
Achieving Gentle Manipulation
with Deep Reinforcement Learning

Sandy H. Huang
University of California, Berkeley
shhuang@cs.berkeley.edu

Martina Zambelli, Yuval Tassa, Jackie Kay,
Murilo F. Martins, Patrick M. Pilarski, Raia Hadsell

DeepMind
{zambellim, tassa, kayj, murilomartins, ppilarski, raia}@google.com

Abstract

Robots must know how to be gentle when they need to interact with fragile objects,
or when the robot itself is prone to wear-and-tear. We propose an approach that
enables deep reinforcement learning to train policies that are gentle, both during
exploration and task execution. Our approach involves augmenting the (task)
reward with a penalty for non-gentleness. However, augmenting with only this
penalty impairs learning: policies get stuck in a local optimum of avoiding all
contact with the environment. Introducing surprise-based intrinsic rewards solves
this problem, as long as the right kind of surprise is chosen—penalty-based surprise
is more effective than the typical dynamics-based surprise. Videos are available at
http://sites.google.com/view/gentlemanipulation.

1 Introduction

Deep reinforcement learning (RL) can be used to train policies that achieve superhuman performance
on Atari games [20] and Go [29], learn locomotion tasks [18, 27], and perform complex robotic ma-
nipulation skills [17]. However, deploying deep RL on real-world robots often leads to a considerable
amount of wear-and-tear over time, on both the robot itself and the environment, because existing
approaches require many trials to learn. If robots were able to explore and learn safely, minimizing
excessive forces and impacts, they would last longer before needing repairs, and the objects they
interact with would not need to be replaced as often.

We might also care about gentleness in terms of task execution itself, for instance if the robot needs
to pick-and-place an object, but either the object and/or goal location is fragile. In particular, when
robot manipulation involves humans (e.g., feeding a paralyzed patient), being gentle is important [15].
In these situations, robots should strive to accomplish the given task in a reasonable amount of time,
while minimizing applied force and impact as much as possible.

Thus, in order to broadly deploy deep RL on real robots, we need an approach for training policies that
are gentle, both during exploration and task execution. A naive approach is to constrain the maximum
torques that a robot’s motors can exert. However, many manipulation tasks require occasional,
momentary, or variable high force (e.g., hammering a nail or turning a lever); the torque limit cannot
be any lower than this, otherwise the robot will not be able to complete the task. But we do not want
the robot to freely exert this much force along its entire trajectory. Alternatively, one could constrain
the total amount of force or impact allowed, but this requires knowing a priori the minimum total
amount necessary for accomplishing the task [2, 4, 32].

http://sites.google.com/view/gentlemanipulation


Instead, our approach is to give the robot negative rewards for actions that are not gentle, for instance
those that result in high impact forces. Incorporating this in the reward function is a natural approach
for encoding preferences about how robots should perform a task (e.g., driving style [1]), and can
be seen as an intrinsic “pain” signal which encourages learning safer policies. However, perhaps
unsurprisingly, we show adding only this penalty makes it much harder for an agent to learn an
optimal policy; instead, they get stuck in a local optimum of avoiding contact altogether, because
they encounter the penalties before ever obtaining the task reward, and thus learn a fear of pain.

To motivate agents to interact with the environment and do it gently, we propose balancing this “pain”
signal by adding another intrinsic signal, this one positive, for curiosity. In particular, we reward the
agent for surprising experiences—those that contradict the agent’s current understanding of the world.
A concrete example of this is giving intrinsic rewards for transitions that have low probability under a
learned dynamics model [3, 12, 23, 30]. However, we find that using this kind of dynamics-based
surprise is not as effective as using a penalty-based surprise, that leads robots to be explicitly curious
about the non-gentleness penalty itself.

Our work takes a step toward using deep RL to train policies for gentle, object- and contact-centric
manipulation. We define being gentle as minimizing impact forces. We demonstrate that our
proposed approach, which introduces both a penalty for excessive impact forces and a curiosity
reward focused on this penalty, enables efficient and safe exploration, precise task execution, and
successful manipulation of fragile objects.

