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Abstract— Advanced neuroprosthetic devices demonstrate an

impressive capacity for both actuation and sensation, providing

numerous controllable degrees of freedom and reportable

sensory percepts. When linked to the human body by way

of invasive and non-invasive brain-body-machine interfaces,

neuroprostheses promise to greatly improve life for users by

extending their capacity to engage with and interpret the world

around them. In this work, we demonstrate how a prosthetic

device can build up diverse knowledge during its ongoing

operation so as to better support its user. Specifically, we show

that a device can learn and update more than 18k different

temporally extended predictions per second about all aspects

of a sensorimotor data stream, significantly extending past work

on real-time knowledge acquisition during prosthetic control.

Due to a significant mismatch between the actuation
capacity of new devices like the Modular Prosthetic Limb
(MPL, Fig. 1) and the number and types signals that can
be recorded from and delivered to the user’s body, there
remain significant barriers to the functional control and use
of neuroprosthetic devices by users with and without motor
impairments [1]. Intelligent control systems are now a subject
of active research so as to allow devices themselves to begin
to take an active role in leveraging the dense stream of
information flowing between a user and their device [1], [2].

Our present demonstration provides new insight into the
potential for real-time knowledge acquisition during the
control of prosthetic devices [2], [4]. As described in Fig.
2, we implemented a layered architecture with ⇠11k general
value function predictors (GVFs, [2], [3]) to forecast the
stream of percepts flowing from the MPL. Internal signals
corresponding to prediction error were also computed for
each of these predictions and used as learning targets for
an additional ⇠7k GVFs. During a period of only 6min
of learning, the system was able to build up consistent
forecasts of the data stream (shown via intensity values in
Fig. 2a,b), detect unexpected errors in its forecasts due to
starting and stopping motions or human perturbations (bright
areas in Fig. 2c), and forecast areas of the data stream where
future unexpected errors in its predictions might occur (bright
areas in Fig. 2d). The resulting topology of GVFs forms a
diverse, multi-timescale predictive state representation that
can be used for improving control. These results therefore
represent an important step toward prosthetic systems of all
kinds becoming more knowledgable, effective counterparts
in ongoing human-machine interaction.
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Fig. 1. The third-generation Modular Prosthetic Limb (HDT Inc.) used in
these experiments, featuring independent finger and thumb control, finger
abduction/adduction, three-degree-of-freedom wrist actuation, elbow flexion
and extension, humeral rotation, and two axes of shoulder motion.

Fig. 2. A topology containing ⇠18k GVF predictions was made to
forecast ⇠3.5k binary percepts streaming in real time from the MPL while
it performed a series of cyclic actions. These binary precepts encode the
position, velocity, impedance, and temperature of MPL actuators. During its
motion, the arm was perturbed by human interactions, such as shaking its
hand or placing heavy objects in its palm. The 3.5k short-term forecasts
of these bits are shown as heat map intensity values in (a), with 3.5k
longer-timescale predictions of these predictions being shown in (b). Internal
signals relating to the unexpected prediction error for each of the learned
predictions (computed via UDE measures [3]) are shown in (c), with 3.5k
learned forecasts of these error values shown in (d).
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