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Abstract

In this thesis1 we study the mass difference between the 1S spin-singlet and spin-triplet

bottom quark-antiquark bound states within the effective theory of lattice non-relativistic

quantum chromodynamics (NRQCD). The precise determination of this value, called the

bottomonium hyperfine splitting, has been difficult to obtain due to various disagreements

between phenomenological, lattice, and experimental groups. In particular, the two latest

independent lattice determinations’ central values differ beyond their quoted error bars even

though they are based on the same bare lattice NRQCD simulation data. However, these

two analyses differ in their so-called “matching” methods, wherein the parameters of the

effective theory are determined. The approach based on the asymptotic expansion about

the continuum limit was introduced in ref. [3] and differs from the standard perturbative

matching employed by refs. [4–7]. Using a numerical and analytical solution of the lattice

Schrödinger equation, we trace the discrepancy of the two results to a subtle problem regard-

ing the Coulomb binding effects and their lattice artifacts, which leads to a breakdown in

the standard perturbative matching unique to lattice regularization. Instead, we introduce a

new consistent method named “Schrödinger matching,” which performs the matching using

the solution of the full Schrödinger equation without an expansion in the Coulomb interac-

tion. Our analysis resolves the discrepancy in favor of the result of ref. [3], which is 52.9±5.5

MeV for the bottomonium hyperfine splitting; this reconciles the two lattice results, along

with the perturbative QCD result and the most precise experimental measurements to date.

1This work is based on refs. [1, 2].
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Chapter 1

Introduction: Hyperfine Splitting in

Bottomonium

1.1 Heavy Quarkonium

Experiment 288 at Fermilab, led by Leon Lederman, was proposed to study dilepton pro-

duction as a result of proton-nucleon collisions. The E288 collaboration discovered a dimuon

resonance at 9.5 GeV in the summer of 1977, which was the first observation of the Upsilon

(Υ) particle [8]. This, along with the discovery of the J/ψ particle in 1974 by SLAC and

the Brookhaven National Laboratory simultaneously [9, 10], prompted an extension of the

quark model to include the bottom (b) and charm (c) quarks respectively.1 Here the Υ and

J/ψ particles were realized as new types of quarkonia, or bound states of a quark and their

corresponding antiquark.2 The large mass of these new quarkonia suggested that the b and c

quarks were much heavier than the already known up, down and strange quarks (u, d, and s,

respectively).

In fact, we can give a precise defintion of what a heavy quark is if we look at the theory

underlying the quark model. Quantum chromodynamics (QCD) is a non-abelian gauge

1The last quark flavour, the top (t), was discovered in 1995.
2In particular, we call bottom quark-antiquark bound states bottomonium (bb̄).
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theory, invariant under the local action of the gauge group SU(3). It is best conceptualized

as a generalization of the U(1) abelian gauge theory quantum electrodynamics (QED), the

highly successful quantum theory of electric charges and their interactions via photons.

However, the important distinction between QED and QCD is that, in the latter theory, the

force carriers (called gluons) transform non-trivially under the action of SU(3): in layman

terms, gluons self-interact while photons do not. A related distinction is that, while the

creation and annihilation of virtual electron-positron pairs in QED results in a screening

of electric charge, virtual gluon self-interactions result in an opposing anti-screening effect.

This is best visualized in the coupling constant α of both theories, which is given by the

renormalization group equation (to one-loop)

Q
d

dQ
α(Q) = −α(Q)2

2π
β0, β0 =

11

3
CA −

2

3
nf (1.1)

where Q is the momentum scale, nf is the number of fermion flavours in consideration, and

CA is a factor related to the self-interactions of the force carriers in the theory [11]. Now,

in QED, CA = 0, resulting in β0 < 0; as a result eq. (1.1) predicts the monotonic increasing

of α(Q) from 0 and the reliability of a perturbative expansion in α until α ∼ 1.3 In QCD

however, the anti-screening effect of gluons is reflected in the result CA = 3, and as long

as the number of fermion flavours does not exceed 16, β0 > 0. Thus eq. (1.1) predicts the

monotonic decreasing of the QCD coupling constant αs. Solving this equation gives

αs(Q) =
2π

β0 log(Q/ΛQCD)
(1.2)

where ΛQCD is the scale at which perturbation theory breaks down. Momentum scales

Q� ΛQCD are amenable to a perturbative analysis in αs.

We can now give a definition of the heavy quarks, which include the charm, bottom,

3Thankfully, this does not occur until ΛQED ∼ 10280 MeV: see the discussion on the Landau pole in
ref. [11]. Even then, QED is not a good description of electric charges at roughly 80 GeV due to the
production of W± and Z bosons.
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and top quarks: mq � ΛQCD. In principle we could then study heavy quarkonia within the

framework of perturbative QCD, usually through the Bethe-Salpeter formalism. However,

the dynamics of bound states is a multiscale problem which proves to be intractable within

the relativistic QCD framework. Fortunately the quarks in heavy quarkonia have relative

velocity v � 1 due to their heavy masses and small coupling, which gives an additional

small parameter to expand in. In the leading order of the expansion, heavy quarkonia is

similar to the hydrogen atom in that it is a Coulombic system described by the Schrödinger

equation. The further corrections in v are systematically employed using an effective field

theory framework, which separates the relativistic scales (computed within QCD) from the

non-relativistic modes (which are computed within the effective Schrödinger-like picture).

Indeed, the effective field theories “non-relativistic QCD” (NRQCD) and “potential non-

relativistic QCD” (pNRQCD) have been successful in achieving a non-relativistic quantum

mechanical description of heavy quarkonia from the first principles of Poincare invariance

and local gauge symmetry [12].

In order to obtain high-precision results, one must also take into account the contribution

of long-distance confinement effects without an expansion in αs but instead relying on non-

perturbative approaches like lattice simulations. In this method the field theory path integral

is evaluated numerically on a discrete Euclidean space-time grid; the lattice NRQCD frame-

work then allows the non-relativistic modes to be simulated on the lattice [13, 14]. What

we study in our thesis is how the non-perturbative lattice result for the long-distance con-

tributions is consistently combined with the perturbative QCD result for the short-distance

contributions in order to produce precise results for heavy quarkonium observables.

1.2 The ηb Mass Puzzle

The quantum theory of spin tells us that a spin-1/2 particle transforms according to the 2

representation of SU(2). Then, if we combine a bottom quark and antiquark, the addition
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of angular momentum implies

2⊗ 2 = 1⊕ 3,

or that the quark-antiquark pair form either a spin-1 triplet (the familiar Υ) or the spin-0

singlet (dubbed the ηb). An interaction between the two spins S1 and S2 will be proportional

to S1 · S2, which induces a mass difference called the hyperfine splitting. In bottomonium,

the ground state hyperfine splitting is simply defined as

Ehfs = MΥ(1S) −Mηb(1S)

While the triplet (with a PDG mass of 9460.30± 0.26 MeV) was first observed in 1977, the

singlet is much harder to identify as it can only be excited via weak M1 transitions [8, 16].

Nevertheless, 31 years after the Υ discovery, the ηb was observed by the BaBar collaboration

in the radiative decay channel Υ(3S)→ γ ηb(1S), and the hyperfine splitting was determined

to be 71.4+3.5
−4.1 MeV [17]. However, their analysis contained a systematic error due to the

subtraction of an asymmetric background resonance.

On the other hand, the phenomenological pNRQCD prediction for the hyperfine splitting

was 41±14 MeV, close to half the BaBar value [18]. This was concerning as it demonstrated

that perturbative analyses may not be valid for the bottomonium ground state, which was

thought to be uncontaminated by confinement effects. To control these nonperturbative

contributions, the HPQCD collaboration used lattice NRQCD simulations and obtained

70± 9 MeV, favouring the higher value of the hyperfine splitting [6]. Nine months after, the

Belle collaboration observed the ηb(1S) in the P-wave decay channels hb(nP )→ γ ηb(1S) and

released a much lower value of 57.9± 2.3 MeV, the most precise experimental determination

of the hyperfine splitting so far [19]. Clearly, there was no convergence to a value for the

mass of the ηb, and it became clear that the proper accounting of radiative effects in lattice

NRQCD was necessary for a precise determination using lattice simulations.

One approach, developed in refs. [4,5] and later implemented on the lattice by the HPQCD
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collaboration, gives a value of 60.0 ± 6.4 MeV, a reduction from their last prediction [7].

A year later, an approach based on the asymptotic expansion about the continuum limit

developed in ref. [3] gave a value of 52.9 ± 5.5 MeV. The difference between the two latest

results in refs. [3, 7] is larger than one would expect, specifically since they are based on

the same bare (ie. non-radiatively improved) lattice data and their respective errors are

correlated.4 This goal of this thesis is to identify the source of this subtle difference, and

determine which method is the proper account of radiative effects of lattice NRQCD.

