B——E —G
Then, for each G-torsor P, we have the following equivalence of gerbes,
(20.1.1) O, Lifth! = Lift2.

Recall that gerbe &Liftﬁ1 is constructed as follows: its objects are the same

as those of Liftf;‘, but the morphisms are obtained by pushing the K, torsor
by d,. This equality of gerbe is essentially the compatibility of the gerbe of
liftings construction with the commutativity of the square,

H'(X,G) —= H*(X,A) .

Sk

H'(X,G) —= H*(X,B)

(20.2) Let & be a G((r)) torsor on X. Then associated to the central
extension by K, we obtain a gerbe of liftings with band K, ((¢)) on X which
we call Liftg?. Associated to the primitive central extension we obtain a
gerbe of liftings with band &* on X which we call Liftg*.

We can also construct a determinantal gerbe Det on X. This gerbe is
then equivalent to the gerbe of liftings Liftg* associated to the primitive

central extension. The map is constructed as follows: given any U — X, we
can construct a functor

Wy : Dete(U) — Lift7 (U)

as follows. A special lattice .7 C & gives a reduction of & to a G[[t]]-torsor.
On the other hand, since G splits over G|[f]], we have a natural inclusion
G[[t]] — G. Pushing by this map, we obtain

H'(X,G[[1]]) — H' (X, G).

The image of .% under this map corresponds to a lifting of & to @, and so
we define Wy (%) to be this image. The action of ¥y on morphisms can be
defined in a natural way so that Wy is an equivalence of categories which

induces an equivalence of gerbes.
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21. RIEMANN-ROCH ISOMORPHISMS

(21.1) Let X be a curve embedded in a surface by X — S, and suppose
additionally that we are given a map f: S — X Let § = §\ X, §X be the
formal completion of S along X, and §§’( the complement of X in .#x. Let &
be a projective ﬁg;-module with trivial determinant. Then we define may

define a special lattice . C & as in §2, as well as a determinantal gerbe
Dete.

Lemma 21.1.1. Let E be a bundle on S with trivial determinant and let &
the corresponding O, -bundle. Then, there is a bijective correspondence
X

between the following sets,

(1) Extensions F of E to S with trivial determinant
(2) Extensions .% of & to §X with trivial determinant
(3) Special Lattices % C &.

Proof. The equivalence of (1) and (2) is essentially the descent lemma of
[BL94]. See also, [Kap00]. The equivalence of (2) and (3) is clear. ]

(21.2) A bundle & on 5}0( equipped with a trivialization of its determinant
gives an Aut [[t]] x G((t))-torsor by the procedure described in Chapter 2, §2
. Hence, we obtain a gerbe of liftings, Liftg* on X which may be identified
with Detg.

Proposition 21.2.1. Let E be a bundle on S° with trivialization of its de-
terminant and let & the corresponding Aut [[t]] X G((t))-torsor. Then every
extension of F of E to a bundle over S with trivial determinant corresponds
to a global section F of the gerbe Detgs. Given two global sections such
bundles F|,F, on S, we then have,

Hompet, (F1,%2) = Detn,(F| — F»)

where the right hand side is the usual determinant of the cohomology of the
map w:S — X.

Proof. The first part follows from the previous lemma, so let us focus on
the second statement. First notice that the statement is local on X so we
may as well assume that & is trivial. To state the local assertion which the
proposition follows from, we first need to introduce some terminology from
[BL94]. Let C be a smooth curve over a field k and pick a point p € C. Let
C* = C\ {p}. For a k-algebra R, we denote by Cg := C X Spec(R) and
Cr = C* xy Spec(R). We shall also need the formal disc Dg = Spec(R[[t]])

and its punctured analogue Dy = Spec(R((z))). We then have a cartesian
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square,
Dy —Dg .

