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Abstract: Swarm intelligence is an emerging field with wide-reaching application 
opportunities in problems of optimization, analysis and machine learning. While 
swarm systems have proved very effective when applied to a variety of problems, 
swarm-based methods for computer vision have received little attention. This pa- 
per proposes a swarm system capable of extracting and exploiting the geometric 
properties of objects in images for fast and accurate recognition. In this approach, 
computational agents move over an image and affix themselves to relevant features, 
such as edges and corners. The resulting feature profile is then processed by a clas- 
sification subsystem to categorize the object. The system has been tested with 
images containing several simple geometric shapes a t  a variety of noise levels, and 
evaluated based upon the accuracy of the system's predictions. The swarm system 
is able to accurately classify shapes even with high image noise levels, proving this 
approach to object recognition to be robust and reliable. 
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1. Introduction 

The behavior of ants and other social insects has inspired the development of artifi- 
cial distributed problem-solving systems. Each individual member of a society has 
its own agenda and follows very simple rules; more complex global-level patterns 
emerge solely through the agents' interactions with each other and their environ- 
ment, without supervision or central control. There are primarily two types of 
interactions between insects in a colony: direct and indirect. Direct interactions 
involve tactile, visual, or chemical contact. Indirect interactions are initiated by in- 
dividuals that exhibit some behavior that modifies the environment, which in turn 
stimulates a change in the behavior of other individuals. Although these interac- 
tions may be simple, together they can solve difficult problems, such as finding the 
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shortest path to a food source [5]. This collective behavior of social insects by means 
of self-organization has been termed swarm intelligence [I]. Models of swarm intel- 
ligence used to solve various problems have recently been gaining attention in the 
research community. Swarm approaches offer many problem-solving benefits, in- 
cluding increased flexibility, robustness, decentralization, and self-organization [2]. 

This paper presents a system that uses artificial agents that model the behavior 
of social insects to perform feature detection and object recognition tasks. The 
basic objective is to detect and identify simple objects in images. The ultimate 
goal of the ongoing research is to develop systems capable of detecting complex 
objects, such as human facial features or pathological changes in medical images. 

The paper is organized as follows. Section 2. provides background informa- 
tion on computer vision and swarm systems. Section 3. describes the proposed 
swarm-based algorithm for feature detection and object recognition. Results of ex- 
periments are summarized in Section 4. Finally, Section 5. brings major conclusions 
and gives insights on the importance and possible future extension of this work. 

Background 

2.1 Computer Vision 

Computer vision is a well-established area with many efficient methods for image 
processing, including feature detection and object recognition. While these meth- 
ods provide numerous solutions to the feature extraction problem, they all require 
computationally complex structures and operations that introduce performance 
and scalability problems. In addition, most of these methods are indifferent to the 
underlying meaning and boundaries of analyzed regions, and do little to reduce the 
complexity of the output data. 

A common method for region extraction involves assigning each pixel a level 
of belonging to a region or group [3]. While this may accurately allow for the 
characterization of fixed regions, it does not provide insight into the underlying 
nature of the area such as its general geometry and characteristic features. This is 
a capability lacking in most current approaches. Through extraction of an object's 
key features, it is possible to create a simplified representation of the object that 
is compatible with a suitable classification system. By extracting and utilizing 
geometric properties of an image, it is possible to reduce the complexity of the 
image's representation as seen at the input of the classification system. This results 
in a significant decrease in the computational complexity required to analyze object 
data, without degrading the accuracy of the results. 