Result Ehfs (MeV)

Kniehl et al. [18] 41± 14
BaBar [17] 71.4+3.5

−4.1

HPQCD [6] 70± 9
Belle [19] 57.9± 2.3
HPQCD [7] 60.0± 6.4
Baker et al. [3] 52.9± 5.5

Table 1.1: Summary of bottomonium hyperfine splitting results

1.3 Outline

The difference between the two approaches of refs. [3] and [4, 5] is related to the descrip-

tion of the lattice Coulomb artifacts resulting from the effect of space discretization on the

Coulomb bound state dynamics. The Coulomb artifacts appear as powers of a dimension-

less combination amqαs (where αs is the strong coupling constant, a is the lattice spacing,

and mq is the heavy quark mass) in the parameters of the bound states evaluated on the

lattice. This dependence on the lattice spacing should be cancelled in the final result for the

physical quarkonium spectrum through the so-called matching procedure and an inconsis-

tent treatment of the artifacts may lead to a large systematic error of the lattice NRQCD

predictions. In this thesis, by studying both a numerical and explicit analytical solution of

the Schrödinger equation on the lattice, we show that the standard finite-order perturbative

4Specifically, the central values should only differ relatively by αsv
2 ∼ 2% due to radiative and relativistic

corrections.
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matching is insufficient in dealing with the Coulomb artifacts [1, 2]. This appears counter-

intuitive since the lattice regularization is usually associated with a momentum cutoff at

the scale a−1 much larger than the scale mqαs of Coulomb dynamics, and the corresponding

short-distance effects are supposed to be systematically described by the standard matching

procedure. However, we find that the failure of perturbative matching is a consequence of

a fine interplay between the short- and long-distance effects specific to the lattice regular-

ization of NRQCD, and results in the discrepancy between the two latest lattice NRQCD

results for the ground state hyperfine splitting of bottomonium [3,7]. The remainder of the

thesis provides the details leading to our findings and is organized as follows.

In Chapter 2, we give a brief introduction to continuum and lattice NRQCD, including

the explicit construction of the NRQCD Lagrangian to O(v4) accuracy, inclusive. We also

introduce two approaches towards the radiative improvement of the NRQCD action: the

standard perturbative approach [4, 5] and the approach based on the asymptotic expansion

about the continuum limit [3].

In Chapter 3, we discuss the problem with the standard perturbative matching related to

the treatment of Coulomb binding effects within lattice NRQCD. We show that these effects

result in the breakdown of perturbative matching for the Coulomb lattice artifacts, and we

propose a new method termed “Schrödinger matching” which takes into account these terms

consistently.

In Chapter 4, we will discuss the effect of the breakdown of perturbative matching on the

bottomonium ground state hyperfine splitting. We then conclude by comparing the result

with that of ref. [3], as well as the latest experimental values for the bottomonium hyperfine

splitting.
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Chapter 2

NRQCD on the Lattice and in the

Continuum

2.1 Motivation

The dynamics of quarkonium systems exhibits several scales:1

• the hard scale, on the order of the mass of the quark mq,

• the soft scale, on the order of the inverse Bohr radius mqv,

• the ultrasoft scale, on the order of the kinetic energy mqv
2, and

• the confinement scale ΛQCD ∼ 200 MeV (in the MS renormalization scheme).

Let us now specialize to heavy quarkonium, where the constituent quarks have the property

mq � ΛQCD: the relevant example is the bottomonium system where mb ∼ 4.2 GeV in

the MS scheme [15]. At the same time the energy splittings between the ground and first

excited states of bottomonium sets the kinetic energy scale at mbv
2 ∼ 500 MeV [20]. The

large discrepancy between the two scales suggest that the relative motion of the quarks inside

1Unless stated otherwise, we work in “natural” units where ~ = c = 1; in this set of units, distances are
measured in inverse mass dimensions.
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the bottomonium ground state is non-relativistic, and that the quarkonium scales separate

into the hierarchy

mq � mqv � mqv
2 & ΛQCD

Eq. (1.2) suggests that, if some scale is much larger than ΛQCD, then the effects at that

scale can be computed using perturbative QCD since αs � 1 there. Given that most of the

bound state dynamics is set by the Bohr radius, it makes sense to remove the mass scale

from the dynamics of the theory and to compute these short-distance effects perturbatively:

the result is the effective field theory of non-relativistic QCD (NRQCD), first introduced in

refs. [21, 22]. The construction of the theory is done in two steps.

First, we take advantage of the scale hierarchy by introducing a factorization scale µ

such that mqv � µ� mq, and integrating out all effects greater than µ into the parameters

of the new effective theory. This is explicitly done by decoupling the quark and antiquark

fields from one another and expanding the resultant equations of motions in powers of v.

This generates an infinite number of new NRQCD interactions which, at a given order in

v, describes the low-energy dynamics of the bound state. To replicate the effects of quark-

antiquark annihilation, it will be necessary to additionally include new ad hoc four-fermion

contact operators to the effective Lagrangian.

Secondly, we determine the parameters of the new effective theory via matching, where

we demand that QCD and NRQCD amplitudes coincide order-by-order in v at scales less

than the factorization scale µ. These parameters are referred to as matching or Wilson

coefficients. In particular, we will focus on the four-fermion Wilson coefficients, where the

interplay between binding effects and lattice regularization give rise to a subtle problem in

matching.
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2.2 NRQCD Lagrangian

We will now construct the NRQCD Lagrangian using the steps outlined above. In QCD, our

fermionic degrees of freedom are given by a single 4-component Dirac spinor Ψ of mass mq,

which has dynamics governed by the Dirac Lagrangian:

Lq = Ψ̄ (iγµDµ −mq) Ψ

where γµ are the Dirac gamma matrices satisfying {γµ, γν} = 2gµν , iDµ = i∂µ − Aµ is the

covariant derivative2 and Aµ ≡ AaµT
a is the SU(3) gauge field, with T a being the generators

of the SU(3) gauge group. Explicitly, the temporal and spatial components are given as

iD0 = i∂0 − A0, iD = i∇+ A

Varying the action S =
∫
d4xLq with respect to Ψ̄ gives the equation of motion

(iγµDµ −mq) Ψ = 0 (2.1)

Let us now specialize to the heavy quarkonium system with mq � ΛQCD, noting that in a

non-relativistic bound state, the energy is dominated by the rest mass. Let us then factor

out this rapidly oscillating mode by making the shift Ψ→ e−imqtΨ; using that

iγ0D0

(
e−imqtΨ

)
= e−imqt

(
γ0mq + iγ0D0

)
Ψ (2.2)

we have [
iγµDµ +

(
γ0 − 1

)
mq

]
Ψ = 0 (2.3)

2In this thesis, the covariant derivative acts on everything to it’s right.
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Now, in the Dirac representation, the Dirac matrices are given by

γ0 =

1 0

0 −1

 γi =

 0 σi

−σi 0


where σi are the Pauli matrices satisfying

[
σi, σj

]
= 2iεijkσk,

{
σi, σj

}
= 2δij

Let us now separate the 4-component Dirac spinor Ψ into two, 2-component Pauli spinors ψ

and χ, representing the large and small components of Ψ respectively. Eq. (2.3) then gives

the two coupled equations3

iD0ψ − iσσσ ·Dχ = 0

iσσσ ·Dψ − (iD0 + 2mq)χ = 0

Formally we can solve for χ in the second equation, and substitute that into the first:

(
iD0 − iσσσ ·D

1

iD0 + 2mq

iσσσ ·D
)
ψ = 0 (2.4)

Since D0 represents the kinetic energy operator, it should scale like mqv
2. We can then

expand the equation formally in D0

mq
∼ v2, introducing an infinite number of terms to eq.

(2.4):

1

iD0 + 2mq

=
1

2mq

− iD0

4m2
q

+O
(

1

m3
q

)
To O

(
m−1
q

)
, the equation of motion for ψ is

(
iD0 +

(σσσ ·D)2

2mq

)
ψ = 0 (2.5)

3Note that γµDµ = γ0D0 − γγγ ·DDD.
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We can simplify the second term by writing in terms of its components

σiσjDiDj =

(
1

2

{
σi, σj

}
+

1

2

[
σi, σj

])
DiDj

=
(
δij + iεijkσk

)
DiDj

= DiDi +
1

2
iεijkσk

[
Di, Dj

]
where we used the fact that the Levi-Civita tensor is totally antisymmetric. The commutator

of covariant derivatives is related to the chromoelectric and chromomagnetic fields E and B

as

Ei = i
[
D0, Di

]
, Bi =

1

2
iεijk

[
Dj, Dk

]
(2.6)

Then our final result for the second term of eq. (2.5) is

(σσσ ·D)2

2mq

=
D2

2mq

+
σσσ ·B
2mq

We see that the expansion in m−1
q tells us that, to lowest order in v, the quark and antiquark

degrees of freedom obey the Schrödinger-Pauli equation, as should be expected. Let us now

move on to the O
(
m−2
q

)
term in eq. (2.4):

(iσσσ ·D) iD0 (iσσσ ·D) = − (iσσσ ·D) σj
([
D0, D

j
]

+DjD0

)
= − (iσσσ ·D) iσjEj

where we used eq. (2.6) in the first term and got rid of the second term using the equations

of motion eq. (2.5).4 Then, upon using σiσj = δij + iεijkσk again, we have

(iσσσ ·D) iD0 (iσσσ ·D) = D · E + iσσσ · (D× E)

4Technically speaking, this requires a redefinition of our quark/antiquark fields; see ref. [23] for a discussion
of this step in a similar context.
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where the covariant derivative only acts on the chromoelectric field. However, this term is

multiplied by ψ on the right, and in order to keep with our covariant derivative convention

we rewrite the above as

(iσσσ ·D) iD0 (iσσσ ·D)ψ = [(D · E− E ·D) + iσσσ · (D× E− E×D)]ψ

using the fact that D obeys the Leibniz rule [24].