2 Related Work

Our goal of gentle manipulation is closely related to impact minimization in classical control, but
existing approaches typically rely on having accurate dynamical contact models [13, 14, 34]. Another
related domain is safe reinforcement learning [11, 24]: safety may refer to either physical safety or
handling environment stochasticity. Typically, the former is concerned with avoiding catastrophic
situations (e.g., crashing into another car or falling off a cliff), whereas in our work, we take a broader
view of physical safety, in terms of reducing wear-and-tear in order to delay eventual damage.

We use curiosity-based intrinsic rewards to encourage agents to (gently) explore their environment,
in the presence of non-gentleness penalties. Curiosity-based intrinsic rewards can be viewed as
providing reward shaping [22]: they make tasks easier to learn, by making it less likely for agents to
get stuck in undesirable local optima. In the context of deep RL, curiosity-based intrinsic rewards
typically reward agents for either encountering novel states [7, 10, 31] or encountering surprising
experiences [3, 12, 23, 30]. Our work uses the latter, surprise-based intrinsic rewards, but we find
that the usual method of computing this with respect to a learned dynamics model is not effective in
our setting. Instead, we formulate surprise with respect to a penalty-prediction model.

In our work, the reward comes from a combination of several signals: extrinsic rewards from the
task, and intrinsic rewards from non-gentleness and curiosity. This falls under multi-objective
reinforcement learning (MORL). Typically MORL approaches either train a single policy by finding
the right balance of rewards, or learn a set of policies that approximate the Pareto optimal frontier [19,
25]. Some authors have used the Constrained MDP framework [4] to develop policy optimization
methods which ensure that constraints are satisfied at all points throughout learning [2, 8]. We take a
separate standpoint, in which we trade off explicitly between the non-gentleness penalty, or intrinsic
“pain” signal, and the agent’s curiosity about it. This reduces the problem to balancing between the
task reward and the this penalty, which can be set with domain knowledge: if it is very important to
achieve the task, then a higher task reward implies that being less gentle (e.g., experiencing higher
impact forces) is okay. Thus, we can directly add these rewards together, rather than searching for a
weighting that leads to the correct balance.

3 Preliminaries

3.1 Markov Decision Process

A Markov Decision Process (MDP) is defined as a tuple (S,A,P,R, γ), where S is the state space,
A is the action space, P : S×A×S 7→ R specifies the transition probabilities,R : S×A×S 7→ R
specifies the reward function, and γ ∈ [0, 1] is the discount factor.

2



A policy π is a function that maps each state to a distribution over actions (π : S → ∆A, where ∆A
is the probability simplex on A). Reinforcement learning optimizes policies to maximize expected
returns (i.e., cumulative discounted future rewards):

Eat∼π(st),st+1∼P(st,at)[
∑
t

γtR(st, at, st+1)]. (1)

A policy π’s action-value function, when taking action a in state s, is

Qπ(s, a) =

∫
s′
P (s, a, s′)

(
R(s, a, s′) + γEa′∼π(s′)[Qπ(s′, a′)]

)
. (2)

Typically R specifies how well the policy is doing in terms of accomplishing a task. In this work,
we augmentR with several types of reward bonuses, in order to train policies for contract-centric,
low-impact manipulation.

3.2 Deep Reinforcement Learning

The policy π can be represented by a function parameterized by θ; for instance, θ may be a weighting
on predefined features of the state [1]. In deep RL, θ is the parameterization of a neural network. We
use Distributed Distributional Deterministic Policy Gradients (D4PG) [6] to train our policies, but
in principle the proposed approach is algorithm-agnostic. D4PG is an actor-critic algorithm used to
train policies for continuous control; both the policy and action-value function are parameterized by a
neural network.

The critic is a distributional action-value function: it takes the current state st and action at as
input, and outputs a categorical distribution over the predicted Q(st, at). It is trained with off-policy
policy evaluation, on batches of transitions (st, at, st+1) sampled from a replay buffer. The actor
is a deterministic policy: it takes in the current state st as input, and outputs an action at. During
training, its gradients are computed only with respect to the critic, such that actions are adjusted in
the direction of increased Q-values.