The approach proposed in this paper uses a swarm system to simplify a grey- 
scale image into a list of key geometric properties such as the vertex count, the 
number of aligned line segments, and their relation to the total size of the object. 
This form of object representation is suitable for analysis by a classification system, 
such as a rule based system or a trained neural network. It  is the aim of this study 
to create an effective approach that may be further expanded to allow for rapid 
characterization of complex images based upon their principal spacial trends. 
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2.2 Swarm Intelligence 

Swarm intelligence is a field concerned with creating algorithmic solutions based on 
the collective self-organizing behavior common to many species of social animals. 
In swarm systems, each individual, called an agent, follows a set of simple rules (en- 
coded in the individual's nature) and reacts to environmental conditions. The com- 
bined behavior of these simple individuals gives rise to complex systemic behavior 
such as high-level problem solving and coordinated tactical action. A characteristic 
of these systems is that each individual has little or no knowledge of the overall lay- 
out of the environment or the high-level system goals. While some systems allow for 
direct communication between agents, most function solely on indirect interaction 
where agents take stimulus cues directly from the environment. In this scenario, 
past actions of a swarm on the environment affect future actions of individuals 
in the swarm [6]. By altering and responding to a common environment, agents 
can effectively communicate and complete high-level tasks. Initially proposed by 
Grass6 in 1959 [9], this process is known as stigmergy and has been observed in the 
social functions of ants, termites, and some species of spider [3, 61. It  is possible 
to combine such stigmergic systems with another type of swarm behavior: particle 
swarm optimization (PSO). Modeled after the flocking behavior of birds and fish, 
PSO effectively flies a swarm of solutions through a multi-dimensional search space 
using state memory and inter-agent attraction. It has been shown that swarm sys- 
tems employing stigmergic and PSO-like attractive behavior can effectively solve a 
large range of optimization problems, usually outperforming traditional evolution- 
ary computing techniques in terms of both convergence speed and computational 
cost [7, 12, 161. 

In addition to their use in solving traditional optimization problems, swarm 
systems have recently been applied to region detection and region mapping, in- 
cluding grey-scale feature extraction [3] and biomedical image transformation and 
registration [15]. Several groups have shown that PSOs can also be successfully 
applied to autonomous vehicle navigation [4, 81. More closely related to the pre- 
sented work, Ramos and Almeida introduce a swarm system involving the evolu- 
tion of pheromone fields guiding artificial ant colonies to react and adapt to digital 
habitats [13]. Also, in [I l l ,  Liu and Tang propose an autonomous agent-based im- 
age segmentation approach. Their primary focus is on the computational aspects 
of behavior-based reactive agents as an efficient way to search and label specific 
homogeneous regions of known representations in a given image. Despite these 
initiatives, it appears that very little other work has been done to apply the power 
of swarm systems to traditional computer vision tasks. One of the common char- 
acteristics of current image processing systems is that they attempt to highlight 
features to make them more prominent. This has been done by isolating or match- 
ing a region of similar pixels based on shape and/or pixel intensity value [3, 151. 
In addition to highlighting features, the system presented in this study allows for 
classification of image features. This is possible because the image being processed 
is represented as a cloud of data points, which is then analyzed by a classification 
subsystem. 
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3. Swarm-based System for Object Recognition 

The primary contribution of this work lies in the unique combination of a swarm 
intelligence subsystem with a traditional classifier subsystem. The proposed swarm 
algorithm involves the fixing of agents to the edges of an object present in an image. 
The evolution of the agent population is driven by motion, feature detection, and 
fixation of the agents. The swarm produces statistics about the types of features 
present in the image, which are forwarded to the classification subsystem. This 
subsystem can be realized in many different ways. To demonstrate the feasibility 
of the swarm approach, two separate classification techniques are used: a fuzzy 
rule- based system (FRBS) , and an artificial neural network (ANN). The overall 
structure of this evolutionary scheme is outlined in Algorithm 1. 

3.1 ' Agent Mot ion 

Initially, individuals in the swarm are randomly placed in the environment rep- 
resenting the image. In each iteration, every individual goes through two major 
steps: movement and possible fixing. Movement is governed by three components: 
attraction, momentum, and randomness. At traction provides guidance to agent 
motion based on the assumption of object continuity; the agents are encouraged to 
explore areas of the environment that are known to contain features of an object. 
Momentum is necessary for consistent motion, and increases the likelihood that the 
swarm will sufficiently explore the environment. When momentum is insufficient, 