At O
(
m−3
q

)
we will only include the relativistic correction D4

8m3
q
, which will be relevant

when we discuss the effects of the O(v4) heavy quark propagator. Collecting all the correc-

tions together, the bilinear part of the NRQCD Lagrangian is given by

L2q =ψ†
{
iD0 +

c1

2mq

D2 +
c2

8m3
q

D4 +
cF

2mq

σσσ ·B

+
icS
8m2

q

σσσ · (D× E− E×D) +
cD

8m2
q

(D · E− E ·D) + . . .

}
ψ

+
(
ψ → χc, T

a → (T a)T 5
) (2.7)

where the dynamics of the antiquark χc = −iσ2χ∗ is given by demanding charge conju-

gation symmetry, and the normalized coefficients multiplying each term are the additional

dimensionless parameters of NRQCD that will be determined via matching. We see that

our expansion recovered the relativistic, Fermi, spin-orbit and Darwin perturbations of non-

relativistic quantum mechanics. However, as it stands this Lagrangian cannot describe the

effects of annihilation on the bound state which is not desirable since, for example, the Υ

meson has a nonzero decay width [24]. To account for these effects we must add local, multi-

fermion interactions that create and annihilate a quark-antiquark pair in a specific spin and

color state [20]

L4q =
∑
i

CFαs
m2
q

Ciψ
†Γiψχ

†
cΓiχc (2.8)

5This only applies to generators contracted with heavy quark color indices [25].
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where Γi is a matrix in color and spin space and Ci is the corresponding matching coefficient.6

Then the heavy quark sector of the NRQCD Lagrangian is simply the sum of eqs. (2.7) and

(2.8).

The matching coefficients are designed to take into acccount the (short-distance) hard

scale contributions p ∼ mq, where asymptotic freedom allows an expansion of radiative

effects in αs. At the same time, the expansion of the NRQCD dynamics is arranged in

powers of p
mq
∼ v, where in eq. (2.7) we have included all the terms necessary for O(v4)

accuracy. In general, when calculating a physical observable to an accuracy of O(αns v
m),

one must consider all terms in the NRQCD Lagrangian up to O(vm) with their coefficients

computed to O(αns ) accuracy.7

Already at this level we can perform the matching of the kinetic terms in eq. (2.7). The

kinetic energy of the noninteracting quark is given by the energy-momentum relation

Ekin =
√

p2 +m2
q −mq =

p2

2m2
q

− p4

8m3
q

+O
(

p6

m5
q

)

Transforming to position space with the prescription p = −i∇ then suggests that, in order

for the energy-momentum relation to be satisfied, c1 = c2 = 1 to all orders in αs. In other

words, Poincare symmetry protects the kinetic terms from any radiative corrections [27].

2.2.1 Lattice NRQCD

As mentioned in Chapter 1, lattice simulations are one way to probe the nonperturbative sec-

tor of hadrons. This is done by the discretization of the action on a 4-dimensional Euclidean

lattice, which adds two relevant length scales: the lattice spacing a and the length of the

lattice “box” L. To capture the full range of heavy quarkonium dynamics, we should have

the the lattice large enough to capture confinement physics at r ∼ Λ−1
QCD, yet fine enough to

6When discussing the four-fermion operator responsible for hyperfine splitting in (colourless) bottomo-
nium, that is, ψ†σσσψχ†cσσσχc, the corresponding matching coefficient is denoted as dσ.

7A common power-counting scheme is given in Table I of ref. [26].
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probe short-distance effects at r ∼ m−1
q . This is represented by the hierarchy

a� m−1
q � Λ−1

QCD � L

If we have a uniformly spaced lattice, then L = Na where N is the number of lattice points.

Remembering that the lattice simulation exists in a four-dimensional “box”, we get that the

number of lattice points has the lower bound

N4 �
(

mq

ΛQCD

)4

(2.9)

which can be 254 for simulation of the bb̄ system; clearly, simulating quarkonium in lattice

QCD is an expensive procedure. On the other hand, the shortest dynamical scale in NRQCD

is the inverse Bohr radius, which suppresses the ratio eq. (2.9) by v4. This allows lattice

NRQCD simulations of heavy quarkonium dynamics to be within reach of realistic lattice

configurations. The factorization scale µ should then be identified with the inverse lattice

spacing:

mqv � a−1 � mq

This puts a constraint on the granularity of the lattice, namely that it cannot be too fine:

if this constraint is not satisfied, hard modes are left dynamical resulting in a breakdown

of our non-relativistic approximation. In fact, lattice NRQCD simulations are performed

with spacings satisfying amq & 1, which allows a numerical polynomial fitting to obtain the

continuum result for a desired observable.

Lattice NRQCD simulations require specifiying the NRQCD action to O(vn) accuracy,

where n is a positive integer: for example, the simulations performed in ref. [7] includes

all terms in the NRQCD Lagrangian up to O(v6) accuracy, inclusive. The Laplacian is

then discretized using a central difference, introducing a finite spacing error of O(a4) [24].

The quark propagator is then solved for iteratively in position space, and meson properties
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such as the energy or wave function at the origin can then be extracted using Monte Carlo

techniques; the technical details of lattice NRQCD can be found in refs. [14, 24].

2.3 Radiative Improvement and Matching in Lattice

NRQCD

For a given order in the expansion in v, NRQCD introduces a finite number of new parameters

which are determined via matching. This process fixes the parameters such that, for energy

scales smaller than the factorization scale, NRQCD and QCD amplitudes are equal. This is

usually done perturbatively by the following recipe [20]:

1. Use perturbative QCD to calculate scattering amplitudes between asymptotic quark

and gluon states to a given order in αs and expand them in powers of v.

2. Use perturbative NRQCD to compute the same scattering amplitudes to the same

order in αs and v.

3. Tune the NRQCD parameters so that the two results are equal order-by-order in αs

and v.

Let us apply this recipe to the matching for the NRQCD four-fermion operators, done

by computing the one-particle irreducible (1PI) diagrams of qq̄ → qq̄ transitions in QCD

and NRQCD. In particular, the matching between the spin-dependent part of the ladder

diagrams can be represented diagramatically as

=

=

Ψ Ψ

ΨΨ

= ∼Ψ Ψ Ψ

=
dσ

m2
q

+ + . . .

where the LHS is given by the QCD Feynman rules (see ref. [11]) and the RHS is given

by the NRQCD Feynman rules in Appendix A. However, we will see in Chapter 3 that

15



when performing the matching for lattice NRQCD with the factorization cutoff µ ∼ a−1,

we should not match scattering amplitudes of free quarks and antiquarks but instead match

bound state amplitudes of the NRQCD four-fermion operators. This is due to the fact that,

for the specific case of lattice regularization, an expansion in αs and an expansion in a do not

commute and one must account for all-order Coulomb exchanges before taking the a → 0

limit. This subtle point is the central claim of this thesis and we will show in Chapter 4 that

this is the cause of the discrepancy between the results of refs. [3, 7] for the ground state

hyperfine splitting in the bb̄ system. To describe this effect in NRQCD to O (v4), we need

to look at the spin-dependent portion of the NRQCD Lagrangian:

Lσ = cFψ
†σσσ ·B

2mq

ψ + (ψ → χc) + dσ
CFαs
m2
q

ψ†σσσψχ†cσσσχc

where the spin-orbit coupling proportional to cS is neglected since we are considering l = 0

S-waves, and the four-fermion interaction is projected onto the color-singlet since we are

considering a colorless meson. Until recently, lattice NRQCD simulations have used the tree-

level values for the matching coefficients, namely that cF = 1, dσ = 0. However, radiative

corrections to cF and dσ, as well as the inclusion of spin-dependent O (v6) terms, could

reduce the systematic error by around 6 MeV [7]. Therefore, the radiative improvement

of the lattice NRQCD action is vital for a precise determination of the bottomonium 1S

hyperfine splitting.

Let us now focus on the spin-dependent four-fermion matching coefficient dσ. To perform

the matching, we need to consider the 1PI quark-antiquark scattering amplitudes in QCD,

which is given by (to 1-loop)

MQCD
1PI =

CFα
2
s

m2
q

[
CA
2

ln
(mq

λ

)
+ TF (ln 2− 1) + CF

(
1− 2πmq

3λ

)]
ψ†σσσψχ†cσσσχc (2.10)

where TF = 1
2
, CF = N2

c−1
2N

, CA = Nc are colour factors for SU(Nc), and λ is a fictitous gluon

mass introduced to regulate the IR divergence in the ladder diagrams pictured above [3].
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To complete the matching, we need to compute the spin-dependent 1PI diagrams in lattice

NRQCD. Below we outline the two ways this can be performed.