3.3 Formalizing gentleness

In this work, we define being gentle as minimizing impact. This is closely related to the notion
of impact force in physics, which is the maximum amount of force experienced during a collision.
However, we consider a more general definition of “impact”, that does not only apply to cases when
the initial applied force is zero. Instead, assuming a discrete time step, we define impact mt as

mt = max(0, ft+1 − ft), (3)

where ft is the sensed force at time step t. In other words, for a robot to be gentle, it should minimize
increases in sensed force.1

4 Proposed Approach

In order to train policies that exhibit gentle manipulation, our approach is to augment the original
reward (rt) with an impact force penalty (rft ) and an intrinsic reward based on surprise (rst ). Agents
are trained to maximize the total reward,

r′t = rt + rft + rst . (4)

4.1 Impact penalty

The impact force penalty acts as an intrinsic pain signal to encourage agents to accomplish manipu-
lation tasks in a more gentle way. Of course, in order to accomplish any manipulation task, small
impacts are necessary—at some point the robot needs to go from zero to non-zero applied force on

1As motivation, consider a robot that needs to apply a force of 20N to push a heavy object. If the robot
increases the amount of force it applies from zero to 20N in a fraction of a second, the impact results in more
potential wear-and-tear, compared to increasing gradually to 20N over several seconds.

3



an object, in order to manipulate it. So, the impact penalty should scale non-linearly with the level of
impact, by taking into account the acceptability of a particular amount of impact.

Let aλ(m) ∈ [0, 1], parametrized by λ, be the acceptability of a particular amount of impact m.
This is a monotonically increasing function, that should be designed according to how resilient the
robot and environment are to impacts; for instance, if the robot is interacting with particularly fragile
objects, then the range of acceptable impacts should be smaller. In our experiments, we use a sigmoid
function for acceptability:

aλ(m) = sigmoid(λ1(−x+ λ2)) =
1

1 + eλ1(x−λ2)
(5)

The impact penalty at time step t is:

rft = −
∑
i

aλ(mi
t) ∗mi

t, (6)

where the summation is across force sensors at different locations on the robot (e.g., the fingers of a
robot hand). In our experiments, we set λ = [2, 2]>.

4.2 Dynamics-based surprise

If the environment reward merely combines the task reward and the impact penalty, that is,
r′t = rt + rft , we find that policies get reliably stuck in a local optimum of not making contact with
anything in the environment—the agent learns to be afraid of contact, since it encounters the impact
penalty before the sparse task reward, hindering exploration. The purpose of adding surprise-based
intrinsic rewards is to encourage policies to make contact with objects in the environment but still in
a gentle way.

For an agent to be “surprised,” it must have some (learned) understanding of its environment, i.e.,
a model. In the case of dynamics-based surprise, this model is a dynamics model that takes in the
current state and action, and predicts the next state. We train an ensemble of neural networks for the
dynamics model, in order to have predictive uncertainty [16]. Predictive uncertainty is useful for
capturing novelty: in the case of environments with deterministic dynamics, if the networks in the
ensemble either individually have high variance in their predictions, or have high variance across the
ensemble, then this indicates a novel area that should be explored further.

Each of the M networks in the ensemble outputs the mean and variance of a Gaussian for each
dimension d of the prediction. The ensemble’s combined output is a mixture of Gaussians for each
output dimension d:

1

M

∑
i

N (µθi(x)d, σ
2
θi(x)d),

where x denotes the input and θi are the parameters of the ith network in the ensemble. During
training, each network is randomly initialized, and they are trained on different batches of transitions.
We choose M = 5, as recommended by related research [16].

To compute dynamics-based surprise intrinsic reward rst , we approximate the dynamics model’s
predicted distribution over next states with a single Gaussian per output dimension d, to measure how
much variance there is across networks in the ensemble. This has mean µ∗(x)d = 1

M

∑
i µθi(x)d and

variance σ2
∗(x)d = 1

M

∑
i(σ

2
θi

(x)d + µ2
θi

(x)d)− µ2
∗(x)d. Then the intrinsic reward is the negative

log-likelihood of the true next state under this predicted distribution over next states:

rst = −
∑
d

log p(st+1,d|N (µ∗(st, at)d, σ
2
∗(st, at)d) (7)

This intrinsic reward is computed with respect to a target dynamics model, which is updated every
5000 iterations; this makes training more stable, so that the agent is not trying to surprise a model
that is constantly changing. In addition, we do not provide intrinsic rewards to the agent until after
20,000 training iterations, once the dynamics model starts becoming more accurate.