Algorithm 1 Swarm-Based System for Image Recognition 
1: Read picture 
2: Initialize agent position randomly in environment (no overlap permitted) 
3: Determine global threshold 
4: Initialize momentum vector and iteration counter 
- while there exists a free agent do 

Increment iteration counter 
for all free agents do 

Check for features at  current location 
if agent decides to fix then 

Re-categorize as a fixed agent 
Store the detected feature (e.g . horizontal or vertical edge, corner) 
Produce clones of the parent 

end if 
end for 
All free agents move (no overlap permitted) 
Decrement time-to-live for all free agents 
if time-to-live=O for any free agent then 

The agent expires 
end if 

20: end while 
21: Statistics of detected features enter object classification system 
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individuals stay within the region in which they are initially placed, and their 
exploration capability is greatly reduced. Randomness provides diversity to an 
agent's motion pattern and also contributes to a more complete exploration of the 
environment. 

Attraction is closely related to the concept of stigmergy described in Section 2. 
A demonstration of this concept can be found in ant colonies, where ants release 
and detect pheromones as a method of conveying information. The algorithm has 
been simplified to shorten the time of each iteration by simulating stigmergy instead 
of using models of actual pheromones. These models are replaced by attraction to 
neighboring individuals, particularly those which are fixed at  their locations in the 
environment, so that agents tend to follow each other and gather near interesting 
regions rather than wander through barren regions. 

Motion is controlled by three system parameters: attraction, A, momentum, 
M, and a base constant, C, providing randomness. A fine balance between these 
parameters exists and suitable values have to be determined experimentally. When 
momentum is too high, it masks the other aspects of motion. If attraction between 
agents is too high, the swarm may not successfully locate all regions of interest 
in the environment, and the resulting population does not faithfully represent the 
object present in the image. 

As mentioned above, motion of an agent is influenced by its momentum and 
by attraction to other agents in the neighborhood. Selection of a direction, i ,  in 
which to move is not deterministic, but rather stochastic, with the probability of 
a particular direction to be chosen defined as 

where a, is an attraction function, mi is a momentum function, and n is the 
number of directions accessible from the current location. The probability is set 
to pi = 0 for directions that are not accessible, i.e. where movement would lead 
outside the image boundary or to a location already occupied by another agent. 
The denominator performs normalization so that x p i  = 1. The base constant, 
C,  provides each agent with equal probability to move in any direction before the 
influence of momentum and attraction is applied. The higher the value of C relative 
to the attraction and momentum function values, the more stochastic the agent 
movements become. This constant is kept relatively low in order to take advantage 
of the benefits provided by momentum and attraction. 

The attraction to which the agent k is exposed is related to the distance between 
k and the neighboring agents, j, within a defined radius. Agents that lie beyond 
this radius are not considered neighbors to k. The attraction is increased according 
to the fixation status of the agent j by a constant value, F ,  such that fj = F if 
agent j is fixed, and fj=0 otherwise. 

The form of the attraction function a, differs depending on the direction, i, 
being examined. The directions i are indexed starting from i = 1 corresponding to 
the direction up, and continuing clockwise to i = 8 corresponding to the direction 
up-lef t. 

The following two equations show how the attraction functions are defined. 
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for i = 1 , 3 , 5 , 7  

where set { 1 }  contains neighboring agents lying in the top, right, bottom, or left 
half-planes, set {m} contains neighboring agents lying in top-right, bottom-right, 
bottom-left, or top-left quadrants, and A is a positive constant influencing strength 
of attraction relative to momentum and randomness. The relationships between 
the coordinates of an agent, k ,  and the coordinates of its neighbors, 7 ,  considered 
for each direction are defined in Tab. I. An example of attractions exerted on an 
agent by its neighbors is shown in Fig. 1. 

