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Isometry Dimension of Finite Groups
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We show that the isometry dimension of a finite group G is equal to the dimension
of a minimal-dimensional faithful real representation of G. Using this result, we
answer several questions of Albertson and Boutin [J. Algebra 225 (2000), 947–955�.
 2001 Elsevier Science

1. INTRODUCTION

A very general problem is to realize a given group as the group of auto-
morphisms of some object. This problem can be studied in many different
contexts by varying the type of object realizing the group. Once we have
chosen a class of objects, a natural question always arises, “Which groups
can be realized?”

A class of objects is termed (finitely) universal if every finite group can be
realized by an object in the class. In [3], Cayley identified the first universal
class, which are now called “Cayley color graphs” in honor of his work. The
Cayley color graph associated to a finite group of order n is a directed graph
whose edges can have one of n colors. Generalizing Cayley’s construction,
Frucht [5, pp. 241–244] showed how to represent colored directed edges by
graph gadgets, thereby establishing the universality of graphs. Since Frucht’s
work, several other classes of objects have been identified as universal,
including 3-colorable graphs, topological spaces, and subsets of Euclidean
space; see [8, p. 523; 6, p. 96; 1, p. 949]. On the other hand, trees, groups,
and planar graphs are not universal, and it remains an important open
question whether Galois extensions of Q are universal.

1 Please address all correspondence to 10 Hillhouse Ave., P.O. Box 208283, New Haven,
Connecticut 06520.
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In this paper, we study the universal class of subsets W of Euclidean
n-space, where an automorphism of W is an isometry or distance preserving
bijection of W onto itself. Albertson and Boutin [1, p. 949] show that any
group of order n can be realized by a finite subset of Euclidean n-space
containing n + (

n
2

)
points. Their proof sets up a geometric analog to the

Cayley color graph. It is not constructive since it uses the Implicit Function
Theorem in a crucial way.

Albertson and Boutin [1, p. 953] also introduce the notion of isometry
dimension of a finite group: it is the least n such that the group can be
realized by a subset of Euclidean n-space. The main result of this paper
is that the isometry dimension of a group is equal to the dimension of a
minimal-dimensional faithful real representation.

In Section 2, we prove our main result. In Section 3, we answer a number
of questions posed in [1, p. 955], and we also restate some unresolved
questions found in that same article.

2. MAIN RESULT

Let G be a finite group. Recall from Section 1 that the isometry dimension
δ�G� is defined as the smallest n such that G can be realized as the group
of isometries of a subset of Rn. In this section, we prove the following
theorem, which is our main result.

Theorem 1. Let G be a finite group. Then the isometry dimension δ�G�
is equal to the dimension of a minimal-dimensional faithful real representation
of G.

Before discussing the proof, let us establish three useful lemmas. Say
that the points A0� � � � �Ak in Rn are affinely independent if there is no
(k− 1)-dimensional hyperplane containing them.

Lemma 2. Let A0� � � � �An be affinely independent points in Rn. Let α be
an isometry of a subset W ⊂ Rn containing these points. Then, for any point
P ∈ Rn, there is at most one way to extend α to an isometry of W ∪ 	P
.
Proof. Choose points B0� � � � � Bn in W such that α�Bi� = Ai. Set ri �=

dist�P�Bi�, and denote by S�Ai� ri� the (n − 1)-dimensional sphere in Rn

centered at Ai with radius ri. Since the point α�P� must lie in the set⋂n
i=0 S�Ai� ri�, it suffices to show that this intersection consists of a single

point.
By translation, we can assume thatAn = 0. LetAi = �ai1� � � � � ain�. Then,

for i = 0� � � � � n− 1, there exist hyperplanes,

Hi �=
{�x1� � � � � xn� 
 ai1x1 + · · · + ainxn = ki

}
�
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for certain ki ∈ R such that S�Ai� ri� ∩ S�An� rn� ⊂ Hi. Indeed, we may
choose ki = �r2n − r2i + a2

i1 + · · · + a2
in�/2. Since A0� � � � �An−1 are linearly

independent, the intersection of the n hyperplanes H0� � � � �Hn−1 consists
of a single point.