4



4.3 Penalty-based surprise

Perhaps counter-intuitively, we propose to reward the agent for being curious about the impact penalty
itself, by adding a reward to focus the learning and exploration of the agent on the intrinsic pain signal,
thus enabling better prediction of pain through gentle interaction. To compute this penalty-based
surprise reward rspt , we train an impact penalty predictor in parallel with the agent, with the same
implementation as the general dynamics model (an ensemble of five neural networks).

We compute the intrinsic reward differently though—the problem with directly using negative log-
likelihood is that then areas of high penalty are acceptable, as long as the prediction likelihood in
those areas is low. However, this leads to excessive non-gentle behavior, which is not what we want:
instead, we would like agents to focus on learning about areas with low penalty (i.e., areas where
impact is low), so that they learn how to be gentle. For areas of high penalty, it is enough for the agent
to just know that the penalty is high, not necessarily exactly how high it is. To enforce this preference
for exploring areas with low penalty while avoiding ones with high penalty, a natural approach is
to augment the task reward with a convex combination between the negative log-likelihood and the
impact penalty:

aλ′(rft ) ∗ − log p(rft |N (µ∗(st, at), σ
2
∗(st, at))) + (1− aλ′(rft )) ∗ rft , (8)

where aλ′(rft ) ∈ [0, 1] is the acceptability of a particular penalty rft . This is a monotonically
increasing function, that should be chosen based on how much penalty the robot may experience for
the sake of exploration or task completion. We use a sigmoid function for this acceptability, as we
did for impact aλ(m) (Sec. 4.1).

In order to augment the reward with this convex combination, we need to choose rspt such that
r
sp
t + rft is equal to (8). In addition, we only provide this intrinsic reward if the penalty is non-zero,

because the purpose is to encourage the agent to (cautiously) learn more about the penalty. Based on
this, we set the penalty-based surprise intrinsic reward to be:

r
sp
t =

{
aλ′(rft )

[
− log p(rft |N (µ∗(st, at), σ

2
∗(st, at)))− r

f
t

]
if rft < 0

0 otherwise
(9)

In the same way as dynamics-based surprise, this penalty-based surprise intrinsic reward is computed
with respect to a target impact penalty predictor model, which is updated every 1000 iterations, and
we do not provide intrinsic rewards to the agent until after 20,000 training iterations.

4.4 Agent architecture

As mentioned, we use D4PG to train an actor (e.g., policy) and critic (e.g., action-value function). We
use a separate critic for each of the task reward, surprise-based intrinsic reward, and impact penalty
for more stable learning [26]. More details are provided in the Supplementary material.

5 Experiments

Our goal is to learn policies that are safer, with less forceful impacts, while also improving sample
efficiency and overall task performance. The following experiments compare three approaches for
achieving this; these approaches differ in terms of what the task reward is augmented with:

• an impact penalty (rft )
• an impact penalty and a dynamics-based surprise intrinsic reward (rft + rst )
• an impact penalty and a penalty-based surprise intrinsic reward (rft + r

sp
t ).

5.1 Experimental domain

Our experiments are on a simulated Shadow Dexterous Hand [28] in MuJoCo [33]. This robot hand
has five fingers with a total of 24 degrees of freedom, actuated by 20 motors. Each fingertip has a
spatial touch sensor, with three channels and a spatial resolution of 4× 4: one for normal force and
two for tangential forces.2 We simplify this by taking the absolute value and then summing across

2On the real-world Shadow Hand, BioTac® sensors [9] provide a more complex set of tactile signals.

5



the spatial dimensions, to obtain a 3D force vector for each fingertip. The impact force mi
t is then the

sum over the increase in force per channel for fingertip i.

The state consists of proprioception (joint position and joint velocity) and touch. The action space is
20-dimensional. We use position control and a control rate of 20 Hz.

The simulation environment consists of the Shadow Hand and a single block (Fig. 2); the task reward
rt depends on the experiment. Focusing on this simple environment enables us to clearly characterize
the effectiveness of our three approaches for training low-impact policies. We find that even in this
simple environment, learning policies for gentle manipulation is challenging for most approaches.

5.2 Exploration with impact penalty

First, we are interested in whether these approaches enable training policies that are gentle during
exploration. We investigate this in a no-reward setting, where the policy receives intrinsic rewards
(either from dynamics-based surprise or penalty-based surprise) and the intrinsic pain penalty, but no
task reward. The goal is for policies to be gentle (i.e., experience low impact) while still exploring
effectively, in terms of interacting with objects in the environment.