2.3.1 Expansion About the Continuum Limit

This method is explained in full detail in ref. [3] and is based on the asymptotic expansion

of the lattice loop integrals about the continuum limit, allowing a systematic expansion in

the lattice spacing a [28]. To the same order in m−1
q as eq. (2.10), the 1PI lattice NRQCD

amplitude is

MNRQCD
1PI =

CFα
2
s

m2
q

[
−
(
δ +

1

2
ln (aλ)

)
CA −

2πmq

3λ
CF +

dσ
αs

]
ψ†σσσψχ†cσσσχc +O (a) (2.11)

where δ is the non-logarithmic contribution from the non-abelian diagrams which depends

on a particular realization of the lattice action [3]. The O(a) term in particular arises from

the ladder diagrams in lattice NRQCD, and is ignored as we eventually take the a→ 0 limit.

Then to leading order in a and m−1
q , the four-fermion matching coefficient is given by

dσ = αs

[(
δ +

L

2

)
CA + (ln 2− 1)TF + CF

]

where L = ln(amq). The main problem is then the determination of δ, which is done in a

semi-analytic approach; the details can be explored in ref. [3]. For the HPQCD action in

ref. [6], the final result is

δ = 0.1446(28)

Note that this method gives a matching coefficient that depends only logarithmically on

the lattice spacing to this order in m−1
q . Therefore, we avoid issues with the ill-defined

continuum limit of lattice NRQCD. If we were to include the higher-order terms of the

NRQCD Lagrangian, the matching coefficient would include the divergent positive powers

of (amq)
−1 [1]. In any case, these terms are suppressed since lattice NRQCD simulations are
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performed for coarse lattice spacings a� m−1
q .

2.3.2 Direct Numerical Matching

Perturbative matching has been the traditional method used for the radiative improvement

of the lattice NRQCD action and is the method implemented in NRQCD simulations to

incorporate the four-fermion improvement [4,5]. For the four-fermion operator, the logarith-

mic and annihilation contributions to the 1PI diagram are given analytically while the other

contributions including the ladder diagrams are computed numerically and depend on the

combination amq. The matching coefficient can then be written as 8

dσ = αs

[
L

2
CA + (ln 2− 1)TF +D (amq)

]

where the function D(amq) can formally be expanded in the asymptotic series

D (amq) =
∞∑

n=n0

(amq)
n ∆(n) (2.12)

where n0 < 0; D(amq) carries the non-logarithmic dependence on the lattice spacing. For

amq > 1 we can ignore terms in eq. (2.12) with n < 0 and fit the numerical results to obtain

the coefficients of the expansion eq. (2.12) [7]. The lattice spacings used in the O(v4) action

in ref. [5] are amq = 1.95, 2.8, and 4.0 and performing a linear fit of the coefficients gives

∆(0) = 3.66(4), ∆(1) = −1.81(9) (2.13)

Meanwhile the lattice spacings used in the O(v6) action [7] are amq = 1.95, 2.73, and 3.31

and a similar fitting gives

∆(0) = 1.31(3), ∆(1) = −1.52(1) (2.14)

8In this thesis, dσ
αs

should be compared with 9
8 (d1 − d2) in refs. [4–7].
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Note that higher order fits cannot be performed due to the lack of sufficient numerical values

for amq, so that the uncertainty may be larger than what we indicate in the parenthesis.

We can compare our zeroth order term to the Wilson coefficient obtained from the previous

subsection

∆(0) = CAδ + CF = 1.767(9)

which roughly agrees with the O(v6) action, and with better agreement expected when

higher-order terms in the velocity expansion are included.

Note that while the expansion about the continuum limit does not determine the terms

dependent on positive powers of the lattice spacing, the standard matching differs in that

it retains this dependence in the Wilson coefficient. The actual dependence of the Wilson

coefficients on a is discussed in the next chapter.
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Chapter 3

Coulomb Binding Effects on the

Lattice

3.1 Coulomb Binding Effects

The binding effects within a Coulomb bound state are dominated by the potential region

of scales. In this region, the quark and antiquark fields ψ and χc respectively are on-shell,

meaning that they obey their equations of motion given by, to lowest order,

(
iD0 +

D2

2mq

)
ψ = 0,

(
iD0 −

D2

2mq

)
χc = 0 (3.1)

Forgetting about strong interactions momentarily, eq. (3.1) in momentum space is given by

(
q0 −

q2

2mq

)
ψ = 0,

(
q0 +

q2

2mq

)
χc = 0 (3.2)

where q0 and q are the energy and momentum transfer respectively. A bound state’s char-

acteristic length scale is given by its Bohr radius rb, which scales as (mqv)−1. This then
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implies that in the potential region,

q0 ∼ mqv
2, |q| ∼ mqv

since the momentum transfer scales roughly as the inverse Bohr radius.

In a general quantum field theory, bound states appear as poles in the scattering ampli-

tude of the constituent degrees of freedom [29]. This occurs precisely when the perturbative

expansion in the coupling constant is singular, and one has to resum all the contributions via

the Bethe-Salpeter equation. Thus, we can explore the Coulomb binding effects in bound

states by finding the set of diagrams that contribute to all orders in αs in the potential

region. We claim that n-loop planar Coulomb exchanges are the only diagrams that are

singular in this way. At leading order (n = 0), this looks like

. . .

a

β α

a

β α

↓ k

↓ q

where qµ ≡ (q0, q) is the energy and momentum transfer of the virtual Coulomb gluon.

Using the NRQCD Feynman rules in Appendix A and projecting to the color-singlet state,

we can assign a factor CFαs to the two vertices. Also since in the potential region we have

1

q2
=

1

q2
0 − q2

∼ 1

(mqv)2

the tree-level diagram can be estimated to be

. . .

a

β α

a

β α

↓ k

↓ q ∼ 1

m2
qv

(αs
v

)
(3.3)

Let us now investigate the analogous ladder diagrams at n-loops. We have
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• αn+1
s from vertices

• (mqv)−2(n+1) from gluon propagators

• (mqv
2)(−2n) from the quark/antiquark propagators

• (mqv
2)n(mqv)n from the integration measures (dq0 d3q)

n

combining these factors together, we have that the n-loop diagram is given by

. . . ∼ 1

m2
qv

(αs
v

)n+1

(3.4)

Let us now consider the heavy quark limit, where the potential energy between the quark and

antiquark is dominated by the Coulomb potential and confinement effects are suppressed.

The size of the bound state is determined by a balance in the kinetic and potential energies

mqv
2 ∼ αs

r

where r is the separation between the quark and antiquark. However since rb ∼ (mqv)−1 is

the characteristc length scale of the bound state, we have that

v ∼ αs

Thus, the n-loop ladder contribution in eq. (3.4) is of the same size as the tree-level amplitude

in eq. (3.3), and such diagrams must be resummed to all orders by the Bethe-Salpeter

integral equation, with the kernel representing a tree-level ladder exchange. Fortunately,

this is exactly equivalent to solving the Schrödinger equation with the Coulomb potential

V (r) = −CFαs/r for the bound state wave function Ψ [30]. In position space this is given

by (
E +

∇∇∇2

mq

)
Ψ(r) = V (r)Ψ(r) (3.5)
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where E < 0 is the energy of the bound state. With ∇∇∇2 → −p2 as well as the fact that

pointwise multiplication in a given vector space leads to a convolution in its Fourier conjugate

space, we can write eq. (3.5) in momentum space as

Ψ̃(p) =
1

p2

mq
− E

∫
d3k

(2π)3

4πCFαs
|p− k|2 Ψ̃(k) (3.6)

where

Ψ̃(p) =

∫
d3xΨ(x) e−ip·x (3.7)

The Schrödinger equation can be represented diagramatically as

=

=

Ψ Ψ

ΨΨ

= ∼Ψ Ψ Ψ

=
dσ

m2
q

+

We see that Coulomb binding effects are nonperturbative in αs and can only be taken into

account by solving for the bound state wave function.

The astute reader will note that the non-planar (crossed) ladder diagrams

. . .

a

β α

a

β α

↓ k

scale the same way as the planar ladder diagrams. To all orders, these diagrams do not

contribute to the scattering amplitude in the potential region. The reason is that the poles

of the quark propagators in the complex energy plane are on the same imaginary half-plane,

so that one can close the contour without picking up any residues. As a result, the diagram

gives 0 in the potential region.

In the leading Coulomb appoximation, the only scale in NRQCD is mqαs. Therefore,
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as the n-loop planar Coulomb exchanges are UV-finite, the lattice regularization results in

terms proportional to powers of amqαs, which vanish in the continuum limit: such terms are

called Coulomb lattice artifacts. As physical results for observables should be independent

of a, a proper account of the lattice spacing dependence is crucial to obtaining the correct

continuum value. Let us now investigate two methods of obtaining the Coulomb lattice

artifacts, namely comparing the 1-loop Coulomb exchange and the all-order approach based

on the Schrödinger equation.

3.2 Coulomb Artifact to 1-Loop

The O(v4) spin-dependent lattice NRQCD planar ladder diagram is given by only one dia-

gram at one-loop:

iM = 2×

. . .