Lemma 3. Let W be a subset of Rn, and let α ∈ Aut�W � be an isometry.
Then there exists an isometry α̃ ∈ Aut�Rn� with α̃
W = α.

Proof. By Lemma 2, it is enough to prove the following claim: given
affinely independent points A0� � � � �Am in Rn and an isometry α of any
subset containing these points, there exists an isometry α̃ ∈ Aut�Rn� such
that α̃�Ai� = α�Ai� for i = 0� � � � �m. Indeed, suppose the above claim is
true. Then, for any maximal set of affinely independent points A0� � � � �Ak

in W , there exists an isometry α̃ ∈ Aut�Rn� agreeing with α on the points
Ai for i = 1� � � � � k. By Lemma 2, α̃ must then agree with α on all of W .

We proceed to prove the above claim by induction. For m = 1, the
result is clear. Suppose A0� � � � �Am are affinely independent points and
α is an isometry of a subset containing these points. Since the points
A0� � � � �Am are affinely independent, the points A1� � � � �Am must also
be affinely independent. By induction, there is an isometry β of Rn such
that β�Ai� = α�Ai� for i = 1� � � � �m. An easy modification to the proof
of Lemma 2 shows that once we know where an isometry sends Ai for
i = 1� � � � �m, there are at most two possibilities for the image of A0, say E
or F . Furthermore, the points α�Ai�, for i = 1� � � � �m, must lie on the per-
pendicular bisector of the segment from E to F . If β�A0� = α�A0�, then set
α̃ = β. Otherwise, let r denote reflection along the perpendicular bisector
from E to F , and set α̃ = r ◦ β.

Remark 2.1. In Lemma 3, if W contains an affinely independent set of
n+ 1 points, Lemma 2 implies that α̃ is unique.

If we are given a faithful real representation of G, the following technical
result will help us construct a subset realizing G.

Lemma 4. Let H be a finite subgroup of the group of orthogonal matrices
of dimension d, and let S ⊂ Rd be a finite set containing d + 1 affinely inde-
pendent points. Suppose H�Aut�S�. Then there exists a finite subset W ⊂ Rd

containing S such that H ⊂ Aut�W �.

Proof. Let σ ∈ Aut�S� be such that σ does not agree with any h ∈ H
on all of S. By Lemma 3, we may assume that σ is actually an isometry of
Rd. Since σ has finite order, it is an orthogonal operator on Rd. Since σ
and h are linear operators, the subspace Th ⊂ Rd where σ and h coincide
has dimension at most d − 1. Hence,

⋃
h∈H Th is a set of measure zero, and
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its complement

V = 	x ∈ Rd 
 σ�x� �= h�x��∀h ∈ H

is unbounded. So, we may choose x ∈ V with dist�x� 0� > maxs∈S dist�s� 0�.

Let W = S ∪ Ox, where Ox is the orbit of x under H. By Lemma 3, any
α ∈ Aut�W � extends to an orthogonal operator which preserves distances
from the origin. Since we chose x to satisfy dist�x� 0� > dist�s� 0� for every
s ∈ S, we must have α�W − S� ⊂ W − S. Thus, α restricts to an isometry of
S. On the other hand, σ ∈ Aut�S�, but σ /∈ Aut�W � since it does not send
the point x to another point in W .

We now proceed to prove our main result, Theorem 1.