As a baseline, we trained policies with only dynamics-based surprise intrinsic rewards, without an
impact penalty. As expected, these policies experience a large amount of impact while exploring:
the maximum amount of impact experienced per rollout is in the 5 to 15N range (Fig. 1, left). This
suggests that this form of curiosity is not feasible for running on real-world robots, if either the robot
or the objects it interacts with are susceptible to wear-and-tear.

When we add the impact penalty, we do observe more gentle exploration: there is a significant
decrease in the maximum amount of impact experienced per rollout (now in the 0 to 5N range), for
both kinds of intrinsic reward. However, having penalty-based surprise intrinsic rewards leads to
more gentle touching, whereas dynamics-based surprise leads to the policy exploring interesting
configurations of the hand, but with limited touching (Fig. 1, center and right).

nu
m

be
r o

f r
ol

lo
ut

s

0

100

200

maximum impact
0 5 10 15 20 0 5 10 0 5 10 0 5 10 0 5 10

Figure 1: We train policies in a no-reward setting, with either dynamics-based (rst ) or penalty-based
(rspt ) surprise intrinsic rewards. These histograms show the maximum amount of impact (in Newtons)
per rollout; rollouts are collected regularly throughout 500k training steps, and rollouts with no
impact at all are ignored. λ′2 = 2 , 3 , or 4 . λ′1 = 2 for all.

5.3 Manipulation with impact penalty

Next, we are interested in whether these approaches enable training policies that learn how to perform
a task gently, while still being relatively sample-efficient compared to the baseline of learning the task
without caring about gentleness. In the task, the episode terminates with a reward of +1 if the hand
presses the block with any fingerpad (thus activating the touch sensor) with a force greater than 5N. A
non-gentle way of achieving this is to go from no contact to 5N of applied force in a single timestep;
in contrast, policies trained to be gentle should more gradually increase to 5N of applied force.

This task is simple: without an impact penalty, agents learn this task quickly (Fig. 3, left), although
with a significant amount of impact (Fig. 2, top center). However, once impact penalties are added,
if there is no form of surprise-based intrinsic rewards to counteract them, then agents fail to learn

6



initial state

Figure 2: When the robot touches the block with greater than 5N of force, it receives a task reward of
+1 and the block turns green. Fingertip color for non-zero impact forces ranges between yellow and
red: it is purely yellow for an impact of near-zero, and purely red for a high impact of 10N. Policies
trained on only task reward, rt, learn how to do the task, but do it a high-impact way. In contrast,
policies trained on the combination of task reward, an impact penalty, and penalty-based surprise
intrinsic reward (rt+r

f
t +r

sp
t ) learn to achieve the task in a gentle (i.e., low-impact) way, by gradually

increasing force applied to the block. Without this particular kind of intrinsic reward, policies get
trapped in a local optimum of avoiding contact with the environment (rt + rft and rt + rft + rst ).
(Each snapshot is obtained by executing the policy after 500k training steps, and taking the last state
in the rollout. The bottom center and right snapshots are from two policies trained with the same
reward augmentation, from different random initializations.) Corresponding videos are available at
http://sites.google.com/view/gentlemanipulation.

training steps training steps

ta
sk

 re
wa

rd

100k 200k 300k 400k 200k 400k 600k 800k

1

0

2

3

4

5

0

1.0

0.2

0.4

0.6

0.8

Figure 3: Learning curves for training policies on different reward augmentations (with five random
seeds each), for two tasks: pressing a block (left) or a fragile block (right) with greater than 5N of
force. When the block is fragile, the episode terminates with a negative reward if the impact is greater
than 3N. Our approach of training policies with a combination of task reward, impact penalty, and
penalty-based surprise intrinsic reward is the only one that learns effectively for both tasks. Policies
are trained on: task reward only ; task reward with impact penalty and no intrinsic rewards ,
dynamics-based surprise , or penalty-based surprise. The parameterization λ′ for acceptability of
penalties varies: λ′2 = 1.5 , 2 , or 3 (left) and λ′2 = 1 , 1.5 , or 2 (right). λ′1 = 2 for all.
Policies trained on only task reward are unable to learn the fragile-block task at all (right).