L,k

* J *
CR CR

Let F be a vector bundle on Cg with trivial determinant. Then there exists
an element ¥ € G(R((¢))) such that F is the kernel of the sequence,

(21.2.1) 0—F — .0 L g.(Kpy/Op,) — 0

where Kp, is the sheaf on Dg associated to the module R((7)), and 7 is
the inclusion of j.(Oc;) — H#p, followed by the automorphism of p,
corresponding to the element ¥ € G((¢)). One can show that

7 =I(Dr,g"F) C Or((1))"
is a special lattice. The local statement from which the proposition follows
is then
(21.2.2) NPHO(Cg,F) @ (NPHY(C,F))™! = (Z| 10k][[1]),

where the right hand side is the relative determinant line from §2.3 and the
left hand side is the determinant of the cohomology Detr, F for 7 : Cg — R.

Now we proceed to the proof of 21.2.2. From the sequence 21.2.1, we
see that H'(Cg,F) and H'(Cg,F) arise as the kernel and cokernel of the
map,

L(Cr, j«O¢;) — T(Cr, 8+(HDr/ Opyz))-
On the other hand, consider the map,
(21.2.3) [(Dg,F)®T(Cg,E) — T(Dg,E)
(21.2.4) (f.g) — f-¢g

Then it is easy to see that the kernel and cokernel of the sequences (1) and
(2) are identical. Let .#_ =+~ 'R[¢t~!] and .%, = R[[t]].Then the kernel and
cokernel of the above map is given by,
Ker=.7N7%_=F/(FNtFy)
and
coKer =t 7, /(F Nt.F).

Then 21.2.2 follows and the proposition is an easy consequence of this. []

(21.3) Finally, we obtain the main result of this appendix. Keep the

notation of the previous proposition.
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Theorem 21.3.1. We have a natural equivalence of 0*-gerbes on X,
0. Lift’s? = Det.

Moreover, given any two extensions F\,F, of E to S, we let V1 and 3 be the
corresponding objects in Liftgaz. Then we have,

Detr, (F1 — F>) = 0k Hom . «, (N1, %)
It

Remark 21.3.2. We conclude with some assorted remarks.

(1) In this form, Theorem 21.3.1 looks very similar to Theorem 1.2.1
above. The analogy would be precise if we could identify d, Hom i, (71, 7)
Me

with Ig/x G2 (F1,F,). To prove such an assertion, one might try to
show that our construction of d, Hom(E}, E,) satisfies all the defin-
ing properties of gy C; claimed in [Del87].

(2) It seems a bit awkward to have to resort to three gerbes above: two
gerbes of liftings and the determinant gerbe. It would be preferable
to eliminate all reference to the determinant gerbe.

(3) The above statement is closely related to in our Theorem 4.5.1 from
Chapter 3. In each case the line bundle incarnating the second rela-
tive Chern class is obtained as follows: lift the cocycle representing
the each bundle to the central extension by K, and then take their
difference. Applying the tame symbol to the difference gives a Cech
cocyle to a line bundle on X coming with the central extension by
o*.

(4) Deligne’s Riemann-Roch theorem can be stated more generally as
follows: let f : S — X be as in the introduction with N = 1. Then,

det f*E®12 — Igx Cz(E)®712<ws/x, wS/X>rkE</\10pE,/\mPE® a)g/b,

where @y /y is the relative dualizing sheaf of § — X. Theorem 21.3.1
above though is only related to a relative version of Deligne’s theo-
rem. It would be interesting to obtain a purely categorical interpre-
tation of the entire Riemann-Roch statement. Towards this end, we
propose (see also [BS88, Appendix A.5]) the following gerby inter-
pretation of Ig/x C; (E) and (L,M). Givena f: S — X, consider the
central extensions on S,

Ki—» G —G
K- H —O0"x0"
To a given G-bundle E, we may use the first to construct a gerbe

Liftgz. Similarly to a pair of line bundles L, M, viewed as an &* X

O*-torsor, we can construct a gerbe Liftfjw. Both of these gerbes
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have classes in H>(S,Kj). Pushing these gerbes forward by f, we
obtain a R! f,K,-torsor on X (using Chaper 1 §4 and the Gersten res-
olution) which we can in turn push to obtain an &*-torsor (again us-
ing the Gersten resolution). Applying this construction to the gerbes
Liftg2 (when G = GL(n) ) and Liftfj\,,, we obtain line bundles %, (E)
and (L,M) which we conjecture agree with Deligne’s line bundles.
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