(3.8)

where the black dots represent the spin-flip operator proportional to cF = 1 + O(αs) and

the factor of 2 comes from the two different ways we can order the gluon exchanges. We will

compute this diagram on a spherical lattice, where only the radial axis is discretized and

the lattice spacing serves as a UV cutoff at ΛUV = π/a. Note that since the lattice heavy

quark and gluon propagators only generate terms of O(a2), and we are only interested in

obtaining the linear dependence on a, we can use the continuum NRQCD propagators given

in Appendix A [28]. The details of the calculation are included in Appendix B.2, and the

amplitude is

M =
CFα

2
s

m2
q

[
−2πmq

3λ
CF +

16CF
3π

amq

]
+O(a3) (3.9)

We see that the zeroth order term in a reproduces the IR contribution in the QCD amplitude

eq. (2.10). We can now use the four-fermion matching mentioned in Section 2.3 to determine
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the value of the Coulomb exchange to the matching coefficient dσ:

CFα
2
s

m2
q

[
0−

(
16CF

3π
amq

)]
ψ†σσσψχ†cσσσχc = dσ

CFαs
m2
q

ψ†σσσψχ†cσσσχc

where the first term in eq. (3.9) is 0 since lattice NRQCD and continuum QCD share the

same IR behaviour by definition. When comparing with the expansion eq. (2.12), we have

that the coefficient of the linear lattice artifact due to the 1-loop Coulomb exchange is

∆(1) = −ν 16

3π
CF ≈ −1.88 (3.10)

where ν = 0.831 . . . is a geometrical factor that converts our result to the one obtained with

a cubic lattice [3]. Including this factor allows us to compare our value eq. (3.10) to the

real lattice results given in eqs. (2.13) and (2.14) which are ∆(1) = −1.82 and −1.52 for the

O(v4) and O(v6) actions, respectively. We see that our estimation of the one-loop Coulomb

pinch is in good agreement with the real linear lattice artifacts, and due to its relatively

large value, this term dominates the expansion in eq. (2.12).

3.3 Coulomb Artifact to All Orders

In the last subsection, to study the Coulomb lattice artifacts, we performed the matching

between scattering amplitudes of free quarks and antiquarks. We can try to account for

Coulomb artifacts without an expansion in the strong coupling constant by considering not

scattering amplitudes with free quark and antiquark external states, but amplitudes with the

external quarkonium bound state instead. As a result, we can absorb the Coulomb exchange

in the 1-loop diagram using the Schrödinger equation:

=

=

Ψ Ψ

ΨΨ
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On the lattice, this means that all Coulomb lattice artifacts are embedded in the wave func-

tion, so that the matching procedure is performed by averaging the NRQCD four-fermion

operators with wave functions computed in the lattice and the continuum. These aver-

ages are proportional to the wave function at the origin since the four-fermion operators

are local, ie. proportional to δ3(r). We refer to this modified matching procedure by the

name of “Schrödinger matching.” The corresponding correction to the energy levels is then

proportional to (
1− |Ψl(0)|2
|Ψc(0)|2

)
〈Oi〉 (3.11)

where Ψ(0) is the wave function at the origin with the subscript distinguishing whether it

is computed on the lattice or the continuum, and Oi is the NRQCD four-fermion operator

in consideration (see eq. (2.8)). We should emphasize that eq. (3.11) includes all-order

dependence on the strong coupling constant via the combination amqαs.

Let’s apply this method to the four-fermion spin-dependent matching coefficient dσ. The

spin-dependent tree-level diagram is calculated in Appendix B.1 as

M = −2π

3

CFαs
m2
q

ψ†σσσψχ†cσσσχc

which is constant in the momentum transfer within the potential region. The continuum

wave function is solved for in Appendix C and is given by Ψc(r) = 1√
π
e−r in Coulomb units,

where the unit of length is the Bohr radius rb = 2/CFαsmq.
1 To implement the Schrödinger

matching, we now must find the lattice wave function at the origin.

In the formal limit ΛQCD . mqv
2, solving the discretized Schrödinger equation for the

lattice wave function reproduces the real bound state wave function obtained in lattice

NRQCD simulations. Our approach, detailed in Appendix C, is to solve the Schrödinger

equation on a spherical lattice obtained by the discretization of the radial axis only, with

rn = na for n = 0, 1, . . .. In this case, the angular part is still given by the zeroth-order

1We will now switch from natural to Coulomb units until we explicitly state otherwise.
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spherical harmonic Y 0
0 = 1√

4π
. The lattice radial solution u(n) =

√
4π naΨl(n) is found by

replacing the radial part of the Laplacian in eq. (3.5) with a central difference, resulting in

the radial equation

u(n+ 1)− 2u(n) + u(n− 1) + 2a2

(
1

na
+ El

)
u(n) = 0 (3.12)

where n = 1, 2, . . ., the boundary condition is u(0) = 0, and El is the lattice binding energy.

Note that the central difference, chosen to replicate what is done in real lattice simulations,

results in O(a2) local error in the lattice wave function [24]. Now that we have a difference

equation, we can pursue a solution numerically via the “shooting method” method explained

in ref. [31] to search for the correct energy eigenvalue, along with the radial equation (3.12)

to build the wave function all the way to the origin n = 0. This approach is detailed in

Appendix C and allows us to obtain the lattice spacing dependence reliably to O(a4) [1].

Another approach is to solve the difference equation analytically using the exact ground

state solution of the Coulomb problem on a one-dimensional lattice [2,32]. The lattice wave

function and its associated ground state energy, to all orders in a, is then

Ψl(n) =
1√
π

1

(1 + a2)1/4
exp (−n arcsinh a) = Ψc(r) +O(a2)

El = − 1

a2

[(
1 + a2

)1/2 − 1
]

= Ec +O(a2)

(3.13)

where Ec = −1
2

is the binding energy of the quark-antiquark pair in the continuum. The

wave function satisfies the normalization condition

4πa3

∞∑
n=0

n2|Ψl(n)|2 = 1

Note that a characteristic feature of eq. (3.13) is the absence of a linear term in a,

in disagreement with the one-loop result eq. (3.10). This is completely independent of

the particular lattice geometry chosen; a study of the Schrödinger-Pauli equation on a cubic
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lattice performed in ref. [33] also demonstrated that Coulomb effects do not generate a linear

artifact. Instead, the fact there are no odd powers on the lattice spacing results from using a

central difference discretization for the Laplacian (see Theorem 8.10 in ref. [34]). We discuss

the differences between the one-loop and all-order approaches in the next section.

3.4 Breakdown of Perturbative Matching

Since the UV cutoff is a short-distance effect, one may think that the lattice dependence

should be accountable within the perturbative matching procedure. Thus one may expect

that the expansion of eq. (3.11) should give rise to the one-loop linear lattice artifact with

coefficient given by eq. (3.10). However, in this section we are going to show that the

effects of space discretization on the Coulomb dynamics cannot be accounted for order by

order in αs and require the exact solution of the Coulomb problem without the expansion

in the strong coupling constant. To investigate the difference between the two methods,

and because perturbative matching is performed in momentum space, we must consider the

lattice momentum wave function as defined by the Fourier transform

Ψ̃l(p) = 4πa3

∞∑
n=0

n2Ψl(n)
sin(npa)

npa

=
8
√
π

(1 + a2)1/4

(a/2)4

(sin2(pa/2)− a2El/2)2

sin(pa)

pa

= Ψ̃c(p) +O(a2)

(3.14)

where Ψ̃c(p) = 8
√
π

(p2+1)2
is the continuum wave function in momentum space. Interestingly

enough the spatial wave function at the origin, Ψl(n = 0), does not contribute to the lattice

momentum wave function because of the n2 factor: the sum in eq. (3.14) begins with n = 1.

The inverse Fourier transform, given by

Ψl(n) =
1

2π2

∫ π
a

0

dp p2 Ψ̃l(p)
sin(npa)

npa
(3.15)
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then only holds for lattice sites n 6= 0. Indeed, the corresponding integral for n = 0 gives2

Ψp(0) ≡ 1

2π2

∫ π
a

0

dp p2 Ψ̃l(p)

=
1√
π

(
1−
√

1 + a2 − 1

a

)
= Ψc(0)

[
1− a

2
+O(a2)

] (3.16)

while the spatial wave function at the origin is given by

Ψl(0) =
1√
π

1

(1 + a2)1/4
= Ψc(0)

[
1− a2

4
+O(a2)

]

While both functions have the same continuum limit, one function satisfies the Schrödinger

equation while the other does not. To show this let us consider the forward derivative of the

two functions at the origin. For the solution eq. (3.13), we have

Ψ'
l(0) =

Ψl(1)−Ψl(0)

a
= −Ψc(0) +O(a)

which, in the limit a→ 0, recovers the property of the continuum solution:

Ψ'
c(0) = − 1√

π
e−r
∣∣∣
r=0

= −Ψc(0) (3.17)

Now, if instead we use the inverse Fourier transform result eq. (3.16), we get

Ψ'
l(0) =

Ψl(1)−Ψp(0)

a
= −1

2
Ψc(0) +O(a)

which violates the continuum result at O(1) [2].

We should note that while the linear term in eq. (3.16) is universal for all the S-wave

states, the coefficient of the quadratic terms in the expansion of the bound state parameters

in a is sensitive to the Coulomb dynamics, e.g. for the first excited state this coefficient in

2The subscript p in eq. (3.16) is used to distinguish the result from the inverse Fourier transform from
the value of the solution given in eq. (3.13).
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eq. (3.4) changes from −1/4 to 1/16.

