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Abstract

We suggest that one way to improve our understanding of
curiosity is through the behaviour of computationally curi-
ous agents. By manipulating the computational curiosity
method motivating an agent’s actions and repeatedly plac-
ing that agent in a simple, consistent domain, we create a
window into how different computational curiosity methods
result in different behaviours. In particular, we suggest that
reinforcement learning is a natural place to begin the princi-
pled study of computationally curious behaviours.
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A Principled Study of Curious Behaviours
Computational curiosity refers to mechanisms to give com-
putational systems a desire to learn or know more, but it
can also be thought of as building computational models of
the abstract concept we call curiosity. One way we might
better understand curiosity is to better understand the ways
we are inclined to model it.

As curiosity motivates many human decisions, reinforce-
ment learning (RL) seems like a strong contender in the
pursuit of computational curiosity. RL is a well-studied way
for biological systems and machines to learn about the
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Figure 1: These two plots show
different behavioural trajectories for
an agent placed in the same
domain using two different
methods for computational
curiosity. The upper method was
suggested by Schmidhuber [2] and
the second was suggested by
Schembri et al. [1]. Orange, grey,
and blue represent three different
choices with varying outcomes.

value of situations and choices through trial and error. In
RL problems, a signal known as reward is delivered to the
learner during its interactions with an environment.

Reward can be used to provide a type of motivation for
computational systems. Existing RL algorithms can be used
to efficiently learn which actions maximize future reward. By
designing our reward, we can therefore design different mo-
tivations for our systems. Researchers have developed dif-
ferent methods to modify the reward delivered to a learner
or to modify other parts of an RL algorithm so as to evoke
curious behaviours in their systems. Many of their methods
have shown promise in real-world or simulated domains.

However, at present, there is no unified way to compare
different curiosity methods. In both humans and machines,
curiosity is challenging to measure due to its the variety
and the individuality of the ways it is exhibited. One way we
would like to be able to compare different curiosity methods
is in how they impact agent behaviour.

We can create a level playing field by designing agents
whose curiosity methods can be varied while their other in-
ner workings are kept constant. Repeatedly placing such an
agent in a single domain while varying its curiosity method
can allow us to clearly see where its behaviour differs.

To gain an understanding of how the resulting behaviours
compare to what we might expect or desire given the meth-
ods’ theoretical underpinnings, we suggest that initial exper-
iments should be run in uncomplicated simulated domains,
with variations specifically chosen to untangle the differ-
ences between curiosity methods.

Figure 1 is included to show that even in a simple domain,
two different curiosity methods result in two completely dif-
ferent behavioural trajectories. The experiment from which

the plots are drawn was run with a simple, single-state do-
main with three actions in order to tease apart the ways that
different methods might be affected by variation in reward.

In conclusion, we believe that the principled understanding
of computational curiosity will make significant contributions
to our understanding of curiosity as a whole, and to the de-
velopment of general machine intelligence. Not only can
curiosity benefit computational systems, allowing them to
learn more effectively about non-stationary, specialized en-
vironments while using a general learning algorithm, but
they could also be used to pique human curiosity, mak-

ing things more engaging for the users of a wide range of
computation-enabled technologies (e.g., personalized phys-
iotherapy or fitness training). We can design for curiosity by
modelling curiosity.
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