Proof of Theorem 1. Let n = δ�G�. By the definition of δ�G�, there
exists a subset W of Rn realizing G by isometries. Since n is the least dimen-
sion in which G may be realized, we may choose n + 1 affinely indepen-
dent points A0� � � � �An ∈ W . By Lemma 3, we get a map G → Aut�Rn�,
say g �→ g̃, which is certainly injective. It is also a homomorphism since
g̃h = g̃h̃ on W , and an isometry of Rn is uniquely specified by its values
on W . Since G is finite, its elements are orthogonal operators on Rn. Thus,
we have an n-dimensional faithful real representation of G.

On the other hand, suppose we have a d-dimensional faithful real rep-
resentation ρ� G → GLd�R�. Since G is finite, ρ is actually an orthog-
onal representation. We wish to construct a subset W of Rd such that
Aut�W � ∼= G. We proceed by induction, using Lemma 4 repeatedly. Let
W1 = 	0� Oe1

� � � � � Oed

, where the Oei

is the orbit of the standard basis
vector ei ∈ Rd under the action of G. Then ρ�G� ⊂ Aut�W1�. Moreover,
if ρ�G� �= Aut�W1�, then we may use Lemma 4 to construct W2 ⊃ W1 such
that ρ�G� ⊂ Aut�W2��Aut�W1�. Proceeding in a similar fashion, we even-
tually arrive at a set Wk ⊂ Rd such that ρ�G� = Aut�Wk�.
Remark 2.2. Since every group of order n has an n-dimensional faith-

ful real representation (for example, the permutation representation), the
proof above can be unwound to yield a finite subset W ⊂ Rn realizing
G. However, such a construction might be quite difficult to carry out in
practice.

3. QUESTIONS

We now answer several of the questions posed at the end of [1, p. 955].

Question 1. What finite groups have isometry dimension 2 or 3?

Answer. Let Od�R� be the group of orthogonal matrices of dimension
d. A finite group G has isometry dimension d if and only if it is isomorphic
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to a subgroup of Od�R�, and it is not isomorphic to any subgroup of Om�R�
for m < d. Hence, the only finite groups with isometry dimension 2 are the
cyclic groups Zn and the dihedral groups Dn of order 2n, for n > 2. All the
finite subgroups of O3�R� are listed in [4, p. 311].

Question 2. Let G�H be finite groups. Is δ�G⊕H� = δ�G� + δ�H�?

Answer. Equality cannot always hold, as we can see by taking G = Zm

and H = Zn, cyclic groups of relatively prime orders m and n.

On the other hand, the following corollary is a simple consequence of
our main result, Theorem 1.

Corollary 5. Let G�H be finite groups. Then δ�G ⊕ H� ≤ δ�G� +
δ�H�.

Proof. Let ρG be a faithful δ�G�-dimensional real representation of
G, and let ρH be a faithful δ�H�-dimensional real representation of H.
Set d = δ�G� + δ�H�. Then the direct sum of these two representations
�ρG� ρH�� G ⊕H → GLd�R� is a d-dimensional faithful real representa-
tion of G.

Corollary 5 gives an upper bound for δ�G ⊕H�, which can be greatly
refined for special classes of groups. For example, Karpilovskĭı [7, Thm. 3]
has computed the minimum dimension of a faithful real representation of
finite abelian groups. Combining this result with Theorem 1, we have

Theorem 6. Let G = G1 ⊕G2 ⊕ · · · ⊕Gs, where Gi is a cyclic group of
order mi, and where mi divides mi+1. Then δ�G� = ∑s

i=1 δ�Gi�.

Theorem 6 settles the conjecture in [1] that δ�Zn
2� = n, which Boutin has

proved by other means (private communication).
The proof of Theorem 1 gives an upper bound on the number of points

needed to realize a group of order n in Rδ�G�. This bound is usually not
sharp, and we have the natural question posed in [1, p. 955].

Question 3. Is there a relation between the order of a finite group G and
the minimum number of points needed to realize it in Rδ�G�?

The present paper studies only finite groups. The related problem for
infinite groups is still open; see [1, p. 955].

Question 4. Which infinite groups may be realized by subsets of Euclidean
space?
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