We now demonstrate that the nonvanishing O(a) term in eq. (3.16) is the origin of

the linear artifact discussed in Section 3.2. The non-relativistic Coulomb dynamics is not

sensitive to the high momentum region and, to the leading order in v, the result for such a

contribution obtained within continuum QCD and NRQCD coincide. Thus, in the standard

perturbative matching, the contribution to dσ from the Coulomb exchange comes from the

difference between continuum and lattice NRQCD one-loop expressions, which, when the

quarks are at rest and on threshold, is given by,

δdσ =
4CFαs
π

(∫ ∞
λ

dp p2Dc(p)Gc(p)−
∫ π

a

λ

dp p2Dl(p)Gl(p)

)
(3.18)

where the integration over the time component of the was performed by taking the residue

of the heavy quark propagator, an IR cutoff λ is introduced, and we switch back to natural

units. The continuum Coulomb gluon and heavy quark propagators are given by

Dc(p) =
1

p2
, Gc(p) =

mq

p2

and correspond to the O(v2) NRQCD action. The lattice versions are given by

Dl(p) =
sin(ap)

ap

(a/2)2

sin2(ap/2)
, Gl(p) =

mq(a/2)2

sin2(ap/2)

After integration we get

δdσ =
1

2
CFαsamq +O

(
(λa)2

)
(3.19)

The main effect of the lattice regularization comes from the UV cutoff at p ∼ a−1: indeed if

the continuum propagators are used in the second term of eq. (3.18), the coefficient in eq.

(3.19) is changed only from 1/2 to 4/π2 = 0.405 . . . [2].

The lattice contribution to eq. (3.18) can be obtained by the expansion of the lattice
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momentum wave function Ψ̃l(p) in eq. (3.16) to the first order in αs.
3 Hence, as one may

expect from the general arguments, eq. (3.19) agrees with the expansion of the first factor in

eq. (3.11) to the first order in αs if the momentum space result eq. (3.16) is used to define

the value of the wave function at the origin. However eq. (3.16) does not agree with the

actual solution eq. (3.4) and results in a pathological wave function which does not satisfy

the Schrödinger equation in the continuum limit at r = 0. Thus the Wilson coefficient eq.

(3.19) does not cancel the dependence of the O(v4) tree gluon exchange matrix element on

a and we observe a breakdown of perturbative matching in the analysis of the Coulomb

artifacts already in one loop. By contrast the Schrödinger matching with the exact solution

of the Coulomb problem on the lattice gives the correct result for the Coulomb artifacts to

all orders in αs [2].

We can trace the origin of this phenomenon to the fact that the relation eq. (3.17),

violated by eqs. (3.16) and (3.19), follows from the cancellation of the singular kinetic and

potential energy terms in the Schrödinger equation at r → 0. Indeed in the continuum the

radial equation for the S-wave function is given by

(
d2

dr2
+

2

r

d

dr
+
CFαsmq

r
+mqE

)
Ψ(r) = 0 (3.20)

Keeping the most singular terms in the limit r → 0 we get

dΨ(r)

dr

∣∣∣
r=0

= − 1

rB
Ψ(r)

∣∣∣
r=0

(3.21)

which reproduces eq. (3.17) in natural units. The LHS (RHS) term in the above equation

correspond to the kinetic (potential) energy contribution. Hence at the origin these terms

should be considered on an equal footing while the standard matching treats the Coulomb

potential as a perturbation. Evidently the above mechanism of the perturbative matching

breakdown is specific to the lattice regularization and the contact interaction in the NRQCD

3In Coulomb units, this can be done by expanding in a but keeping the combination ap fixed.
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Lagrangian.

We can regularize the contact interaction by separating the quark and antiquark fields

with a small spatial interval r0 ∼ a and take the limit r0 → 0 after the matching is done.

This introduces an additional sin(r0p) /r0p factor into the integrands of eq. (3.18) (see eq.

(3.15)). The lattice integral then reads

mq

∫ π
a

λ

dp p2 sin(r0p)

r0p

sin(ap)

ap

(
a/2

sin(ap/2)

)4

= mq

(
1

λ
− π

4
r0

)
+O

(
(λa)2

)
(3.22)

which removes the O(a) contribution from the Wilson coefficient eq. (3.19) and brings it

into agreement with the Schrödinger matching result.

We should emphasize the difference between matching calculations in lattice NRQCD and

in continuum NRQCD with an explicit momentum cutoff ΛUV ∼ a−1, which is not plagued

by the problem discussed above. In the latter theory the properties of the solution of the

Coulomb problem in the (continuum) coordinate space are significantly different from the

solution of the finite difference equation eq. (3.12). The Schrödinger equation in this case is

a differential equation and its regular solution satisfies the conditions of the Fourier inversion

theorem. Hence the value of the wave function at the origin is unambiguously determined

by the integral of the wave function in momentum space and the problem discussed in the

previous section does not exist. The correct behaviour of the wave function and its derivative

at r → 0 then follows from the continuity and smoothness of the solution.

A comprehensive analysis of the four-fermion operator matching with an explicit mo-

mentum cutoff can be found in ref. [35] in the context of the NRQED calculation of the

radiative corrections to the orthopositronium decay rate. In ref. [35] a numerical solution

of the coordinate-space Schrödinger equation has been obtained for the Hamiltonian defined

in a momentum cutoff regularization scheme. It has been found that the dependence of the

value of the resulting wave function at the origin on the cutoff includes a linear Coulomb ar-

tifacts which is cancelled by the O(αsmq/ΛUV) term in the one-loop Wilson coefficient. Thus
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in the momentum cutoff scheme the results of the perturbative and Schrödinger matching

do agree.
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Chapter 4

Determination of the Energy

Spectrum From the Lattice Data

Let us now consider how the analysis in the previous chapter affects the determination

of the bottomonium spectrum in the radiatively improved lattice NRQCD. The results of

nonperturbative lattice NRQCD simulations are typically given for a ∼ (vmb)
−1 [6, 7]. The

use of relatively large values of the lattice spacing ensures the suppression of the singular

ultraviolet cutoff dependence from the higher order (amb)
−n terms, which are not removed

by the finite order matching and become important at a ∼ m−1
b . At the same time it results

in sizable Coulomb lattice artifacts proportional to a power of αsamb ∼ 1. The correct

treatment of the artifacts is therefore crucial for the analysis.

In actual lattice simulations, the quarkonium bound state parameters are extracted from

the asymptotic behavior of the quark-antiquark propagator at large Euclidean time. Ne-

glecting the retardation and long-distance nonperturbative effects, which do not affect the

Coulomb artifacts under consideration, this method should reproduce the properties of the

solution of the Schrödinger equation for a given NRQCD Hamiltonian on the spatial lattice.

As we have shown above, the perturbative matching of the four-quark operators does not

correctly account for the Coulomb artifacts and, for a ∼ (vmb)
−1 and v ∼ αs, results in

34



O(1) error in the prediction for the spectrum. For example, the one-loop matching of the

spin-flip four-quark operator with the spurious linear Coulomb artifact gives the value of the

bottomonium hyperfine splitting in ref. [4], which overshoots the predictions of perturbative

QCD in ref. [18] by almost a factor of two, in clear conflict with the general understanding

of the heavy quarkonium dynamics.

In practice the effect of the lattice artifacts is reduced by numerical extrapolation of the

data to a = 0 [6, 7]. The extrapolation below a ∼ m−1
b in this case is justified because for

the typical values of lattice spacing the numerical effect of the (amb)
−n terms on the data

points is small. This extrapolation effectively removes all the lattice artifacts including the

(aΛQCD)n terms associated with the effect of lattice regularization on the dynamics at the

confinement scale ΛQCD.1 The problem of the perturbative matching breakdown, however,

is not fully fixed by this procedure. Since the radiatively improved lattice result is supposed

to be free of linear artifacts, the extrapolation is performed through a constrained fit of the

data points by a polynomial in a with vanishing linear term. Since the bare lattice data is

free of the linear Coulomb artifacts the one-loop perturbative matching in fact introduces a

linear dependence of the radiatively improved result on a, which leads to a systematic error

of the fit. At the same time the matching performed by the expansion about the continuum

limit removes all the Coulomb lattice artifacts and does not have this problem [3].