Fig. 1 A n  example of attractions exerted on an agent (u). Legend: o unfixed 
neighboring agent, fixed neighboring agent, F - fixation constant 

The momentum function mi evaluates to a positive constant, M ,  if the agent 
moved in direction z in the previous iteration, and to zero otherwise, as shown in 
the following equation 

M if i t  = it-\ 
mi = { 

0 otherwise 

For a rectangular arrangement of pixels, there are n < 8 possible directions to 
move from any given position on the image. Probabilities corresponding to these 
directions obtained using (1) are arranged in a vector 

and a particular direction is then determined using a roulette wheel selection ap- 
proach. 
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Direction 

UP 
up-right 
right 
down-right 
down 
down-lef t 
left 
up-lef t 

Range x 

Xj > Xk 
Xj > Xk 
xj > Xk 

Xj < Xk 
Xj < Xk 
Xj < Xk 

Range y 

Yj > Yk 
Yj > Yk 

Vj < Yk 
Yj < Yk 
Yj < Yk 

Yj > Yk 

Tab. I Relationship between the coordinates of an agent, k ,  and the coordinates 
of its neighbors, j ,  considered /or each direction z. 

3.2 Agent Fixation and Characterization 

Features in an image are identified using a feature-detection approach. For exam- 
ple, edges in an image can be found by considering amplitude discontinuities that 
are greater than a certain threshold. Conventional image processing involves tech- 
niques such as discrete differentiation, in which the original image is convolved with 
compass gradient masks in order to reveal image features. The method described 
in this paper uses similar masks, but in a different manner. 

In the current system, the agents examine the 3 x 3 pixel area centered a t  their 
location in the image and apply compass gradient masks. A mask is applied by 
multiplying its elements with the corresponding pixel values in the image. The sum 
of products of these multiplications is compared to a pre-determined threshold value 
and indicates the orientation of an edge, if one exists. For initial experiments, the 
choice was made to use Sobel masks because they are symmetrical and simplified 
to detect gradients in two directions [14]. Many other existing sets of masks are 
more complex, requiring more steps, and therefore increase the time required to 
run the algorithm. 

If a feature is found, the agent is fixed a t  the location and cloned. In order to 
speed up the object detection process, the clones are placed strategically according 
to the detected feature type. For example, when a horizontal edge is found, new 
agents (clones) are placed to the left and right of the original agent. Each agent 
is given a time-to-live, so that if it fails to find an object feature in its lifetime, it 
expires, thus saving computational resources. 

3.3 Iteration Control 

The status of all agents is evaluated during each iteration in random order so that 
the entire population is updated asynchronously. At any given time, an active 
agent must be in one of two possible states: free or fixed. Each free agent moves 
around the image and attempts to fix to the edges of the image, based on the 
motion heuristic and the agent fixing technique, detailed in Sections 3.1 and 3.2. 
Expired agents are removed from the population and no longer have any bearing 
on the remaining agents. If an agent fixes to a feature, it blocks that location in the 
image so that no other agent may occupy it. The entire population is continually 
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updated until all active agents are fixed, at which point the swarm has reached a 
state of equilibrium. 

3.4 Shape Classification 

After the swarm has reached equilibrium, the statistics about the types of features 
present are retrieved and forwarded to the object classification subsystem, which 
has been implemented both as a FRBS and an ANN. The swarm outputs three 
raw parameters to the classification subsystem: the number of fixed corner agents, 
Nc, the number of fixed horizontal agents, NH, and the number of fixed verti- 
cal agents, Nv. The inputs into the classification subsystem are different ratios 
of these parameters. Currently, the systems are able to identify and discern be- 
tween squares, rectangles, crosses, triangles, and circles. Brief descriptions of t he 
two implementations of the classification subsystem are provided in the following 
subsections. 

