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Abstract

Effective life-long deployment of an autonomous agent
in a complex environment demands that the agent has
some model of itself and its environment. Such mod-
els are inherently predictive, allowing an agent to pre-
dict the consequences of its actions. In this paper, we
demonstrate the use of General Value Functions (GVFs)
for learning and representing such a predictive model
on a robotic arm. Our model is composed of three types
of signals: (1) predictions of sensorimotor signals, (2)
measures of surprise using Unexpected Demon Error
(UDE) and (3) predictions of surprise. In a proof-of-
principle experiment, where the robot arm is manually
perturbed in a recurring pattern, we show that each per-
turbation is detected as a jump in the surprise signal. We
demonstrate that the recurrence of these perturbations
not only can be learned, but can be anticipated. We pro-
pose that introspective signals like surprise and predic-
tions of surprise might serve as a rich substrate for more
abstract predictive models, improving an agent’s ability
to continually and independently learn about itself and
its environment to fulfill its goals.

Introduction
Autonomous agents facing long-term deployment may en-
counter many challenges when interacting with the real
world. The conditions of the environment and the agent it-
self may change over time. Further, it is impossible for en-
gineers to fully anticipate all that such an agent must know
ahead of time. The only way to overcome these shortcom-
ings autonomously is for an agent to independently and con-
tinuously learn about itself and the environment in terms of
its ongoing sensorimotor experience. One potential way to
learn and represent information is to use predictions and
predictive knowledge (Clark 2013). To this end, predictive
models, such as General Value Functions (GVFs) (Sutton et
al. 2011), present a method by which an agent might con-
struct and represent information from its own experience.
Such models should enable the agent to predict upcoming
events and the outcomes of its actions, key information for
successfully acting on its own. The usefulness of machine-
made predictions has recently proven to be beneficial for
various complex problems, even in challenging and chang-
ing environments. Examples include, but are not limited to,
industrial laser welding (Günther et al. 2016), artificial limbs

(Pilarski et al. 2013; Sherstan, Modayil, and Pilarski 2015)
and robot navigation (Kahn et al. 2017). However, most re-
search has focused on the use and prediction of signals gen-
erated by the environment (i.e., signals originating outside
the agent, from the world or its physical body) and not inter-
nal signals (here defined as signals relating to the computa-
tional workings of the learning machine itself).

While knowledge about the environment is valuable for
an autonomous agent to successfully interact with the en-
vironment on its own, further insight might be required to
evaluate the consequences of the agent’s actions. As stated
by Schultz and Dickinson (2000, p. 476), “In general terms,
learning can be viewed as the acquisition of predictions of
outcomes (reward, punishment, behavioral reactions, exter-
nal stimuli, internal states)” [emphasis added]. It is there-
fore necessary to not only learn about external sources of
information but also about internal ones. Many authors have
looked at using various internally generated metrics to drive
exploration (White and White 2010; Gehring and Precup
2013), adapt algorithm parameters (White and White 2016;
2010; Sakaguchi and Takano 2004), adapt to changes in
the reward function (White and White 2010), and minimize
risk (Tamar, Castro, and Mannor 2016). Further, Sherstan
et al. (2016) argued that internally generated signals, such
as learning errors and statistical measures, should be made
available to the agent as state information, enabling an agent
to learn to make better decisions on its own. Learning exter-
nal and internal signals by employing GVFs will result in a
large number of predictions. Recent work has demonstrated
the ability to learn a large number of online predictions for
the sensor values of a mobile robot (Modayil, White, and
Sutton 2014); in Pilarski and Sherstan (2016), a precursor to
the present work, ∼18k GVFs were deployed in real time on
the data stream of a robotic prosthesis.

In this paper we build on this prior work to provide an ex-
ample of how GVFs can be used to make thousands of pre-
dictions about both external and internal signals at different
time scales on a real-world problem domain. Using a proof-
of-principle experiment, we learn thousands of predictions
about incoming sensor readings provided by the sensors of
a robotic artificial limb. Furthermore, we investigate mea-
sures that are related to these predictions to gain knowledge
about the internal state of the prosthesis. One particular mea-
sure that we investigate in detail is the Unexpected Demon
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Error (UDE) (White 2015). The UDE provides information
about the comparison of the current prediction error to an
average of previous errors. It can be seen as a measure of
surprise, as it takes previous experiences into account and
will only increase when current experience significantly dif-
fers from previous experience. Such a differing experience
might be due to changing conditions, either in the environ-
ment or in the agent itself, providing important knowledge
about the agent’s functioning within said environment. We
furthermore learn predictions about the UDE to provide the
agent with a sense of how much surprise it might experience.