7

http://sites.google.com/view/gentlemanipulation


nu
m

be
r o

f r
ol

lo
ut

s

0

50

100

maximum impact
0 3 6 9 12 0 3 6 0 3 60 3 6 0 3 6

Figure 4: We train policies to press a block with greater than 5N of force. These histograms show the
maximum impact (in Newtons) experienced per rollout, when the agent performs the task successfully.
Rollouts are collected after 500k training steps. λ′2 = 1.5 , 2 , or 3 . λ′1 = 2 for all. (Note: with
only an impact penalty, agents never succeed in performing the task, so that histogram is not shown.)

the task—they get trapped in a local optimum of avoiding contact with the environment, since they
experience penalties from contact before discovering how to perform the task (Fig. 2, top right).

In line with the results from our previous experiment, in which we observed that dynamics-based
surprise leads to only limited gentle touching in the presence of impact penalties, we saw that
penalty-based surprise was much more effective in terms of agents learning how to perform the task
gently, with low impacts (Fig. 4). Even more, these agents learned as quickly as ones trained without
the impact penalty (Fig. 3, left). This may be because this task is particularly contact-focused (in
general manipulation tasks are contact-focused, but to varying degrees), so it is a setting in which
contact-focused exploration is especially helpful.

5.4 Manipulation of fragile objects

Finally, we made the task more difficult by introducing a fragile block. This is analogous to if the
robot needs to deal with fragile objects, such as picking or sorting ripe fruit. This fragile block breaks
if the impact force at any point is greater than 3N, and the episode terminates with a negative reward
of -0.5. The reward for completing the task is +5. Now, policies trained with only the task reward are
unable to learn the task at all, because they accidentally break the block a few times, and learn that
any contact with the block is undesirable. There is no reward shaping that incentivizes these policies
to try interacting with the block in a gentle way.

In contrast, policies trained with the impact penalty are better able to learn the task. As before,
penalty-based surprise intrinsic rewards are more effective than dynamics-based ones in terms of how
quickly policies are able to learn the task (Fig. 3, right).

6 Discussion and Future Work

Our work takes a step toward using deep RL to train policies for gentle, contact-rich manipulation.
We found that choosing the appropriate focus of curiosity is important for incentivizing agents to
interact gently with the environment, in the presence of impact penalties. This enables efficient and
safe exploration, precise task execution, and successful manipulation of fragile objects.

A main direction of future work is to apply this approach to more complex tasks, in particular tasks
in real-world and/or dynamic environments. In addition, this work only considers one aspect of being
gentle—impact. Our approach could be used to train policies while minimizing other sources of wear
and tear, for instance total force (rather than the increase in force), or the torques exerted by a robot’s
motors (which would reduce energy consumption as well [21]).

8



References
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the Twenty-first International Conference on Machine Learning (ICML), 2004.

[2] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In Proceedings
of the Thirty-Fourth International Conference on Machine Learning (ICML), 2017.

[3] J. Achiam and S. Sastry. Surprise-based intrinsic motivation for deep reinforcement learning.
arXiv preprint arXiv:1703.01732, 2017.

[4] E. Altman. Constrained Markov Decision Processes. CRC Press, 1999.

[5] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[6] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal,
N. Heess, and T. P. Lillicrap. Distributed distributional deterministic policy gradients. In
Proceedings of the Sixth International Conference on Learning Representations (ICLR), 2018.

[7] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Proceedings of the Twenty-Ninth Advances
in Neural Information Processing Systems (NIPS), 2016.

[8] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[9] J. A. Fishel and G. E. Loeb. Sensing tactile microvibrations with the biotac—comparison with
human sensitivity. In Proceedings of the Fourth IEEE RAS & EMBS International Conference
on Biomedical Robotics and Biomechatronics (BioRob), 2012.

[10] J. Fu, J. D. Co-Reyes, and S. Levine. EX2: exploration with exemplar models for deep
reinforcement learning. In Proceedings of the Thirtieth Advances in Neural Information
Processing Systems (NIPS), 2017.

[11] J. García and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16:1437–1480, 2015.

[12] R. Houthooft, X. Chen, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime:
Variational information maximizing exploration. In Proceedings of the Twenty-Ninth Advances
In Neural Information Processing Systems (NIPS), 2016.