3.4.1 Fuzzy Rule-Based System 

The FRBS has been selected for the initial implementation of the classification 
subsystem as it is easy to design, using intuitive rules. The system is designed in 
the form of a Mamdani fuzzy inference system [lo]. It  classifies shapes based on 
three input parameters: the number of fixed corner agents, NC, the ratio of fixed 
horizontal agents to fixed vertical agents, RHV = NH + Nv, and the ratio of fixed 
corner agents to fixed horizontal agents, RCH = Nc -+ NH. Instead of using exact 
parameter values, the FRBS allows their linguistic description in the form of fuzzy 
sets. This helps to account for incomplete objects, noise, and agents that may have 
erroneously fixed. The rules used to classify the objects have the following form: 

(a) IF RHV w 1 and Nc w 4 THEN object is a square 
(b) IF RHV $ 1 and NC w 4 THEN object is a rectangle 
(c) I F R H V w l  a n d N C w  12 THENobjectisacross 
(d) IF R H V > l  andRCH > 1 THENobject isatriangle 
(e) IF RHV w 1 and RCH w 4 THEN object is a circle 

The FRBS applies these rules to the input parameters and classifies the shape 
of the object based on how the parameters match the antecedent membership func- 
tions corresponding to each shape. For example, in rule (a), two separate triangular 
membership functions, centered around values 1 and 4, are used to represent the 
ranges of acceptable values within which RHV and NC may fall, respectively, for 
the shape to be classified as a square. Triangular membership functions are used 
because they are easily described and implemented. The consequents of the rules 
are represented by fuzzy singletons, with strongest membership achieved for input 
parameters exactly matching modal values of the input fuzzy sets. 

3.4.2 Artificial Neural Network 

Another instance of the classification subsystem has been implemented using a neu- 
ral network. Compared to an FRBS, design of an ANN-based classifier is less intu- 
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itive and its operation less transparent. ANNs, however, provide greater flexibility 
and the ability to learn a variety of complex non-linear mappings. The latter prop- 
erty can be used to achieve an arbitrary classification performance without the 
need to explicate the classification rules. Rather, learning is performed based upon 
samples labeled with the desired output classes. 

A three layer ANN has been implemented, consisting of two input units, six 
hidden units, and five output units corresponding to individual classes/shapes. 
Training occurs using a back-propagation algorithm applied to a labeled set of 
perfect image data over the course of 400 training epochs. The learning rate is set 
to 0.2 and the momentum term to 0.1. The activation function of the hidden and 
output neurons is of the sigmoidal type. 

Based on the idealized feature profile observed in preliminary trials, it has been 
determined that all considered shapes could be represented by RHV or RVH and 
the ratio of the number of corners to the total number of features, RCT = NC+ NT,  
where NT = Nc+ NH+ Nv. This set of input parameters is used because it provides 
higher resiliency to noise. Under noisy conditions, the swarm is prone to contain an 
abundance of corners, leading to a synthetically high Nc. However, if the corner 
statistics are represented using the RCT ratio, the object classification is successful 
as long as this ratio falls within an acceptable range, partially compensation for 
the spurious corners. 

The neural network is fed values RCT E [O, 11 and the lower of RHV or RVH- 
Although not explicitly, the trained neural network considers the following relations 
between the input parameters and classes of objects. Circles and triangles have 
a very high RCT ratio, but differ significantly in their RHV ratios. Squares show 
similar RCT ratios as rectangles, but can be distinguished by the close proximity 
of their RHV ratio to unity. Finally, crosses can be identified as shapes similar to 
squares but with a RCT ratio larger than that typically found in a square and less 
than that found in a circle. 

4. Experimental Results 

The complete system has been tested on images containing the five object shapes 
outlined in the last section. All tested shapes have been presented as 50 x 50 
pixels grey-scale images, with white shape outlines set on to a black background, 
as shown in Fig. 2. The presented shapes occupy about five percent of the total 
image area, and are situated near the center of the image. To analyze these shapes, 
20 swarm agents were evenly distributed on the image, each with a time-to-live of 
15 iterations, and the potential to create 4 children upon fixation. 

All five images, with the grey-scale values normalized to [O, 11, have been ana- 
lyzed for two global threshold values: 0.5 and 0.8. These values are defined as the 
intensity level in the range above which an agent bonds to a pixel. At both thresh- 
old levels, each shape is tested ten times and the results are averaged to obtain the 
classification accuracy. Each shape is tested at ten differing noise levels, ranging 
in 10% increments from 0% to 90%. The noise level is defined as the probability 
of each pixel in the image being modified by a uniform intensity value between 0% 
and 80% of the maximum pey-scale intensity level. Examples of the noisy images 
are shown in Fig. 3. 
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Fig. 2 Shapes used for system testing. 