As a main contribution of the present work, we propose
that predictions of raw perceptual data from an agent’s data
stream, along with sensations and predictions of surprise
with respect to this data stream, can be used as a platform
on which to build more powerful and more abstract predic-
tive models of an agent’s operation and interactions with its
world. In the remainder of this paper, we demonstrate that
such introspective information can be learned in a tractable,
scalable way for use during long-term operation.

General Value Functions
As suggested, General Value Functions (GVFs) are a means
to learn predictive knowledge (Sutton et al. 2011). A GVF
v is defined in terms of the return, Gt. The return at time t
is defined as Gt =

�∞
k=0 γ

kCt+k+1, where C is the cumu-
lant and γ is the discount rate. The cumulant is the signal of
interest. The discount rate describes how future cumulants
are weighted in the return. In the simplest case, γ = 0, the
return is equal to the next cumulant. This setting is called
myopic. As γ increases and approaches 1, future cumulants
contribute more to the return. For γ = 1, the return is undis-
counted and all future cumulants contribute equally.

A GVF v is defined as v(s;π, γ, C) = Eπ[Gt|st = s]. It
maps from a state s to the expected return, given the agent
follows the policy π and starts in the state s. The policy π
specifies the behavior by providing the probability of taking
an action a for a given state s. Together, the three parame-
ters π, γ and C define what a GVF is about and are called
question parameters (White 2015).

A way to learn General Value Functions is temporal-
difference (TD) learning (Sutton 1988). TD learning allows
for online and incremental computation of the value function
by using estimates to make updates. This property makes
it ideal to compute a sufficiently big number of GVFs to
represent all information of interest. In this work, the value
function is approximated by the inner product of a binary
feature vector x(s) that represents the sensor readings and
a learned weight vector w. The value for a state is therefore
computed as v(s) = w�x(s). To update the value function,
the TD error δ is computed after each time step as stated
in line 3 in Algorithm 1. The TD error is then used to up-
date the weights by taking a step towards the new estimate,
based on the step size 0 < α. To potentially speed up learn-
ing by assigning credit to previously visited states, eligibility
traces z are used. These traces decay according to the decay
rate λ ∈ [0, 1]. The whole algorithm can be found in Algo-
rithm 1 and an extensive introduction to TD learning can be
found in Sutton and Barto (2018). The parameters α and λ

Figure 1: The Modular Prosthetic Limb (MPL) used for the
experiments. The arrows indicate the nature of the repeated
disturbance imposed during the experiment. The green ar-
row indicates the direction of the provided perturbation,
while the blue arrows indicate the resulting joint movement.

are called answer parameters, as they define how the GVFs
are learned. A collection of GVFs is called a Horde (Sutton
et al. 2011).

Algorithm 1 TD(λ)
1: Initialize vectors z ∈ 0n and w ∈ 0n; initialize a small

scalar α; observe state s
2: Repeat for each observation s� and cumulant C:
3: δ ← C + γw�x(s�)− w�x(s)
4: For i = 1, 2, · · · , n:
5: zi ← ziγλ+ xi(s)
6: wi ← wi + αiδzi
7: s ← s�

Unexpected Demon Error
One of the error measures we are most interested in for this
paper is the Unexpected Demon Error (UDE) (White 2015).
It provides a measure for unexpected changes in a signal due
to changes in the environment. Mathematically, the UDE is
calculated as

UDE =

�����
δ̄β�

var(δ) + �

����� , (1)

where .̄β is a moving average over the TD error δ and � is
a small constant to prevent division by zero. During learn-
ing, small changes in the TD error are to be expected, as the
learner updates the value function and acquires knowledge
about the world. The way the UDE is defined, it will neither
react to the regular occurring learning nor to random noise,
as both are considered in the mean and the variance of the
TD error. The UDE will only significantly increase if the TD
error behaves significantly differently due to changes in the
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Figure 3: The prediction architecture used in the experiments. The sensor stream from the MPL on the left side is received
over the network as a 3520 bit UDP packet, subsequently decoded into 108 floating point signals. These 3520 bits are delivered
directly as both cumulant (C) and state (X) for Horde 1. The output of the first Horde is then fed into Horde 2 and 3 as the state
X used in predicting the 108 decoded sensor signals and also to make predictions about the UDE (surprise) of Horde 1.

The outputs of the first predictive layer (Horde 1) are then
used as inputs for the second predictive layer. There are two
independent Horde architectures present in this layer (Horde
2 and 3). Horde 2 in the second layer receives the predic-
tions from the first layer as state inputs x(s) and the UDE as
cumulants. As this layer predicts 3520 cumulants, it again
consists of 3520 GVFs. Its outputs are predictions about the
UDE of the first layer, with a discount rate of γ = 0.999,
which corresponds to a prediction of 1000 steps into the fu-
ture. The discount rate was chosen such that the predictions
can reliably learn about the imposed perturbations, which
are about 260 time steps apart.