Let us apply our discussion specifically to the hyperfine splitting in bottomonium. Using

eq. (2.7), the four-fermion interaction corrects the energy spectrum via the perturbation

δH4-q = −dσ
CFαs
m2
q

δ(xxx) σσσψ · σσσχc

where the spin matrices of the quark and antiquark are explicitly denoted. The hyperfine

1For the bottomonium ground state this contribution is numerically suppressed with respect to the
Coulomb artifacts since ΛQCD � αsmb.
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splitting is then proportional to the spin-average

〈sm|σσσψ · σσσχc |sm〉 |s=1
s=0 (4.1)

where |sm〉 ≡ |sψmψ〉⊗|sχcmχc〉 is the bound state 2-spinor with the combined spin operator

S ≡ σσσψ+σσσχc
2

. The average over the spins can be done by squaring this operator and using

S2 |s,m〉 = s(s+ 1) |s,m〉(σσσi
2

)2

|si,mi〉 =
3

4
|si,mi〉 for i = ψ, χc

where the last equality holds since both quarks and antiquarks are spin-1/2. After some

trivial algebra, we see that the spin average in eq. (4.1) contributes a factor of 4 to the

hyperfine splitting, giving

∆Ehfs = −dσ
4CFαs
m2
q

|Ψl(0)|2 (4.2)

In real lattice simulations the Laplacian is discretized using a central difference, so the bare

lattice data is free of linear artifacts. The radiative improvement of the lattice action as done

by the numerical perturbative matching of refs. [4,5] then introduces a linear dependence on a

by the one-loop contribution to dσ, which leads to a systematic error when the lattice data is

fitted with a vanishing linear term. The effect of this spurious contribution is quite significant,

almost doubling the lattice hyperfine splitting for the most coarse lattice configuration (see

Fig. 4.1). The direct matching implements the one-loop correction by multiplying the bare

value with the contribution

[
1− 3αs

2π

(
3

2
ln amq +

1

2
(ln 2− 1) +D(amq)

)]

where the last term is the function defined in eq. (2.12) and has the expansion

D(amq) ∼ 1.31− 1.52amq +O(a2) (4.3)
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Figure 4.1: The results of the lattice simulation of the bottomonium hyperfine splitting
with O(v6) NRQCD action and the four-quark matching coefficient by (a) the asymptotic
expansion about the continuum limit [3], (b) the direct numerical matching [5], and (c)
the bare lattice result (ie. dσ = 0) [7]. All data points include the statistical error and
the uncertainty in the value of the lattice spacing. The error bars of (a) include also the
uncertainty due to the higher order perturbative corrections. The difference between (a) and
(b) data sets is mainly due to the spurious linear Coulomb artifact contributing to (b).

for the O(v6) action, as discussed in Section 2.3. Extrapolating to the continuum gives a

hyperfine splitting of Ehfs = 60.0 ± 6.4 MeV. However, if the linear term in eq. (4.3) is

not included in the correction, the extrapolation gives a central value of Ehfs = 52.7 MeV.

This is in very good agreement with the result based on the asymptotic expansion about the

continuum limit for the O(v6) action, which gives a value of Ehfs = 51.5 ± 5.7 MeV. Yet the

discrepancy between the results of refs. [7] and [3] is beyond the discretization/extrapolation

uncertainty, which is below 3 MeV. Thus the analysis of the hyperfine splitting in refs. [4–7]

contains a systematic error and should be corrected [1]. At the same time the perturbative

matching can be used for the self-consistent analysis of the quarkonium spectrum within the

above extrapolation scheme if the Coulomb artifacts are removed from the Wilson coefficients

by means of the asymptotic expansion (as in ref. [3]) or a numerical fit (as in ref. [1]).

We can also estimate the lattice dependence on the quadratic Coulomb artifacts using
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our result for the wave function at the origin eq. (3.4):

Elattice
hfs = Ehfs

[
1− (Λa)2 +O(a4)

]
, Λ =

CFαsmq

2
√

2
∼ 530 MeV (4.4)

where the values for the quark mass and strong coupling constant are taken in the middle

of a typical interval for the lattice spacing [1]. Meanwhile the result in ref. [3] gives Λ ∼ 360

MeV for the O(v4) action and Λ ∼ 790 MeV for the O(v6) action, in good agreement with

eq. (4.4). We see that the effect of lattice artifacts is enhanced when considering the higher

dimension operators as they are more sensitive to the UV momentum region.2 Thus while the

errors due to relativistic corrections are smaller for the O(v6) action, there is a compensating

larger discretization error than the one for the O(v4) action. The best estimate is simply

the weighted sum of the two results, giving

Ehfs = 52.9± 5.5 MeV (4.5)

This is an unambiguous result and it is also the most accurate lattice NRQCD prediction

for the 1S hyperfine splitting in bottomonium so far.

4.1 Summary

In this thesis we examined the matching procedure for lattice NRQCD for the radiative

improvement of the four-fermion operators. We have demonstrated that binding effects

are responsible for a breakdown of perturbative matching for terms that disappear in the

continuum limit. This is solved by using the Schrödinger matching, which gives the correct

dependence on the lattice spacing. We applied our analysis to the hyperfine splitting of the

bottomonium system, and resolved the discrepancy between the two latest lattice NRQCD

predictions in refs. [3,7] in favor of the result of ref. [3], which is in excellent agreement with

2This is demonstrated in Appendix B, where including the relativistic correction to the quark propagator
doubles the one-loop result for the lattice artifact.
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the most precise experimental value from the Belle collaboration [19].

It is interesting to compare this result with another lattice simulation, this time based

on lattice QCD. While the large window between the bottom quark and QCD scale (see

Section 2.2.1) makes lattice QCD simulations of bottomonium physics quite costly, one

can nevertheless make a prediction of the hyperfine splitting by extrapolating the lighter

quarkonium spectrum to the physical value of the bottom quark mass [36]. This gives 53±5

MeV, in very good agreement with the lattice NRQCD result eq. (4.5). Both are in good

agreement with the phenomenological result based on perturbative QCD 41± 14 MeV [18].

Further measurements by the Babar and CLEO collaborations (refs. [37,38] respectively)

push the PDG average to 62.3 ± 3.2 MeV, which is still beyond both the lattice and phe-

nomological results mentioned above [15]. Further high-precision studies of the ηb(1S) mass

would be desirable to clear up the discrepancies amongst experimental groups.

We should note that the matching method we have constructed is not specific to the four-

fermion term responsible for the hyperfine splitting. Indeed it is a general procedure that

can be used to obtain the terms vanishing in the continuum limit for the spin-independent

four-fermion matching coefficients as well. However, these coefficients are much more difficult

to compute and do not presently exist in the literature [5]. A consistent treatment of the

matching of these coefficients would be possible within the Schrödinger framework that we

suggest.
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Appendix A

Feynman Rules of NRQCD

The following are the relevant Feynman rules for this thesis, originally given in ref. [25]. We

choose the momentum flow direction to be from left to right.

Heavy quark/antiquark propagator:

. . .

a

β α

a

β α

↓ k

i

k0 − k2

2mq
+ iε

Logitudinal gluon propagator (Feynman gauge):

. . .

a

β α

a

β α

↓ k

i

k2 + iε

Transverse gluon propagator (Feynman gauge):

. . .

a

β α

a

β α

↓ k

− i

k2 + iε

Coulomb vertex:

. . .

a

β α

a

β α

↓ k

− igT aαβ

Fermi vertex:

. . .

a

β α

a

β α

↓ k

cFg

2mq

(σσσ × k)T aαβ
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Appendix B

Spin-Dependent Coulomb NRQCD

Amplitudes

To study the hyperfine splitting in heavy quarkonium, we will consider the spin-dependent

NRQCD amplitudes at tree-level and one-loop. We will perform the calculation in the

Feynman gauge, with expressions for the gluon propagator given in Appendix A. As we

are looking for binding energy effects, we perform the calculation in the potential region of

scales, where if k = (k0,k) is the loop momentum,

k0 ∼ mqv
2, |k| ∼ mqv

As we are considering the colorless heavy quarkonium, we also project all operators onto the

color-singlet state, effectively replacing colour factors as (T aT b)αβ → CF [25].
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B.1 Tree-Level

The tree-level diagram with a spin-flip operator looks like

The NRQCD Feynman rules in Appendix A give

iM = CF

(
cFg

2mq

)2
i

q2
ψ†(σσσ × q)ψχ†c (σσσ × q)χc

where q = (q0, q) is the 4-momentum transfer and the iη prescription is neglected since we

are at tree-level. We can simplify the fermion line by remembering that

εiklεimn = δkmδln − δknδlm

The fermion line then becomes

ψ†(σσσ × q)ψχ†c (σσσ × q)χc = q2ψ†σσσψχ†cσσσχc − qkqmψ†σkψχ†cσmχ

As we are interested in the expectation value of this operator for 1S states, we can make the

replacement qkqm → 1
3
q2δkm due to spherical symmetry. Thus, the amplitude becomes

M =
2π

3

CFαs
m2
q

q2

q2
0 − q2

ψ†σσσψχ†cσσσχc

where cF → 1 is allowed to leading order in αs. Our final step comes from remembering that

we are interested in the potential regions of scales, so that the ratio q0
q

is suppressed by a
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power of v. Our final result for the tree-level spin-dependent amplitude is then

M = −2π

3

CFαs
m2
q

ψ†σσσψχ†cσσσχc

B.2 One-Loop

We now consider the next-to-leading order contribution coming from the symmetric one-loop

diagrams

. . .