Analysis shows that the system accurately distinguishes between a range of 
sample shapes, even when the image is exposed to a moderate amount of noise or 
contains an incomplete shape. Tab. I1 summarizes the results of object classification 
under varying levels of noise. The system classifies rectangles and triangles quite 
well up to noise levels of 60%. Circles and squares show a more rapid drop in 
accuracy, with reliable classification up to 20% noise. These trends can be seen 
in Tab. 11. The rapid decrease in accuracy is likely due to the fact that squares 
and circles must maintain rigid side-to-length ratios to be correctly classified. In 
support of this observation, test results show that the majority of misclassified 
squares are labeled as rectangles. More serious distortion only occurs at noise 
levels approaching 60%. Likewise, misclassification of circles yields 'triangle' and 
cross' results. Crosses show more robust classification than circles and squares, 
with good accuracy at noise levels up to 30%. 

Fig. 3 Noise applied to a test image - the individual images represent noise levels 
0-90% i n  increments of 10%. 

As there are five object classes, classification by random chance is indicated by 
a classification rate of 0.2, while over 50% accuracy is indicated by classification 
rates greater than 0.5. The threshold level of 0.5 yields a better than random chance 
of classification at  noise levels up to 50%, and over 50% accuracy of classification 
at noise levels up to 20%. Similarly, the threshold of 0.8 shows a better than chance 
classification up to noise levels of 60% and over 50% accuracy of classification for 
noise levels up to 20%. Interestingly, for rectangles and triangles, the 0.8 threshold 
tests show greater than 50% accuracy up to noise levels of 60-80% on rectangles 
and triangles, accurately classifying even highly distorted shapes. 

A qualitative analysis showed that different types of noise have different effects 
on system performance. As described above, Gaussian noise was used to mod- 
ify the test images. It  was found that injected Gaussian noise does not prevent 
the system from identifying the major features of a shape. As such, the ratios of 
relevant features do not vary greatly from their noise-free values. The addition 
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of Poisson noise had a more detrimental effect on the performance of the system, 
showing a greater divergence in feature ratios and a corresponding increase in mis- 
classifications. Impulse and Laplacian noise lead to a plethora of erroneous corner 
features being detected in the area surrounding the shape. While the addition of 
new horizontal and vertical features did not greatly effect the deduced shape labels, 
the increase in the ratio of corners to total features caused a decrease in classifica- 
tion accuracy. While higher bonding threshold values allowed the rejection of some 
noise, a tradeoff was observed between erroneous corner deletion and the detection 
of continuous shape boundaries. 

While this system was designed to identify single shapes, having multiple shapes 
in an image will not decrease the classification rate, as the average number of 
horizontal, vertical, and corner features should not change as long as the image 
is homogenous with respect to shape type. A system to deduce the nature of 
heterogeneous images will be presented in future work. 

Global threshold 0.5 Global threshold 0.8 

Noise 

Tab. I1 Classification rates for shape recognition i n  noisy conditions. Values set 
i n  bold font indicate the greatest noise levels at which accuracy is equal or exceeds 
0.5. Values set in a pair of square brackets indicate noise levels where accuracy 

begins t o  fall below 0.2. 

5. Conclusions 

In this paper, a swarm-based approach to the task of object recognition has been 
proposed. In an attempt to harness the many benefits of using such computational 
techniques as swarm intelligence, fuzzy sets, and neural networks, a robust system 
has been created which consistently and accurately classifies objects in images. 
The bottom-up' approach taken in this project allows the system to analyze the 
image indirectly by building an approximation of the image using a swarm and then 
analyzing the collected statistics of the converged swarm population. The system 
accomplishes this complex higher-level task while utilizing agents following simpler 
behavioral rules. The robustness of the proposed system is clearly demonstrated by 
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its ability to correctly perform its task despite significant noise levels and occasional 
incomplete detection of the object's features by the swarm. 