Horde 3 receives predictions from the first layer as its state
representation input x(st), and its cumulants are the floating
point decodings of sensor readings from the MPL. There are
108 GVFs in this Horde. Its outputs are predictions about
the sensor signals, based on a discount or termination signal
γ = 0.9, which corresponds to 10 time steps into the future.

For all predictive layers in this architecture, the same eli-
gibility trace decay rate λ = 0.99 was chosen as a standard
intermediate value of λ (Sutton and Barto 2018).

Experimental Results
To provide further intuition, we created synthetic data to
demonstrate the expected behavior of the internal signals
for a variety of potential external signal types, shown in
Figure 4. Subplot (a) shows a potential data stream, includ-
ing signals that do not change, recurring patterns, and ran-
dom noise. Subplot (b) shows the predictions and should
therefore match subplot (a), if the predictions are accurate.
Subplot (c), which shows the UDE, should only spike for
surprising changes in the original data and not for consis-
tent noise. While the TD error for noise will constantly
change, the UDE should only increase for the first occur-
rence of noise, as it keeps track of previous TD errors and
will therefore expect TD errors of the same magnitude. It
should furthermore not react to signals that are constant.

Figure 4: Simplified plots for the ideal relationship between
(a) binary data, (b) predictions, (c) UDE and (d) predictions
of UDE with γ = 0.999 for synthetic data.

The UDE should, however, react to recurring patterns, as
the short moving average will forget about these signals over
time. Subplot (d), which shows the predictions for the UDE,
should show a longer activation where the UDE is active.
The predictions of the UDE are only consistently active for
the recurring pattern, as the predictions are consistently re-
inforced. The actual recorded data for all sensors over the
whole duration of the experiment is shown in Figure 5.

25



Bits and Bit Predictions
To provide insight into the experimental results, Figure 5(a)
shows the binary features of the data stream for all sensors.
These features are created from the sensor readings by plot-
ting the full contents of the UDP sensor packet received from
the robot arm. Table 1 shows the line numbers of each sensor
value in Figures 5, 6 and 7.

Purple bits are highly active, while light blue bits are not
active, as indicated by the legend. Some bits do not change
their value over time—this corresponds to constant sensor
readings. For example, most sensor readings from the hand
will be constant, as it is not moving during the experiment.
Figure 6(a) shows a zoom in on the position and velocity bits
for 200 time steps. As expected, most of the sensor stream is
constant. However, around time step 4090 some of the val-
ues significantly change, as a result of the perturbation to the
prosthetic arm. Other bits will be constantly changing. This
may be due to sensor noise or due to inherently shifting sig-
nals, e.g. increasing temperature, or, in the case of the load
sensors (Figure 7(a)), because the actuators need to keep the
arm in place, resulting in the load sensors frequently being
active and their values varying by small amounts.

As the predictions for the bits are myopic, they should ide-
ally be the same as the actual bits. Figure 5(b) clearly shows
that the predictions for the bits that show a constant behav-
ior are identical. Even when zoomed in as shown in Figure
6(b) and 7(b), the bits that are constant are matching the pre-
dictions. The changing bits are not as trivial to predict. Bits
that change randomly should in fact not be predictable and
the predicted value should be distributed around the expec-
tation, i.e. 0.5. Such random behavior can be seen in Figure
7(b) for some of the bits related to load between lines 2000
and 2050. For the position and velocity, shown in Figure 6(b)
however, the predictions clearly map the disturbance, as can
be seen by the changing predicted value, as the perturbation
occurs around time step 4090.

UDE and UDE Predictions
To provide a meaningful measure of surprise, the UDE
should show its highest activation both at the beginning of
the experiment, when the sensor readings are new, and upon
the disturbances, as the readings will significantly change
when the arm is perturbed. Figure 5(c) clearly reveals the ex-
perimental design. The subplot shows the repetitive pattern
of the arm displacement around lines 100, 950 and 1800.
These binaries correspond to the position, velocity and load,
respectively. Every time the arm is perturbed, the UDE sig-
nificantly spikes as the sensor readings change. Noise still
shows up in the UDE plot, but the intensity is lower, due to
the UDE taking previous errors into account. The dampen-
ing of the noise is clearly displayed in Figure 6(d). Between
lines 900 and 1000, some of the velocity binary features are
highly volatile, as seen in subplot (a). The UDE, as shown
in subplot (d), in comparison, only spikes twice, around time
steps 4000 and 4090, where the actual displacements occur.
Figure 7 elucidates a further aspect of the functionality of
UDE: After the perturbation around time step 4310, the TD
error in subplot (c) stays quite volatile until around time step