Since the matching procedure is independent of the kinematical details of the quarkonium

system, we will perform this calculation in its rest frame so that the momentum transfer

vanishes. We further perform the calculation at the system’s threshold, so that the kinetic

energy vanishes. As the lattice NRQCD propagators generate O(a2) terms in the continuum

limit, and we are interested in linear dependence on a only, it is sufficient to compute the

one-loop diagram with the continuum NRQCD propagators given in Appendix A. We can

use our tree-level diagram to simplify the calculation:

M =g2 4π

3

C2
Fαs
m2
q

ψ†σσσψχ†cσσσχc

∫
∗

d3k

(2π)3

1

k2 + λ2∫
dk0

2πi

i

k0 − k2

2mq
+ iη

i

−k0 − k2

2mq
+ iη

where we added a gluon mass λ to regulate the Coulomb IR divergence, as well as neglected

the energy component in the longitudinal gluon propagator as we are in the potential region

of scales. The star on the momentum integral is a reminder to integrate up to the border of
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the first Brillouin zone. Performing the energy integral using the residue theorem, we have

M = − 2

3π

C2
Fα

2
s

mq

ψ†σσσψχ†cσσσχc

∫
∗

d3k

(k2 + λ2)2

We can now perform the momentum integral over a spherically symmetric lattice with lattice

spacing a:

∫
∗

d3k

(k2 + λ2)2
=

∫ π/a

0

d|k| 4πk2

(k2 + λ2)2

=
π2

λ
− 4a+O(a3)

(B.1)

The first term corresponds to the Coulomb singularity in agreement with eq. (2.11), while

the second term is the contribution from the UV cut-off. Correspondingly using the O(v4)

heavy quark propagator

S(k) =
1

k0 − k2

2mq
+ k4

8m3
q

gives an additional correction to the second term:

∫
∗

d3k

(k2 + λ2)2

[
1− 1

1− k2

4mq

]
= −

∫ π
a

0

d|k| π

m2
q − k2

4

= −4a+O
(

1

mq

)

which multiplies the second term in eq. (B.1) by a factor of two. We see that including the

relativistic correction doubles the value of the lattice artifact, which is expected as higher-

dimension operators in the NRQCD Lagrangian are more sensitive to the UV momentum

region [3]. The result for the Coulomb contribution to the 1-loop lattice NRQCD amplitude

is then

M =
CFα

2
s

m2
q

[
−2πmq

3λ
CF +

16CF
3π

amq

]
ψ†σσσψχ†cσσσχc +O(a3)
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Appendix C

Solving the Schrödinger Equation on

the Lattice

We are interested in solving the time-independent Schrödinger equation for heavy quarko-

nium with reduced mass µ = mq/2. In natural units, this is given by

[
1

2µ
∇2 +

CFαs
r

+ E

]
ψ(r) = 0 (C.1)

where ψ is the wave function, E is the energy of the bound state, αs is the strong coupling

constant and CF = 4/3 is a colour factor arising from the SU(3) gauge group. Let us

dedimensionalize eq. (C.1) by working in distance units of the Bohr radius rb = 2/mqCFαs:

∇2ψ(r) = −2

(
E +

1

r

)
ψ(r)

where we shifted the energy E → (mqC
2
Fα

2
s)E/2 as to make it dimensionless. Let us now

make the following ansatz for the wave function, remembering that the potential is central:

Ψ (r) =
u(r)

r
Θ(θ)Φ(φ)
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where the choice in radial dependence anticipates the Coulomb singularity at the origin.

This choice leads to three different equations:

d2Φ

dφ2
= −m2

l Φ

sin θ
dΘ

dθ

(
sin θ

dΘ

dθ

)
=
[
m2
l − l(l + 1)sin2 θ

]
Θ

d2u

dr2
=

[
l(l + 1)

r2
− 2

(
1

r
+ E

)]
u (C.2)

where ml and l are complex numbers a priori. The solution to the first two equations are

the spherical harmonics given by

Y ml
l (θ, φ) = (−1)ml

√
2l + 1

4π

(l −m)!

(l +m)!
Pml
l (cos θ)eimlφ (C.3)

where ml and l are integers such that l ≥ |ml| and Pml
l (x) are the associated Legendre

polynomials [31]. If we are interested in spherically symmetric solutions, then we must

choose l = ml = 0 to avoid any angular dependence. Thus, the angular part is simply

Y 0
0 (θ, φ) = 1√

4π
. The exact solution to the radial equation (C.2) with l = 0 is then

u(r) = 2 r e−r, E = −1

2
(C.4)

We would now like to solve the Schrödinger equation on a spherically symmetric lattice, ob-

tained by discretizing the radial equation (C.2). This is done by setting up a one-dimensional

grid with lattice spacing a so that rn = na, n = 0, 1, 2, ... and discretizing the second deriva-

tive using the central difference

a2u′′(r)→ u(n+ 2)− 2u(n+ 1) + u(n) +O(a4)
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so that the lattice Schrödinger equation, to O(a4) is reduced to

u(n+ 1)− 2u(n) + u(n− 1) + 2a2

(
1

na
+ E

)
u(n) = 0 (C.5)

for n = 1, 2, . . . and the boundary condition is u(0) = 0. The difference equation can now

be solved in two different ways.

C.1 Numerical Approach

The difference equation can be solved numerically by solving for u(n) explicitly in an iterative

process

u(n− 1) = 2

[
1− a2

(
1

na
+ E

)]
u(n)− u(n+ 1) +O(a4) (C.6)

where n = 1, . . . , nmax. This is done by the Numerov or “shooting” method [31]. Using the

analytical solution eq. (C.4), we can set two successive values at a sufficiently large distance

for the radial solution, as well as the initial energy guess, and eq. (C.6) builds the function

u(n) backwards to r = 0. For our purposes, we chose lattice spacings a = 0.01 − 0.2, and

rmax ≡ nmaxa large enough so as to capture the full range of the wave function. Choosing

rmax to be an order of magnitude larger than the Bohr radius was enough for convergence of

the results. We can then normalize the wave function using the trapezoidal rule:

1 ≡
∫ ∞

0

dr|u(r)|2 =
a

2

(
u(0)2 + 2

nmax−1∑
n=1

u(n)2 + u(nmax)2

)
+O(a2)

For an inaccurate energy guess Eguess, u(n) will blow up at the origin as the potential and

kinetic energy will not be in balance. Therefore, a binary search in energy space should be

performed until |2− u(n = 0)| < ε, where ε is our desired tolerance. For our simulation we

performed the search with energy spacing ∆E = Eguess/10 and a strict tolerance of ε = 10−7.

Our goal now is to use the Numerov method to determine the dependence of the bound

state characteristics on the lattice spacing. Let us expand the binding energy and the radial
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wave function at the origin in a power series in the lattice spacing:

E = Ec
[
1 + c1a+ c2a

2 +O(a3)
]

Ψl(0) = Ψc(0)
[
1 + d1a+ d2a

2 +O(a3)
] (C.7)

where Ec = −1
2
, Ψc(0) = 1√

π
. Once a solution u(n) is determined, we are then ready to

obtain the radial wave function by fitting our solution with the fit Ar e−B r, where A = A(a)

and B = B(a) are fitting parameters with errors δA and δB respectively. Near the origin,

the analytical radial wave function behaves like

lim
r→0

R(r) = lim
r→0

u(r)

r
= 2

and so the radial wave function at the origin corresponds to the fit parameter A. Therefore,

for a given lattice spacing a, the wave function at the origin is AY 0
0 = A√

4π
. We can now run

our algorithim for multiple lattice spacings and fit the fit parameter A(a) with a polynomial

in a, while weighting each point by 1
δA2 . We chose 20 lattice spacings in the range 0.01− 0.2

and obtained the values below for the expansion in eq. (C.7)

c1 = d1 = 0, c2 = d2 = −1

4
(C.8)

We conjecture the exact form of both coefficients since our algorithim reproduced standard

errors of O (10−5). Expanding to O(a2), the square of the wave function at the origin is

|Ψl(0)|2 = |Ψc(0)|2
[
1− 1

2
a2 +O(a4)

]

Note that the wave function does not depend linearly on the lattice spacing. This is a result

that follows from the central discretization of the Laplacian: a symmetric difference equation

with global O(a4) error results in local O(a2) error, see ref. [34], Theorem 8.10. The theorem

further states that the binding state characteristics should not depend on odd powers of the
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lattice spacing. However we were not able to confirm this fact reliably for powers greater

than cubic, since there is a lack of stability as the order of the polynomial fit in a increases.

C.2 Analytical Approach

The difference equation (C.6) is also simple enough to be solved analytically, see ref. [32].

We simply quote the solution:

u(n) =
2n a

(1 + a2)1/4
exp (−n arcsinh a)

with energy given by

El = − 1

a2

[
(1 + a2)1/2 − 1

]
= −1

2

(
1− 1

4
a2 +

1

8
a4 +O(a6)

)

confirming the coefficients c1 and c2 in eq. (C.8). Then the lattice wave function is given by

Ψl(n) =
1√
π

1

(1 + a2)1/4
exp (−n arcsinh a) (C.9)

And the wave function at the origin is simply

|Ψl(0)|2 = |Ψc(0)|2 1

(1 + a2)1/2

= |Ψc(0)|2
(

1− 1

2
a2 +

3

8
a4 +O(a6)

)

confirming the coefficients d1 and d2 in eq. (C.8). We plot the numerical and analytical

solutions for the wave function at the origin as a function of the lattice spacing in Figure

C.1, and see perfect agreement between the two approaches. Note that both the energy

and lattice wave function at the origin only depend on even powers of a, as expected from
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ref. [34].

Figure C.1: Plot of the wave function at the origin as a function of lattice spacing normalized
by the continuum solution Ψc(0) = π−1/2 in units of the Bohr radius. The black dots label
the numerical solution for lattice spacings a = 0.01 − 0.2, while the blue line indicates the
analytical solution eq. (C.9).
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