The primary focus of this paper is the successful combination of the swarm 
and classifier subsystems. It is not difficult to imagine the numerous potential 
applications to which the proposed swarm system may be applied in the future. 
The problem of distinguishing healthy from pathological conditions in medical im- 
ages is of particular interest to the authors, and the work presented in this paper 
establishes a solid groundwork for future investigation in this field. 

Acknowledgements 

The work described in this paper has been supported by an Undergraduate Stu- 
dent Research Award provided by the Natural Sciences and Engineering Research 
Council (NSERC) of Canada. 

References 
Bonabeau E., Dorigo M., Theraulaz G.: Swarm Intelligence: From Natural To Artificial 
Systems, Oxford University Press, New York, NY, 1999. 

Bonabeau E., Theraulaz G.: Swarm Smarts, Scientific American, March 2000, pp. 72-79. 

Bourjot C., Chevrier V., Thomas V.: How Social Spiders Inspired an Approach to Region 
Detection. In: Proc. International Conference on Autonomous Agents and MultiAgent Sys- 
tems, Cologne, Italy, 1, 2002, pp. 426-433. 

Broggi A., Cellario M., Lombard! P., Porta M.: An Evolutionary Approach to  Visual Sensing 
for Vehicle Navigation, IEEE Transactions On Industrial Electronics, 50, 1, pp. 18-29, 2003. 

Dorigo M., Maniezzo V., Colorni A.: Ant System: Optimization by a Colony of Cooperating 
Agents, IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 26, 
1, 1996. 

Dury A., Vakanas G., Bourjot C., Chevrier V., Krafft B.: Multi-agent Simulation to Test 
a Coordination Model of the Prey Capture in Social Spiders. In: Proc. 13th European 
Simulation Symposium, pp. 831-833, Erlangen, 2001. 

Engelbrecht A. P.: Computational Intelligence: An Introduction, Wiley, 2002. 

Gaing 2. L.: A Particle Swarm Optimization Approach for Optimum Design of PID Con- 
troller in AVR System, IEEE Transactions On Energy Conversion, 19,  2, 2004, pp. 384-391. 

Grass6 P.: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositer- 
mes natalensis et Cubitermes sp. La thkorie de la stigmergie: essai d'interprktation du com- 
portement des termites constructeurs, Insectes Sociaux, 6, 1959, pp. 41-81. 

Jang J. R., Sun C., Mizutani E.: Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper 
Saddle River, NJ, 1997. 

Liu J., Tang Y.: Adaptive Image Segmentation With Distributed Behavior-Based Agents, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 6, June 1999, pp. 
544-551. 

Parsopoulos K. E., Vrahatis M. N.: On the Computation of All Global Minimizers Through 
Particle Swarm Optimization, IEEE Transactions On Evolutionary Computation, 8, 2004, 
pp. 211-224. 

Ramos V., Almeida F.: Artificial Ant Colonies in Digital Image Habitats - A Mass Be- 
haviour Effect Study on Pattern Recognition. In: Proc. ANTS 2000 - 2nd Int. Works. on 
Ant Algorithms (From Ant Colonies to Artificial Ants), 2000, pp. 113-124. 



Mirzayans T. et al.: A swarm-based system for object recognition 

[14] Robinson G. S.: Edge Detection by Compass Gradient Masks, Computer Graphics and Image 
Processing, 6, 5, 1977, pp. 492-501. 

[15] Wachowiak M. P., Smolikova R., Zheng Y. F., Zurada J. M., Elmaghraby A.S.: An Approach 
to  Multimodal Biomedical Image Registration Utilizing Particle Swarm Optimization, IEEE 
Transactions On Evolutionary Computation, 8, 3, 2004, pp. 289-301. 

[16] Yin P. Y.: A Discrete Particle Swarm Algorithm for Optimal Polygonal Approximation of 
Digital Curves, Journal of Visual Communication and Image Representation, 15, 2, 2004, 
pp. 241-260. 