[13] J. Hu and T. Wang. Pre-impact configuration designing of a robot manipulator for impact
minimization. Journal of Mechanisms and Robotics, 9(3), 2017.

[14] P. Huang, W. Xu, B. Liang, and Y. Xu. Configuration control of space robots for impact
minimization. In Proceedings of the 2006 IEEE International Conference on Robotics and
Biomimetics, 2006.

[15] K. Ikuta, H. Ishii, and M. Nokata. Safety evaluation method of design and control for human-care
robots. The International Journal of Robotics Research, 22(5):281–297, 2003.

[16] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty es-
timation using deep ensembles. In Proceedings of the Thirtieth Advances in Neural Information
Processing Systems (NIPS), 2017.

[17] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Proceedings of the Fourth International
Conference on Learning Representations (ICLR), 2016.

[19] C. Liu, X. Xu, and D. Hu. Multiobjective reinforcement learning: A comprehensive overview.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(3), 2015.

9



[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with deep reinforcement learning. In Neural Information Processing Systems
(NIPS) Workshop on Deep Learning, 2013.

[21] A. Mohammed, B. Schmidt, L. Wang, and L. Gao. Minimizing energy consumption for robot
arm movement. Procedia CIRP, 25:400 – 405, 2014.

[22] A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Proceedings of the Sixteenth International Conference on
Machine Learning (ICML), 1999.

[23] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the Thirty-Fourth International Conference on Machine
Learning (ICML), 2017.

[24] M. Pecka and T. Svoboda. Safe exploration techniques for reinforcement learning – an overview.
In Modelling and Simulation for Autonomous Systems, 2014.

[25] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of multi-objective sequential
decision-making. Journal of Artificial Intelligence Research, 48(1):67–113, 2013.

[26] S. Russell and A. L. Zimdars. Q-decomposition for reinforcement learning agents. In Proceed-
ings of the Twentieth International Conference on Machine Learning (ICML), 2003.

[27] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy optimization.
In Proceedings of the Thirty-Second International Conference on Machine Learning (ICML),
2015.

[28] ShadowRobot. ShadowRobot Dexterous Hand. https://www.shadowrobot.com/
products/dexterous-hand/.

[29] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and tree search. Nature, 529:484–503,
2016.

[30] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[31] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel. #Exploration: A study of count-based exploration for deep reinforcement learning.
In Proceedings of the Thirtieth Advances in Neural Information Processing Systems (NIPS),
2017.

[32] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

[33] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In
Proceedings of the International Conference on Intelligent Robots and Systems (IROS), 2012.

[34] L.-B. Wee and M. W. Walker. On the dynamics of contact between space robots and con-
figuration control for impact minimization. IEEE Transactions on Robotics and Automation,
9(5):581–591, 1993.

10

https://www.shadowrobot.com/products/dexterous-hand/
https://www.shadowrobot.com/products/dexterous-hand/


Supplementary Material

A Implementation Details

The output of the actor is passed through a tanh, so that it is between -1 and +1. This output
specifies delta position: it is added to the current position and then clipped based on the minimum
and maximum joint angle per action dimension, to obtain the action. The actor network consists of
two fully-connected layers of 300 and 200 hidden units each. Each of the critic networks consists
of two fully-connected layers of 400 and 300 hidden units each. The distributional output of the
critic has support (−100, 100) and 101 bins. For both the actor and critic networks, the first hidden
layer is followed by layer normalization [5] and a tanh, and all other hidden layers are followed by
exponential linear unit (ELU) activations. For D4PG, we used a batch size of 256 and a replay buffer
of 1 million transitions.

The dynamics model consists of three ensembles, one each for predicting the three types of state
features: joint position, joint velocity, and touch. The non-gentleness predictor model consists of a
single ensemble. Each of these ensembles consists of five neural networks, with three fully-connected
layers of 128 hidden units each. All hidden layers are followed by rectified linear unit (ReLU)
activations.

11


	Introduction
	Related Work
	Preliminaries
	Markov Decision Process
	Deep Reinforcement Learning
	Formalizing gentleness

	Proposed Approach
	Impact penalty
	Dynamics-based surprise
	Penalty-based surprise
	Agent architecture

	Experiments
	Experimental domain
	Exploration with impact penalty
	Manipulation with impact penalty
	Manipulation of fragile objects

	Discussion and Future Work
	Implementation Details