4460. The UDE decreases over this period and only spikes
again when the TD error suddenly drops and stays low.

When looking at the predictions in Figure 5(d), it can be
seen that the predictions about the UDE are not significantly
active until the first disturbance occurs. After that, they are
consistently high for the binaries that are affected by the
perturbations. As the termination signal γ = 0.999 allows
the predictions to consider 1000 time steps in expectation,
the UDE predictions learn about the reoccurring movements
and correctly predict the spikes in UDE. Figures 6(e) and
7(e) show in detail that the predictions anticipate that there
will be changes in UDE due to perturbations, and at the same
time filter the impact of UDE spikes that are not directly re-
lated, e.g. in lines 2000 to 2050 in Figure 7(e).

Discussion
This work presented the use of a predictive architecture to
capture important information about the sensor stream of a
prosthetic limb. The raw sensor stream of the MPL was re-
ceived as binary values and served as an input to the first
predictive layer that learned to predict these inputs in a my-
opic way and produced the Unexpected Demon Error (UDE)
as a measure of the surprise with regard to the inputs.

In the original binary sensor data, the temporal structure
of the perturbations is hidden by a significant amount of
noise and general changes in the sensor values, for example
due to changes in temperature. The (myopic) predictions of
the sensor values match the original sensor values quite well
for a large amount of the readings. However, some binary
features behave randomly or almost randomly, resulting in
predictions that are not accurate.

The UDE, however, is able to capture the perturbations
and their effects on the position, velocity and load sensors.
Each time the arm is manually moved, the surprise for each
sensor peaks and falls afterwards. The UDE can therefore
be seen as a valuable measure to inform the system about
changes in its own functioning. Furthermore, the predictions
about the UDE are consistently high after the first displace-
ment, effectively capturing knowledge about the recurring
pattern. At the same time, UDE and the predictions about
the UDE are capable of filtering the noisy sensor readings
to some degree, providing a better distinction between the
perturbations and the normal, unperturbed running. For ex-
ample, the UDE is consistently low for the checksum and
the temperature, but spikes for signals that are impacted by
perturbations of the arm. Intuitively, the system has learned
about the potential changes in its functioning and to some
degree can predict and expect these perturbations.

The internal signals that are generated by the suggested
architecture can not only be thought of as direct inputs for a
potential controller but can be looped in as additional con-
text to improve the accuracy of these and other internal
signals. For example, one could imagine using the predic-
tions about surprise as additional context, incorporating un-
expected motions into the agent’s knowledge to improve its
predictions of the sensor values. Including internal signals
may improve the representation of the system, enabling the
agent to learn more complex dependencies about itself and
improve its performance autonomously.
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Figure 5: All recorded data for the experiment. The first subplot (a) shows the sensor stream from the MPL as decoded binaries.
The second subplot (b) contains the myopic predictions for the binaries, provided by the first predictive layer. In the third
subplot (c), the UDE is shown, followed by (d) the predictions about the UDE for a termination signal γ = 0.999.
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Figure 6: (a) Sensor data, (b) predictions (γ = 0), (c) predic-
tion error, (d) UDE and (e) predictions of UDE (γ = 0.999)
for position and velocity sensors.
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Figure 7: (a) Sensor data, (b) predictions (γ = 0), (c) predic-
tion error, (d) UDE and (e) predictions of UDE (γ = 0.999)
for load sensors.
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Conclusion
The experiments in this paper were conducted to demon-
strate how a predictive architecture can learn predictions,
measure surprise, and learn predictions of surprise for a re-
curring pattern of sensor data from a prosthetic limb. The
results show that important information about the underly-
ing domain can be revealed by generating signals of inter-
est from the ongoing operation of a Horde of General Value
Function learners. The architecture in this paper learns sur-
prise and predictions of surprise but does not make use of
them. We suggest that the use of these signals in control
learning is a natural extension that promises benefits: in-
trospective signals can potentially help a learning agent to
extend its knowledge not only about the environment but
also about its own state within this environment. The present
work can therefore be viewed as the process of learning a
grounded, rudimentary model of actions and their conse-
quences, which may create a foundation for learning more
complicated concepts and relationships.

In the case of a learning artificial limb, predictions of sur-
prise should provide knowledge of a change in the dynamics
of the prosthesis before the change happens. If successfully
learned, such predictions might serve as indicators not only
of external variability like a new domain, a handshake, or un-
predictable contact with objects, but also of changes in the
function of the limb; the latter is a first step towards detect-
ing the need for maintenance before the system breaks down.
We suggest that introspective knowledge as presented in this
work can be a valuable extension to systems that continually,
autonomously learn and adapt in real-world settings.
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